2020高考理科数学第三次模拟考试试题

合集下载

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本大题共12小题,每小题5分,共60分.1.若复数满足(其中是虚数单位),则的实部为()(A)6 (B)1 (C)(D)2.已知集合A={x|(a2-a)x+1=0,x∈R},B={x|ax2-x+1=0,x∈R},若A∪B=,则a的值为 ( ) A.0 B.1 C.0或1 D.0或43.直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形的面积为()A. B. C. D.4.已知一个空间几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.4 cm3 B.5 cm3 C.6 cm3 D.7 cm35. 要得到函数y=cosx的图像,只需将函数y=sin(2x+)的图像上所有的点的 ( )A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度6.如图,若程序框图输出的S是126,则判断框①中应为()A.B.C.D.7.已知,则的最大值为() A. 6 B. 4 C. 3 D.8.已知正方体的棱长为2, 长为2的线段的一个端点在棱上运动, 另一端点在正方形内运动, 则的中点的轨迹的面积为()A. B. C. D.9.在中,角A,B,C的对边分别是,且则等于( ),设函数=,,则大致是()题图11.已知是定义在R上的不恒为零的函数,且对任意的都满足,若,则( )A. B. C. D.12.是定义在区间【-c,c】上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()A.若,则函数的图象关于原点对称B.若,,则方程必有三个实根C.若,,则方程必有两个实根D.若,,则方程必有大于2的实根第II卷二、填空题:本大题共4小题,每小题5分,共20分。

最新2020年高三第三次模拟考试卷理科数学(一)(含答案)

最新2020年高三第三次模拟考试卷理科数学(一)(含答案)

( 2)在线段 PB 上是否存在点 G ,使得直线 AG 与平面 PBC 所成的角的正弦值为 确定点 G 的位置;若不存在,请说明理由.
15 ?若存在, 5
( 1)求 P 的轨迹 E ; ( 2)过轨迹 E 上任意一点 P 作圆 O : x2 y 2 3 的切线 l1 ,l2 ,设直线 OP ,l1 ,l2 的斜率分别是 k 0 ,
8.答案: C
解: 1
1 log 2019 2019
22
0 b log 2020 2019
a log 2019 2020
1 log 2019 2020
2
1 log 2019 2019 2 1 , 2
1
1 2 log 2020 2019
1
log 2
2020
2020
1 , c 2019 2020 2
1.
20.( 12 分)已知函数 f (x)
ex

( 1)求函数 f (x) 的单调区间; ( 2)若对任意的 x ( 2,0] ,不等式 2m( x 1) f ( x) 恒成立,求实数 m 的取值范围.
产业扶贫、 保障扶贫、 安居扶贫三场攻坚战. 为响应国家政策, 老张自力更生开了一间小型杂货店. 据
贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好
请考生在 22 、 23 两题中任选一题作答,如果多做,则按所做的第一题记分.
22.( 10 分)【选修 4-4 :坐标系与参数方程】
在直角坐标系 xOy 中,直线 l 的参数方程为
x 3t ( t 为参数),在以坐标原点为极点,
C. 400
D. 420
得到的回归方程为 y? b?x a?,则(

2020年全国3卷高考理科数学仿真试卷(三)答案

2020年全国3卷高考理科数学仿真试卷(三)答案

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

河南省2020 年高三第三次模拟考试理科数学试卷-含答案

河南省2020 年高三第三次模拟考试理科数学试卷-含答案


SABO
A.1
B. 2
C. 3
D. 4
10.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多
边形为面的多面体,体现了数学的对称美.二十四等边体就是
一种半正多面体,是由正方体切截而成的,它由八个正三角形
和六个正方形为面的半正多面体.如图所示,图中网格是边长
3
上单调递增, f (log2 9) f (2 2 ) f ( 5) ,即 b a c ,故选:C.
7.【答案】B
b 在 a 上投影为 2 ,即
b
cos

