三角恒等变换(测试题及答案)
高中数学三角恒等变换精选题目(附答案)
高中数学三角恒等变换精选题目(附答案)1、cos 24cos36cos66cos54︒︒︒︒-的值为( )A 0 B12 C 2 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365-B 、6365C 、5665D 、1665-3. tan 20tan 4020tan 40︒︒︒︒++的值为( )A 1 B3C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是( )A 、3365B 、1665C 、5665D 、63656.,)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是( )A 、725-B 、2425-C 、2425D 、7257. 函数44sin cos y x x =+的值域是( )A []0,1B []1,1-C 13,22⎡⎤⎢⎥⎣⎦D 1,12⎡⎤⎢⎥⎣⎦8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A1010 B 1010- C 10103 D 10103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( )A 、向右平移6π个单位B 、向右平移12π个单位C 、向左平移6π个单位D 、向左平移12π个单位 10.函数sin 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11. 已知1cos sin 21cos sin x xx x -+=-++,则x tan 的值为 ( )A 、34B 、34-C 、43D 、43-12.若0,4πα⎛⎫∈ ⎪⎝⎭()0,βπ∈且()1tan 2αβ-=,1tan 7β=-,则=-βα2 ( ) A 、56π-B 、23π-C 、 712π- D 、34π- 13. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ∆面积的最小值为 。
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
三角恒等变换(测试题及答案)
三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。
A。
0.B。
1/2.C。
1/4.D。
1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。
1/2.B。
2/3.C。
3/4.D。
4/53.函数y=sin(x)+cos(x)的最小正周期为:A。
π。
B。
2π。
C。
4π。
D。
π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。
-2/3.B。
-1/3.C。
1/3.D。
2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。
-7/24.B。
-1/8.C。
1/8.D。
7/247.函数y=sin(x)+cos(x)的值域是:A。
[0,1]。
B。
[-1,1]。
C。
[-1/2,1/2]。
D。
[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。
向右平移π/4个单位。
B。
向左平移π/4个单位C。
向右平移π/2个单位。
D。
向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。
x=π/4.B。
x=π/6.C。
x=π/2.D。
x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。
12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。
三角恒等变换含答案
三角恒等变换一、单选题1.已知α是第二象限角,tan()74πα-=-,则sin()3πα+=( )A B C D 2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A .19-B C .19D . 3.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形。
如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于( )A .45B .725C .725-D .354.已知锐角α满足3cos()65πα+=,则sin(2)3πα+=( ) A .1225B .1225±C .2425D .2425±5.sin 3πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D6.已知22ππαβ--<<,sin 2cos 1αβ-=,2cos sin αβ+=则3s i n πβ⎛⎫-= ⎪⎝⎭ ( )A .3B .3C .3±D .3±7.若,αβ都是锐角,且cos 5α=,3sin()5αβ+=,则cos β= ( )A B C D 8.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tanα,tanβ,且22ππαβ⎛⎫∈- ⎪⎝⎭,,,则α+β=( ). A .34π或34π-B .4π-或4πC .4π D .34π-9.已知角,αβ均为锐角,且cos αβ==αβ-的值为( ) A .3πB .4π C .4π-D .4π或4π-10.已知 πsin()4α+=,则 3πsin()4α-的值为 ( ).A .B .2C .-12D .1211.已知函数()212cos 2f x x x =+-,若其图象是由sin 2y x =图象向左平移ϕ(0ϕ>)个单位得到,则ϕ的最小值为( ) A .6πB .56π C .12πD .512π 12.已知函数()sin sin 3f x x x =-,[0,2]x πÎ,则()f x 的所有零点之和等于( ) A .5πB .6πC .7πD .8π13.若函数()sin cos f x a x b x =+在3x π=处取得最大值4,则ab=( )A .1B C .2D .314.已知函数()sin f x a x x =-图象的一条对称轴为6x π=-,若()()124f x f x ⋅=-,则12x x +的最小值为( )A .3π B .πC .23π D .43π二、填空题15.计算:tan 20tan 40tan120tan 20tan 40++=_______________.16.cos102cos20cos10-⋅=____________. 17.已知()2sin 3αβ+=,()2sin 5αβ-=,则tan tan αβ的值为__________;18.已知αβ,均为锐角,1sin())663ππαβ-=+=,cos()αβ+=________. 19.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 20.若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式()()cos2sin sin 0f x x f x a ++-≤恒成立,则a 的最大值是_____.21.已知等腰三角形顶角的余弦值为725-,则这个三角形底角的正切值...为______ 22.o o oosin58+cos60sin2cos2=____________.23.已知π1sin cos 63αα⎛⎫--=⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭__________.24.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则sin 2θ=______.25.若函数2()4sin sin cos 2(0)42x f x x x πωωωω⎛⎫=⋅++>⎪⎝⎭在2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是____________.26.如图,某园林单位准备绿化一块直径为BC 的半圆形空地,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若BC a =,ABC θ∠=,设ABC ∆的面积为1S ,正方形PQRS 的面积为2S ,当a 固定,θ变化时,则12S S 的最小值是__________.27.已知函数()()()cos sin sin cos f x a x b x =-没有零点,则22a b +的取值范围是_______三、解答题 28.(1cos103sin10-;(2)求值tan 70tan 503tan 70tan 50+-= 29.已知()222x x x f x sincos sin a ⎛⎫=⋅++ ⎪⎝⎭ (1)求实数a 的值;(2)若443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,求2141tan παα⎛⎫-+ ⎪⎝⎭+的值. 30.(1)已知51sin π123α⎛⎫+=⎪⎝⎭,求πsin 12α⎛⎫- ⎪⎝⎭的值. (2)已知角α的终边过点()43P ,-,β为第三象限角,且4tan 3β=,求()c o s αβ-的值.31.(1)求值: sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)已知10sin cos ,25x x x π-<<+=,,求sin cos x x -的值. 32.已知1tan()2αβ-=,1tan 7β=-,且,(0,)αβπ∈,求2αβ-的值 33.已知32ππα<<,32ππβ<<,sin α=,cos β=αβ-的值. 34.已知α,β为锐角,且17cos α=,()1114cos αβ+=-.求sinβ的值. 35.计算(1)已知2sin cos 0αα-=,求sin cos sin cos sin cos sin cos αααααααα-+++-的值; (2)求()214cos 102sin10︒+︒-︒的值. 36.已知2sin cos 3αα+=,且2παπ<<,求下列各式的值(1)sin cos αα-(2)cos()24sin()4πααπα+++37.已知sin(2)7αβ-=11cos(2)14αβ-=-, 042ππβα<<<<,(1)求tan(2)αβ-的值; (2)求cos()αβ+以及αβ+的值38.计算(1)23sin12(4cos 122)--; (240sin 50(13tan10).701cos 40+++39.已知函数2()2cos cos cos .22x xf x x x =+ (1)求函数f (x )的最小正周期; (2)求函数f (x )在区间,64ππ⎡⎤-⎢⎥⎣⎦上的值域.40.已知函数2()sinsin 1(02f x x x x πωωωω⎫⎛⎫=+⋅+-> ⎪⎪⎝⎭⎭的相邻两条对称轴之间的距离为2π. (1)求ω的值;(2)当,122x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 41.