Hadoop学习笔记
hadoop期末实训总结
hadoop期末实训总结一、实训背景Hadoop是一个开源的分布式计算系统,能够处理大规模数据集。
在现实应用中,大数据的处理成为了一项重要的任务。
为了提高学生的实践能力和对Hadoop分布式计算系统的了解,我们学校安排了Hadoop期末实训。
二、实训目标本次实训的主要目标是让学生了解Hadoop的基本概念和原理,并能够通过实践掌握Hadoop的使用方法和技巧。
具体来说,实训的目标如下:1. 掌握Hadoop的基本概念和原理。
Hadoop是一个分布式计算系统,由一个主节点和多个从节点组成。
主节点负责整个系统的管理和调度,从节点负责存储和计算。
学生需要了解Hadoop的基本概念,例如NameNode、DataNode等,并了解Hadoop的工作流程和原理。
2. 掌握Hadoop的安装和配置。
学生需要学会如何在操作系统上安装和配置Hadoop。
这包括设置Hadoop的环境变量、修改配置文件等。
在安装和配置过程中,学生需要应对各种问题和错误,锻炼自己的解决问题能力。
3. 掌握Hadoop的使用方法和技巧。
学生需要学会使用Hadoop的各种命令和工具,例如HDFS命令、MapReduce程序等。
在使用Hadoop的过程中,学生需要处理各种不同类型的数据集,了解Hadoop的数据处理能力和性能。
三、实训过程1. 学习阶段在实训开始前,学生需要通过自学来了解Hadoop的基本概念和原理。
学生可以通过阅读相关教材和文档,观看在线视频,参加线下培训等方式来学习。
2. 实践阶段在学习阶段结束后,学生需要进行实际操作。
学生首先需要在自己的计算机上安装Hadoop,并按照要求进行配置。
然后,学生需要完成一系列小实验,例如创建一个HDFS 文件系统、上传和下载文件、运行一个简单的MapReduce程序等。
3. 项目开发阶段在完成小实验后,学生需要参与到一个真实的项目开发中。
每个学生会被分配到一个小组中,小组由4-5人组成。
Hadoop集群配置与数据处理入门
Hadoop集群配置与数据处理入门1. 引言Hadoop是一个开源的分布式计算框架,被广泛应用于大规模数据处理和存储。
在本文中,我们将介绍Hadoop集群的配置和数据处理的基本概念与入门知识。
2. Hadoop集群配置2.1 硬件要求架设Hadoop集群需要一定的硬件资源支持。
通常,集群中包含主节点和若干个从节点。
主节点负责整个集群的管理,而从节点负责执行具体的计算任务。
在硬件要求方面,主节点需要具备较高的计算能力和存储空间。
从节点需要具备较低的计算能力和存储空间,但数量较多。
此外,网络带宽也是一个关键因素。
较高的网络带宽可以加快数据的传输速度,提升集群的效率。
2.2 软件要求Hadoop运行在Java虚拟机上,所以首先需要确保每台主机都安装了适当版本的Java。
其次,需要安装Hadoop分发版本,如Apache Hadoop或Cloudera等。
针对集群管理,可以选择安装Hadoop的主节点管理工具,如Apache Ambari或Cloudera Manager。
这些工具可以帮助用户轻松管理集群的配置和状态。
2.3 配置文件Hadoop集群部署需要配置多个文件。
其中,最重要的是核心配置文件core-site.xml、hdfs-site.xml和yarn-site.xml。
core-site.xml配置Hadoop的核心参数,如文件系统和输入输出配置等;hdfs-site.xml用于配置Hadoop分布式文件系统;yarn-site.xml配置Hadoop资源管理器和任务调度器相关的参数。
3. 数据处理入门3.1 数据存储与处理Hadoop的核心之一是分布式文件系统(HDFS),它是Hadoop集群的文件系统,能够在集群中存储海量数据。
用户可以通过Hadoop的命令行工具或API进行文件的读取、写入和删除操作。
3.2 数据处理模型MapReduce是Hadoop的编程模型。
它将大规模的数据集拆分成小的数据块,并分配给集群中的多个计算节点进行并行处理。
Hadoop学习总结
Hadoop学习总结HDFS相关HDFS写数据的流程⾸先由客户端向NameNode服务发起写数据请求NameNode收到请求后会进⾏基本验证验证类容包括对请求上传的路径进⾏合法验证对请求的⽤户进⾏权限验证验证没有问题后,NameNode会响应客户端允许上传接下来客户端会对⽂件按照blocksize⼤⼩进⾏切块,切完后依次以块为单位上传此时客户端会请求上传第⼀个块信息服务端接到上传请求后会依据HDFS默认机架感知原理,返回3台存放数据块副本的DataNode机器客户端收到机器列表后会依据⽹络拓扑原理找到其中⼀台机器进⾏传输通道的建⽴然后依次和三台机器进⾏串⾏连接这样的连接主要是为了减轻客户端本地IO的压⼒当通道建⽴成功后,客户端会通过HDFS的FSOutputStream流对象进⾏数据传输数据传输的最⼩单位为packet传输过程中每台DataNode服务器串⾏连接,依次将数据传递最后⼀个数据块被传输完成后相当于⼀次写⼊结束,如果还有数据块要传输,那就接着传输第⼆个数据块HDFS读数据的流程和写数据⼀样,由客户端向NameNode发出请求NameNode收到请求后会进⾏⽂件下载路径的合法性以及权限验证如果验证没问题,就会给客户端返回⽬标⽂件的元数据信息信息中包含⽬标⽂件数据块对应的DataNode的位置信息然后客户端根据具体的DataNode位置信息结合就近原则⽹络拓扑原理找到离⾃⼰最近的⼀台服务器对数据进⾏访问和下载最后通过HDFS提供的FSInputStream对象将数据读取到本地如果有多个块信息就会请求多次DataNode直到⽬标⽂件的全部数据被下载HDFS的架构及每个服务的作⽤HDFS是Hadoop架构中负责完成数据分布式存储管理的⽂件系统⾮⾼可⽤集群⼯作时会启动三个服务,分别是NameNode、DataNode以及SecondaryNameNode其中NameNode是HDFS的中⼼服务,主要维护管理⽂件系统中的⽂件的元数据信息DataNode主要负责存储⽂件的真实数据块信息DataNode的数据块信息中也包含⼀些关于当前数据块的元数据信息,如检验值,数据长度,时间戳等在⾮⾼可⽤HDFS集群中,NameNode和DataNode可以理解为是⼀对多的关系⼆者在集群中也要保存通信,通常默认3秒钟会检测⼀下⼼跳最后SecondaryNameNode的⼯作很单⼀,就是为了给NameNode的元数据映像⽂件和编辑⽇志进⾏合并,并⾃⼰也保留⼀份元数据信息,以防NameNode元数据丢失后有恢复的保障HDFS中如何实现元数据的维护NameNode的元数据信息是通过fsimage⽂件 + edits编辑⽇志来维护的当NameNode启动的时候fsimage⽂件和edits编辑⽇志的内容会被加载到内存中进⾏合并形成最新的元数据信息当我们对元数据进⾏操作的时候,考虑到直接修改⽂件的低效性,⽽不会直接修改fsimage⽂件⽽是会往edits编辑⽇志⽂件中追加操作记录当满⾜⼀定条件时,会让Secondary NameNode来完成fsimage⽂件和edits编辑⽇志⽂件的合并Secondary