a ,
b

2
b

0
cos a,b 0 又
cos

a,
b
1,
0
b 2
超标的概率均为 p(0 p 1) ,且各个时间段每套系统监测出排放超标情况相互独立. (1)当 p 1 时,求某个时间段需要检查污染源处理系统的概率;
2
(2)若每套环境监测系统运行成本为 300 元/小时(不启动则不产生运行费用),除运行费 用外,所有的环境监测系统每年的维修和保养费用需要 100 万元.现以此方案实施,问该企 业的环境监测费用是否会超过预算(全年按 9000 小时计算)?并说明理由.
BAC BAA1 60 ,A1AC 的角平分线 AD
交 CC1 于 D .
(1)求证:平面 BAD 平面 AA1C1C ;
(2)求二面角 A B1C1 A1 的余弦值.
19.已知椭圆
C:
x2 a2

y2 b2
1(a
b

0) 的离心率为

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案
----------------- ③
2 Sn = 3 × 3 × 21 + 5 × 3 × 22 + 7 × 3 × 23 + × × × + (2n - 1) × 3 × 2n-1 + (2n + 1) × 3 × 2n
-------------------- ④ 由③-④得:
- Sn = 9+6[ 21 + 22 + 23 + × × × + 2n-1 ]-(2n + 1) × 3 × 2n ∴ Sn = (6n - 3) × 2n + 3 . -----------------------------------12 分
平均数为:
X 160 0.06 170 0.12 180 0.34 190 0.30 200 0.1 210 0.08
= 185( 个 ).
----------------------------------------6 分
( Ⅱ ) 跳 绳 个 数 在 [155 , 165) 内 的 人 数 为 100 0.06 6 个 ,
12
高三理科数学参考答案 第 5 页 (共 8 页)
20.(本小题满分 12 分)
已 知 函 数 f (x) x ln(x a) 1(a < 0) .
(Ⅰ)若 函 数 f (x) 在 定 义 域 上 为 增 函 数 , 求 a 的 取 值 范 围 ;
(Ⅱ )证 明 : f(x) < ex + sin x .
绝密★启用前
2020 年普通高等学校招生第一次统一模拟考试 理科数学参考答案及评分标准 2020.03
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

湖南省永州市2020年高考第三次模拟考试试卷数学(理科)试题及答案解析完整版

湖南省永州市2020年高考第三次模拟考试试卷数学(理科)试题及答案解析完整版

,得
h m
c
a
a
(2)
(1),(2)两式相乘得
1 2
c c
a a
,即
c
3a
,离心率为
3.选
B.
11.解析: x 0, ,
x
3
3
,
3
,令
z
x
3
,则
z
3
,
3
由题意, sin
z
1 2

3
,
3
上只能有两解
z= 5 6

z
13 6
13 6
17 36
,(*)因为在
z
3
CE = AE = 3 ,OE 1
则D(0,
2,1) , E(0, 0,1) , A(
2, 0, 0) , C(0,
2, 0) ,
AD ( 2, 2,1) , AE ( 2, 0,1) , CA ( 2, 2, 0),
则 CA ( 2, 2, 0) 为平面 ABD的一个法向量,
设平面
ADE
即四边形 GFDE 为平行四边形,故 GE / /DF
2分
CE = AE , GE AC ,又 GE / / DF ,则 DF AC
4分
(2) 平面 BCED 平面 ABC ,平面 BCED 平面 ABC = BC , DB BC , DB 平面 ABC ,又 AC 平面 ABC , DB AC ,又 DF AC BD DF D , BD , DF 平面 ABD ∴AC⊥平面 ABD
13.解析:展开式通项 C5r (
x )5r
(
2)r x
C5r
(2)r
x

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2020年陕西省高考数学三模试卷(理科)(有答案解析)

2020年陕西省高考数学三模试卷(理科)(有答案解析)

