弹性粒子群算法在运动估计中的应用研究

合集下载

粒子群算法原理及应用

粒子群算法原理及应用

粒子群算法原理及应用随着人工智能技术的发展,各种算法被广泛应用在数据分析、预测以及优化等方面。

其中,粒子群算法(Particle Swarm Optimization,PSO)作为一种高效的全局优化算法,在实际应用中表现出色,受到了越来越多的关注与重视。

本文将围绕粒子群算法的原理与应用进行阐述。

一、粒子群算法的原理粒子群算法是一种基于群体智能的优化算法,借鉴了鸟群或鱼群等生物群体行为的思想。

它是一种随机化搜索算法,通过模拟大量粒子在问题空间中的随机移动,不断探索解空间,从而寻找全局最优解。

具体来说,粒子群算法是基于一个粒子群的模型,其中每个粒子代表一个搜索空间内的解。

每一个粒子都有一个自身的位置和速度,而粒子的位置和速度可以通过如下公式进行更新:$v_{i,j}=wv_{i,j}+c1r1(p_{ij}-x_{ij})+c2r2(g_{ij}-x_{ij})$$x_{i,j}=x_{i,j}+v_{i,j}$其中,$v_{i,j}$表示第$i$个粒子在第$j$个搜索空间维度上的速度,$w$表示惯性权重,$c1$和$c2$分别是自己的历史最佳位置$p_{ij}$和全局最佳位置$g_{ij}$对粒子位置的影响因子,$r1$和$r2$是0~1的随机数,$x_{i,j}$是粒子的位置。

通过更新速度和位置,粒子可以向更优秀的位置移动,从而不断逼近全局最优解。

这种不断更新、迭代搜索的过程可以实现全局搜索和多目标优化等问题领域的优化求解。

二、粒子群算法的应用粒子群算法最主要的应用领域是全局优化问题,如函数优化、数据拟合、最小二乘等问题的求解。

此外,粒子群算法还被广泛应用在神经网络训练、图像处理、机器学习等领域。

(一)函数优化函数优化问题是粒子群算法最基本的应用领域之一。

例如,在参数优化问题中,可以将参数空间定义为搜索空间,通过粒子群算法不断寻找全局最优解来优化模型参数。

在现实中,这种方法已被广泛应用于金融风险分析、选股等领域。

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

粒子群算法及其应用

粒子群算法及其应用

粒子群算法是一种基于计算机的优化算法,它可以用来解决复杂的优化问题,如最优化,最小化或最大化目标函数。

它是一种基于群体智能的算法,它的概念来自于生物学中的群体行为,如鸟群的飞行,蚁群的聚集等。

粒子群算法是一种迭代搜索算法,它通过不断更新粒子的位置来搜索最优解。

粒子群算法的基本思想是,在搜索空间中模拟一群粒子,每个粒子有一个位置和一个速度,它们遵循一定的算法进行移动,移动的目的是最大限度地改善粒子的位置,以达到最优解。

算法的每一步都是基于粒子的位置和速度计算出新的粒子位置,并将其计算结果与原来的粒子位置进行比较,如果新位置更优,则更新粒子的位置,如果不是,则保持原位置。

每次迭代后,粒子群算法都会更新粒子的位置,以达到最优解。

粒子群算法在优化问题中有着广泛的应用,它可以用来解决最小化或最大化目标函数的问题,也可以用来求解约束优化问题。

它的优势在于它可以快速地搜索最优解,而且它可以处理复杂的优化问题,比如多维度和非凸优化问题。

粒子群算法在实际应用中也有很多。

例如,它可以用来解决机器学习中的优化问题,比如神经网络的训练,支持向量机的训练,以及模式识别问题。

它也可以用来解决工程设计中的优化问题,如机械设计,汽车设计,航空航天设计等。

此外,它还可以用来解决经济学中的优化问题,比如资源分配,货币政策等。

粒子群算法是一种有效的优化算法,它可以有效地解决复杂的优化问题,并且具有良好的收敛性。

由于它的优势,粒子群算法在实际应用中被广泛应用,它可以用来解决机器学习,工程设计和经济学中的优化问题。

粒子群算法及应用解析

粒子群算法及应用解析

A brief description of how the algorithm works is as follow
Initially, some particle is identified as the best particle in a neighborhood of particles, based on its fitness.
The Origination of the PSO
Particle Swarm Optimization (PSO) is a population based stochastic optimization technique developed by Kennedy and Eberhart in 1995
粒子群算法及其应用
朱汉洪 上海财经大学
2010.07
内容
粒子群优化算法背景 粒子群算法思想 粒子群算法 案例——积极投资决策与被动投资决策优化 未来可以研究的方向
Dumb parts, properly connected into a swarm, yield smart results.
Various population topologies on the PSO performance
Reference: Ajith Abraham, He Guo, and Hongbo Liu,Swarm Intelligence: Foundations, perspectives and Applications
All the particles are then accelerated in the direction of this particle, but also in direction of their own best solutions that they have discovered previously.

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及其在函数优化中的应用1 粒子群优化(PSO )算法基本原理1.1 标准粒子群算法假设在一个D 维的目标搜索空间中,有m 个代表问题潜在解的粒子组成一个种群12[,,...,]m =x x x x ,第i 个粒子的信息可用D 维向量表示为12[,,...,]T i i i iD x x x =x ,其速度为12[,,...,]T i i i iD v v v =v 。

算法首先初始化m 个随机粒子,然后通过迭代找到最优解。

每一次迭代中,粒子通过跟踪2个极值进行信息交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即12[,,...,]T i i i iD p p p =p ;另一个是所有粒子目前找到的最优解,称之为群体极值,即12[,,...,]T g g g gD p p p =p 。

粒子在更新上述2个极值后,根据式(1)和式(2)更新自己的速度和位置。

11122()()t t t t t t i i i i g i w c r c r +=+-+-v v p x p x (1)11t t t i i i ++=+x x v (2)式中,t 代表当前迭代次数,12,r r 是在[0,1]之间服从均匀分布的随机数,12,c c 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长,w 为惯性权重,一般在0.1~0.9之间取值。

在标准的PSO 算法中,惯性权重w 被设为常数,通常取0.5w =。

在实际应用中,x 需保证在一定的围,即x 的每一维的变化围均为min max [,]X X ,这在函数优化问题中相当于自变量的定义域。

1.2 算法实现步骤步骤1:表示出PSO 算法中的适应度函数()fitness x ;(编程时最好以函数的形式保存,便于多次调用。

)步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子,最大迭代次数等),在自变量x 定义域随机初始化x ,代入()fitness x 求得适应度值,通过比较确定起始个体极值i p 和全局极值g p 。

粒子群算法的应用

粒子群算法的应用

粒子群算法的应用粒子群算法的应用粒子群算法(Particle Swarm Optimization,PSO)是一种搜索优化算法,是仿照群体中被自然环境影响及一种简单的社会行为算法,由Kennedy和Eberhart于1995年提出,它是一种新的粗粒度并具有全局搜索能力的优化方法,能够自动地搜索全局最优解,是一种近似贪心算法,其基本特征在于:每个粒子在迭代的过程中,会受到两种不同的搜索能力的影响,即私人最佳位置和全群最佳位置,每一次迭代粒子会向当前最优位置移动,直至逐渐的趋于局部最优解,从而获得全局最优解。