NameNode⾸先会让NameNode停⽌对正在使⽤的edits编辑⽇志⽂件的使⽤,并重新⽣成⼀个新的edits编辑⽇志⽂件接着把NameNode的fsimage⽂件和已停⽌的edits⽂件拷贝到本地在内存中将edits编辑⽇志⽂件的操作记录合并到fsimage⽂件中形成⼀个最新的fsimage⽂件最后会将这个最新的fsimage⽂件推送给NameNode并⾃⼰也备份⼀份NN和DN的关系,以及DN的⼯作流程从数据结构上看,就是⼀对多的关系⼀个HDFS集群中只能有⼀个NameNode⽤于维护元数据信息,同时会有多个DataNode⽤于存储真实的数据块当HDFS集群启动的时候,会⾸先进⼊到安全模式下在安全模式下我们只能对数据进⾏读取不能进⾏任何写操作此时集群的每⼀台DataNode会向NameNode注册⾃⼰注册成功后DataNode会上报⾃⼰的数据块详细信息当数据块汇报满⾜最⼩副本条件后,会⾃动退出安全模式此后DataNode和NameNode每三秒会通信⼀次,如果NameNode检测到DataNode没有响应,会继续检测⼀直到10分30秒后还没有检测到,就确定当前的DataNode不可⽤MapReduce相关⼿写MR的⼤概流程和规范MR程序的结构可以分为3部分,⼀是程序的执⾏⼊⼝,通常简称为驱动类驱动类主要编写MR作业的提交流程以及⾃定义的⼀些配置项⼆是Map阶段核⼼类,需要⾃定义并继承Mappper类,重写Mapper中的map⽅法在map⽅法中编写⾃⼰的业务逻辑代码将数据处理后利⽤context上下⽂对象的写出落盘三是Reduce阶段的核⼼类,同时也需要继承Hadoop提供的Reducer类并重写reduce⽅法在reduce⽅法中编写⾃⼰的业务逻辑代码,处理完数据后通过context上下⽂对象将数据写出,这也就是最终的结果⽂件如何实现Hadoop的序列化,Hadoop的序列化和Java的序列化有什么区别⾸先,序列化是把内存中的Java对象转化成⼆进制字节码,反序列化是将⼆进制字节码转化成Java对象通常我们在对Java对象进⾏磁盘持久化写⼊或将Java对象作为数据进⾏⽹络传输的时候需要进⾏序列化相反如果要将数据从磁盘读出并转化成Java对象需要进⾏反序列化实现Hadoop中的序列化需要让JavaBean对象实现Writable接⼝,并重写wirte()⽅法和readFields()⽅法其中wirte()是序列化⽅法,readFields()⽅法是反序列化⽅法Hadoop序列化和Java序列化的区别在于,java序列化更重量级Java序列化后的结果不仅仅⽣成⼆进制字节码⽂件,同时还会针对当前Java对象⽣成对应的检验信息以及集成体系结构这样的话,⽆形中我们需要维护更多的数据但是Hadoop序列化不会产⽣除了Java对象内部属性外的任何信息,整体内容更加简洁紧凑,读写速度相应也会提升很多,这也符合⼤数据的处理背景MR程序的执⾏流程MR程序执⾏先从InputFormat类说起,由InputFormat负责数据读⼊,并在内部实现切⽚每个切⽚的数据对应⽣成⼀个MapTask任务MapTask中按照⽂件的⾏逐⾏数据进⾏处理,每⼀⾏数据会调⽤⼀次我们⾃定义的Mapper类的map⽅法map⽅法内部实现具体的业务逻辑,处理完数据会通过context对象将数据写出到磁盘,接下来ReduceTask会开始执⾏⾸先ReduceTask会将MapTask处理完的数据结果拷贝过来每组相同key的values会调⽤⼀次我们⾃定义Reducer类的reduce⽅法当数据处理完成后,会通过context对象将数据结果写出到磁盘上InputFormat负责数据写份时候要进⾏切⽚,为什么切⽚⼤⼩默认是128M⾸先切⽚⼤⼩是可以通过修改配置参数来改变的,但默认情况下是和切块blocksize⼤⼩⼀致这样做的⽬的就是为了在读取数据的时候正好能⼀次性读取⼀个块的数据,避免了在集群环境下发⽣跨机器读取的情况如果跨机器读取会造成额外的⽹络IO,不利于MR程序执⾏效率的提升描述⼀下切⽚的逻辑MR中的切⽚是发⽣在数据读⼊的阶段中,所以我们要关注InputFormat的实现通过追溯源码,在InputFormat这个抽象类中有⼀个getSplits(),这个⽅法就是实现切⽚的具体逻辑⾸先关注两个变量,分别是minSize和maxSize,默认情况minSize = 1,maxSize = Long.MAX_VALUE源码中声明了⼀个集合List splits = new ArrayList(),⽤于装载将来的切⽚对象并返回接下来根据提交的job信息获取到当前要进⾏切⽚的⽂件详情⾸先判断当前⽂件是否可以进⾏切分,这⼀步主要考虑到⼀些不⽀持切分的压缩⽂件不能进⾏切⽚操作,否则就破坏了数据的完整性如果当前⽂件可以切⽚的话,就要计算切⽚的⼤⼩切⽚的⼤⼩⼀共需要三个因⼦,分别是minSize、maxSize、blocksize最后通过Math.max(minSize,Math.min(maxSize,blocksize)),计算逻辑获取到切⽚的⼤⼩默认情况下切⽚⼤⼩和数据块⼤⼩⼀致如果想要改变切⽚的⼤⼩可以通过修改mapreduce.input.fileinputformat.split.minsize(把切⽚调⼤)、mapreduce.input.fileinputformat.split.maxsize(把切⽚调⼩)两个参数实现获取到切⽚⼤⼩后继续往下执⾏,在最终完成切⽚之前还有⼀个关键判断就是判断剩余⽂件是否要进⾏切⽚CombineTextInputFormat机制是怎么实现的CombineTextInoutFormat是InputFormat的⼀个实现类,主要⽤于解决⼩⽂件场景⼤概思路是先在Job提交中指定使⽤InputFormat的实现类为CombineTextInputFormat接下来的切⽚过程中会先把当前⽂件的⼤⼩和设置的切⽚的最⼤值进⾏⽐较如果⼩于最⼤值,就单独划分成⼀块如果⼤于切⽚的最⼤值并⼩于两倍的切⽚的最⼤值,就把当前⽂件⼀分为⼆划分成两块以此类推逐个对⽂件进⾏处理,这个过程称之为虚拟过程最后⽣成真正的切⽚的时候,根据虚拟好的⽂件进⾏合并只要合并后⽂件⼤⼩不超过最开始设置好的切⽚的最⼤值那就继续追加合并直到达到设置好的切⽚的最⼤值此时就会产⽣⼀个切⽚,对应⽣成⼀个MapTaskShuffle机制流程当MapTask执⾏完map()⽅法后通过context对象写数据的时候开始执⾏shuffle过程⾸先数据先从map端写⼊到环形缓冲区内写出的数据会根据分区规则进⼊到指定的分区,并且同时在内存中进⾏区内排序环形缓冲区默认⼤⼩为100M当数据写⼊的容量达到缓冲区⼤⼩的80%,数据开始向磁盘溢写如果数据很多的情况下,可能发⽣N次溢写这样在磁盘上就会产⽣多个溢写⽂件,并保证每个溢写⽂件中区内是有序的到此shuffle过程在Map端就完成了接着Map端输出的数据会作为Reduce端的数数据再次进⾏汇总操作此时ReduceTask任务会把每⼀个MapTask中计算完的相同的分区的数据拷贝到ReduceTask的内存中,如果内存放不下,开始写⼊磁盘再接着就是对数据进⾏归并排序,排序完还要根据相同的key进⾏分组将来⼀组相同的key对应的values调⽤⼀次reduce⽅法,如果有多个分区就会产⽣多个ReduceTask来处理,处理的逻辑都⼀样MR程序中由谁来决定分区的数量,哪个阶段环节会开始往分区中写数据在Job提交的时候可以设置ReduceTask的数量ReduceTask的数量决定分区的编号默认有多少ReduceTask任务就会产⽣多少个分区在Map阶段的map⽅法中通过context.wirte()往外写数据的时候其实就是在往指定的分区中写数据了阐述MR中实现分区的思路默认情况下不指定分区数量就会有⼀个分区如果要指定分区,可以通过在Job提交的时候指定ReduceTask的数量来指定分区的数量从Map端处理完数据后,数据就会被溢写到指定的分区中决定kv数据究竟写到哪个分区中是通过Hadoop提供的Partitioner对象控制的Partitioner对象默认实现HashPartitioner类它的规则就是⽤当前写出数据的key和ReduceTask的数量做取余操作,得到的结果就是当前数据要写⼊的分区的编号除此之外,我们也可以⾃定义分区器对象需要继承Hadoop提供的Partitioner对象,然后重写getPartitioner()⽅法在该⽅法中根据⾃⼰的业务实现分区编号的返回最后再将我们⾃定义的分区器对象设置到Job提交的代码中覆盖默认的分区规则Hadoop中实现排序的两种⽅案分别是什么第⼀种⽅式是直接让参与⽐较的对象实现WritableComparable接⼝并指定泛型接下来实现CompareTo()⽅法,在该⽅法中实现⽐较规则即可第⼆种⽅式是⾃定义⽐较器对象,需要继承WritableComparator类,重写它的compare⽅法在构造器中调⽤⽗类对当前的要参与⽐较的对象进⾏实例化当前要参与⽐较的对象必须要实现WritableComparable接⼝最后在Job提交代码中将⾃定义的⽐较器对象设置到Job中就可以了编写MR的时候什么情况下使⽤Combiner,实现的具体流程是什么Combiner在MR中是⼀个可选流程,通常也是⼀种优化⼿段当我们执⾏完Map阶段的计算后数据量⽐较⼤,kv组合过多这样在Reduce阶段执⾏的时候会造成拷贝⼤量的数据以及汇总更多的数据为了减轻Reduce的压⼒,此时可以选择在Map阶段进⾏Combiner操作,将⼀些汇总⼯作提前进⾏OutputFormat⾃定义实现流程OutputFormat是MR中最后⼀个流程,它主要负责数据最终结果的写出如果对最终输出结果⽂件的名称或者输出路径有个性化需求,就可以通过⾃定义OutputFormat来实现⾸先⾃定义⼀个OutputFormat类,然后继承OutputFormat重写OutputFormat的getRecordWriter()⽅法,在该⽅法中返回RecordWriter对象由于RecordWriter是Hadoop内部对象,如果我们想实现⾃⼰的逻辑,还得⾃定义⼀个RecordWriter类,然后继承RecordWriter类重写该类中的write()⽅法和close()⽅法MR实现MapJoin的思路,MapJoin的局限性是什么Mapjoin解决了数据倾斜给Reduce阶段带来的问题⾸先MapJoin的前提就是我们需要join的两个⽂件⼀个是⼤⽂件,⼀个是⼩⽂件在此前提下,我们可以将⼩的⽂件提前缓存到内存中,然后让Map端直接处理⼤⽂件每处理⼀⾏数据就根据当前的关联字段到内存中获取想要的数据,然后将结果写出。