2020年陕西省高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知复数z满足(1-i)z=1+i,则复数z=()A. 1+iB. 1-iC. iD. -i2.设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于()A. {-1,0,1,2,3}B. {0,1,2,3}C. {1,2,3}D. {2}3.若向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,则x=()A. 1B. 2C. 3D. 44.已知tan(α+)=-2,则tan()=()A. B. C. -3 D. 35.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n行的所有数字之和为2n-1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…则此数列的前15项和为()A. 110B. 114C. 124D. 1256.若正数m,n满足2m+n=1,则+的最小值为()A. 3+2B. 3+C. 2+2D. 37.执行如图所示的程序框图,则输出S的值为ln5,则在判断框内应填()A. i≤5?B. i≤4?C. i<6?D. i>5?8.已知在三棱锥P-ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为()A. B. C. D.9.一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A. B. C. D.10.函数y=-2sin x的图象大致是()A. B.C. D.11.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A. 2B. 2C.D.12.已知函数f(x)=ln x-ax2,若f(x)恰有两个不同的零点,则a的取值范围为()A. (,+∞)B. [.+∞)C. (0,)D. (0,]二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件,则z=x-2y的最小值是______.14.设S n为等比数列{a n}的前n项和,8a2-a5=0,则=______.15.(1+)(1-x)6展开式中x3的系数为______.16.曲线y=2ln x在点(e2,4)处的切线与坐标轴所围三角形的面积为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b-c)=3ab.(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.18.已知某种细菌的适宜生长温度为10℃-25℃,为了研究该种细菌的繁殖数量y(单位:个)随温度x(单位:℃)变化的规律,收集数据如下:温度x/℃12141618202224繁殖数量y/个2025332751112194对数据进行初步处理后,得到了一些统计量的值,如表所示:1866 3.8112 4.3142820.5其中k i=ln y i,=(Ⅰ)请绘出y关于x的散点图,并根据散点图判断y=bx+a与y=ce dx哪一个更适合作为该种细菌的繁殖数量y关于温度x的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(1)的判断结果及表格数据,建立y关于x的回归方程(结果精确到0.1);(Ⅲ)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据(u i,v i)(i=1,2,3,…,n),其回归宜线v=βu+a的斜率和截距的最小二成估计分别为β=,,参考数据:e5.5≈245.19.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E-BF-C的余弦值20.已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且,求k的取值范围.21.已知函数f(x)=e x-x2-1.(1)若函数g(x)=,x∈(0,+∞),求函数g(x)的极值;(2)若k∈Z,且f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,求k的最大值.22.在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,a∈R).以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)已知曲线C1与曲线C2交于A,B两点,且||=2||,求实数a的值.23.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)解关于x的不等式g(x)≥f(x)-|x-1|;(Ⅱ)如果对∀x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求实数c的取值范围.-------- 答案与解析 --------1.答案:C解析:解:由题设(1-i)z=1+i得z==故选:C.