粒子群算法的应用被广泛地用于优化多元函数,有关优化问题的经典应用是最小二乘法及最小平方误差的最优拟合,此外还可以求解约束优化问题及旅行商问题。

粒子群算法的主要应用有:一、优化机器学习问题:粒子群算法可以用于机器学习任务中的参数优化,经常使用于参数自适应机器学习算法,用于调整算法参数以达到最优的模型结果。

二、最优路径规划问题:粒子群算法能够搜索最优的路径及路径规划,用于寻找最优路径及路径规划等任务,可以有效改善现有的路径规划算法。

三、工程优化问题:粒子群算法可以被应用于优化各种工程模型,包括结构优化、热力学优化、建筑物优化等。

四、复杂系统建模:粒子群算法可以用于建模复杂系统,能够有效地优化复杂系统的模型。

五、天文物理学建模:粒子群算法能够有效地应用于天文物理学建模问题,如发现物理学上的结构和特性,解释天文现象等问题。

六、图像处理问题:粒子群算法可以用于图像处理任务中的参数优化,可以有效的解决图像处理的问题。

粒子群算法在优化问题中表现出了良好的性能,具有良好的全局搜索能力,能够自动地搜索全局最优解,能够有效解决多维优化问题,并且具有简单易操作、快速收敛等特点。

粒子群算法及其应用研究

粒子群算法及其应用研究

粒子群算法及其应用研究粒子群算法是一种基于群体智能的优化算法,自提出以来便在各个领域得到了广泛的应用。

本文将介绍粒子群算法的基本原理、应用领域、优化应用以及未来研究方向。

粒子群算法是一种通过模拟鸟群、鱼群等动物群体的行为来求解优化问题的算法。

这些群体在寻找食物、避开天敌等过程中,会形成一定的队形或模式,从而达到整体的最优生存状态。

粒子群算法便是借鉴了这种群体智能的思想,通过多个粒子在搜索空间内的运动,寻找到最优解。

粒子群算法的特点在于其简单、易实现、收敛速度快等。

该算法只需记录每个粒子的位置和速度信息,无需进行复杂的迭代和矩阵运算,因此具有较低的时间复杂度。

同时,粒子群算法能够较好地处理多峰、高维、非线性等复杂问题,在求解这些难题时具有较大的优势。

粒子群算法在各个领域都有广泛的应用,其中最常见的是在函数优化、神经网络训练、图像处理、控制系统等领域。

在函数优化方面,粒子群算法能够快速寻找到函数的最小值或最大值,被广泛应用于各种工程和科学领域。

在神经网络训练方面,粒子群算法也被用来优化神经网络的权值和阈值,提高神经网络的分类和识别能力。

在图像处理方面,粒子群算法可以用于图像分割、特征提取等任务,提高图像处理的效果和质量。

虽然粒子群算法已经得到了广泛的应用,但是该算法仍存在一些不足之处,如易陷入局部最优解、参数设置缺乏指导等。

为了提高粒子群算法的性能和效果,研究者们提出了一系列优化方法,包括调整参数、改变粒子的更新策略等。

其中,调整参数是最常见的优化方法之一,包括调整学习因子、加速因子等参数,以获得更好的搜索效果。

改变粒子的更新策略也是一种有效的优化方法,可以通过引入变异、交叉等操作来增加粒子的多样性,避免陷入局部最优解。

未来研究方向主要包括以下几个方面:针对粒子群算法的参数设置问题,未来研究可以探索更加科学、合理的参数设置方法,以提高算法的性能和搜索效果。

针对粒子群算法易陷入局部最优解的问题,未来研究可以探索更加有效的优化策略,以提高算法的全局搜索能力。

粒子群算法【精品文档】(完整版)

粒子群算法【精品文档】(完整版)

粒子群算法摘要:粒子群优化算法是由James Kennedy和 Russell Eberbart 设计的一种仿生优化计算方法。

PSO算法的基本设计思想来源于两个方面分别是人工生命和进化计算,设计者通过研究动物群体以及人类行为模式的计算机模拟,然后不断的试错、修改而逐渐的到算法的原型。

PSO算法的运行机理不是依靠个体的自然进化规律,而是对生物群体的社会行为进行模拟。

它最早源于对鸟群觅食行为的研究。

在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种相互作用和影响是通过信息共享机制体现的。

PSO算法就是对这种社会行为的模拟即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体朝着更好的方向发展。

关键词:粒子群优化算法;社会行为;鸟群觅食;信息共享1 粒子群算法设计思想粒子群算法的思想来源于对鸟捕食行为的模仿,虽让鸟群在捕食过程中会发生改变飞行方向、聚集等一系列不可预测的行为但整体还是呈现一种有序性,研究证明是因为鸟群中存在一种信息共享机制。

可以设想一群鸟在随机搜索食物,刚开始每只鸟均不知道食物在哪里,所以均无特定的目标进行飞行,但是它们知道哪只鸟距离食物最近,还有自己曾经离食物最近的位置,每只鸟开始通过试图通过这两个位置来确定自己往哪个方向飞行。

因此可以将鸟群觅食行为看做一个特定问题寻找解的过程。

如果我们把一个优化问题看做是空中觅食的鸟群,那么粒子群中每个优化问题的可行解就是搜索空间中的一只鸟,称为“粒子”,“食物”就是优化问题的最优解。

个体找到食物就相当于优化问题找到最优解。

当然这里的鸟群(粒子)是经过人工处理的,它们均有记忆功能,没有质量和体积,不占空间,每个粒子均有速度和位置两个属性,同时每个粒子都有一个由优化问题决定的适应度来评价粒子的“好坏”程度,显然,每个粒子的行为就是总追随者当前的最优粒子在解空间中搜索。

2 粒子群优化算法2.1 标准粒子群优化算法首先提出两个概念,(1)探索:是值粒子在一定程度上离开原先的搜索轨迹,向新的方向进行搜索,体现了向未知区域开拓的能力,可以理解为全局搜索。

粒子群优化算法研究及应用(周先东)

粒子群优化算法研究及应用(周先东)
应用领域。
1 论文的创新之处
2)本文根据运输问题的特殊约束条件, 设计了一种产生初始可行解的方法,同时基 于遗传算法(GA)和PSO算法的思想,设计了 求解运输问题的GAPSO算法。 3)针对PSO算法收敛速度较慢和后期局 部搜索能力不强的问题,本文基于分层搜索 的思想,提出了一种分层PSO算法。
其中i=1,2,…,n, xi 1 x xi 则在整个区间[a, b]的可行函数y(x)的近似函数为:
H i ( x) H ( x) 0 ( xi 1 x xi )
其他
i 1, 2,
,n
本文主要工作
H(x)是一个分段三次多项式,对于各区间的一 阶导数Hi'(x)很容易得到。由于积分是线性算子,故 可以将变分问题(3.6)看成如下的近似问题:
体智能为特征,以求解连续变量优化问题为背景的 一种优化算法。
2.1 基本PSO算法的原理
PSO算法通过个体之间的协作来搜寻最优解,
它利用了生物群体中信息共享的思想,它采用的 是速度——位置搜索模型。 适应值 优化 问题 的解 搜索 空间 的鸟 粒子
速度
位置
2.1 基本PSO算法的原理
初始 化一 种群 跟 踪 个体 极值 全局 极值 迭 更新 速度 代 位置
误差为:4.176204068600461e-006 (*是准确值,□是近似值)
本文主要工作
例3.7结果(同差分法的比较)
xi yi(差分法结果) y(标准 ) PSO算法结果) y ( xi (准确值) i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.07048937725197 0.14268364827646 0.21830475578371 0.29910891084880 0.38690415502238 0.48356844074618 0.59106841087745 0.71147906511749 0.84700451000870 1 0 0.07046815731340 0.14264232077624 0.21824524945515 0.29903486176007 0.38682054346801 0.48348169007427 0.59098668994751 0.71141231144020 0.84696416450834 1 0 0.07046740687740 0.14264090885891 0.21824367622186 0.29903320048416 0.38681888397007 0.48348014891688 0.59098524736430 0.71141096008247 0.84696338169191 1