Hadoop基础知识培训
存储+计算(HDFS2+Yarn)
集中存储和计算的主要瓶颈
Oracle IBM
EMC存储
scale-up(纵向扩展)
➢计算能力和机器数量成正比 ➢IO能力和机器数量成非正比
多,Intel,Cloudera,hortonworks,MapR • 硬件基于X86服务器,价格低,厂商多 • 可以自行维护,降低维护成本 • 在互联网有大规模成功案例(BAT)
总 结
• Hadoop平台在构建数据云(DAAS)平台有天 然的架构和成本的优势
成本投资估算:从存储要求计算所需硬件及系统软件资源(5000万用户 为例)
往HDFS中写入文件
• 首要的目标当然是数 据快速的并行处理。 为了实现这个目标, 我们需要竟可能多的 机器同时工作。
• Cient会和名称节点达 成协议(通常是TCP 协议)然后得到将要 拷贝数据的3个数据节 点列表。然后Client将 会把每块数据直接写 入数据节点中(通常 是TCP 协议)。名称 节点只负责提供数据 的位置和数据在族群 中的去处(文件系统 元数据)。
• 第二个和第三个数据 节点运输在同一个机 架中,这样他们之间 的传输就获得了高带 宽和低延时。只到这 个数据块被成功的写 入3个节点中,下一 个就才会开始。
• 如果名称节点死亡, 二级名称节点保留的 文件可用于恢复名称 节点。
• 每个数据节点既扮演者数据存储的角色又 冲当与他们主节点通信的守护进程。守护 进程隶属于Job Tracker,数据节点归属于 名称节点。
hadoop知识点
hadoop知识点一、Hadoop简介Hadoop是一个开源的分布式计算系统,由Apache基金会开发和维护。
它能够处理大规模数据集并存储在集群中的多个节点上,提供高可靠性、高可扩展性和高效性能。
Hadoop主要包括两个核心组件:Hadoop Distributed File System(HDFS)和MapReduce。
二、HDFS1. HDFS架构HDFS是一个分布式文件系统,它将大文件分割成多个块并存储在不同的节点上。
它采用主从架构,其中NameNode是主节点,负责管理整个文件系统的命名空间和访问控制;DataNode是从节点,负责存储实际数据块。
2. HDFS特点HDFS具有以下特点:(1)适合存储大型文件;(2)数据冗余:每个数据块都会复制到多个节点上,提高了数据可靠性;(3)流式读写:支持一次写入、多次读取;(4)不适合频繁修改文件。
三、MapReduce1. MapReduce架构MapReduce是一种编程模型,用于处理大规模数据集。
它将任务分为两个阶段:Map阶段和Reduce阶段。
Map阶段将输入数据划分为若干组,并对每组进行处理得到中间结果;Reduce阶段将中间结果进行合并、排序和归约,得到最终结果。
2. MapReduce特点MapReduce具有以下特点:(1)适合处理大规模数据集;(2)简化了分布式计算的编程模型;(3)可扩展性好,可以在数百甚至数千台服务器上运行。
四、Hadoop生态系统1. Hadoop Common:包含Hadoop的基本库和工具。
2. HBase:一个分布式的、面向列的NoSQL数据库。
3. Hive:一个数据仓库工具,可以将结构化数据映射成HiveQL查询语言。
4. Pig:一个高级数据流语言和执行框架,用于大规模数据集的并行计算。
5. ZooKeeper:一个分布式协调服务,用于管理和维护集群中各个节点之间的状态信息。
五、Hadoop应用场景1. 日志分析:通过Hadoop收集、存储和分析日志数据,帮助企业实现对用户行为的监控和分析。
hadoop学习笔记(十):hdfs在命令行的基本操作命令(包括文件的上传和下载和hdfs。。。
hadoop学习笔记(⼗):hdfs在命令⾏的基本操作命令(包括⽂件的上传和下载和
hdfs。
hdfs命令⾏
(1)查看帮助
hdfs dfs -help
(2)查看当前⽬录信息
hdfs dfs -ls /
(3)上传⽂件
hdfs dfs -put /本地路径 /hdfs路径
(4)剪切⽂件
hdfs dfs -moveFromLocal a.txt /aa.txt
(5)下载⽂件到本地
hdfs dfs -get /hdfs路径 /本地路径
(6)合并下载
hdfs dfs -getmerge /hdfs路径⽂件夹 /合并后的⽂件
(7)创建⽂件夹
hdfs dfs -mkdir /hello
(8)创建多级⽂件夹
hdfs dfs -mkdir -p /hello/world
(9)移动hdfs⽂件
hdfs dfs -mv /hdfs路径 /hdfs路径
(10)复制hdfs⽂件
hdfs dfs -cp /hdfs路径 /hdfs路径
(11)删除hdfs⽂件
hdfs dfs -rm /aa.txt
(12)删除hdfs⽂件夹
hdfs dfs -rm -r /hello
(13)查看hdfs中的⽂件
hdfs dfs -cat /⽂件
hdfs dfs -tail -f /⽂件
(14)查看⽂件夹中有多少个⽂件
hdfs dfs -count /⽂件夹
(15)查看hdfs的总空间
hdfs dfs -df /
hdfs dfs -df -h /
(16)修改副本数
hdfs dfs -setrep 1 /a.txt。
Hadoop_Ubuntu学习笔记
Hadoop+Ubuntu 学习笔记——IT 进行时(zhengxianquan AT )环备一、境准Hadoop-0.20.1Ubuntu 9.10二、安装JDK6开终执打端,行以下命令:sudo apt-get install sun-java6-jdk按照提示做就是了。
配置JAVA 环变境量:sudo gedit /etc/environment在其中添加如下两行:CLASSPATH=.:/usr/lib/jvm/java-6-sun/libJAVA_HOME=/usr/lib/jvm/java-6-sun执行命令:sudo gedit /etc/jvm,在最前面加入:/usr/lib/jvm/java-6-sun三、配置SSH见方便起,新增hadoop 组户的及其同名用:zhengxq@zhengxq-desktop:~$ sudo addgroup hadoopzhengxq@zhengxq-desktop:~$ sudo adduser --ingroup hadoop hadoop 别则请接下来需要做些特的工作(否参考FAQ“xx is not in the sudoers file”): hadoop@zhengxq-desktop:~$ suroot@zhengxq-desktop:/home/hadoop# ls -l /etc/sudoers-r--r----- 1 root root 557 2009-11-10 22:01 /etc/sudoersroot@zhengxq-desktop:/home/hadoop# chmod u+w /etc/sudoersroot@zhengxq-desktop:/home/hadoop# ls -l /etc/sudoers-rw-r----- 1 root root 557 2009-11-10 22:01 /etc/sudoersroot@zhengxq-desktop:/home/hadoop# gedit /etc/sudoers在root ALL=(ALL) ALL后面添加:hadoop ALL=(ALL) ALLroot@zhengxq-desktop:/home/hadoop# chmod u-w /etc/sudoersroot@zhengxq-desktop:/home/hadoop# exit安装openssh-server:$ sudo apt-get install openssh-server建立SSH KEY:zhengxq@zhengxq-desktop:~$ su hadoophadoop@zhengxq-desktop:/home/zhengxq$ ssh-keygen -t rsa -P ""Generating public/private rsa key pair.Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):Created directory '/home/hadoop/.ssh'.Your identification has been saved in /home/hadoop/.ssh/id_rsa.Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.The key fingerprint is:f4:5f:6a:f4:e5:bf:1d:c8:08:28:1c:88:b4:31:4a:a0 hadoop@zhengxq-desktop ……启用SSH KEY:hadoop@zhengxq-desktop:~$ cat $HOME/.ssh/id_rsa.pub >>$HOME/.ssh/authorized_keyshadoop@zhengxq-desktop:~$ sudo /etc/init.d/ssh reload* Reloading OpenBSD Secure Shell server's configuration sshd [ OK ]验证SSH的配置:hadoop@zhengxq-desktop:~$ ssh localhostThe authenticity of host 'localhost (::1)' can't be established.RSA key fingerprint is 52:9b:e2:62:93:01:88:e6:46:a8:16:68:52:91:8a:ea.Are you sure you want to continue connecting (yes/no)? yesWarning: Permanently added 'localhost' (RSA) to the list of known hosts.Linux zhengxq-desktop 2.6.31-14-generic #48-Ubuntu SMP Fri Oct 1614:04:26 UTC 2009 i686……四、安装配置hadoop下及安装4.1载下一个0.20.1版本;到/dyn/closer.cgi/hadoop/core/载下,并改所有者hadoop:tar压缩或者直接解到/usr/local/hadoop/变为zhengxq@zhengxq-desktop:/usr/local$ sudo chown -R hadoop:hadoop hadoop4.2配置4.2.1配置$HADOOP_HOME/conf/hadoop-env.shzhengxq@zhengxq-desktop:/usr/local/hadoop$ cd had*zhengxq@zhengxq-desktop:/usr/local/hadoop/hadoop-0.20.1$ gedit conf/hadoop-env.shzhengxq@zhengxq-desktop:/usr/local/hadoop/hadoop-0.20.1$ sudo geditconf/hadoop-env.sh修改点:为export JAVA_HOME=/usr/lib/jvm/java-6-sun4.2.2配置$HADOOP_HOME/conf/core-site.xmlzhengxq@zhengxq-desktop:/usr/local/hadoop/hadoop-0.20.1$ sudo geditconf/core-site.xml空的,内容加上:<property><name></name><value>hdfs://localhost:9000</value></property><property><name>dfs.replication</name><value>1</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop/tmp</value></property></property>注:如没有配置hadoop.tmp.dir时统认临时录为参数,此系默的目:/tmp/hadoop-才行,否会出。
hadoop实训个人总结与收获
Hadoop实训个人总结与收获引言Hadoop作为大数据处理的核心技术之一,在当前的数据驱动时代扮演了至关重要的角色。
通过参加Hadoop实训,我全面、深入地学习了Hadoop的核心概念、架构和使用方法,并通过实际操作加深了对Hadoop的理解和实践能力。
本文将对我在Hadoop实训中的重要观点、关键发现和进一步思考进行总结。
重要观点Hadoop的核心概念在实训中,我深入学习了Hadoop的核心概念,包括Hadoop分布式文件系统(HDFS)、MapReduce编程模型和YARN资源管理器。
这些核心概念是构建大规模数据处理系统的基础。
HDFS作为一个高容错性的分布式文件系统,可以将大规模数据存储在多个节点上,实现数据的可靠性和高可用性。
MapReduce编程模型则为并行处理大规模数据提供了一个简单而有效的框架,通过将任务分解为多个Map和Reduce阶段,实现了高效的数据处理和计算。
YARN资源管理器则实现了对集群资源的高效调度和分配,提供了更好的资源利用率。
Hadoop生态系统Hadoop不仅仅是一个单独的分布式计算框架,还构建了一个完整的生态系统,涵盖了各种数据处理和存储技术。
在实训中,我接触了一些Hadoop生态系统的重要组件,如HBase、Hive、Sqoop和Flume等。
这些组件分别承担了数据存储、数据仓库、数据导入和数据流等不同的角色。
通过熟悉这些组件的使用方法,我进一步掌握了构建大数据处理系统的能力。
大数据处理的挑战与解决方案实训中,我也认识到了大数据处理所面临的挑战,如数据规模庞大、数据类型多样、数据质量参差不齐等。
面对这些挑战,我们需要采取相应的解决方案。
在Hadoop 中,可以通过横向扩展集群来应对数据规模扩大的需求,通过数据预处理和清洗来提高数据质量,通过多样化的基于Hadoop的工具来处理不同类型的数据。
关键发现分布式计算的优势通过实训,我深刻认识到分布式计算的优势。
分布式计算充分利用了集群中多台计算机的计算能力,将任务分解成多个子任务并行处理,从而显著提高了计算速度和效率。
Hadoop知识点总结
Hadoop知识点总结Hadoop知识点总结1.什么是hadoop?hadoop是⼀个开源软件框架,⽤于存储⼤量数据,并发处理/查询在具有多个商⽤硬件(即低成本硬件)节点的集群上的那些数据。
总之Hadoop包括⼀下内容:HDFS(Hadoop分布式⽂件系统):允许以⼀种分布式和冗余的⽅式存储⼤量数据。
例如:1GB(即1024MB)⽂本⽂件可以拆分为16*128MB⽂件,并存储在Hadoop集群中的8个不同节点上。
每个分裂可以复制三次,以实现容错,以便如果⼀个节点出现错误的话,也有备份。
HDFS适⽤于顺序的"⼀次写⼊,多次读取"的类型访问。
MapReduce:⼀个计算框架。
它以分布式和并⾏的⽅式处理⼤量的数据,当你对所有年龄>18的⽤户在上述1GB⽂件上执⾏查询时,将会有"8个映射"函数并⾏运⾏,以在其128MB拆分⽂件中提取年龄>18的⽤户,然后"reduce"函数将将会运⾏以将所有单独的输出组合成单个最终结果。
YARN(⼜⼀资源定位器):⽤于作业调度和集群资源管理的框架。
Hadoop⽣态系统,拥有15多种框架和⼯具,如Sqoop,Flume,Kafka,Pig,Hive,Spark,Impala等以便将数据摄⼊HDFS,在HDFS中转移数据(即变换、丰富、聚合等),并查询来⾃HDFS的数据⽤于商业智能和分析。