由复数的除法进行变行即可求出复数的除法与乘法是复数的基本运算2.答案:B解析:解:∵A={0,1,2},B={2,3},∴A∪B={0,1,2,3}.故选:B.可以求出集合A,然后进行并集的运算即可.考查描述法、列举法的定义,以及并集的运算.3.答案:A解析:解:向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,可得(2,6)•(2,x)=10,可得4+6x=10,解得x=1.故选:A.利用向量的坐标运算以及数量积的运算法则化简求解即可.本题考查向量的坐标运算,向量的数量积的应用,考查计算能力.4.答案:A解析:【分析】本题主要考查两角差的和的正切公式的应用,属于基础题.由题意利用两角差的和的正切公式,求得tan()=tan[(α+)+]的值.【解答】解:∵tan(α+)=-2,∴tan()=tan[(α+)+]===-,故选:A.5.答案:B解析:解:数列的前15项为2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,可得此数列的前15项和为2+3+3+4+6+4+5+10+10+5+6+15+20+15+6=4-2+8-2+16-2+32-2+64-2=(4+8+16+32+64)-10=114.故选:B.由题意写出数列的前15项计算可得所求和.本题考查数列在实际问题中的运用,考查数列的求和,以及运算能力,属于基础题.6.答案:A解析:解:∵2m+n=1,则+=(+)(2m+n)=3+,当且仅当时取等号,即最小值3+2,故选:A.由题意可得,+=(+)(2m+n),展开后利用基本不等式可求.本题主要考查了利用基本不等式求解最值,解题的关键是对应用条件的配凑.7.答案:B解析:解:∵ln(1+)=ln=ln(i+1)-ln i,∴i=1时,S=ln2-ln1=ln2,i=2时,S=ln2+ln3-ln2=ln3,i=3时,S=ln3+ln4-ln3=ln4,i=4,S=ln4+ln5-ln4=ln5,此时i=5不满足条件,输出S=ln5,即条件为i≤4?,故选:B.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用条件进行模拟运算是解决本题的关键.8.答案:B解析:【分析】求出P到平面ABC的距离,AC为截面圆的直径,由勾股定理可得R2=()2+d2=()2+(-d)2,求出R,即可求出球的表面积.本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.属于中档题.【解答】解:由题意,AC为截面圆的直径,AC==,设球心到平面ABC的距离为d,球的半径为R,∵PA=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(-d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B.9.答案:D解析:解:①中线段为虚线,②正确,③中线段为实线,④正确,故选:D.根据空间几何体的三视图的画法结合正方体判断分析.本题考查了空间几何体的三视图的画法,属于中档题,空间想象能力.10.答案:C解析:解:当x=0时,y=0-2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选:C.根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.11.答案:A解析:【分析】根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,联立求得a和c的关系式,然后求得离心率e.本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.【解答】解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,∵抛物线的焦点和双曲线的焦点相同,∴p=2c,c=2,∵设P(m,n),由抛物线定义知:|PF|=m+=m+2=5,∴m=3.∴P点的坐标为(3,),∴,解得:,c=2,则双曲线的离心率为2,故选:A.12.答案:C解析:解:f(x)=ln x-ax2,可得f′(x)=-2ax,①a≤0时,f′(x)>0函数是增函数,不可能有两个零点,②0<a时,令f′(x)=-2ax=0,解得x=,当0时,f′(x)>0函数是增函数,当x>时,f′(x)<0函数是减函数,f(x)的最大值为:f()=ln-a()2=-,f(x)恰有两个不同的零点,当x→0+时,f(x)→-∞,当x→+∞时,f(x)→-∞,所以->0,解得a∈(0,).故选:C.利用函数的导数,求解函数的最大值大于0,结合函数的单调性,判断零点的个数即可.本题考查函数的零点问题,渗透了转化思想,分类讨论思想的应用,是一道难题.13.答案:-2解析:解:由x,y满足约束条件作出可行域如图,化目标函数z=x-2y为y=x-.联立,解得:C(0,1).由图可知,当直线y=x-过C(0,1)时直线在y轴上的截距最大,z有最小值,等于0-2×1=-2.故答案为:-2.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.