粒子群算法简介及使用

粒子群算法简介及使用

粒子群算法题目:求∑==1012)(i i x x f 的最小值1粒子群简介粒子群算法是在1995年由Eberhart 博士和Kennedy 博士一起提出的,它源于对鸟群捕食行为的研究。

它的基本核心是利用群体中的个体对信息的共享从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。

设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地到底在哪里,但是它们知道自己当前的位置距离玉米地有多远。

那么找到玉米地的最佳策略,也是最简单有效的策略就是搜寻目前距离玉米地最近的鸟群的周围区域。

在PSO 中,每个优化问题的解都是搜索空间中的一只鸟,称之为"粒子",而问题的最优解就对应于鸟群中寻找的"玉米地"。

所有的粒子都具有一个位置向量(粒子在解空间的位置)和速度向量(决定下次飞行的方向和速度),并可以根据目标函数来计算当前的所在位置的适应值(fitness value ),可以将其理解为距离"玉米地"的距离。

在每次的迭代中,种群中的例子除了根据自身的经验(历史位置)进行学习以外,还可以根据种群中最优粒子的"经验"来学习,从而确定下一次迭代时需要如何调整和改变飞行的方向和速度。

就这样逐步迭代,最终整个种群的例子就会逐步趋于最优解。

PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”和“变异” 操作,它通过追随当前搜索到的最优值来寻找全局最优。