如图,OPQ 是半径为2,圆心角为3π的扇形,C 是扇形弧上的一动点,记COP θ∠=,四边形OPCQ 的面积为S .(1)找出S 与θ的函数关系;(2)试探求当θ取何值时,S 最大,并求出这个最大值.42.已知函数2()sin cos (0)f x x x x =>ωωωω的最小正周期为2π, (1)求函数()f x 的单调递减区间;(2)若函数()()g x =f x +m 在区间0,4⎡⎤⎢⎥⎣⎦π上有两个零点,求实数m 的取值范围. 43.为迎接2020年奥运会,某商家计划设计一圆形图标,内部有一“杠铃形图案”(如图阴影部分),圆的半径为1米,AC ,BD 是圆的直径,E ,F 在弦AB 上,H ,G 在弦CD 上,圆心O 是矩形EFGH 的中心,若23EF =米,2AOB θ∠=,5412ππθ≤≤.(1)当3πθ=时,求“杠铃形图案”的面积;(2)求“杠铃形图案”的面积的最小值.参考答案1.C 【解析】 由tan 74πα⎛⎫-=- ⎪⎝⎭,得171tan tan αα-=-+,解得34tan α=-. 又α是第二象限角,可得34sin ,cos 55αα==-.则314sin 333525sin cos cos sin πππααα⎛⎫+=+=⨯-= ⎪⎝⎭. 故选C. 2.D 【解析】分析:由二倍角公式得cos 3πθ⎛⎫+⎪⎝⎭,再由5cos ?cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合同角三角函数关系可得解.详解:由2sin 263θπ⎛⎫+=⎪⎝⎭,得28112sin 12699θπ⎛⎫-+=-= ⎪⎝⎭,即1cos 39πθ⎛⎫+= ⎪⎝⎭,由θ为锐角,且1cos 039πθ⎛⎫+=> ⎪⎝⎭,所以3πθ+因为锐角,所以sin 03πθ⎛⎫+> ⎪⎝⎭.5cos cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选D.点睛:解决三角变换中的给值求值问题时,一定要注意先化简再求值,同时要注意所给条件在解题中的整体作用. 3.B 【解析】 【分析】根据两个正方形的面积求出两个正方形的边长,进而用三角函数表示边长求出三角函数值,再利用二倍角公式求解即可. 【详解】由大正方形面积为25,小正方形面积为1.易得大正方形边长为5,小正方形边长为1.由图有15cos 5sin 1cos sin 5θθθθ-=⇒-=,故221cos sin 5cos sin 1θθθθ⎧-=⎪⎨⎪+=⎩ ,因为较小的锐角为θ,故4cos 53sin 5θθ⎧=⎪⎪⎨⎪=⎪⎩.故2247cos 22cos 121525θθ⎛⎫=-=⨯-= ⎪⎝⎭ 故选:B 【点睛】本题主要考查了由图像求解三角函数值的问题,需要根据图像到三角函数的关系式再求解,属于中等题型. 4.C 【解析】 【分析】利用诱导公式,求得sin()6πα+的值,再利用倍角公式,即可求解.【详解】因为锐角α满足3cos()65πα+=,所以6πα+也是锐角,由三角函数的基本关系式可得4sin()65πα+==, 则24sin(2)2sin()cos()36625πππααα+=++=,故选C. 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数的倍角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 5.B 【解析】 【分析】根据sin 3πα⎛⎫-= ⎪⎝⎭和0,2πα⎛⎫∈ ⎪⎝⎭,得到sin 3πα⎛⎫- ⎪⎝⎭和cos 3πα⎛⎫- ⎪⎝⎭的值,将所求的cos α转化为cos 33ππα⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦,利用两角和的余弦公式,得到答案.【详解】因为sin 33πα⎛⎫-=⎪⎝⎭,所以sin 33πα⎛⎫-=- ⎪⎝⎭,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 33πα⎛⎫-==⎪⎝⎭, 所以cos cos 33ππαα⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 3333ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭12⎛=- ⎝⎭36+=. 故选:B. 【点睛】本题考查同角三角函数关系,两角和的余弦公式,属于简单题. 6.B 【解析】 【分析】两式平方相加利用两角和与差的公式可化为()54sin 3αβ--=,再根据22ππαβ-<-<得出6παβ=+,代入2cos sin αβ+=.【详解】将两个等式两边平方可得2222sin 4sin cos 4cos 1cos 4cos sin 4sin 2ααββααββ⎧-⋅+=⎨+⋅+=⎩, 两式相加可得()54sin 3αβ--=,所以()1sin 2αβ-=, 22ππαβ-<-<,6παβ∴-=,即6παβ=+,代入2cos sin αβ+=3sin 2ββ+=,所以sin 63πβ⎛⎫+= ⎪⎝⎭, 故选:B 【点睛】本题主要考查三角函数的化简求值,需熟记两角和与差的公式以及常见的三角函数值,属于中档题. 7.A 【解析】 【分析】先计算出()cos αβ+,再利用余弦的和与差公式,即可. 【详解】因为,αβ都是锐角,且1cos 2α=<,所以,32ππα<<又()31sin 52αβ+=>,所以2παβπ<+<,所以()4cos 5αβ+==-sin α==,cos β=()()()cos cos cos sin sin αβααβααβα+-=+++ 25=,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大。
三角恒等变换(含答案)
2
4
4
4
从而 sin
−
4
=
−
4 5
,因此
tan
−
4
=
−
4 3
.故填
−
4 3
.
评注:此处的角还可由 cos
−
4
=
3 5
缩小至 2k +
2
−
4
2k
+
7 4
(k
Z)
,但没必要.
另外,还可利用
tan
−
π 4
tan
+
π 4
=
−1 来进行处理,或者直接进行推演,即由题意
cos
+
4
4
5
(A) 7 25
(B) 1 5
(C) − 1 5
(D) − 7 25
【解析】因为
cos
π 4
−
=
3 5
,
2 (cos + sin ) = 3,所以 cos + sin = 3
2
5
5
2 ,两边平方得,
1+sin 2 = 18 sin 2 = 7 .故选 D.
25
25
2
解法二:
cos 2
4
= − 1 .选 A 2
2
1+
cos
2
22
2
2
2
4.【2010 新课标文 10】若 sin = − 4 , 是第三象限的角,则 sin( + ) = ( )
5
4
(A) − 7 2 10
(B) 7 2 10
(C) − 2 10
三角恒等变换常考题(含答案)
三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。
三角恒等变换练习题及答案
1.已知cos ⎝⎛⎭⎫α+π3=sin ⎝⎛⎭⎫α-π3,则tan α的值为( ) A .-1 B .1 C. 3 D .- 3解析:选B 由已知得12cos α-32sin α=12sin α-32cos α,整理得⎝⎛⎭⎫12+32sin α=⎝⎛⎭⎫12+32cos α,即sin α=cos α,故tan α=1.2.3cos 15°-4sin 215°cos 15°=( )A.12B.22C .1 D. 2 解析:选D 3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.故选D.3.在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B.30 C.29 D .2 5解析:选A ∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =4 2. 4.已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010 B.1010 C .-31010 D.31010解析:选C 因为α是第三象限的角,tan α=2,且⎩⎪⎨⎪⎧sin αcos α=tan α,sin 2α+cos 2α=1,所以cos α=-11+tan 2α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010,选C. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c ,则B =( ) A.π6 B.π4 C.π3 D.2π3 解析:选D 因为2b cos C =2a +c ,所以由正弦定理可得2sin B cos C =2sin A +sin C =2sin(B +C )+sin C =2sin B cos C +2cos B sin C +sin C ,即2cos B sin C =-sin C ,又sin C ≠0,所以cos B =-12,又0<B <π,所以B =2π3,故选D. 6.已知3cos 2α=4sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π4,π,则sin 2α=( )A.79 B .-79 C.19 D .-19解析:选D 由题意知3(cos 2α-sin 2α)=22(cos α-sin α),由于α∈⎝⎛⎭⎫π4,π,因而cosα≠sin α,则3(cos α+sin α)=22,那么9(1+sin 2α)=8,sin 2α=-19. 7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43 D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,由面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).8.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c b sin B=( ) A.32 B.233 C.33 D. 3解析:选B 由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,故A =π3.对于b 2=ac ,由正弦定理,得sin 2B =sin A sin C =32·sin C ,由正弦定理,得c b sin B =sin C sin 2B =sin C 32sin C =233.故选B. 9.已知x ∈(0,π),且cos ⎝⎛⎭⎫2x -π2=sin 2x ,则tan ⎝⎛⎭⎫x -π4=( ) A.13 B .-13 C .3 D .-3解析:选A 由cos ⎝⎛⎭⎫2x -π2=sin 2x 得sin 2x =sin 2x ,∵x ∈(0,π),∴tan x =2,∴tan ⎝⎛⎭⎫x -π4=tan x -11+tan x =13. 10.