答案:解析:解:∵8a2-a5=0,∴q3==8,∴q=2,则==,故答案为:.由已知结合等比数列的性质可求q3=,进而可求q,然后结合等比数列的求和公式,代入即可求解.本题主要考查了等比数列的性质及求和公式的简单应用,属于基础试题.15.答案:-26解析:解:由(1-x)6的展开式的通项得:T r+1=(-x)r,则(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,故答案为:-26.由二项式定理及二项式展开式的通项公式得:(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,得解.本题考查了二项式定理、二项式展开式的通项公式及分类讨论思想,属中档题.16.答案:e2解析:解:根据题意,曲线y=2ln x,其导数y′=,则x=e2处的切线的斜率k=y′=,则切线的方程为y-4=(x-e2),即y=x+2,x=0,y=2,切线与y轴的交点坐标为(0,2),y=0,x=-e2,切线与y轴的交点坐标为(-e2,0),则切线与坐标轴所围三角形的面积S=×2×|-e2|=e2;故答案为:e2根据题意,求出y=2ln x的导数,由导数的几何意义可得切线的斜率k=y′=,进而可得切线的方程,求出切线与x轴、y轴交点的坐标,由三角形面积公式计算可得答案.本题考查利用导数计算曲线的切线方程,关键是掌握导数的几何意义.17.答案:解:(Ⅰ)△ABC中,(a+b+c)(a+b-c)=3ab,∴a2+b2-c2=ab,由余弦定理得,cos C==;又∵C∈(0,π),∴C=;(Ⅱ)由c=2,C=,根据正弦定理得,====,∴a+b=(sin A+sin B)=[sin A+sin(-A)]=2sin A+2cos A=4sin(A+);又∵△ABC为锐角三角形,∴,解得<A<;∴<A+<,∴2<4sin(A+)≤4,综上,a+b的取值范围是(2,4].解析:(Ⅰ)化简(a+b+c)(a+b-c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等变换化简,根据题意求出A的取值范围,从而求出a+b的取值范围.本题考查了三角恒等变换与正弦、余弦定理的应用问题,是中档题.18.答案:解:(Ⅰ)绘出y关于x的散点图,如图所示;由散点图可知,y=ce dx更适合作为该种细菌的繁殖数量y关于x的回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,即k=dx+ln c,由d==≈0.183≈0.2,ln c=3.8-0.183×18≈0.5.∴ln y=0.2x+0.5,则y关于x的回归方程为y=e0.5•e0.2x;(Ⅲ)当x=25时,计算可得y=e0.5•e5=e5.5≈245;即温度为25℃时,该种细菌的繁殖数量的预报值为245.解析:(Ⅰ)绘出y关于x的散点图,由散点图判断y=ce dx更适合作为回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,求出回归系数,写出回归方程;(Ⅲ)利用回归方程计算x=25时y的值即可.本题考查了线性回归方程的应用问题,也考查了数学转化思想与计算能力,是中档题.19.答案:证明:(Ⅰ)证法一:过E作EO⊥BC,垂足为O,连OF.由△ABC≌△DBC可证出△EOC≌△FOC.所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,∴BC⊥平面EFO,又EF⊂平面EFO,∴EF⊥BC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y 轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系.则B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0).E(0,,),F(,,0),∴=(,0,-),=(0,2,0),∴•=0.∴EF⊥BC.(2)解:解法一:过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥平面BDC,又OG⊥BF,由三垂线定理知EG⊥BF.∴∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BC•cos30°=,由△BGO∽△BFC知,OG=•FC=,∴tan∠EGO==2,∴cos∠EGO=,即二面角E-BF-C的余弦值为.解法二:在图中,平面BFC的一个法向量为=(0,0,1).设平面BEF的法向量为=(x,y,z),又=(,,0),=(0,,).,取x=1,得=(1,-,1).设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cos θ=|cos<>=||==,故.二面角E-BF-C的余弦值为.解析:(Ⅰ)法一:过E作EO⊥BC,垂足为O,连OF.证出△EOC≌△FOC.从而FO⊥BC.又EO⊥BC,进而BC⊥平面EFO,由此能证明EF⊥BC.法二:以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立空间直角坐标系.利用向量法能证明EF⊥BC.