某些⼯具(如Pig和Hive)是MapReduce上的抽象层,⽽Spark和Impala等其他⼯具则是来⾃MapReduce的改进架构/设计,⽤于显著提⾼延迟以⽀持近实时和实时处理2.为什么组织从传统的数据仓库⼯具转移到基于Hadoop⽣态系统的智能数据中⼼?1.现有数据基础设施:主要使⽤存储在⾼端和昂贵硬件中的"structured data,结构化数据"主要处理为ETL批处理作业,⽤于将数据提取到RDBMS和数据仓库系统中进⾏数据挖掘,分析和报告,以进⾏关键业务决策主要处理以千兆字节到兆字节为单位的数据量2.基于Hadoop的更加智能的数据基础设施,其中:结构化(例如RDBMS),⾮结构化(例如images,PDF,docs)和半结构化(例如logs,XMLs)的数据可以以可扩展和容错的⽅式存储在⽐较便宜的商⽤机器中数据可以存储诸如Spark和Impala之类的⼯具以低延迟的能⼒查询可以存储以兆兆字节到千兆字节为单位的较⼤数据量3.基于Hadoop的数据中⼼的好处是什么?随着数据量和复杂性的增加,提⾼量整体服务⽔平协议。
hadoop复习资料大全
hadoop复习资料大全Hadoop复习资料大全在当今信息爆炸的时代,数据已经成为了一种宝贵的资源。
然而,要处理和分析海量的数据并从中获取有用的信息是一项复杂而困难的任务。
这就是为什么Hadoop这样的大数据处理框架变得如此重要和流行的原因之一。
作为一个开源的分布式系统,Hadoop提供了一种可靠和高效地处理大规模数据的方法。
对于那些希望深入了解和掌握Hadoop的人来说,复习资料是必不可少的。
一、Hadoop的基础知识要理解Hadoop的工作原理和基本概念,首先需要掌握一些基础知识。
这包括Hadoop的核心组件,如Hadoop分布式文件系统(HDFS)和MapReduce。
此外,还需要了解Hadoop的架构,包括主节点(NameNode)和从节点(DataNode)之间的交互方式。
二、Hadoop生态系统除了核心组件外,Hadoop还有一个庞大而丰富的生态系统。
这个生态系统包括各种工具和技术,用于处理和分析大规模数据。
其中一些工具包括Hive、Pig、HBase和Sqoop等。
每个工具都有其独特的功能和用途,掌握它们可以帮助我们更好地利用Hadoop的能力。
三、Hadoop的安装和配置要使用Hadoop,首先需要将其安装和配置在自己的机器上。
这可能是一个有些复杂的过程,因为Hadoop有很多配置选项和参数需要设置。
因此,掌握正确的安装和配置过程是非常重要的。
有很多在线教程和指南可以帮助你完成这个过程,你可以找到一些详细的步骤和说明。
四、Hadoop的性能调优一旦你安装和配置好了Hadoop,接下来就是优化它的性能。
Hadoop的性能调优是一个复杂的过程,需要细致的分析和调整。
这包括调整Hadoop的配置参数,优化数据存储和访问方式,以及使用适当的算法和技术来处理数据。
了解这些技巧和技术可以帮助你更好地利用Hadoop的潜力。
五、Hadoop的安全性和故障恢复在处理大规模数据时,安全性和故障恢复是非常重要的考虑因素。
hadoop学习笔记(一、hadoop集群环境搭建)
Hadoop集群环境搭建1、准备资料虚拟机、Redhat6.5、hadoop-1.0.3、jdk1.62、基础环境设置2.1配置机器时间同步#配置时间自动同步crontab -e#手动同步时间/usr/sbin/ntpdate 1、安装JDK安装cd /home/wzq/dev./jdk-*****.bin设置环境变量Vi /etc/profile/java.sh2.2配置机器网络环境#配置主机名(hostname)vi /etc/sysconfig/network#修第一台hostname 为masterhostname master#检测hostname#使用setup 命令配置系统环境setup#检查ip配置cat /etc/sysconfig/network-scripts/ifcfg-eth0#重新启动网络服务/sbin/service network restart#检查网络ip配置/sbin/ifconfig2.3关闭防火墙2.4配置集群hosts列表vi /etc/hosts#添加一下内容到vi 中2.5创建用户账号和Hadoop部署目录和数据目录#创建hadoop 用户/usr/sbin/groupadd hadoop#分配hadoop 到hadoop 组中/usr/sbin/useradd hadoop -g hadoop#修改hadoop用户密码Passwd hadoop#创建hadoop 代码目录结构mkdir -p /opt/modules/hadoop/#修改目录结构权限拥有者为为hadoopchown -R hadoop:hadoop /opt/modules/hadoop/2.6生成登陆密钥#切换到Hadoop 用户下su hadoopcd /home/hadoop/#在master、node1、node2三台机器上都执行下面命令,生成公钥和私钥ssh-keygen -q -t rsa -N "" -f /home/hadoop/.ssh/id_rsacd /home/hadoop/.ssh#把node1、node2上的公钥拷贝到master上scp /home/hadoop/.ssh/ id_rsa.pub hadoop@master:/home/hadoop/.ssh/node1_pubkey scp /home/hadoop/.ssh/ id_rsa.pub hadoop@master:/home/hadoop/.ssh/node2_pubkey#在master上生成三台机器的共钥cp id_rsa.pub authorized_keyscat node1_pubkey >> authorized_keyscat node2_pubkey >> authorized_keysrm node1_pubkey node2_pubkey#吧master上的共钥拷贝到其他两个节点上scp authorized_keys node1: /home/hadoop/.ssh/scp authorized_keys node1: /home/hadoop/.ssh/#验证ssh masterssh node1ssh node2没有要求输入密码登陆,表示免密码登陆成功3、伪分布式环境搭建3.1下载并安装JAVA JDK系统软件#下载jdkwget http://60.28.110.228/source/package/jdk-6u21-linux-i586-rpm.bin#安装jdkchmod +x jdk-6u21-linux-i586-rpm.bin./jdk-6u21-linux-i586-rpm.bin#配置环境变量vi /etc/profile.d/java.sh#手动立即生效source /etc/profile3.2 Hadoop 文件下载和安装#切到hadoop 安装路径下cd /opt/modules/hadoop/#从 下载Hadoop 安装文件wget /apache-mirror/hadoop/common/hadoop-1.0.3/hadoop-1.0.3.tar.gz#如果已经下载,请复制文件到安装hadoop 文件夹cp hadoop-1.0.3.tar.gz /opt/modules/hadoop/#解压hadoop-1.0.3.tar.gzcd /opt/modules/hadoop/tar -xvf hadoop-1.0.3.tar.gz#配置环境变量vi /etc/profile.d/java.sh#手动立即生效source /etc/profile3.3配置hadoop-env.sh 环境变量#配置jdk。
hadoop实训报告文字
Hadoop实训报告引言Hadoop是一个开源的分布式计算平台,用于处理大规模数据集的存储和分析。
在本次实训中,我们学习了Hadoop的基本概念和使用方法,并通过实践掌握了Hadoop的各种组件及其功能。
实训内容1. Hadoop概述首先,我们学习了Hadoop的基本概念和架构。
Hadoop由HDFS(Hadoop分布式文件系统)和MapReduce两个核心组件组成。