已知tan ⎝⎛⎭⎫α+π4=34,则cos 2⎝⎛⎭⎫π4-α=( ) A.725 B.925 C.1625 D.2425解析:选B 由tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=34,解得tan α=-17,所以cos 2⎝⎛⎭⎫π4-α=1+cos ⎝⎛⎭⎫π2-2α2=1+sin 2α2=12+sin αcos α,又sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-750,故12+sin αcos α=925. 11.已知tan ⎝⎛⎭⎫α-5π4=15,则tan α=________. 解析:tan ⎝⎛⎭⎫α-5π4=tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=15,解得tan α=32. 答案:3212.如图,已知两座灯塔A 和B 与海洋观察站C 的距离分别为a 海里和2a 海里,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 和B 的距离为________海里.解析:依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB =AC 2+BC 2-2AC ·BC cos 120°=7a 2=7a .即灯塔A 与灯塔B 的距离为7a 海里. 答案:7a13.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a =4,a sin B =3b cos A ,若△ABC 的面积S =43,则b +c =________.解析:由正弦定理,得sin A sin B =3sin B cos A ,又sin B ≠0,∴tan A =3,∴A =π3. 由S =12bc ×32=43,得bc =16,由余弦定理得,16=b 2+c 2-bc ,∴c 2+b 2=32,∴b +c =8.答案:8。
三角恒等变换测试题
三角恒等变换测试题1、下列哪个选项是正确的?A. sin(2π - α) = sinαB. cos(π - α) = - cosαC. tan(3π - α) = - tanαD. tan(4π - α) = - tanα答案:C. tan(3π - α) = - tanα2、下列哪个选项是正确的?A. sin(-π - α) = - sinαB. cos(-π - α) = - cosαC. tan(-π - α) = - tanαD. tan(-π - α) = tanα答案:A. sin(-π - α) = - sinα3、下列哪个选项是正确的?A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = secαD. tan(π/2 + α) = cscα答案:A. sin(π/2 + α) = cosα4、下列哪个选项是正确的?A. sin(3π/2 - α) = cosαB. cos(3π/2 - α) = sinαC. tan(3π/2 - α) = secαD. tan(3π/2 - α) = cscα答案:A. sin(3π/2 - α) = cosα二、填空题1、请填写下列空白:sin(π - α) = ______;cos(π - α) = ______;tan(π - α) =______。
答案:sinα;-cosα;-tanα2、请填写下列空白:sin(2π - α) = ______;cos(2π - α) = ______;tan(2π - α) = ______。
答案:sinα;cosα;-tanα一、选择题1、下列哪个选项正确描述了正弦函数的角度和其相对应的数值?A.当角度增加时,正弦函数的值也增加B.当角度增加时,正弦函数的值减少C.当角度减少时,正弦函数的值增加D.当角度减少时,正弦函数的值减少答案:D.当角度减少时,正弦函数的值减少。
三角恒等变换专题练习(含答案)
三角恒等变换2020.21.若α为第四象限角,则可以化简为()A.B.C.D.﹣2tanα【解答】解:∵α为第四象限角,∴=﹣=﹣==﹣2tanα.故选:D.2.已知cos(13°+α)=﹣,则sin(﹣64°+2α)的值为()A.B.C.D.【解答】解:∵cos(13°+α)=﹣,则sin(﹣64°+2α)=﹣cos[90°+(﹣64°+2α)]=﹣cos(26°+2α)=﹣2cos2(13°+α)+1=﹣,故选:A.3.已知α,β为锐角,且cosα=,cosβ=,则α+β的值是()A.B.C.或D.或【解答】解:α,β为锐角,且cosα=,cosβ=,∴sinα=,sinβ=,且α+β∈(0,π),则cos(α+β)=cosαcosβ﹣sinαsinβ=,=,则α+β=,故选:B.4.已知cos(﹣+α)=﹣,则cos(﹣α)=()A.B.C.D.【解答】解:由于cos(﹣+α)=﹣,所以cos(﹣α)=﹣cos(﹣+α)=,故选:B.5.已知tan(π+α)=2,则=()A.B.C.D.【解答】解:∵tan(π+α)=2,∴tanα=2,∴=.故选:D.6.下列四个等式:①tan25°+tan35°+;②=1;③cos2;④=4,其中正确的是()A.①④B.①②C.②③D.③④【解答】解:对①:,故tan25°+tan35°+,故正确;对②:,故,故错误;对③:,故错误;对④:=,故正确.故选:A.7.已知,则sin2α=()A.B.C.D.【解答】解:,故:,解得tanα=2.所以==.故选:D.8.已知,则2sin2α﹣sinαcosα=()A.B.C.D.2【解答】解:∵,∴﹣cosα﹣2cosα=sinα,可得sinα=﹣3cosα,∴sin2α+cos2α=9cos2α+cos2α=10cos2α=1,可得cos2α=,∴2sin2α﹣sinαcosα=18cos2α﹣(﹣3cosα)cosα=21cos2α=.故选:A.9.若cos(α﹣β)=,且α,β均为锐角,α<β,则α+β=()A.B.C.D.【解答】解:∵α+β=2α﹣(α﹣β)∴cos(α+β)=cos[2α﹣(α﹣β)]=cos2αcos(α﹣β)+sin2αsin (α﹣β),∵α,β均为锐角,α<β,∴0<2α<π,﹣<α﹣β<0,则sin2α===,sin(α﹣β)=﹣,则cos(α+β)=×﹣×=﹣=,则α+β=,故选:C.10.已知函数f(x)=sin(x+)sin x﹣(π+x)+,当0<α<时,f(α)=,则cos2α=()A.B.C.D.【解答】解:由题可知===,则.因为,所以,,所以由可知,则=,则===,故选:C.11.若sin(﹣α)=,则sin(2α﹣)=()A.B.﹣C.D.﹣【解答】解:因为sin(﹣α)=,所以,所以sin(2α﹣)==.故选:A.12.已知角α,β∈(0,π),tan(α+β)=,cosβ=,则角2α+β=()A.B.C.D.【解答】解:∵cosβ=,∴sinβ==,则tanβ=,则tanα=tan(α+β﹣β)===,tan(2α+β)=tan(α+β+α)===1,∵0<tan(α+β)<1,0<tanα<1,∴0<α+β<,0<α<,则0<2α+β<,则2α+β=,故选:D.13.若cosθ﹣2sinθ=1,则tanθ=()A.B.C.0或D.0或【解答】解:∵cosθ﹣2sinθ=1,且sin2θ+cos2θ=1,∴5sin2θ+4sinθ=0,∴,∴,则tanθ=0或,故选:C.14.已知锐角α满足3cos2α=1+sin2α,则cosα=()A.B.C.D.【解答】∵3cos2α=1+sin2α,∴3(cos2α﹣sin2α=(cosα+sinα)2,∴3(cosα﹣sinα)(cosα+sinα)=(cosα+sinα)2,∵α为锐角,可得cosα+sinα>0,∴3(cosα﹣sinα)=cosα+sinα,可得cosα=2sinα,即tanα=,∴cosα===.故选:A.15.若,则=()A.1B.C.D.﹣3【解答】解:∵,∴tanαtan=2,则==﹣=﹣=﹣=﹣=,故选:C.16、,则的值为()A.﹣4B.﹣2 C.2 D.4【解答】解:已知,所以=,令g(x)=故g(x)=﹣g(x),所以函数g(x)为奇函数.则═﹣1﹣1=﹣2故选:A.17.若θ∈(0,π),且2cosθ+sinθ=2,则tan=()A.﹣B.C.D.【解答】解:∵θ∈(0,π),∴∈(0,),由2cosθ+sinθ=2,得,即,整理得,∴tan=0(舍)或tan.故选:C.18.若sin78°=m,则sin6°=()A.B.C.D.【解答】解:∵sin78°=m,∴cos12°=m,即1﹣2sin26°=m得2sin26°=1﹣m,sin26°=,则sin6°=,故选:B.19.=()A.8B.﹣8C.D.【解答】解:原式=﹣=﹣======﹣8,故选:C.20.化简的结果是()A.sin 2B.﹣cos 2C.﹣cos 2D.sin 2【解答】解:==.故选:D.21.已知当x=θ时函数f(x)=sin x﹣2cos x取得最小值,则=()A.﹣5B.5C.D.【解答】解:函数f(x)=sin x﹣2cos x=(sin x﹣cos x)=sin(x﹣α),其中,cosα=,sinα=,故当x=2kπ+α﹣,k∈z时,函数取得最小值为﹣,此时x=θ=2kπ+α﹣,k∈z,∴sinθ=﹣cosα=,cosθ=sinα=,则tanθ=,tan2θ=.则=.故选:D.22.=()A.B.1C.D.2【解答】解:===.故选:C.23.化简=()A.cos4B.sin4C.sin4+cos4D.﹣sin4﹣cos4【解答】解:∵sin4<0,cos4<0,∴===﹣sin4﹣cos4.故选:D.。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,化简+=A.-2cos B.2cos C.-2sin D.2sin【答案】C【解析】因为,所以,,从而===--()=-2sin,故选C。
【考点】本题主要考查二倍角的正弦公式。
点评:此类问题是高考考查的重点内容之一。
本题中注意“1”的代换,讨论角的范围,确定得到是化简的关键。
2.已知sin=,cos=-,则角是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】因为sin=,cos=-<0,所以是第二象限角,且,所以,角是第四象限角,选D。
【考点】本题主要考查任意角的三角函数、象限角。
点评:的终边所在位置与的终边所在位置,存在一定结论,根据函数值进一步缩小角的范围,是解题的关键。
3.若是方程的两个根,则之间的关系是( )A.B.C.D.【答案】B【解析】由题意可知:所以选B。
【考点】本题主要考查两角和的正切公式。
点评:首先利用韦达定理将表示出来,再由两角差的正切公式对其进行化简,从而得出结论。
4.求【答案】【解析】。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意“1”的代换,配凑公式。
5.求【答案】【解析】由两角和的正切公式可得,,所以=。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。