(2)法一:过O作OG⊥BF,垂足为G,连EG.由三垂线定理知EG⊥BF.∠EGO为二面角E-BF-C 的平面角.由此能求出二面角E-BF-C的余弦值.法二:求出平面BFC的一个法向量和平面BEF的法向量,利用向量法能求出二面角E-BF-C的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:解:(Ⅰ)由题意得,得.(2分)结合a2=b2+c2,解得a2=12,b2=3.(3分)所以,椭圆的方程为.(4分)(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,(6分)依题意,OM⊥ON,易知,四边形OMF2N为平行四边形,所以AF2⊥BF2,(7分)因为,,所以.(8分)即,(9分)将其整理为k2=-=-1-(10分)因为,所以,12≤a2<18.(11分)所以,即.(13分)解析:(Ⅰ)由题意得,得,由此能求出椭圆的方程.(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,依题意OM⊥ON知,四边形OMF2N为矩形,所以AF2⊥BF2,因为,,所以.由此能求出k的取值范围.本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.21.答案:解:(1)函数f(x)=e x-x2-1,则f′(x)=e x-2x,又g(x)=,x∈(0,+∞),则g′(x)==;设y=e x-x-1,则y′=e x-1>0在x∈(0,+∞)上恒成立,即y=e x-x-1在x>0时单调递增;所以y=e x-x-1>0;令g′(x)>0,可得x>1,令g′(x)<0,可得0<x<1;所以g(x)的单调增区间为(1,+∞),减区间为(0,1);所以函数g(x)的极小值为g(1)=e-2,无最大值;(2)不等式f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,即为e x+x2+x--1≥0对任意x恒成立,即k≤e x+x2+x-对任意x∈R恒成立;设h(x)=e x+x2+x-,则h′(x)=e x+x+,易知h′(x)在R上单调递增,h′(-1)=-<0,h′(0)=>0,则存在唯一的x0∈(-1,0),使h′(x0)=0,即+x0+=0;当x<x0时,h′(x)<0,h(x)单调递减,当x>x0时,h′(x)>0,h(x)单调递增,所以h(x)min=h(x0)=++x0-;又h′(x0)=0,则h(x0)=(--x0)++x0-=(-x0-3),又x0∈(-1,0),则h(x0)∈(-1,-),即k≤e x+x2+x-对任意x∈R恒成立,所以k≤h(x0),由k max=-1,得出k的最大值为-1.解析:(1)根据题意,对函数g(x)=求导数,利用导数判断g(x)的单调性,并求g(x)的极值;(2)根据题意化为k≤e x+x2+x-对任意x∈R恒成立,构造函数,利用导数求该函数的最小值即可.本题考查了利用导数研究函数的单调性与极值问题,也考查了不等式恒成立问题,也考查了构造法与转化思想,是难题.22.答案:解:(I)∵曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),∴曲线C1的普通方程为x-y-a+1=0,∵曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.∴曲线C2的极坐标方程为ρ2cos2θ+4ρcosθ-ρ2=0,∴x2+4x-x2-y2=0,即曲线C2的直角坐标方程为y2=4x.(说明:化简不对,但准确写出互化公式得1分)(2)设A、B两点所对应参数分别为t1,t2,联解,得,要有两个不同的交点,则,即a>0,由韦达定理有,∵||=2||,∴,或=-2,当时.根据直线参数方程的几何意义可知t1=2t2,,解得a=,a=,符合题意,∴实数a的值为.当时.根据直线参数方程的几何意义可知t1=-2t2,,解得a=,a=>0,符合题意,∴实数a的值为.综上,a的值为或.解析:(I)由曲线C1参数方程能求出曲线C1的普通方程;曲线C2的极坐标方程化为ρ2cos2θ+4ρcosθ-ρ2=0,由此能求出曲线C2的直角坐标方程.(2)设A、B两点所对应参数分别为t1,t2,联解,得,由此能求出实数a的值.本题考查极坐标方程化普通方程,韦达定理,直线参数方程的几何意义,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.答案:(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)∵函数f(x)和g(x)的图象关于原点对称,∴g(x)=-f(-x)=-(x2-2x),∴g(x)=-x2+2x,x∈R.∴原不等式可化为2x2-|x-1|≤0.上面不等价于下列二个不等式组:…①,或…②,由①得,而②无解.∴原不等式的解集为.…(5分)(Ⅱ)不等式g(x)+c≤f(x)-|x-1|可化为:c≤2x2-|x-1|.作出函数F(x)=2x2-|x-1|的图象(这里略).由此可得函数F(x)的最小值为,∴实数c的取值范围是.…(10分)解析:先将M,N化简,再计算交集或并集,得出正确选项本题考查二次函数图象与性质.。