这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。

2算法的原理PSO 从这种模型中得到启示并用于解决优化问题。

PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。

粒子群优化算法与其应用分析

粒子群优化算法与其应用分析

间任务调度、实时机器人路径规划、图像分割、EEG 信号模拟、语音识别、烧伤诊断以及探测移动目标等方面已经得到成功的应用,粒子群优化算法具有很多优点,主要体现在对整个种群进行群体搜索,能记忆个体最优解,算法的原理简单,易于理解编程实现,协同搜索,通过群体的全局最优信息和个体局部信息共同完成,易于与其它算法相互混合,能构造出具有更好优化性能的新算法,相对于蚂蚁群算法等其它智能优化算法,此算法能够较快收敛到全局最优位置.1.2 课题的国内外研究现状粒子群优化算法(简称PSO)是1995 年提出的,由于其原理简单易懂,以及前面给出的许多优点,因此使得很多研究学者对这种算法产生浓厚的兴趣且对这种算法进行研究,目前针对粒子群优化算法的研究已经取得了很大的进展,包括应用研究和理论研究,这些进展主要体现在以下几方面:(1) 针对粒子群优化算法容易陷入早熟收敛和为了提高粒子的收敛速度而进行的研究.文献[21] 提出了一种简化的自适应粒子群优化算法,针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部最优位置、进化后期的收敛速度慢和求解精度低等缺点,文中采用了自适应简化粒子群优化(AsCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的自适应简化粒子群优化(CAsCFPSO)算法;文献[22]中美国的Shi和Eberhart研究发现,PSO算法中等式的第一部分为速度因子,由于此种算法具有随机性和扩大搜索空间的优点,因此研究学者们为了控制粒子以前飞行速度对当前飞行速度的影响,引入了惯性权重,它的作用是平衡算法的全局寻优能力和局部寻优能力,即平衡算法的收敛速度和收敛精度,表现为惯性权重的取值越大,则粒子群算法的全局寻优能力就越强,反之,惯性权重的取值越小,则粒子群算法的局部寻优能力就越强.为了能找到更好的惯性权重的选取方法,使得粒子在局部和全局之间更好的搜索,许多研究学者进行了大量的研究,提出了惯性权重的不同选取策略:文献[24]提出了一种动态改变惯性权重的方法,文献[25]给出了一种非线性改变惯性权重的方法,文献[26]提出了一种基于混沌的动态改变惯性权重的方法,文献[27]根据粒子适应度值改变惯性权重的选取方法,以上提到的改变惯性权重的方法提高了粒子群优化算法的全局寻优能力. PSO作为一种新的随机优化算法,它的缺点也表现在容易陷入早熟收敛和全局收敛速度慢这两个方面,为了避免粒子群算法过早陷入早熟收敛的缺点,许多研究学者通过控制种群的多样性来提高算法性能,文献[28]针对基本PSO 算法存在易陷入局部最优位置的缺点,提出了一种新型的PSO 算法——混合变异粒子群优化算法.在每次迭代过程中,对满足变异条件的粒子,以多种变异函数方式进行变异,而这些变异函数分别被给予了一定概率,概率的划分取决于特定的优化问题.文献[29]针对粒子群优化算法容易早熟、收敛精度低等缺点,通过采用全变异策略、最大搜索速度自适应调整等策略给出了一种全变异粒子群优化算法.文献[30]提出了一种基于群能量恒定的粒子群优化算法,该算法根据粒子内能进行动态分群,对于具有比较好的适应度值的小群体采取引入最差粒子的速度公式更新方法,对于具有比较差的适应度值的小群体采取带有惩罚机制的速度公式更新方法,用其分担由于较优群体速度降低而产生的整群能量的损失,从而有效地克服了PSO 算法的早熟.(2) 为增强P SO 全局搜索能力而进行的研究.文献[31]针对粒子群优化算法容易陷入局部最优解的问题,采用了协同处理的粒子群优化算法: 对于种群中适应度值差于平均适应度值的粒子,2采用动态Zaslavsk ii 混沌映射公式调整粒子的惯性权重;对于种群中适应度值优于或等于平均适应度值的粒子,采用动态非线性函数公式调整粒子的惯性权重. Higashi[32] 、NingLi[33] 、吕振肃[34] 等人分别提出了自己的变异粒子群优化算法,其基本思路都是想通过引入变异算子以此来跳出局部最优值的吸引,提高算法的全局寻优能力,从而得到精度较高的计算结果.(3) 与其它算法的结合. Das等人将差分进化(DE)引入粒子群算法速度更新公式中从而提出了PSO-DE算法.高鹰等提出的基于模拟退火算法(SA)的粒子群优化算法是以基本粒子群算法的具体流程作为主要运算流程,把模拟退火机制引入粒子群算法,与粒子群算法的求解速度快、易于编程实现等优点与具有非常好的跳出局部最优解能力的模拟退火算法相结合,避免了粒子群优化算法容易陷入局部最优值点的缺陷,从而加快了粒子群算法在进化后期的收敛速度.尽管对粒子群算法的研究已经取得了很大的进展,但对算法本身的工作原理、算法内部机理还没有真正建立,算法中参数的取值还不够恰当,PSO 的研究热点主要体现在以下几方面:(1) 与其它智能优化算法的融合.将PSO 和其它优化算法进行融合,主要考虑如何将粒子群算法的优点和其它智能优化算法的优点相结合,取长补短,构造出有实用价值的混合算法.(2) 将各种先进理论引入到PSO 算法中.各种先进理论的引入,首先可以研究性能良好的新型粒子群拓扑结构.其次可以优化PSO 的参数及其选择,使得粒子群优化算法既能避免早熟收敛又能比较快速地收敛到全局最优解,对工程实践有着重要意义.(3) 算法内部机理的数学基础研究.PSO 算法在实际应用中被证明是有效的,但目前还没有给出收敛性、收敛速度估计等方面的数学证明,已有的工作还远远不够.1.3 粒子群优化算法的应用粒子群优化算法已得到广泛应用,在国内外的一些刊物上,已经出现了用粒子群优化算法解决整数规划、多目标优化、非线性规划、TSP 问题等优化问题的文章.此外粒子群优化算法在神经网络训练、系统辨识等方面,也有着广泛的应用.本节简要介绍一些例子:(1) 组合优化尽管有离散二进制版PSO,但其并不能完全适用于各种不同类型的组合优化问题,因为离散二进制版PSO 中存在着很多问题,如约束条件怎样处理等.根据待求解问题的性质不同,有些研究学者通过自己重新定义算法迭代公式中的位置和速度更新公式来解决问题.目前,已经提出了很多求解整数规划、VRP、TSP 等问题的新方法.(2) 神经网络的训练PSO 用于神经网络的训练中,主要包含三个方面:连接权重、学习算法和网络结构(网络拓扑结构以及传递函数).用PSO 优化算法训练神经网络,一个粒子包含神经网络的所有受控参数,通过迭代来优化这些受控参数,从而达到训练的目的.与BP 算法相比,使用粒子群优化训练神经网络的优点在于不利用待求解函数的梯度信息,可使用一些不可微的转换函数.大部分情况下粒子群优化训练神经网络训练结果优于BP 算法,而且有非常快的训练速度.(3) 连续问题参数优化作为一个优化方法,粒子群算法已广泛应用于许多连续问题的参数优化.例如,机器人路径规划、PID 控制器参数优化、信号处理、模糊控制器的设计、VLSI 布图布线和电路优化设计、3宁夏大学硕士学位论文第一章绪论约束布局优化、无功功率优化、数控加工参数优化等,并在以上问题中均取得了很好的效果.(4) 其他应用除了以上领域外,PSO 在多目标优化、动态目标检测、数据挖掘、生物信号检测识别、聚类分析、游戏学习训练、系统辨识以及无人驾驶车辆的导航等方面也取得了显著的成果.1.4 本文的结构与主要内容本文研究内容分布于以下各章节中:第一章,绪论:介绍了本文的研究背景、意义、PSO 算法的国内外研究进展以及其应用.第二章,粒子群优化算法概述:介绍了粒子群优化算法的基本原理、算法流程、参数设置对算法的影响,对基本粒子群优化算法的关键控制参数进行了分析,讨论了粒子群算法的改进策略,比较了粒子群优化算法与遗传算法等其它进化算法的异同.第三章,动态调整惯性权重的粒子群优化算法:本章首先对标准粒子群优化算法中的速度更新公式进行了改进,从粒子群算法自身的搜索机理出发,目的是增强基本粒子群算法的全局搜索能力.给出了一种新的粒子群优化模型,其次对原有算法中的固定惯性权重进行改进,实验结果表明新算法具有更快的搜索速度和更高的计算精度.第四章,带飞行时间的粒子群优化算法:该算法中的速度更新公式不仅考虑了粒子对本身的思考,还考虑了整个种群的平均信息,利用了更多的信息来调整自己的行为,同时使用了动态自适应惯性权重,该算法根据粒子群中各个粒子适应度值的变化动态调整惯性权重的取值,最后引入粒子的飞行时间,克服了由于基本粒子群算法固定粒子飞行时间从而导致的粒子在进化后期搜索性能下降的问题.通过一系列的数值实验表明新提出的带飞行时间的粒子群优化算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法.第五章,给出了求解混合整数规划问题的粒子群优化算法:该算法对粒子群的速度方程和位置方程进行改进,给出了违反搜索空间的处理策略,利用无约束双目标的方法求出粒子群的全局最优解,实验结果表明给出的算法是求解混合整数规划问题的有效算法.第六章,对所作课题进行了总结,同时给出了粒子群优化算法目前存在的问题与未来可能的研究方向.4宁夏大学硕士学位论文第二章粒子群优化算法概述第二章粒子群优化算法概述1.5 引言粒子群优化算法具有收敛速度快、鲁棒性好等特点,能以较大概率找到问题的全局最优解,且计算效率比传统的计算方法高.该算法最大的优势在于概念简单易实现,且有着深刻的智能背景,目前已经在函数优化、模式识别、神经网络设计、分类、机器人技术、信号处理等应用领域取得了成功的应用.所以该算法自提出以来,引起了国际上相关领域众多学者的关注和研究.本章首先对粒子群优化算法的基本原理和流程进行了介绍,然后对基本粒子群优化算法的关键控制参数进行了分析,讨论了以下几个方面的改进策略:调整惯性权重、引入收缩因子、融入选择策略、融入杂交策略等.1.6 基本粒子群优化算法描述2.2.1 算法原理粒子群优化算法(PSO)是一种群体优化算法,它是受鸟群群体运动行为方式启发而提出的一种具有代表性的群体智能的方法.研究人员发现鸟群在觅食飞行过程中会改变方向、聚集、散开,其飞行行为通常表现为不可预测,然而其整体运动却能保持一致性,个体与个体之间的飞行也保持着最佳的距离.通过对类似生物群体的行为研究,发现生物群体中存在着一种社会信息共享机制,它为群体的进化提供了一种优势,这也是粒子群优化算法形成的基础.该算法可描述为:假设在一个D维寻优空间中,粒子群由N个粒子组成,该粒子群可用下面的参数来表示: x=x x L x表示种群中第i个粒子的位置;v=(v,v,L ,v) 表示种( , , , )i i1 i2 iD i i1 i2 iD群中第i个粒子的速度;p=(p, p,L , p) 表示种群中第i个粒子迄今为止寻找到的最优位i i1 i2 iD置,也就是个体最优位置p;p=( p, p,L , p) 表示整个粒子群迄今为止寻找到的全局最i g g1 g2 g D优位置,也就是全局最优位置p g. 