6.已知,求证:【答案】【解析】1.解:,在区间内正切值为的角只有1个即,所以【考点】本题主要考查两角和的正切公式。
点评:应用两角和的正切公式先求,结合角的范围及正切函数单调性进一步求角。
此类问题,要特别注意角的范围。
7.若,则_________;=___________.【答案】3,【解析】因为,所以,,所以3【考点】本题主要考查“倍半公式”的应用点评:解题过程中,注意观察已知与所求的差异,灵活选用公式,通过变名、变角、变式,达到解题目的。
8.已知为第四象限角,求的值.【答案】(1)当为第二象限角时,,,(2)当为第四象限角时,,,.【解析】由为第四象限角,得为第二或第四象限角.(1)当为第二象限角时,(2)当为第四象限角时,,,.【考点】本题主要考查“倍半公式”的应用点评:牢记公式是灵活地将进行三角恒等变形的基础。
高三数学三角恒等变换试题
高三数学三角恒等变换试题1.已知,则的值为( )A.18B.C.16D.【答案】D【解析】,选D【考点】三角函数恒等变形2.在中,内角A,B,C的对边a,b,c,且,已知,,,求:(1)a和c的值;(2)的值.【答案】(1)a=3,c=2;(2).【解析】(1)由和,得ac=6.由余弦定理,得.解,即可求出a,c;(2)在中,利用同角基本关系得由正弦定理,得,又因为,所以C为锐角,因此,利用,即可求出结果.(1)由得,,又,所以ac=6.由余弦定理,得.又b=3,所以.解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在中,由正弦定理,得,又因为,所以C为锐角,因此.于是=.【考点】1.解三角形;2.三角恒等变换.3.已知α,β∈(0,π),且tan(α-β)=,tanβ=-,求2α-β的值.【答案】-π【解析】解:∵tanα=tan[(α-β)+β]===>0,∴0<α<.又tan2α===>0,∴0<2α<,∴tan(2α-β)===1.∵tanβ=-<0,∴<β<π,∴-π<2α-β<0,∴2α-β=-π.4.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为.【答案】﹣【解析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.(2013•重庆)4cos50°﹣tan40°=()A.B.C.D.2﹣1【答案】C【解析】4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C6.已知,且,则= .【答案】-【解析】tan()=tan= -∴sin2===-cos2===又tan= -cos2==又,所以cos=∴sin=-∴cos(-)=cos+sin=∴==-7.计算1﹣2sin222.5°的结果等于()A.B.C.D.【答案】B【解析】原式=,故选B.8.已知,则tan为()A.B.C.2D.【答案】A【解析】,所以,即,所以,所以,所以,所以,所以,解得,,所以,选A9.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。
三角恒等变换(含答案)
三角恒等变换
一、单选题(共10道,每道10分)
1.的值为( )
A. B.1
C.-1
D.
答案:B
解题思路:
试题难度:三颗星知识点:两角和与差的正切公式
2.的值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:二倍角的余弦
3.已知,是第三象限角,则的值是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:两角和与差的余弦公式
4.已知,,则的值是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:两角和与差的正弦公式
5.已知,则的值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:两角和与差的正切公式
6.已知,,则的值为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二倍角的正弦
7.已知,,则的值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:二倍角的正切
8.若,则=( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:二倍角的余弦
9.已知,则的值域是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二倍角的正弦
10.设,则函数的最值是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:形如asinx+bcosx的化简。
高三数学三角恒等变换试题答案及解析
高三数学三角恒等变换试题答案及解析1.已知,则()A.B.C.D.【答案】B【解析】将两边平方得,,可得,故选B.【考点】同角基本关系以及二倍角公式.2.已知cos(α-)+sinα=,则sin(α+)的值是()A.-B.C.-D.【答案】C【解析】cos(α-)+sinα=⇒sinα+cosα=⇒sin(α+)=,所以sin(α+)=-sin(α+)=-.3.已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π.(1)求ω值及f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C 的大小.【答案】(1)增区间为[kπ-,kπ+](k∈Z)(2)当B=时,C=π--=;当B=时,C=π--=.【解析】解:(1)f(x)=+sin2ωx-=sin(2ωx+).∵T=π,∴ω=1,∴f(x)=sin(2x+),增区间为[kπ-,kπ+](k∈Z).(2)∵f()=sin(A+)=,角A为△ABC的内角且a<b,∴A=.又a=1,b=,∴由正弦定理得=,也就是sinB==×=.∵b>a,∴B=或B=,当B=时,C=π--=;当B=时,C=π--=.4.已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是()A.B.C.D.【答案】B【解析】tanα=tan[(α+β)-β]==≤=,当且仅当tanβ=时等号成立.5.在中,若分别为的对边,且,则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列【答案】D【解析】由已知得,,故,又,而,故,所以,故,从而a、b、c成等比数列.【考点】1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。
数学课程三角恒等变换练习题及答案
数学课程三角恒等变换练习题及答案1. 练习题1.1 简单练习题1. 计算下列三角函数值,并化简为有理数:(1) sin 30°(2) cos 45°(3) tan 60°2. 利用三角恒等变换证明以下等式:(1) sin^2 x + cos^2 x = 1(2) 1 + tan^2 x = sec^2 x3. 使用三角恒等变换求解以下方程:(1) sin 2x = 0.5(2) cos 2x - sin 2x = 01.2 提高练习题1. 利用三角恒等变换化简下列表达式:(1) cos x + sin x + 1 - cos x(2) cot^2 x + 1 - csc^2 x2. 解下列方程:(1) 2 sin^2 x - 3 cos x - 1 = 0(2) tan^2 x + sec x = 22. 答案2.1 简单练习题答案1.(1) sin 30° = 1/2(2) cos 45° = 1/√2(3) tan 60° = √32. 证明以下等式:(1) 三角恒等变换:sin^2 x + cos^2 x = 1证明:根据三角恒等变换公式 sin^2 x + cos^2 x = 1代入 sin x = cos (90° - x),可得:cos^2 (90° - x) + cos^2 x = 1sin^2 x + cos^2 x = 1(2) 三角恒等变换:1 + tan^2 x = sec^2 x证明:根据三角恒等变换公式 1 + tan^2 x = sec^2 x代入 tan x = sin x / cos x,可得:1 + (sin x / cos x)^2 = (1 / cos x)^21 + sin^2 x / cos^2 x = 1 / cos^2 x(cos^2 x + sin^2 x) / cos^2 x = 1 / cos^2 x1 / cos^2 x = 1 / cos^2 x2.2 提高练习题答案1. 化简以下表达式:(1) cos x + sin x + 1 - cos x= sin x + 1(2) cot^2 x + 1 - csc^2 x= (cos^2 x / sin^2 x) + 1 - (1 / sin^2 x)= (cos^2 x + sin^2 x) / sin^2 x= 1 / sin^2 x2. 解以下方程:(1) 2 sin^2 x - 3 cos x - 1 = 0首先,利用三角恒等变换将方程中的 cos x 表示为 sin x:2 (1 - cos^2 x) - 3 cos x - 1 = 02 - 2 cos^2 x -3 cos x - 1 = 0-2 cos^2 x - 3 cos x + 1 = 0然后,令 t = cos x,将方程转化为关于 t 的二次方程:-2 t^2 - 3 t + 1 = 0解这个二次方程可得 t = -1 或 t = 1/2。