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为()A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为()A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为() A .5 B .34C .41D .526.()()()()sin ,00,xf x x x=∈-ππ大致的图象是()A .B .C .D .此卷只装订不密封级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为() A .14B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为() A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是() A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为() A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b bb b ⎡⎤+++⎢⎥⎣⎦=()A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围() A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科)一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.22.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.33.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.34.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.102410246.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.18.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.11.已知,则a4=()A.21B.42C.﹣35D.﹣21012.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.二、填空题(共4小题).13.已知实数x,y满足约束条件,则的取值范围为.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.2【分析】推导出3是方程x2﹣x+m=0的一个根,从而32﹣3+m=0,由此能求出结果.解:∵集合A={x|﹣2<x<2},B={x|x2﹣x+m<8},A∪B={x|﹣2<x<3},所以32﹣3+m=0,解得m=﹣6,故选:A.2.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.3【分析】利用复数代数形式的乘除运算化简等式左边,再由复数相等的条件列式求得a 值.解:∵(2+i)(a+i)=2a﹣1+(a+2)i=5+4i,∴,解得a=3,故选:D.3.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.3【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,然后求解a,即可求解双曲线的离心率.解:椭圆的焦点坐标为(2,4),(﹣2,0),所以4=a+a﹣2,解得a=5,离心率,故选:A.4.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)【分析】先判断括号内的大小关系,再借助于单调性即可得到结论.解:由题意知,函数f(x)在定义域R上单调递增,由可得,故选:C.5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.10241024【分析】根据乘法原理解题.解:每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,根据乘法原理可得表示出不同图案的个数为2×2×…×2=21024,故选:B.6.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.【分析】利用等差数列的求和公式、不等式的解法即可得出.解:∵S5=5a2+d=5a1+10d=2(2﹣d)+10d=10+5d,∴15<5d+10<25,解得1<d<3.故选:C.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.1【分析】建立平面直角坐标系,进而利用向量的坐标表示,设,由可得,再由,利用坐标表示建立方程组求解即可.解:由题意建立如图所示直角坐标系,,设,所以,解得.所以解得故选:B.8.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:由程序框图可知,n=1,;n=7;;n=5,,n=7,S=0;n=9,;所以周期为8,又2020=8×252+4,故选:D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°【分析】建立平面直角坐标系,根据题意写出各点坐标,得出的坐标,代入数量积公式运算,可得两个向量互相垂直,进一步确定异面直线EF与BG所成角的大小.解:如图,以D为坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系D﹣xyz,设AD=1,则E(1,0,1),F(0,2,2),G(0,0,1),B(1,4,0),,所以,故选:C.10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:将的图象向左平移个单位长度,得到的图象,然后横坐标扩大为原来的2倍(纵坐标不变),得到的图象,故选:D.11.已知,则a4=()A.21B.42C.﹣35D.﹣210【分析】先把原式化简,再根据二项式的特点,求解即可.解:因为,a4即为(x﹣1)7展开式中x4的系数,故选:C.12.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.【分析】由题意,方程方程f(x)=mx+m﹣恰有四个不相等的实数根,等价于y=f (x)与y=mx+m﹣恰有4个交点,求出直线y=mx+m﹣与y=lnx相切时m的值及过原点时m的值,即可求出m的取值范围.