HDFS用于存储大规模数据集,并提供高可靠性和容错性。
MapReduce是一种分布式计算模型,用于将数据分成多个小块,在集群中并行处理。
2. Hadoop安装与配置接下来,我们进行了Hadoop的安装与配置。
首先,我们下载了Hadoop的安装包,并解压到本地目录。
然后,我们配置了Hadoop的环境变量,使其能够在命令行中被识别。
3. Hadoop集群搭建为了更好地理解Hadoop的分布式特性,我们搭建了一个Hadoop集群。
我们使用了三台虚拟机,分别作为一个主节点和两个从节点。
在主节点上配置了HDFS和MapReduce的相关文件,并在从节点上配置了对应的通信信息。
4. Hadoop基本操作在学习了Hadoop的基本概念和架构后,我们开始进行一些基本的Hadoop操作。
首先,我们学习了Hadoop的文件操作命令,如上传、下载、删除等。
然后,我们学习了Hadoop的作业操作命令,如提交作业、查看作业状态等。
5. Hadoop应用开发在掌握了Hadoop的基本操作后,我们开始进行Hadoop应用的开发。
我们使用Java语言编写了一个简单的MapReduce程序,用于统计一个文本文件中的单词出现次数。
通过编写这个程序,我们更深入地理解了MapReduce的工作原理和应用。
6. Hadoop性能优化最后,我们学习了Hadoop的性能优化方法。
我们通过调整各种参数和配置文件,来提高Hadoop的运行效率和并行性能。
我们还学习了如何监控Hadoop集群的运行状态,并根据监控结果进行调整和优化。
hadoop实训个人总结与收获
hadoop实训个人总结与收获一、前言Hadoop是一个开源的分布式计算系统,可以处理大规模数据。
在Hadoop实训中,我学习了如何使用Hadoop进行数据处理和分析,同时也深入了解了Hadoop的原理和架构。
二、Hadoop实训内容1. Hadoop基础知识:学习了Hadoop的基本概念、架构和组成部分,包括HDFS、MapReduce等。
2. HDFS操作:学习了如何在HDFS上进行文件读写、权限控制等操作。
3. MapReduce编程:学习了MapReduce编程的基本原理和实现方法,并通过编写WordCount程序等练习加深理解。
4. Hive使用:学习了如何使用Hive进行SQL查询,以及如何将数据导入到Hive中进行查询和分析。
5. Pig使用:学习了Pig语言的基本语法和使用方法,并通过编写Pig程序完成数据清洗和分析。
三、收获与体会1. 理论与实践相结合更加有效。
通过实际操作,在理解原理的基础上更加深入地掌握了Hadoop的应用场景和技术特点。
2. 团队协作能力得到提升。
在实训过程中,我们需要相互配合完成任务,这锻炼了我们的团队协作能力和沟通能力。
3. 解决问题的能力得到提高。
在实训中,我们遇到了各种各样的问题,需要通过自己的思考和搜索解决。
这锻炼了我们的问题解决能力和自主学习能力。
4. 对大数据技术有了更深入的认识。
通过学习Hadoop,我更加深入地认识到大数据技术对于企业发展的重要性,也对大数据技术的未来发展有了更多思考。
四、总结Hadoop实训是一次非常有价值的学习经历。
通过实际操作,我掌握了Hadoop相关技术,并提高了团队协作能力、问题解决能力和自主学习能力。
同时,我也对大数据技术有了更深入的认识和理解。
希望今后可以继续深入学习和应用大数据技术,为企业发展做出贡献。
《Hadoop权威指南:大数据的存储与分析》笔记
《Hadoop权威指南:大数据的存储与分析》阅读随笔目录一、Hadoop简介 (3)1.1 Hadoop的发展历程 (4)1.2 Hadoop的核心组件 (6)1.2.1 Hadoop分布式文件系统 (6)1.2.2 MapReduce编程模型 (8)1.2.3 YARN资源管理器 (9)二、Hadoop的安装与配置 (11)2.1 安装前的准备 (13)2.2 安装步骤 (14)2.3 验证安装 (16)三、Hadoop的数据存储 (17)3.1 HDFS的工作原理 (17)3.2 HDFS的高级特性 (19)3.2.1 数据副本机制 (21)3.2.2 数据块大小调整 (22)3.3 HDFS的使用和管理 (23)3.3.1 文件的上传和下载 (24)3.3.2 集群管理和维护 (25)四、Hadoop的数据分析 (27)4.1 MapReduce的工作流程 (29)4.2 MapReduce的应用案例 (30)4.3 Hive和Pig的使用 (31)4.3.1 Hive的使用 (32)4.3.2 Pig的使用 (33)五、Hadoop的性能优化 (34)5.1 网络优化 (36)5.2 内存优化 (37)5.3 磁盘优化 (39)六、Hadoop的安全管理 (39)6.1 用户和权限管理 (41)6.2 数据加密 (42)6.3 安全审计 (44)七、Hadoop的实践与应用 (45)7.1 电商网站数据存储与分析 (47)7.2 金融数据分析 (49)7.3 医疗健康数据存储与分析 (51)八、总结与展望 (52)8.1 Hadoop的优势与挑战 (54)8.2 未来发展趋势 (56)一、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,它的核心思想是将大规模数据分散到多个计算节点上进行处理,从而实现对大数据的有效管理和分析。
Hadoop的出现极大地推动了大数据处理技术的发展,使得企业能够更有效地利用存储在海量数据中的有价值的信息。
Hadoop基础入门指南
Hadoop基础入门指南Hadoop是一个基于Java的开源分布式计算平台,能够处理大规模数据存储和处理任务。
它是处理大数据的一种解决方案,被广泛应用于各种领域,例如金融、医疗、社交媒体等。
本文将介绍Hadoop的基础知识,帮助初学者快速入门。
一、Hadoop的三大模块Hadoop有三个核心模块,分别是HDFS(Hadoop分布式文件系统)、MapReduce、和YARN。
1. HDFS(Hadoop分布式文件系统)HDFS是Hadoop的存储模块,它可以存储大量的数据,并在多台机器之间进行分布式存储和数据备份。
HDFS将文件切割成固定大小的块,并复制多份副本,存储在不同的服务器上。
如果某个服务器宕机,数据仍然可以从其他服务器中获取,保障数据的安全。
2. MapReduceMapReduce是Hadoop的计算模块,它可以对存储在HDFS上的大量数据进行分布式处理。
MapReduce模型将大数据集划分成小数据块,并行处理这些小数据块,最后将结果归并。
MapReduce模型包含两个阶段:Map阶段和Reduce阶段。
Map阶段:将输入的大数据集划分成小数据块,并将每个数据块分配给不同的Map任务处理。
每个Map任务对数据块进行处理,并生成键值对,输出给Reduce任务。
Reduce阶段:对每个键值对进行归并排序,并将具有相同键的一组值传递给Reduce任务,进行汇总和计算。
3. YARNYARN是Hadoop的资源管理器,它负责分配和管理Hadoop集群中的计算资源。
YARN包含两个关键组件:ResourceManager和NodeManager。
ResourceManager:管理整个集群的资源,包括内存、CPU等。
NodeManager:运行在每个计算节点上,负责监控本地计算资源使用情况,并与ResourceManager通信以请求或释放资源。
二、Hadoop的安装与配置在开始使用Hadoop之前,需要进行安装和配置。
hadoop学习总结
Client1 Client2
Name Node
Secondary Name Node
5
4
13 Data Node
5
8
1
4
Data Node
5
4
......
2
3
Data Node
HDFS 的 NameNode 和 DataNode 是和文件存储关系比较大的两个角色。NameNode
是 HDFS 系 统 中 的 管 理 者 , DataNode 是 HDFS 中 保 存 数 据 的 节 点 。 下 面 我 结 合
Share Knowledge Share Happiness 打开视界,打开世界
我总觉得诗人和旅行者天生有共同的特质:他们一直在追寻着灵魂的升华。在这一过程中, 他们眼里可能看到了人间百态或者是人间天堂,基于此,才有诗之深情之切。这种感知生命 深度的起源,在于视界!