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知sin(α+45°)sin2α等于( ) A .-45B .-35C .3 5D .4 52.已知13a =,4log 3b =和sin 210c =︒,则( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<3.()sin cos f x x x =最小值是 A .-1B .12-C .12D .14.关于函数sin cos y x x =+,以下说法正确的是( ) A .在区间0,2π⎛⎫⎪⎝⎭上是增函数B .在区间0,2π⎛⎫⎪⎝⎭上存在最小值C .在区间,02π⎛⎫- ⎪⎝⎭上是增函数D .在区间,02π⎛⎫- ⎪⎝⎭上存在最大值5.函数()22f x cos x sinx =+ 的最小值和最大值分别为( ) A .3,1-B .2,2-C .332-,D .322-,6.将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是A .[2,2]-B .[3,4]C .[0,3]D .[0,4]7.sin15sin 75的值为( )A .14B .12C D 8.已知tan α和tan 4πα⎛⎫- ⎪⎝⎭是方程20ax bx c ++=的两个根,则,,a b c 的关系是( )A .b a c =+B .2b a c =+C .c b a =+D .c ab =9.设sin18cos44cos18sin 44a =︒︒︒+︒,2sin 29cos29b =︒︒和cos30c =︒,则有( ) A .c a b <<B .b c a <<C .a b c <<D .b a c <<二、填空题10.若sin 2α=()sin βα-=π,π4α⎡⎤∈⎢⎥⎣⎦和3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是________.11.已知角α的终边经过点(3,1)P t ,且3cos()5πα+=,则tan α的值为_________.12.函数44cos sin y x x =-的最小正周期是______ 13.22sin 20cos 50sin 20cos50︒+︒+︒︒=______.14.已知α为第二象限角,sinα+cosαcos2α=________. 15.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin(2)12πα+的值为____________.16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,其图象的对称轴与对称中心之间的最小距离为4π,3x π=-是函数()f x 的一个极小值点.若把函数()f x 的图象向右平移()0t t >个单位长度后,所得函数的图象关于点,03π⎛⎫⎪⎝⎭对称,则实数t 的最小值为___________.三、解答题17.已知函数()()sin 2(0),,04f x x πϕϕπ⎛⎫=+<< ⎪⎝⎭是该函数图象的对称中心(1)求函数()f x 的解析式;(2)在ABC 中角,,A B C 的对边分别为,,a b c ,若()1,23f C C π=->和1c =,求2+a b 的取值范围.18.函数()cos()f x A x ωφ=+(其中 0A >,0>ω和||2ϕπ<)的部分图象如图所示,先把函数 ()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),把得到的曲线向左平移4π个单位长度,再向上平移1个单位,得到函数()g x 的图象.(1)求函数()g x 图象的对称中心.(2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则求 ()g x 的值域.(3)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则方程 ()()2()230g x m g x m +-+-=有解,求实数m 的取值范围.19.在ABC 中角A ,B ,C 所对边分别为a ,b ,c ,且1b c -=,2cos 3A =和ABC S =△(1)求边a 及sinB 的值;(2)求cos 26C π⎛⎫- ⎪⎝⎭的值.20.求444sin 10sin 50sin 70︒︒︒++的值.21.已知函数()222cos 36f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ x ∈R .(1)求()6f π的值及()f x 的最小正周期;(2)当[0,]x π∈时,则求函数()f x 的零点所构成的集合.参考答案与解析1.B【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【详解】sin(α+45°)=(sin α+cos α∴sin α+cos α. 两边平方,得1+sin2α=25,∴sin2α=-35.故选B【点睛】本题目是三角函数正弦函数的题目,掌握同角三角函数的二倍角公式是解题的关键. 2.A【分析】根据诱导公式求出c ,再根据对数函数的单调性比较,a b 的大小,即可得出答案. 【详解】解:()1sin 210sin 18030sin 302c =︒=︒+︒=-︒=-113244441log 4log 4log 2log 33a ==<=<所以c a b <<. 故选:A. 3.B【详解】试题分析:∵()sin cos f x x x =1sin 22x =,∴当sin2x=-1即x=()4k k Z ππ-∈时,则函数()sin cos f x x x =有最小值是12-,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题 4.C【分析】将原式化简为)4y x π=+,再结合正弦函数的性质,即可求解.【详解】解:sin cos )4y x x x π=++∴令22,242k x k k Z πππππ-+++∈ ∴322,44k x k k Z ππππ-++∈即函数的单调递增区间为32,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦故选项A 错误,选项C 正确 当2,42x k k Z πππ+=-+∈,即32,4x k k Z ππ=-+∈时,则y 取得最小值,故在区间(0,)2π上不存在最小值,故选项B 错误 当2,42x k k Z πππ+=+∈,即2,4x k k Z ππ=+∈时,则y 取得最大值,故在区间(,0)2π-上不存在最大值,故选项D 错误. 故选:C . 5.C 【详解】()112sin22sin 2sin 2f x x x x ⎛⎫- ⎪⎝⎭=-+=-232+. ∴当1sin 2x =时,则()3max ?2f x =,当1sinx =- 时则()3min f x =- ,故选C. 6.D【分析】按照图象的平移规律,写出()g x 的表达式,利用正弦函数的图象,求出()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【详解】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++230,(2)[,]sin((2)[1,1]3662)[0,4]6x x x g x πππππ∈⎡⎤∴+∈∴+∈-∴⎢⎥⎣⎦∈,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键. 7.A【分析】利用诱导公式结合二倍角的正弦公式化简可得结果.【详解】()11sin15sin 75sin15sin 9015sin15cos15sin 3024=-===.故选:A. 8.C【分析】根据根与系数的关系以及两角和的正切公式可得结果. 【详解】由题意可知,tan tan ,tan tan 44b ca aππαααα⎛⎫⎛⎫+-=--= ⎪ ⎪⎝⎭⎝⎭tantan 44ππαα⎛⎫∴=+- ⎪⎝⎭tan tan 4111tan tan 4b a ca πααπαα⎛⎫+--⎪⎝⎭===⎛⎫--- ⎪⎝⎭1b ca a∴-=- b a c ∴-=- c a b ∴=+. 故选:C .【点睛】本题考查了根与系数的关系,考查了两角和的正切公式,属于基础题. 9.B【分析】先利用两角和的正弦公式对a 化简,利用二倍角公式对b 化简,然后利用正弦函数的单调性即可比较大小【详解】解:sin18cos 44cos18sin sin(1844)sin 4624a ︒︒=︒+︒==︒︒+︒ 2sin 29cos29sin58b =︒︒=︒ cos30sin60c =︒=︒ 因为sin y x =在(0,90)︒︒上为增函数,且586062︒<︒<︒ 所以sin58sin60sin62︒<︒<︒,即可b c a << 故选:B【点睛】此题考查两角和的正弦公式和二倍角公式的应用,考查正弦函数的单调性,属于基础题 10.74π【分析】依题意,可求得ππ,42α⎡⎤∈⎢⎥⎣⎦,进一步可知π5,π24βα⎡⎤-∈⎢⎥⎣⎦,于是可求得()cos βα-与cos2α的值,再利用两角和的余弦公式及角βα+的范围即可求得答案. 【详解】因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦因为sin 2α=π2,π2α⎡⎤∈⎢⎥⎣⎦,即ππ,42α⎡⎤∈⎢⎥⎣⎦所以cos 2=α因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦所以π5,π24βα⎡⎤-∈⎢⎥⎣⎦因为()sin βα-=所以()cos βα-==所以()()cos cos 2βαβαα+=-+()()=cos cos2sin sin 2βααβαα---=⎛⎛⨯ ⎝⎭⎝⎭因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,所以5π,24βαπ⎡⎤+∈⎢⎥⎣⎦所以7=4παβ+. 故答案为:74π 11.43-【解析】先计算出3cos 5α=-,再点的坐标特征可得角的终边的位置,从而可求tan α的值.【详解】因为3cos()5πα+=,故3cos 5α=-,故角α的终边在第二象限或第三象限又P 的纵坐标为1,故角α的终边在第二象限,所以sin 0α>所以sin 4tan cos 35ααα====--. 故答案为:43-【点睛】方法点睛:(1)角的终边的位置可根据三角函数值的正负来确定,也可以根据终边上的点的坐标特征来确定;(2)三个三角函数值,往往是“知一求二”,这里利用方程的思想. 12.π【分析】逆用二倍角公式将原式降幂,原式化简为cos()y A x ωϕ=+形式,利用2T ωπ=即可求得函数最小正周期. 【详解】()()442222cos sin cos sin o s =c s +in y x x x x x =--22cos sin cos 2x x x =-=22==2T πππω=T π∴=故答案为:π.【点睛】本题考查二倍角的余弦公式的应用、余弦三角函数最小正周期公式2T ωπ=,属于基础题. 13.34【分析】)(1cos 203020sin 202︒+︒︒-︒,化简计算即可得出结果. 【详解】原式)()(22sin 20cos 2030sin 20cos 2030=︒+︒+︒+︒︒+︒2211sin 2020sin 20sin 2020sin 2022⎫⎫=︒+︒-︒+︒︒-︒⎪⎪⎪⎪⎭⎭⎝⎝2222311sin 20cos 20sin 20sin 20442=︒+︒+︒-︒34=. 故答案为:3414【详解】∵sinα+cosα∴(sinα+cosα)2=13∴2sinαcosα=-23,即sin2α=-23.∵α为第二象限角且sinα+cosα∴2kπ+2π<α<2kπ+34π(k ∈Z),∴4kπ+π<2α<4kπ+32π(k ∈Z),∴2α为第三象限角,∴cos2α15【分析】利用二倍角公式,同角三角函数的基本关系式、两角差的正弦公式求得所求表达式的值.【详解】α为锐角2663πππα<+<3sin 65πα⎛⎫+== ⎪⎝⎭.sin(2)sin(2)22123433πππππαααα⎛⎫⎛⎫+=+-=++ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1666πππααα⎤⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎣⎦234421555⎤⎛⎫=⨯⨯-⎥ ⎪⎝⎭⎢⎥⎣⎦.16.512π##512π 【分析】对称轴与对称中心之间的最小距离为4π,可求得函数的周期,从而可求出2ω=,再由3x π=-是一个极小值点,可求得6π=ϕ,从而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,进而可得()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,再由()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,可得5212k t ππ=-+,从而可求出实数t 的最小值【详解】因为对称轴与对称中心之间的最小距离为4π,所以44T π=,所以T π= 22πωπ== 因为3x π=-是一个极小值点所以()2232k k z ππϕπ-+=-+∈,又因为02πϕ<<,所以6π=ϕ()sin 26f x x π⎛⎫+ ⎝=⎪⎭.