那么每个粒子飞行的速度和位置的迭代公式如下:v(t+1) =wv(t) +c r(p(t) −x(t)) +c r( p(t) −x(t)), (2.1)id id 1 1 id id 2 2 gd idx(t+1) =x(t) +v(t+1), (2.2)id id id其中,1≤d≤D,1≤i≤N,w为惯性权重;c和c为学习因子,通常取(0, 2] 之间的常数,1 2r、1 r为分布于(0,1) 之间的随机数;公式由三部分组成,第一部分是(记忆项)粒子先前的速度,2说明了(上次速度的大小和方向)影响粒子目前的状态;第二部分是粒子的自我认知部分,是从当前位置指向该粒子自身最优位置的一个矢量,表示此粒子的飞行来源于自身经验,粒子通过对自身位置的思考来决定自己下一步的飞行速度和位置,这样可以使种群中的每个粒子有更好的全局寻优能力,避免陷入局部极小值;第三部分为(群体认知项)社会认知部分,是一个从当前位置指向种群最优位置的一个矢量,反映了种群中粒子间的相互合作和信息的共享,以上三部分共同决定了粒子的空间寻优能力.第一部分的作用是平衡全局寻优和局部寻优的能力,第二部分使粒子5宁夏大学硕士学位论文第二章粒子群优化算法概述有了很强的全局搜索能力,避免过早陷入局部极值点,第三部分体现了粒子之间的信息共享,在这三部分的共同作用下粒子才能有效的到达最好位置.1.7参数设置粒子群算法中控制参数包括:最大速度V、加速常数c、c、惯性权重w.max 1 2(1) 最大速度vmax一般来说,v的选择不应该超过粒子的搜索范围,如果max v太大,粒子可能飞过最优解的max位置;如果太小,粒子不能在局部好区间之外进行足够的探索,可能降低粒子的全局搜索能力. 数值实验结果表明,通常设v为每维变化范围的10%~20%.max(2) 学习因子加速系数c1,c2 代表将种群中每个粒子飞向个体最优位置p和全局最优位置ip的加速权重.g低的c、c值允许粒子在被拉回之前可以在目标区域外徘徊,而高的值则导致粒子突然地冲向或1 2越过目标域.(3) 惯性权重惯性权重w是用来控制种群中粒子以前飞行速度对当前飞行速度的影响,粒子的局部搜索能力和全局搜索能力与惯性权重的选取有很大关系,其表现为惯性权重的取值越大,则有利于算法的全局搜索,惯性权重的取值越小,则对算法的局部搜索有力,合适的惯性权重值可以提高算法的求解效率.大量数值实验研究发现惯性权重的取值范围在[0.9,1.2]之间会有更好的求解结果,而且用线性递减的方法比用固定的惯性权重值的求得的结果要好,其原因是惯性权重的取值越小则有利于局部搜索,惯性权重的取值越大则有利于全局搜索.另外,文献[36]研究了惯性权重的取值和速度上限对粒子群优化算法性能的影响,得出的结论是惯性权重的取值接近1得到较好结果的前提条件是V比较小,通常来说,从0.9 线性递减到0.2 的惯性权重w的取值策略能得到max相对其它取值比较好的结果.在整个求解过程中,最大速度v、学习因子c、c以及惯性权重w共同维持粒子对局部搜max 1 2索和全局搜索性能的平衡.1.8算法流程每个粒子的优劣程度根据已定义好的适应度函数来评价,这与被求解的问题有关,设待求解的优化问题为极小化问题,下面为PSO 算法的算法流程:Step 1 初始化粒子群,包括群体规模ND,搜索空间的维数,每个粒子的位置Step 2 ①计算种群中每个粒子的适应度值f(x(t)) ;id②求出到目前为止每个粒子所找到的最优位置;ipip③求出到目前为止当前种群所找到的全局最优位置;g x和速度v;id idStep 3 根据公式(2.1)、(2.2)更新粒子的速度和位置;由此形成第t+1代粒子群:x(t+1) =(x(t+1), x(t+1),L , x(t+1));1 2 N6Step 4 对粒子群中的各个粒子,用它的当前适应度值和它本身的个体最优适应度值进行比较,如果当前适应度值较好,则用该粒子替换个体极值p i;Step 5 对粒子群中的各个粒子,用它的当前适应度值和全局最优适应度值比较,如果当前适应度值较好,则替换全局极值p g;Step 6 如果满足结束条件(误差足够好或到达最大循环次数)退出,否则回到Step 2.图2-1 给出了PSO 算法的具体流程:开始在整个搜索空间随机初始化粒子的速度和初始位置计算每个粒子的适应度更新粒子的p, pi g根据公式(2.1)和(2.2)更新每个粒子的速度和位置判断是否满足终止条件:达到最大迭代次数或误差在允许范围内否是结束图2-1 基本粒子群优化算法流程图1.9 粒子群优化算法的改进策略基本粒子群优化算法在解决复杂优化问题时遇到了很多困难,甚至有些优化问题用基本粒子群算法无法解决或效率非常低下,所以对基本粒子群算法的改进就显得尤为重要.粒子群优化算法的改进可谓层出不穷,这方面的研究非常庞杂,这些改进基于各种不同的选取策略和方法.这些不同的方法和策略,目的都是为了改善基本粒子群优化算法存在的缺点,这个缺点是PSO 容易过早出现早熟收敛,陷入到局部最优值点中,最终使全局最优解不能求出,出现这种现象有以下7两个方面的原因,一是受到待求解的优化函数性质的影响,现实生活中有许多测试函数是高维、不可导、有多个极值点、形状非常复杂,然而粒子群优化算法不是从理论上证明此算法能收敛到所有类型函数的全局最优位置,所以针对高维、不可导、有多个极值点等特性的测试函数,不一定都能求得理论最优值;二是粒子群优化算法在运行过程中,由于算法中各个参数选取的不恰当等原因,造成算法在运行的过程中,粒子群中粒子的多样性减少,导致粒子群算法出现“早熟”现象,从而导致该粒子群算法不能收敛到全局最优位置,因此也就不能求出问题的全局最优解. 以上这两个影响算法求解结果的原因通常密不可分的联系在一起,使人们很难说出究竟是二者之中哪一个因素在起作用,致使该算法不能收敛到理论的全局最优位置.针对第一个方面的缺点,许多学者试图在函数寻优的过程中,动态的改变函数的某些全局或局部的形态,使待求解的函数的图像逐渐变得简单从而有易于求解,同时又不改变待求解函数全局最优位置的性质.例如设计一个变换方法,随着函数优化过程的进行,使得待求解的函数由多峰函数变为单峰,从而克服以上缺点;针对第二个方面的问题一般可以采用如下方法来解决,通过对种群中粒子的多样性设置某些指标,例如粒子群的熵,随着进化过程的进行,如果这些指标大于某个预先给定的阈值,则对整个种群中的满足这个条件的某些粒子实施某种操作,比如按照给出的概率进行变异,从而改善整个种群的多样性,克服早熟现象.本节重点讨论以下几个方面粒子群优化算法的改进策略:调整惯性权重、引入收缩因子、融入选择策略等.1.10调整惯性权重惯性权重w是用来控制粒子以前飞行速度对当前速度的影响,惯性权重可以平衡粒子群算法的局部搜索与全局搜索能力,惯性权重与模拟退火算法中的退火温度相似,惯性权重的取值越大,则粒子群算法的全局搜索能力就越强,从而算法的局部搜索能力就相对减弱,反之,惯性权重的取值越小,则粒子群算法的局部搜索能力就越强,而全局搜索能力就相对减弱.由于不同问题所具有的性质不同,致使对算法的全局搜索能力或局部搜索能力会有不同要求,因此调整惯性权重的大小可以使算法在全局寻优和局部寻优之间得到平衡,也就是说根据函数性质的不同进行自动调整惯性权重.文献[38]提出了一种自适应调整的线性递减权重选取策略,在进化过程中随迭代次数的增加,线性减少惯性权重的取值,用公式表示为:T−tw(t) =(w−w)( max ) +w(2.3)start end endTmax其中,T表示最大迭代次数,w表示进化初期的惯性权重,w表示进化到最大迭代次数max start end时的惯性权重,一般取w=0.9 ,w=0.4.这样设置惯性权重的值的好处是使得算法在迭代start end初期粒子的探索能力比较强,能不断搜索新的区域,之后粒子的开发能力逐渐增强,以使算法在可能是最优位置的周围进行更细致的寻优,但是寻优过程是一个非常复杂的非线性过程,采用惯性权重的取值线性递减的方法并不能正确地反映出粒子真实的寻优过程.因此,有的研究者提出了一种借助粒子适应度值来动态调整惯性权重的方法,通过求解的粒子适应度值确定惯性权重w 的取值.数值实验结果表明,与线性减小惯性权重的粒子群优化算法相比,动态改变惯性权重的方法能求得更好的优化结果.8宁夏大学硕士学位论文第二章粒子群优化算法概述1.11引入收缩因子收缩因子的概念[39] 是Clerc 提出的,在种群的进化过程中每个粒子的速度更新公式为:v(t+1) =χ[v(t) +c r( p−x(t)) +c r( p−x(t))] (2.4)id id 1 1 id id 2 2 g id其中,收缩因子χ=22 −ϕ−ϕ2 −4ϕ,ϕ=c+c,ϕ> 41 2数值实验结果表明,使用了收缩因子的改进粒子群优化算法与使用惯性权重的粒子群优化算法相比,其优点在于前者有着更快的收敛速度.如果我们恰当地选取收缩因子的取值,那么带有收缩因子的改进粒子群优化算法可以被看作是基本粒子群优化算法的一个特例.1.12融入选择策略PSO 算法的寻优过程在很大程度上是与粒子群中当前个体最优位置p和全局最优位置i p有g关,它的寻优范围受个体最优位置p和全局最优位置i p的限制.在智能优化算法中,此处的选择g策略是用来选择比较优的寻优区域和淘汰比较差的寻优区域,以便更好地分配有限的资源.但是在基本的粒子群优化算法中,种群中每个粒子的最优值点的确定相当于隐含了选择机制,文献[40] 给出的带有选择机制的新粒子群优化算法,数值实验结果表明新算法对一些测试函数能收敛到全局最优解.改进的新算法将种群中每个粒子当前位置的适应度值与种群中其它粒子的适应度值进行比较,记下适应度值最差的一个粒子.整个种群再依据这个记录排序,得分最高的粒子排在整个种群的前边,该新算法的具体流程如下:(1) 在种群中随机选择一个粒子,将该粒子的适应度值与种群中的其它粒子的适应度值分别进行比较,如果每次比较完之后该粒子的适应度值好于某个粒子的适应度值,就让该粒子得一分,对种群中的每一个粒子重复以上这一过程;(2) 根据上一步计算得出的每个粒子的分数大小对粒子群中的所有粒子由大到小排序;(3) 选择排在种群中前边的一半粒子,对这些粒子进行复制,取代种群中排在后边的一半粒子.对给出的测试函数的数值实验结果表明,以上给出的新算法的优化性能好于基本粒子群优化算法的优化性能.1.13融入杂交策略融入杂交策略的粒子群优化算法是Angeline 提出的,种群中的每个粒子被预先给定一个比较小的杂交概率,通常情况下杂交概率是随机给出的.在算法的每次迭代过程中,依据杂交概率选择出指定数目的粒子放入一个储存池中,这些粒子随机地两两杂交,生成相同数目的下一代粒。