生命的维度远不止时间一维而已,一个多月之前距离现在已经有 30 多天的距离。如果我 们只看年龄,那么我真的比过去大了一个多月。但是,如果把知识这个维度引入生命,那么 一切都会产生奇妙的‘化学反应’。
3
工欲善其事必先利其器
Share Knowledge Share Happiness
Map/Reduce 程序来讲解文件存储在 HDFS 中,如何被运用的过程。
1.1 文件在 HDFS 的存储
我们将文件名为 test.txt(大小为 192MB)文件数据存放在 HDFS 的 http://localhost: 9010/user/sn/testdata 文件夹下 这时,HDFS 根据 test.txt 的大小和 HDFS 默认的数据快的大小(64MB)进行分片,HDFS 将 test.txt 文件分成 3 片。我们假设这三片的名称为 1,2,3. 我们假设我们的集群有四台机器,一台机器为 master,其他三台为 slave. Master 上的 NameNode 上保存着 Test.txt 的元数据信息,3 台 slave 上保存着 Test.txt 的具体数据信息。 具体如下图所示:
hadoop安装与配置总结与心得
hadoop安装与配置总结与心得安装与配置Hadoop是一个相对复杂的任务,但如果按照正确的步骤进行,可以顺利完成。
以下是我在安装与配置Hadoop 过程中的总结与心得:1. 首先,确保你已经满足Hadoop的系统要求,并且已经安装了Java环境和SSH。
2. 下载Hadoop的压缩包,并解压到你想要安装的目录下。
例如,解压到/opt/hadoop目录下。
3. 配置Hadoop的环境变量。
打开你的.bashrc文件(或者.bash_profile文件),并添加以下内容:```shellexport HADOOP_HOME=/opt/hadoopexport PATH=$PATH:$HADOOP_HOME/bin```保存文件后,执行source命令使其生效。
4. 配置Hadoop的核心文件。
打开Hadoop的配置文件core-site.xml,并添加以下内容:```xml<configuration><property><name>fs.defaultFS</name><value>hdfs://localhost:9000</value></property></configuration>```5. 配置Hadoop的HDFS文件系统。
打开Hadoop的配置文件hdfs-site.xml,并添加以下内容:```xml<configuration><property><name>dfs.replication</name><value>1</value></property></configuration>```这里的dfs.replication属性指定了数据块的副本数量,可以根据实际情况进行调整。
6. 配置Hadoop的MapReduce框架。
hadoop伪分布式心得
hadoop伪分布式心得Hadoop是一个开源的分布式计算框架,它能够处理大规模数据集的存储和处理。
伪分布式是指在单个计算机上模拟分布式环境,用于学习和测试目的。
以下是关于Hadoop伪分布式的一些心得体会:1. 安装和配置,在伪分布式环境中,需要正确安装和配置Hadoop。
这包括设置Hadoop的配置文件,如core-site.xml、hdfs-site.xml和mapred-site.xml等。
在配置过程中,需要注意各个组件之间的依赖关系和正确的端口设置。
2. 单节点模拟多节点,在伪分布式环境中,我们可以通过配置Hadoop的各个组件来模拟多个节点的功能。
例如,可以将一个节点配置为NameNode和ResourceManager,另一个节点配置为DataNode和NodeManager。
这样,就能够模拟分布式环境中的主从节点关系。
3. 数据存储和处理,在伪分布式环境中,可以使用Hadoop的分布式文件系统HDFS来存储数据,并使用MapReduce等计算模型进行数据处理。
可以通过Hadoop提供的命令行工具,如hdfs dfs和yarn等,来管理和操作数据。
4. 资源管理和作业调度,在伪分布式环境中,可以通过配置YARN的资源管理器和作业调度器来模拟资源的分配和作业的调度。
可以设置不同的资源配额和优先级,以模拟真实的分布式环境中的资源管理情况。
5. 调试和故障排除,在伪分布式环境中,由于只有一个节点,调试和故障排除相对容易。
可以通过查看日志文件、使用Hadoop提供的命令行工具和Web界面等方式来定位和解决问题。
总结起来,Hadoop伪分布式环境提供了一个学习和测试Hadoop 的平台,可以模拟分布式环境中的各种功能和问题。
通过在伪分布式环境中的实践,可以更好地理解和掌握Hadoop的原理和操作,为在真实的分布式环境中应用Hadoop打下坚实的基础。
hadoop知识点总结
数据输入格式(inputformat)用于描述maoreduce作业中的数据输入规范,mapreduce依靠数据输入规范完成数据文件的输入分块 (inputsplit),从输入分块中将数据记录逐一读出,并转换为map过程中的输入键值对
自定义输入格式: 流程: 1.自定义XXinputformat继承FileTextFormat,在createRecordReader方法里面返回自定义的XXRecordreader 2.自定义XXRecordreader继承RecordReader,在setkeyvalue和nextkeyvalue实现自身需求 3.在main函数的运行中指定输入格式:job.setInputFormatClass(XXinputformat.class)
hadoop知 识 点 总 结
(一)、hadoop的内置数据类型都实现了writablecompareable,以便序列化和网络传及文件存储 a自定义数据类型作为输入 1.实现writable接口 2.如果给数据需要比较大小时,实现writablecompareable接口
b数据输入格式和recordreader
Hadoop权威指南----读书笔记
1-2章Hadoop和MapReduce概述1.基本组成Hadoop-0.20.0以前Core---- 一系列分布式文件系统和通用I/O的组件和接口(序列化、Java RPC和持久化数据结构)Avro---- 一种提供高效、跨语言PRC的数据序列化系统,持久化数据存储。
MapReduce----分布式数据处理模式和执行环境,运行于大型商用机集群;HDFS----分布式文件系统,运行于大型商用机集群;ZooKeeper----一个分布式的、高可用性的协调服务;Pig---- 一种数据流语言和运行环境,用以检索非常大的数据集,运行在MapReduce和HDFS集群上;Chukwa------ 分布式数据收集和分析系统;Hive--- 分布式数据仓库,Hive管理HDFS中存储的数据,并提供基于SQL的查询语言用以查询数据;Hbase---- -一个分布式的、列存储数据库。
HBase使用HDFS作为底层存储,同时支持MapReduce的批量式计算和点查询。
2. MapReduce执行作业流程①指定作业的各种参数;②指定输入、输出路径;③指定Map和Reduce类;④指定Map和Reduce的输出类型;⑤运行作业。
第3章Hadoop分布式文件系统3-1 文件读取3-2 文件写入第4章Hadoop的I/O1.读取存储在HDFS上的文件时,为了加快速度可以禁用校验和;2.文件的压缩支持多种格式,比如zip、gzip、bzip2等;3.序列化-----将结构化的对象转为字节流以便于通过网络进行传输或者写入持久存储的过程。
反序列化------将字节流转为一系列结构化对象的过程。
Hadoop自己的序列化格式为Writables,紧凑、快速,但不易扩展java以外的语言,MapReduce程序使用Writables来序列化key/value对。
此外,short和char类型均可存储在IntWritable中;4.文件的容器SequenceFile类和MapFile类,共同点是两者都是按key排序的,区别是后者有索引。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
Hadoop的框架最核心的设计就是:HDFS(分布式文件系统(Hadoop Distributed File System))和MapReduce。
HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。
概念"Map(映射)"和"Reduce(化简)"使用下面的命令来设置当前主机的主机名称:要永久重设主机名则需手工修改/etc/hostname文件,然后重启。
由于Linux原始的防火墙工具iptables过于繁琐,所以ubuntu默认提供了一个基于iptable之上的防火墙工具ufw。
开启/关闭防火墙(默认设置是disable)【sudo ufw enable|disable】查看防火墙状态【sudo ufw status】通过【ssh】连通两台【ubuntu】(前提两台ubuntu都能连网,这里是NAT网络连接的,都下载好并打开了sshd服务),然后在ubuntuA 中【vim /etc/hosts】把ubuntuA和ubuntuB的ip写在里面,然后在ubuntuB中【vim /etc/hosts】把ubuntuA和ubuntuB的ip写在里面。