把函数()f x 的图象向右平移()0t t >个单位长度后得函数()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,则()2236t k k z πππ-+=∈ 5212k t ππ=-+ 因为0t >,当0k =时,则实数t 的最小值为512π. 故答案为:512π17.(1)()cos2f x x = (2)()1,2【分析】(1)由题意得2,Z 4k k πϕπ⨯+=∈,则可求出2ϕπ=,从而可求出函数()f x 的解析式;(2)由()12f C =-可求出23C π=,由正弦定理得,a A b B ==,从而可表示出2+a b ,化简后利用三角函数的性质可求得结果 (1) 由题知2,Z 4k k πϕπ⨯+=∈因为0ϕπ<<,所以2ϕπ=所以函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭即为()cos2f x x =. (2)由题知()12f C =-,即1cos22C =-因为3C ππ<<,所以2223C ππ<<,所以423C π= 即21,33C A B ππ=+=.所以由正弦定理得sin sin sin a b c A B C === 所以,a Ab B == 2a b A B +=+)sin 2sinA B =+sin 2sin3B B π⎤⎛⎫=-+ ⎪⎥⎝⎭⎦sin cos cos sin 2sin33B B B ππ⎫=-+⎪⎭3sin2B B ⎫=+⎪⎪⎭2sin 6B π⎛⎫=+ ⎪⎝⎭因为10,3B π<<所以662B πππ<+<所以1sin 126B π⎛⎫<+< ⎪⎝⎭,所以12sin 26B π⎛⎫<+< ⎪⎝⎭ 所以2+a b 取值范围为()1,2.18.(1)(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)30,2⎡⎤⎢⎥⎣⎦;(3)3310⎡⎤⎢⎥⎣⎦.【分析】(1)观察图象,由函数最值求出A ,由周期求出ω,再将7,112π⎛⎫- ⎪⎝⎭代入得出 ϕ,即可求出函数()f x 的解析式,进而得出函数()g x 的解析式以及对称中心; (2)由x 的范围结合余弦函数的性质可得()g x 的值域;(3)将已知方程参变分离,利用对勾函数的性质求出值域,可得实数m 的取值范围. 【详解】(1)根据图象可知1A = 174123T ππ=- ∴T π=,∴22Tπω== ()()cos 2f x x φ=+ 将7,112π⎛⎫-⎪⎝⎭代入得 7cos 16πϕ⎛⎫+=- ⎪⎝⎭ 即726k πϕππ+=+,解得 26k πϕπ=- k Z ∈ ∵2πϕ<,∴0k = 6πϕ=-∴()cos 26f x x π⎛⎫=- ⎪⎝⎭.函数()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),可得 cos 46y x π⎛⎫=- ⎪⎝⎭,曲线再向左平移4π个单位长度,再向上平移1个单位得()5cos 416g x x π⎛⎫=++ ⎪⎝⎭令54,62x k k Z πππ+=+∈,解得 124k x ππ=-+ ∴此函数图象的对称中心为(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z . (2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则 54514,cos 41,63362x x ππππ⎡⎤⎛⎫⎡⎤+∈⇔+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦()53cos 410,62g x x π⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦,即 ()g x 的值域为30,2⎡⎤⎢⎥⎣⎦. (3)()()()2230g x m g x m +-+-=()()()2231g x g x m g x ⇔++=+⎡⎤⎣⎦()()()2231g x g x m g x ++⇔=+令()1s g x =+,由(2)知51,2s ⎡⎤∈⎢⎥⎣⎦2223310s m s s s +⎡⎤==+∈⎢⎥⎣⎦因此m 的取值范围为3310⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题考查三角函数图象的应用,考查余弦函数的性质,考查有解问题的应用,解决本题的关键点是将已知方程化简,参变分离,利用对勾函数的性质求出对应函数的值域,进而得出参数的取值范围,考查学生计算能力,属于中档题.19.(1)a = sin 1B =【分析】(1)先由cos A 求得sin A ,结合三角形面积公式可得6bc =,根据条件可得b ,c 的值,再利用余弦定理求得a ,利用正弦定理求得sin B ;(2)由(1)可知2B π=,则2sin cos 3C A == cos sin C A ==. (1)因为2cos 3A =,()0,A π∈所以sin A =因为1sin 2ABCS bc A =6bc = 又1b c -=,所以3b = 2c =所以a ==因为sin sin a b A B =3sin B =,所以sin 1B =. (2)在ABC 中由(1)可知2B π=,则2A C π+=所以2sin cos 3C A == cos sin C A ==则sin 22sin cos C C C ==221cos 2cos sin 9C C C =-=所以cos 2cos 2cos sin 2sin 666C C C πππ⎛⎫-=+= ⎪⎝⎭20.98【分析】先将题中正弦值利用诱导公式转化为余弦值,再用降次公式将式子中高次转化为1次,再观察题中角度与特殊角的联系,再用两角和差公式展开化简求值.【详解】444sin 10sin 50sin 70︒︒︒++444cos 80cos 40cos 20︒︒︒=++2221cos1601cos801cos40222︒︒︒⎛⎫⎛⎫⎛⎫+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222132cos1602cos802cos40cos 160cos 80cos 404︒︒︒︒︒︒=++++++ ()3111cos401cos1601cos80cos20cos80cos40424222︒︒︒︒︒︒⎛⎫+++=+-+++++ ⎪⎝⎭ ()95cos80cos40cos2088︒︒︒=++- ()()95cos 6020cos 6020cos2088︒︒︒︒︒⎡⎤=+++--⎣⎦ ()952cos60cos20cos2088︒︒︒=+-98=. 【点睛】本题考查了三角恒等变换,运用降次公式,两角和与差公式进行化简求值,注意观察角度间的联系及与特殊角的联系,还考查了学生的分析观察能力,运算能力,难度较大.21.(1)()16f π=,最小正周期为π; (2)0,,3ππ⎧⎫⎨⎬⎩⎭【分析】(1)利用三角恒等变换化简函数()f x 的解析式,利用正弦函数的性质即可求解;(2)令()0f x =,可得266x ππ+=或56π或136π,即可求解x 的值.(1)解:因为()222cos 2cos 213633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2sin 212sin 21366x x πππ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2sin 1162f ππ⎛⎫=-= ⎪⎝⎭,最小正周期为 22T ππ==. (2)令()0f x =,则1sin 262x π⎛⎫+= ⎪⎝⎭,因为[0,]x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以266x ππ+=或56π或136π,即0x =或3π或π,所以函数()f x 的零点所构成的集合为0,,3ππ⎧⎫⎨⎬⎩⎭.。
三角恒等变换常考题(含答案)
三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B7.若..8.已知,,且,那么.B.C D.9.若α,﹣.B C.D.10.若αcosα=A.B12.已知﹣,则)D.﹣13.已知,且∈(,)等于(.D.715.已知,则16. B17.若,则sin19.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017?泉州模拟)已知sin2α=,则cos2()=()A.﹣ B【解答】解:由于:所以:故选:D5.(焦作二模)若A.B【解答】解:由,可得:sinα=∵cos(π1=.故选D6.(+),﹣<)A.﹣ B.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017?商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017?德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B【解答】,得到cosα=)=,所以,﹣=﹣,则=cos(β﹣=×所以β=故选:C9.(∈(,﹣)A.B.C..【解答】∈(,∵(﹣∴3(cos2=(∴cosα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017?大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017?腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】﹣cosα=+)=,∴+)=﹣,则cos())故选:C13.(,且,+)等于(A.﹣ B【解答】∈()得﹣,∴tan(α+==,故选C.15.(全国三模)已知,则A.B...【解答】解:∵已知,则平方可得故选:C.16.(2017?山西一模)cos15°?cos105°﹣cos75°?sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°?cos105°﹣cos75°?sin105°=cos15°?cos105°﹣sin15°?sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春?陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(A.【解答】=cos43°=cos43°=cos(43°=cos120°=﹣cos60°=﹣.故选D.21.(cosα=,则A.﹣ B.﹣ C..【解答】cosa=,∴(sina+=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016?新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016?肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得∴sin2θ+==1故选A.25.(),则的值为(A.B2【解答】=得tanα=3则=.故选:B26.(全国二模)已知,则A.﹣1 B.【解答】解:∵,∴cosαsinα=cosα∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017?玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(A,﹣C)上为减函数x=【解答】﹣sinx?sinx=sin2x=(sin)令x=+=,为函数x=对称,且f(x)的图象不关于点(,)对称,故在区间(,)上,+∈(,),+不正确,故选:D。