粒子群算法详解

粒子群算法详解

粒子群算法详解
粒子群算法是一种优化算法,模拟自然界中鸟群捕食行为的过程。

在算法中,将解空间中的每个解看作是一个“粒子”,并以一定规则
进行移动,实现对解空间的搜索和优化。

这种算法具有简单、易实现等优点,是一种常用的优化算法。

粒子群算法中,每个粒子都有一定的速度和位置信息。

通过不断的迭代,粒子会不断调整速度和位置,并逐步接近最优解。

在迭代过程中,每个粒子会不断地与自己的最优解和整个群体的最优解进行比较,以此来更新速度和位置信息。

具体来说,粒子群算法包括以下几个步骤:
1.初始化粒子的位置和速度信息。

2.计算每个粒子的适应度值,即待优化的目标函数值。

3.根据粒子的当前位置和速度信息,更新粒子的速度和位置。

4.更新每个粒子的最优解和整个群体的最优解。

5.检查终止条件是否满足,如果不满足则返回第3步。

在实际应用中,粒子群算法通常用于连续优化问题,如函数最小化、多目标优化等。

同时,也可以通过一定的改进,应用于离散优化问题中。

总之,粒子群算法是一种有效的优化算法,通过模拟自然界中的群体行为,实现对解空间的搜索和优化。

在实际应用中,需要根据具体问题进行参数调整和算法改进,以达到更好的优化效果。

- 1 -。

粒子群算法在优化问题中的应用研究

粒子群算法在优化问题中的应用研究

粒子群算法在优化问题中的应用研究近年来,随着计算机技术的飞速发展,优化问题已成为了计算机科学和工程领域中的重要问题之一。

而粒子群算法(Particle Swarm Optimization,PSO)则以其简单、高效的特点备受广泛关注,成为了优化问题中的一种重要方法。

本文将会对粒子群算法在优化问题中的应用进行研究和探讨。

一、粒子群算法原理粒子群算法是一种优化算法,灵感来源于鸟群或鱼群等群体中的集体行为。

在算法中,被称为粒子的个体将会在搜索空间中寻找最优解。

粒子的位置和速度由其历史最优解和群体历史最优解决定,粒子会根据自己的历史和群体历史寻找最优解。

算法通过适应值来确定每个粒子的适应程度。

最基本的粒子群算法可以按照以下步骤进行:1. 初始化种群2. 计算适应值函数3. 计算粒子速度和位置4. 更新历史最优解和群体历史最优解5. 结束条件二、粒子群算法的应用领域粒子群算法已经被广泛应用于很多领域,以下是一些常见的应用领域。