然后【vim /etc/ssh/sshd_config】把它弄成下面这样的【如28 33 40 45 52】,然后再重启。
另一台【ubuntu重复相同的工作】,然后再重启,如果【ssh localhost】能连上就成功了。
然后两台机用,ubuntuB【ssh 10.0.2.4 】, ubuntuA 【ssh 10.0.2.5 】就可以建立相互通信scp 可以在 2个 linux 主机间复制文件;使用scp命令需要服务端linux提供sshd服务(linux默认是没有安装sshd服务的)如果是文件夹,使用scp -r即可把ubuntuA中【/home】下的【jdk1.8.0_91】目录复制到ubuntuB中【/home】下:再查看一个文件 /etc/profile [环境配置文件]再配置刚才自己安装的 jdk 然后注销,再登录后就可以用了。
把ubuntuA中【/home】下的【hello.java】文件复制到ubuntuB中【/home】下:ubuntu下ssh免密码登录配置:两台机器 : root ubuntuA(10.0.2.4) 和 root ubuntuB(10.0.2.5)1、确认安装了【sshd】[netstat –anp | more 看有无22端口]2、生成公钥/私钥对:这里为了简单,我们使用root来生成rsa公钥/私钥对:3、仅在ubuntuA上执行输入【root@ubuntuB】的密码后,在【root@ubuntuB】中(当然前是先在root@ubuntuB中的root目录下生成公钥/私钥对)就可以发现多了一个【authorized_keys】的文件。
注意【authorized_keys】和【id_rsa.pub】的权限都是644. 【id_rsa】的权限是600.至此就可以实现在【root@ubuntuA】中无密码的连到【root@ubuntuB】4、仅在ubuntuB上执行与3相同的操作,就可以实现在【root@ubuntuB】中无密码的连到【root@ubuntuA】下载和安装及配置hadoop的过程配置完【/etc/hosts】文件后要能【ping ubuntuA】和【ping ubuntuB】都能ping通。
再关闭ubuntu的防火墙(默认是关闭的,可以用 ufw status 查看,若没有关闭用【sudo ufw disable】关闭)然后把在ubuntuA中配好的hadoop分发到ubuntuB中去,再到ubuntuB中的home目录下发现已经拷贝过来了。
再在【ubuntuB】hosts文件中做相应的修改配置完【/etc/hosts】文件后要能【ping ubuntuA】和【ping ubuntuB】都能ping通。
看到【successfully formatted】说明格式化成功了。
启动所有服务是问要密码是因为我们没有配置ubuntuA到ubuntuA的免密码把这段密文拷贝到【authorized_keys】里去就可以了然后发现【ssh ubuntuA】就不会问你要密码了(对ubuntuB也是上面一样的工作使ubuntuB到ubuntuB免密码)这是刚才不成功的启动,启动了部分进程要把它【kill】掉,要使ubuntuA到ubuntuB中的进程只有jps才可以再次重新启动再来看看可不可启动hadoop整个集群。
出现这样的信息之后,才可以说启动hadoop整个集群成功。
代码测试hadoop是不是真正完全安装配置完成。
至此这一切都说明我们安装和配置的hadoop没有任何问题,可以正常工作。
echo 文件内容>文件名,echo 文件内容>>文件名用echo命令输出加引号的字符串时,将字符串原样输出;用echo命令输出不加引号的字符串时,将字符串中的各个单词作为字符串输出,各字符串之间用一个空格分割。
Ps:【echo】后面不加【“”】也可以。
推荐使用这种形式【echo “字符串”】注意区别:【bin/Hadoop fs –put ../input/ ./in】与【bin/Hadoop fs –put ../input ./in】第一条命令的结果是可以发现【ll】与【ls -al】的功能是一样的。
这里可以发现【Namenode】在ubuntuA中,【Datanode】在ubuntuB中hadoop fs –rm [-skipTrash] <src>:删除匹配pattern的指定文件,等价于unix下的rm <src>。
hadoop fs –rmr [skipTrash] <src>:递归删掉所有的文件和目录,等价于unix下的rm –rf <src>。
注意配置【core-site.xml】完后要重启集群才会生效(先【bin/stop-all.sh】,在【bin/start-all.sh】)(下面测试trash机制)上面这段代码的作用就是把一个文件的内容在屏幕上打印出来;把在运行上面的这段代码之前要做一下的工作:(1:设置Hadoop的类目录;2:设置搜索目录(即配置一些环境变量);).bash_profile是在你每次登录的时候执行的;.bashrc是在你新开了一个命令行窗口时执行的(功能一样的)。
然后用【env】命令检查是否加进去了(发现已加入)把上面的代码从权威指南中拷贝出来运行看会出那些错(通过安装vbox增强功能,在Windows下编辑好,再拉进ubuntu中)这是由于没有导入一些相关的类(导入类在javac);【javac编译后的文件一般用java运行,这里用Hadoop的方法】tar –zxvf 后注意要重新开一个窗口才会生效的(Ctrl+Alt+T)/home/apache-ant-1.9.7/bin/ant经过【ant】编译后多了【bulid】和【HDFSJavaAPI.jar】两个文件注意编译之前记得打开服务,执行上面的命令具体的安装参见【第一课h讲,pdf P88】搭建Hadoop2.x的集成开发环境:【VirtualBox-5.0.20-106931-Win】,【ubuntu-16.04-desktop-amd64.iso】,【jdk-8u91-linux-x64】(先用vbox安装64位ubuntu01,02,03 vdi备份路径如下,每台ubuntu都设置root登录,安装vim,安装vbox增强功能,然后安装jdk及在[.bashrc]中配置相应的环境变量)设置ubuntu01,02,03之间无密码连接(可以先设置有密码连接) ubuntu01 root下的配置好的【.bashrc】环境变量及安装好的jdk目录复制到untu02,03相应的位置,这样就可以减少编辑配置(免密码先配置好);至此【ubuntu01,02,03之间已近能无密码连接,且每台ubuntu上都装好了jdk及配置好了环境变量】下面开始下载安装hadoop2.x解压完后进入创建三个文件夹,【tmp,name,data】然后在改一些相应的配置文件:默认没有【mapred-site.xml】文件,copy mapred-site.xml.template 一份为 mapred-site.xml即可然后同步该文件夹,到ubuntu02,03相应的地方再格式化hdfs:看到【successfully formatted】说明格式化成功了。
(没有出现像视频中出现64位ubuntu的那种异常)注意敲完上面两条命令之后要看到下面才算启动成功,否则要把不成功的启动里的像【NameNode】等用【kill -9 4617】全部删掉只剩【Jps】,再去查看是不是配置弄错了,然后在重新启动上面两条命令。
【ps:从hadoop外面导入的文件生成jar包(如hadoop-mapreduce-examples-2.7.2),默认是放在/home/hadoop-2.7.2/share/Hadoop/mapreduce】下的,与hadoop-1.x不同。
至此【hadoop-2.7.2】已完全安装及配置完毕。
注意把【apache-maven-3.3.3】移到一个公众目录下(如 /usr/local),这样大家都可以用,不能像hadoop这样放在某个用户下注意要使设置的环境变量生效可以重开页面在用 env看加进去了没执行完上面4条编译命令之后会发现在【/usr/local/bin】实例用map-reduce分析气象数据集:(用的hadoop为1.x)准备工作:1:气象数据这里只用一小部分的1950的数据【040550-99999-1950.gz】(数据网上下载的)在zcat 040550-99999-1950.gz > 040550-99999-1950.txt2:在复制出PDF中三个相应的.java文件(已传360云盘)注意上面的三个【MaxTemperature】的java文件要同时编译不然会出错的编译会出错;要想下面这样操作才不会出错ubuntu安装eclipse:在网上下载好【hadoop-eclipse-plugin-1.2.1】执行,没有eclipse-plugin 自己创建;再把复制到下面目录里去再重启【eclipse】执行下面的操作(具体参见hadoop_v4_04h)打开【Other】再点【Map/Reduce】再点【ok】然后就可以看到【Map/Reduce Location】了。