简单的三角恒等变换专题及答案
简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。
答案:B。
通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。
2.sin70°/(2cos10°-sin20°)的值是()。
答案:C。
通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。
答案:B。
通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。
答案:B。
通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。
5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。
答案:D。
三角恒等变形测试题及答案解析
第三章 恒等变换一、选择题(此题共12小题,每题5分,总分值60分) 1.277sin 16812π-的值为〔 〕 2.假设sin()cos cos()sin m αβααβα---=,且β为第三象限角,则cos β的值为〔 〕 3.在△ABC 中,2sinAcosB =sinC ,则△ABC 一定是 ( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形4.2cos10°-sin20°sin70°的值是 ( )A .12B .32 C .3 D . 25.*∈(-π2,0),cos*=45,则tan2*等于 ( )A .724B .-724C .247D .-2476.假设ABC ∆的角A 满足2sin 23A =,则sin cos A A += ( )B. C .53 D .53-7.等式sin α+3cos α=4m -64-m 有意义,则m 的取值围是 ()A .(-1,73)B .[-1,73]C .[-1,73]D .[―73,―1]8.在△ABC 中,tan A +B2=sinC ,则以下四个命题中正确的选项是 ()(1)tanA ·cotB =1.(2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C .A .①③B .②④C .①④D .②③ 9.α∈(0,π),且sin α+cos α=15,则tan α的值为 ()A .-43B .-43 或-34C .-34D .43 或-3410.函数)cos (sin sin 2x x x y +=的最大值为( )A.21+B.12-C.2D.211.将函数212sin 22y x x =+-的图象进展以下哪一种变换就变为一个奇函数的图象 ( 〔 〕 A .向左平移12π个单位 B .向左平移6π个单位 C .向右平移12π个单位 D .向右平移6π个单位cos 23x x a +=-中,a 的取值围是〔 〕二.填空题(此题共5小题,每题6分,总分值30分)把答案填在第二卷的横线上13.sin cos ,x x m -=求sin cos x x ────── 14.函数x x x f 32sin)232sin()(++=π的图象相邻的两条对称轴之间的距离是 15.假设*=π3是方程2cos(*+α)=1的解,α∈(0,2π),则α=.16.给出下面的3个命题:〔1〕函数|)32sin(|π+=x y 的最小正周期是2π;〔2〕函数)23sin(π-=x y 在区间)23,[ππ上单调递增;〔3〕45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是.17.在△ABC 中,sinA +cosA =22,AC =2,AB =3,则tanA=,△ABC 的面积为第二卷二、填空题(本大题共6小题,每题5分,共30分.把答案填在题中横线上)11.________________________ 12._______________________ 13._________________________ 14.______________________ 15._________________________ 16._______________________三.解答题此题共小题〔,每题12分,总分值60分,解容许写出文字说明,证明过程或演算步骤)18.12cos ,13α=求sin α和tan α 19.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos 〔α+β〕.20.6sin 2α+sin αcos α-2cos 2α=0,α∈[π2,π],求sin(2α+π3)的值.21.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.22.函数2()2cos 2sin 4cos f x x x x =+- (1)求()3f π值的;(2)求()f x 的最大值和最小值。
三角恒等变换
《三角恒等变换》测试题一、选择题:本大题共12个小题,每小题5分,共60分. 1.sin 75cos15︒+︒=C.12 D.12.已知11sin(),sin()23αβαβ+=-=,则tan tan βα= A.5 B.5- C.15 D.15-3.若1tan 1,tan 2tan()2tan 4θπθk θθ-==++,则实数k =A.4 B.4- C.14 D.14-4.已知22),14πx y αx y +=++=,则x y -的最大值是A.-2 B.- D.25.函数sin(4)cos(4)63ππy πx πx =-++的最小正周期是 A.4π B.2π C.14 D.126.化简cos 24cos 3αα-+可得A.48sin2a B.44sin 2aC.28sin 2a D.24sin 2a 7.函数5sin 12cos y x x =-的最大值和最小值分别是,M m ,则M m -= A.2 B.2- C.26 D.26-8.对任意角q ,有sin(75)cos(45)15)θθθ+︒++︒+︒=A.1- B.0 C.1 D.29.若tan sin ,tan sin a b q q q q +=-=,且0ab ¹,则222()2a b ab-= A.16 B.8 C.4 D.210.函数sin 2cos2y x x =-在下列哪个区间是增函数 A.(0,)4π B.(,0)4π-C.(,)42ππ D.(,)2ππ 11.在ABC !中,若sin (sin cos )sin 0A B B C +-=,则内角A 的大小为 A.6π B.4π C.3πD.不确定 12.函数2(1sin )(1cos )y x x =-+有最大值A.8 B.2+C.0 D.3+二、填空题:本大题共4个小题,每小题5分,共20分. 13.sin cos cos cos cos 646432168πππππ= 14.tan 204sin 20︒+︒= .15.函数()cos cos 2()f x x x x R =- 的最大值等于 .16.关于函数()cos2cos f x x x x =-,下列命题: ① 若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③ 函数()f x 的图象关于点,012π⎛⎫⎪⎝⎭成中心对称; ④ 将函数()f x 的图象向左平移512π个单位后将与2sin 2y x =的图象重合.其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:本大题共6个小题,共70分.17.(本小题满分10分)已知tan ),tan )αβαβ+-((是方程22370x x +-=的两个实数根,求tan 2α的值.已知sin 2cos 022x x-=. (1)求tan x 的值;(2)求cos 2cos()sin 4xx xπ+⋅的值.19.(本小题满分12分)已知函数2()2sin ()00f x x ωϕωϕπ⎛⎫=+><< ⎪2⎝⎭,的图象相邻两对称轴间的距离为2,并过点(12),.(1)求ϕ;(2)计算(1)(2)(2011)f f f +++.20.(本小题满分12分) 已知x ∈R,211()sin (tan )222tan 2x f x x x x =-+.(1)若02x π<<,求()f x 的单调的递减区间;(2)若()f x =,求x 的值. 21.(本小题满分12分) 已知函数()sin()sin()cos (,66f x x x x a a a R ππ=++-++∈为常数).(1)求函数()f x 的最小正周期; (2)若函数()f x 在[]22ππ-,上的最大值与最小值之和为3,求实数a 的值.课本例4是“如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记COP α?,求当角a 取何值时,矩形ABCD 的面积最大,并求出最大面积.”课本求出当6πα=.实际上,扇形还有一种内接矩形,矩形的一组对边与矩形的对称轴平行的形状,如图2所示,试求出此时截得矩形的最大面积,并比较两种截法哪种方法截得的最大面积大.三角恒等变换参考答案一、选择题ACBCDA CBBABD二、填空题13.32; 14; 15.98; 16.①③三、解答题17.(本小题满分10分)由根与系数的关系,可得3tan )tan )2αβαβ++-=-((,7tan )tan )2αβαβ+-=-((. 于是3tan()tan()12tan 2tan[()()]71tan()tan()31()2αβαβααβαβαβαβ-++-=++-===--+---.OP图2OP图1解:(1)由sin2cos 0tan 2222x x x-=⇒=,222tan2242tan 1231tan 2x x x ⨯∴===---. (2)原式22=(cos sin )(cos sin )cos sin (cos sin )sin sin x x x x x xx x x x -++==-1311()1tan 44x =+=-+=. 19.