1. 机器学习和数据挖掘在机器学习和数据挖掘中,粒子群算法可以应用于神经网络、聚类和决策树等算法中,以寻找最优解,提高模型的准确性。

2. 多目标优化多目标优化问题是一个在工程领域中十分重要的问题。

而粒子群算法可以应用于多维和多目标优化问题中,通过调整不同的参数来寻找最优解。

3. 物流和制造业在物流和制造业中,粒子群算法可以用于优化生产流程和降低成本。

例如,可以使用粒子群算法来优化仓库的存储布局和物品的运输路径。

4. 交通管理在交通管理领域中,粒子群算法可以优化公共交通和行车路径,减少拥堵和时间成本。

三、粒子群算法在工程领域中的应用在工程领域中,粒子群算法也有着广泛的应用,以下是一些应用案例。

1. 机器人路径规划机器人路径规划是一个在自动化制造业中重要的问题。

使用粒子群算法来规划机器人路径可以提高生产效率和降低成本。

2. 无线传感器网络在无线传感器网络中,节点的位置对于网络的性能非常重要。

举例说明粒子群算法的搜索原理

举例说明粒子群算法的搜索原理

举例说明粒子群算法的搜索原理粒子群算法(Particle Swarm Optimization, PSO)是一种进化计算方法,它通过模拟鸟群或鱼群的群体行为实现优化问题的搜索。

粒子群算法由于其简单性和高效性,在解决各种优化问题中得到了广泛应用。

本文将通过举例说明粒子群算法的搜索原理。

粒子群算法的搜索原理基于两个基本概念:粒子和适应度。

每个粒子代表解决方案的一个候选解,并拥有一个速度和位置。

适应度则表示该粒子解决方案的优劣程度。

假设我们要用粒子群算法来优化一个简单的函数,例如$f(x)=x^2$,其中$x$的取值范围在$[-5,5]$之间。

我们可以将每个粒子的位置表示为$x$的值,每个粒子的速度表示为$x$的变化率。

为了简化问题,我们假设粒子的速度范围在$[-1,1]$之间,即每个粒子在每个迭代中最大可以改变一个单位。

首先,我们需要初始化一批粒子。

假设我们初始化10个粒子,它们的位置和速度可以随机选择或者均匀分布在取值范围内。

在每次迭代中,粒子根据其位置和速度更新自己的解决方案。

具体来说,每个粒子根据当前的位置和速度计算下一个位置。

例如,假设粒子i的当前位置为$x_i$,速度为$v_i$,则下一个位置可以计算为$x_i^{'}=x_i+v_i$。

然后,根据新的位置计算粒子的适应度,并与个体最佳适应度比较。

如果粒子的适应度优于其个体最佳适应度(即$f(x_i^{'})<f(x_i)$),则更新个体最佳适应度和个体最佳位置。

否则,粒子保持当前的个体最佳适应度和位置。

接下来,粒子需要根据群体的最佳适应度和位置进行更新。

群体的最佳适应度是所有粒子的个体最佳适应度中的最优解,而群体的最佳位置是对应于最佳适应度的粒子的位置。

粒子根据群体最佳位置与当前位置的差异来调整自己的速度。

这个调整过程可以由以下公式表示:$v_i^{'} = w \cdot v_i + c_1 \cdot r_1 \cdot (p_i - x_i) + c_2\cdot r_2 \cdot (g - x_i)$其中,$v_i^{'}$是粒子的新速度,$w$是惯性权重,$p_i$是粒子的个体最佳位置,$g$是群体最佳位置,$c_1$和$c_2$是加速度常数,$r_1$和$r_2$是在$[0,1]$范围内的随机数。

粒子群算法及其应用研究粒子群算法...

粒子群算法及其应用研究粒子群算法...

粒子群算法及其应用研究4.2.4仿真实验…………………………………………………………………………..44结论……………………………………………………………………………………………………………………46致谢……………………………………………………………………………………………………………………47参考文献…………………………………………………………………………………48攻读学位期间的研究成果…………………………………………………………………..53IV粒子群算法及其应用研究索空间。

其收敛速度更快,但是对于比较复杂的问题,更容易陷入局部最优点。

式(2.3)中的第三部分cz*r::l:(gbest(t)一X,(t))是社会认知部分,它表示粒子从全局极值获得的更新消息,是粒子间的信息共享。

如果C2=0,则意味着粒子间没有了信息共享机制,只有自身的认知经验,由于个体之间没有了信息交流,一个规模为n的群体相当于运行了n个单个粒子,因此得到解的概率非常小。

假设搜索空间为[.vm舣,vmax](Vmax>O),粒子速度vm舣决定了粒子在一次迭代中最大的移动距离。

Vmax较大时,粒子的探索能力增强,但是粒子容易飞过最好解;Vmax较小时,粒子的开发能力增强,但容易陷入局部最优。

每维粒子的速度都会受到一个最大速度vm双的限制,如果某维粒子更新后的速度超过了所设的vm觚,那么该维的速度就被设为vm戕,即当vi(t)>Vm舣时,有vi(t)=vma)【,或者当vi(t)<-vm戤时,有vi(O=-vma)(。

2.1.4算法的步骤第一步:根据优化问题,确定目标函数,的位置和速度,粒子速度的范围,搜索区域,的收敛精度;第二步:计算每个粒子的适应值;初始化粒子群,包括群体规模,每个粒子学习因子,算法的最大迭代次数或是算法第三步:对每个粒子i比较它的适应值与它的个体极值pibest,如果当前值好于pibest,则替换pibest,否则pibest等于当前位置Xi;第四步:对每个粒子i,比较它的适应值与全局极值gbest,如果较好,则替换曲est;第五步:根据公式(2.3)、(2.4)更新粒子的速度和位置,如果vi<vmin将其设为vmin,Vi>Vmax将其设为Vmax;第六步:如果满足运行结束条件(误差足够好或达到了预先设定的最大迭代次数)则退出,输出最优解,否则回到第二步。

粒子群算法简介优缺点及其应用ppt课件

粒子群算法简介优缺点及其应用ppt课件
粒子群算法
2020/1/11
1
粒子群算法的研究背景
粒子群算法(Particle Swarm Optimization,简称PSO),是一种基 于群体智能的进化计算方法。PSO由Kennedy和Eberhart博士于 1995年提出。
粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员 称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为 主体。主体有适应性,它能够与环境及其他的主体进行交流, 并且根据交流的过程“学习”或“积累经验”改变自身结构 与行为。整个系统的演变或进化包括:新层次的产生(小鸟 的出生);分化和多样性的出现(鸟群中的鸟分成许多小的 群);新的主题的出现(鸟寻找食物过程中,不断发现新的 食物)。
2020/1/11
8
i=1,2,3…,M:种群大小。
c1和c2:学习因子,或称加速系数,合适的c1和c2既可加快收 敛又不易陷入局部最优。
rand1和rand2:是介于[0,1]之间的随机数。
P
b
e
st
k id
是粒子i在第d维的个体极值点的位置;
G
b
e
st
k d
是整个种群在第d维的全局极值点的位置。
除此之外,每个粒子还知道到目前为止整个群体中所有粒子发 现的最好位置(global best,记为gbest)可以看作是整个群体的经验。
2020/1/11
5
每个粒子使用下列信息改变自己的当前位置: (1)当前位置; (2)当前速度; (3)当前位置与自己最好位置之间的距离; (4)当前位置与群体最好位置之间的距离。
2020/1/11
4