(本小题满分12分)解: (1)22sin ()1cos(22)y x x ωϕωϕ=+=-+.由其图象相邻两对称轴间的距离为2,0ω>,22ω1π⎛⎫=⎪22⎝⎭∴,4ωπ=.()1cos 2f x x ϕπ⎛⎫=-+ ⎪2⎝⎭∴. ()y f x =∵过(12),点.cos 21ϕπ⎛⎫+=- ⎪2⎝⎭∴.22k ϕπ+=π+π2∴,k ∈Z ,2k ϕπ2=π+2∴,k ∈Z , k ϕπ=π+4∴,k ∈Z . 又ϕπ0<<2∵,ϕπ=4∴.(2)1cos 1sin y x x πππ⎛⎫=-+=+⎪222⎝⎭.(1)(2)(3)(4)21014f f f f +++=+++=∴.又∵()y f x =的周期为4,201145023=⨯+,∴(1)(2)(2011)450232011f f f ++⋅⋅⋅+=⨯+=.解:211cos 1cos ()sin ()22sin sin x x f x x x x x +-=-+212c o s313s i n c o s 2s i c o s 22s i n 22x x x x x x=⋅= sin(2)3x π=+.(1)02x π<<, 42333x πππ∴<+<, 当42233x πππ<+< 时, 即122x ππ<≤,()f x 为减函数, 故()f x 的递减区间为[,)122ππ. (2)∵sin(2)32x π+=,则2233x k πππ+=+,或22,3k k Z ππ+∈; ∴()x k k π=∈Z ,或()6x k k ππ=+∈Z .21.(本小题满分12分) 解:(1)∵()2sin coscos 6f x x x a π=++cos x x a =++2sin 6x a π⎛⎫=++ ⎪⎝⎭, ∴函数()f x 的最小正周期2T π=. (2)∵[]22x ππ∈-,,∴2363x πππ-+≤≤;∴当63x ππ+=-,即2x π=-时,()min 2f x f a π⎛⎫=-= ⎪⎝⎭; 当62x ππ+=,即3x π=时,()max 23f x f a π⎛⎫==+⎪⎝⎭;由题意,有()(2)a a ++=∴1a =.22.(本小题满分12分)解:如图3,设直线OE 是扇形的对称轴,点E 在矩形的边上,并交矩形另一边于F , 连结OC ,交矩形一边于G .设C O Eq ?,则Qsin sin CE OC q q ==,cos cos OE OC q q ==,而6πEOQ?,故在Rt OGD !中,OF q ===,设矩形的面积为S ,则S BC EF =2sin (cos )=-q q qsin 2cos2)=--q q2sin(2)3πθ=+-由 06πθ<<,得22333πππθ<+<.所以当 232ππθ+=,即 12πθ=时,max 2S =-由(22--=-,而224924012-=-<,故2-. 则课本上所给的截法得到的最大面积要大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换测试题第I 卷一、选择题(本大题共12个小题,每小题5分,共60分)1、cos 24cos36cos66cos54︒︒︒︒-的值为( )A 0 B12 C D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365-B 、6365C 、5665D 、1665- 3. 函数sin cos y x x =+的最小正周期为( ) A.2πB. πC. 2πD. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( )A 47- B 47 C 18 D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是( )A 、3365B 、1665C 、5665D 、63656.,)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是( )A 、725-B 、2425-C 、2425D 、7257. 函数44sin cos y x x =+的值域是( )A []0,1B []1,1-C 13,22⎡⎤⎢⎥⎣⎦D 1,12⎡⎤⎢⎥⎣⎦8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( )A 、向右平移6π个单位B 、向右平移12π个单位C 、向左平移6π个单位D 、向左平移12π个单位10. 函数sin22x xy =+的图像的一条对称轴方程是( ) A 、x =113π B 、x =53π C 、53x π=- D 、3x π=- 二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知βα,为锐角,的值为则βαβα+==,51cos ,101cos __ __12. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 13.若角的终边经过点P (1,-2),则sin2的值为__ ____. 14. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为15. 关于函数()cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)第II 卷三、解答题:17.(12分)已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<18. 求)212cos 4(12sin 312tan 30200--的值.(12分)19.(12分)已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且,求)2tan(βα-的值及角βα-2.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
(2)函数的单调减区间(3)此函数的图像可以由函数2y x =的图像经过怎样变换而得到。
(12分)21.(12分)已知函数2()cos cos 1f x x x x =+,x R ∈.(1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.22. (14分) 已知A 、B 、C 是ABC ∆三内角,向量(m =-(cos ,sin ),n A A =且m.n=1(1)求角A; (2)若221sin 23,cos sin BB B+=--求tanC .三角恒等变换测试题参考答案一、选择题:(每小题5分共计60分)二、填空题:(每小题5分,共计20分)13、-7 14、-5215、-tan α 16、①③ 三、解答题:17.10334- 18.34- 19.2- 20.(1)最小值为22-,x的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,85|ππ (2) 单调减区间为)(85,8Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ(3)先将x y 2sin 2=的图像向左平移8π个单位得到)42sin(2π+=x y 的图像,然后将)42sin(2π+=x y 的图像向上平移2个单位得到)42sin(2π+=x y +2的图像。
21.等腰三角形22.最小值为950米2,最大值为290014050-米2《三角恒等变换》测试题一、 选择题:1.函数sin cos y x x =+的最小正周期为( )A.2πB. πC. 2πD. 4π 2.化简22cos ()sin ()44ππαα---等于( ) A. sin 2α B. sin 2α- C. cos2α D. cos 2α-3.已知sin cos αα+=1tan tan αα+=( ) A. 1 B. 2 C. 1- D. 2- 4. sin89cos14sin1cos76+=( )A.B.C.D. 5.设向量1(cos ,)2a α=,则cos2α的值为( ) A. 14-B. 12- C. 12 D.26.已知0αβπ<<<,sin cos a αα+=,sin cos b ββ+=.则( )A. a b >B. a b <C. 1ab >D. 2ab >7.化简cos()sin()44cos()sin()44ππααππαα+-++++的值等于( )A. tan 2xB. tan 2xC. tan x -D. tan x8.若1sin()63πα-=,则cos(2)3πα+的值等于( )A.2B. 1C.D. 9.当04x π<<时,函数22cos ()sin cos sin xf x x x x =-的最小值是( )A.14 B. 12C. 2D. 4 10.设02x π≤≤,若sin x x >.则x 的取值范围是( )A. (,)32ππB. (,)3ππC. 4(,)33ππD. 3(,)32ππ 11. 在ABC ∆中,2sin sin cos 2A B C =,则ABC ∆一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 12. 已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值为( )A. 1B. 1-C. 21k +D. 21k -+二、填空题13. 已知(sin ,1)a α=,(2,3)b =,若a 与b 平行,则cos2α= 14. 已知βα,为锐角,cos αβ==则αβ+的值为 15.2sin10sin 50cos50+的值为16.已知函数()sin cos f x xx =+,给出下列四个命题:①若[0,]x π∈,则()f x ∈ ②4x π=是函数()f x 的一条对称轴.③在区间5[,]44ππ上函数()f x 是增函数. ④函数()f x 的图像向左平移4π个单位长度得到()f x x =的图像.其中正确命题的序号是三、计算题:17. 已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且,求)2tan(βα-的值及角βα-2.18. 求值:(12sin 50sin 801︒+︒︒22(2)sin20cos 50sin 20cos50++19. 已知312tan ,cos()413ααβ=+=-,且,(0,)2παβ∈,(1)求22cos sin 12)4ααπα--+的值; (2)求cos β的值 .20. 已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
(2)函数的单调减区间(3)此函数的图像可以由函数2y x =的图像经过怎样变换而得到。
21. 已知函数2()2sin ()1,.4f x x x x R π=++-∈(1)求函数)(x f 的最小正周期;(2)在ABC ∆中,若()2sin cos()cos()f C B A C A C ==--+,求A tan 的值 .22. 已知向量(2cos ,tan()),(2sin(),tan()).2242424x x x x a b πππ=+=+-令().f x a b =⋅(1)求函数()f x 的最大值,最小正周期, (2)写出()f x 在[0,]π上的单调区间。
(3)写出1()2f x ≥的x 的取值范围的集合.。