粒子群算法详解

粒子群算法详解

粒子群算法详解
粒子群算法是一种群智能算法,常用于优化问题,如寻找函数的最小值或最大值等。

其基本原理是模拟鸟群或鱼群等生物集体行为,通过不断地调整每个粒子的位置和速度,最终找到最优解。

具体来说,粒子群算法由若干个粒子组成,每个粒子都有自己的位置和速度。

在每一次迭代中,每个粒子会根据自己的位置和速度进行更新,通过与其他粒子的交互来不断调整自己的位置和速度,以期望找到最优解。

具体而言,粒子群算法包括以下几个步骤:
1. 初始化粒子群:设置粒子群大小、每个粒子的位置和速度等参数。

2. 计算适应度函数:根据问题的具体情况,设计适应度函数,用于评估每个粒子的表现。

3. 更新粒子位置和速度:根据当前位置和速度,以及适应度函数的结果,更新每个粒子的位置和速度。

4. 更新全局最优解:根据适应度函数的结果,更新全局最优解。

5. 判断迭代终止条件:通过设定迭代次数或适应度函数的阈值等方式,判断是否需要继续迭代。

6. 输出结果:输出最优解或其他需要的结果。

总体来说,粒子群算法的优点是收敛速度快,易于实现和优化,适用于各种优化问题。

但其缺点是可能会陷入局部最优解,需要合理设置参数和调整算法,以克服这个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减 少 迭 代 次 数 ,降 低 计 算 量 并 提 高 计 算 精 度 。试 验 证 明 , 改 进 的 弹 性 粒 子 群 算 法 对 于 运 动 剧 烈 图 像 的各
方 面 的 性 能 都 有 明显 提 高 。
[ 键 词 ] 去锯 齿 ;运 动估 计 ; 弹 性 粒 子群 算 法 关 [ 图分 类 号 ] T 3 1 中 P 9 [ 献标识码]B 文 [ 章 编 号 ] 1 7 —1 0 (0 2 6 文 6 3 4 9 2 1 )0 一N1 2 0 2—3
块 的运动 估计 是最 常 见 的 方 法 之 一 ,经 典 算 法 有 全 搜 索 ( S 、三 步 搜 索 法 ( S ¨ 、 四 步 搜 索 法 F) TS )1 ]
( S )] F S 式 ,搜 索 简单 ,计 算 复 杂 度 低 ,但 在 不 2 D )3 3
2 粒 子 群 算 法
粒 子群算 法 ( S ) 是 由 Ke n d P O n e y等 在 1 9 9 5年提 出的 一种 全局 优 化进 化 算 法 ,源 于对 鸟类 捕 食 行
为 的模 拟 ,通过 群体 中粒 子 间的合 作 与 竞 争 产 生 的群 体 智 能 指 导 优化 搜 索 ,具 有 个 体 数 目少 、计 算 简
1 运 动 估 计 算 法
运动 估计 是视 频压 缩领 域 中最重 要 的环节 与研究 热 点 ,其 计算 量 占据 了整个 编码 过程 中相 当大的 比 重 ,达到 了 6 ~8 。如何 降低 计算 量 并保 持 运 动估 计 的精 度 是各 国学 者 多年 来研 究 的重 点 。基 于 O o/ 9 6
d i 1 . 9 9 j is . 6 3 1 0 ( o : 0 3 6 /.s n 1 7 — 4 9 N) . 0 2 0 . 4 2 1.6 0 1
弹 性粒 子 群 算 法在 运 动估 计 中的应 用研 究
呈 也 , 部共 建现 代显 示技 术 国家 重点 实验 室 ( 育基 地) 省 培 ,安 徽 芜湖 21 0 4 2 0 、 一 一 \ 种显 示 技术 国 家工程 实验 室 ,安徽 芜 湖 210 ;安 徽 工程大 学计 算 机与信 息 学院 ,安 徽 芜 湖 21 0 / 特 402 4 0 0
锯 齿效 应是 隔 行 电视 的一个普 遍 现象 。这 种现象 是 在静止 或运 动物 体 的对角 线斜边 会 出现 锯齿 的形 状 。在进 行运 动 图像去 锯齿 的研究 中 ,运 动估计 是 系统 中非 常重要 的计 算 模 块 。如果 运动估 计算 法部 分
运 算量过 大 ,会影 响整个 系统 的运 行效率 。因此降低运 动估 计部分 的运算 复杂 度 ,减 少搜索 点数 ,是笔 者 研 究的重点 。通过对运 动估计 和粒 子群算法研 究后 ,笔 者提出 了在运 动估 计部分采 用改进 的粒子群算 法 。
单 、鲁 棒性 好等 优点 , 目前该 算法 已成 功应 用 于函数参 数 优化 、神 经 网络 训 练和模 糊 系统控 制 等领 域 。

个 由 m 个粒 子 组成 的群体 在 D 维空 间 中 以一 定 的速 度 飞行 ,每 个粒 子 都 在 自己搜 索 到 的 历史 最
好 点 和群 体 内其 他粒 子 的历 史最好 点 基础上 ,进 行位 置 的迁移 。 每一 个粒 子 i1≤ i ( ≤ ) 在这 里都会 被 定 义 3种属 性 : 粒子 位置 向量 X ② 粒子 移 动 向量 V ; 在 此局 部范 围 内得到 的最优 个 体粒 子 的 位 置 ① ; ③ L。 ,粒子 群算 法步 骤如 下 : 步 1 初 始化 x 和 , 设定 在 1≤ i≤ S 并 的范 围内 , 局部最 优 — X 。 步 2 在 1≤ i m 的范 围内 , 求 每个 x 的值 。 ≤ 估
同程 度上 容 易陷入 局 部最优 。对 小运 动序 列 的运 动估 计精 度 较好 ,而对 大运 动场 景 估计 精 度 明显 下 降 。
对 于隔行 视频 中 ,运 动剧烈 的图像特 别容 易 出现锯 齿状 边沿 ,上 述算法 很 难满 足对该 类 图像 的运 动估 计
精度 要求 。而基 于遗传 算法 的全 局运 动估 计方 法运 算精 度高 ,但 是运算 速 度远低 于基 于块 的 运动估 汁算 法 。为此 ,笔者 在保证 运 动估计 精度 的基础上 又考 虑 到降低 运算 量 的要求 ,因而尝 试结 合改 进型 粒子 群 算法 ( 弹性粒 子群 算 法)来 减 少迭代 次数 ,降低运 算量 ] 。
长江大学学报 ( 然科学版)理工 21年 6 第 9 第 6 自 02 月 卷 期 J u n l f a gz nv ri ( a c E i c&E g J n 2 1 ,Vo. . o r a o n te i s y N t i dt Y U e t S )S i n u . 0 2 19 No 6
[ 要 ] 针 对 隔行 扫描 到逐 行 扫 描 转换 中出 现 的 运 动 图像 锯 齿 现 象 和 在 去 锯 齿 过 程 中计 算 量 大 的 问题 ,对 摘
整个 系 统 中运 算 量 最 大 的 运 动估 计 部 分 进 行 算 法 改 进 。 通 过 改进 的 弹 性 粒 子 群 算 法 ,得 到 全 局 最 优 点 ,
[ 收稿 日期]2 1 0 2—0 3—1 2 [ 基金项 目]省部共建现代显示技术国家重点实验室 ( 培育基地)开放基 金项 目 ( 9 1) o1 o。 1 [ 作者简介 ]强俊 ( 9 1一 ,女 ,2 0 年 大学毕业 ,硕士 ,讲师 ,现主要从事数字图像处理方面的教学与研究工作。 18 ) 03
相关文档
最新文档