解:画出函数f(x)的图象如图中实线部分所示,方程恰有四个不相等的实数根,而是斜率为m,过定点的直线,设切点坐标为(a,ln(a+1)),=,又点在切线上,代入可解得a=﹣2,当直线过原点,即图中l2,所以当时,两函数的图象有4个不同的交点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x,y满足约束条件,则的取值范围为.【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.解:作出不等式组表示的可行域如图所示,表示可行域内的点与原点连线的斜率,,k OB=3,点B不在可行域内,故的取值范围为.故答案为:.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为±1.【分析】由已知利用二倍角的三角函数公式,两角和的正弦函数公式,正弦函数的性质即可求解.解:因为,其中,所以f(x)的最大值为,解得a=±1.故答案为:±1.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=n2.【分析】由S n+1=4S n+2,可得,当n≥2时,S n=4S n﹣1+2,两式相减可得a n+1=4a n(n ≥2).利用等比数列的通项公式可得a n,进而得出b n,利用等差数列的求和公式即可得出T n.解:由S n+1=4S n+2①可得,当n≥2时,S n=4S n﹣1+2②,①﹣②得S n+1﹣S n=4•(S n﹣S n﹣1),即a n+3=4a n(n≥2).又a1=5,所以a2=3S3+2=3a1+2=8,则a5=4a1,所以,b n=log3a n=2n﹣1,故答案为:n2.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为﹣1;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.【分析】化圆的方程为标准方程,求得圆的半径,利用二次函数求最值可得圆的半径的最大值,即可得到圆面积最大时的a值;再由圆心在直线上可得关于m与n的等式,然后利用基本不等式求最值.解:圆C:x2+y2+2(a﹣1)x﹣12y+8a2=0的方程可化为[x+(a﹣1)]2+(y﹣6)2=﹣a8﹣2a+37,当a=﹣1时,﹣a2﹣2a+37取得最大值38,此时圆C的半径最大,面积也最大;∵圆C关于直线l:mx+ny﹣6=0(m>0,n>8)对称,又m>0,n>0,当且仅当时,即时取等号,即的最大值为.故答案为:﹣1;.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.【分析】(1)在△ABD中,由余弦定理可求BD的值,再根据余弦定理即可求出BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.在△BCD中,由正弦定理可求BC,利用三角形面积公式,三角函数恒等变换的应用可求S△BCD=sin(2θ+30°)﹣,结合范围0°<θ<60°,利用正弦函数的性质可求S△BCD的最大值,即可求出四边形ABCD 面积的最大值.解:(1)在△ABD中,因为AB=3,AD=2,∠BAD=60°,则:BD8=AB2+AD2﹣2AB•AD•cos∠BAD=9+7﹣2×3×2×=2在△BCD中,因为BD=,CD=1,∠BCD=120°,即7=BC8+1+BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.所以S△BCD=BD•BC•sin∠CBD=sin(60°﹣θ)sinθ=(cosθ﹣sinθ)sinθ=(sin2θ+cos2θ﹣)=sin(7θ+30°)﹣,∴S△BCD≤,∴四边形ABCD面积的最大值为+=.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.【分析】(1)取BD中点O,证明BD⊥平面POA,从而可得BD⊥PA;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.【解答】(1)证明:设BD的中点为O,连接OP,OA.因为△ABD,△PBD为等边三角形,所以BD⊥AO,且BD⊥PO.所以BD⊥平面PAO,又PA⊂平面PAO,(2)解:因为△ABD,△PBD的边长为2,所以,又因为PO⊥BD,AO⊥BD,故OA,OB,OP两两垂直,则,,B(0,1,0),D(0,﹣1,8),C(﹣1,0,0),,设平面BMD的一个法向量为=(x1,y1,z1),则,设平面BMD的一个法向量为=(x2,y2,z2),则,∴cos<>===,所以平面BMD与平面PBC所成锐二面角的余弦值为.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.【分析】(1)设A,B的坐标分别为,.利用抛物线方程求解函数的导数,设出直线方程与抛物线联立,利用韦达定理转化证明即可.(2)设P点坐标为(x,y),求出切线PA的方程,切线PB的方程,求出|AB|,点P 到直线AB的距表示三角形的面积,求解S△PAB的最小值.(1)证明:因为A,B两点在曲线x2=4y上,故设A,B的坐标分别为,【解答】.因为,所以,则,.所以,所以k1k2为定值.由(1)知切线PA的方程为①①﹣②得;①×x2﹣﹣②×x1得.由(1)知x=2k,y=﹣2,所以P点坐标为(2k,﹣2),因为点P到直线AB的距离.因为k2+3≥2,所以当k=0时,S△PAB的最小值为.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.【分析】(1)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(2)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(3)先求出前7种情况,总结规律,得出结论.解:(1)设一轮中三人全回答正确为事件M,则.(2)甲在第一轮胜出的概率为;故甲在第二轮胜出的概率为×(××)×==;(3)由(2)知;=;P3=×=.….当n=3k+1(k∈N*)时,;同理可得,当n=3k(k∈N*)时,;当n=3k+2(k∈N*)时,.当n=3k+2(k∈N*)时,P n<Q n.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).【分析】(1)代入a的值,求出f(0),f′(0),求出切线方程即可;(2)结合a,b的范围,问题转化为可证e x>ln(x+2)成立,设h(x)=e x﹣ln(x+2),根据函数的单调性证明即可.【解答】(1)解:当a=1时,f(x)=e x.因为f'(x)=e x,所以f'(0)=1,f(2)=1.即x﹣y+1=0.当b≤2时,ln(x+b)≤ln(x+2),设h(x)=e x﹣ln(x+2),则,又因为,,即.当x∈(x0,+∞)时,h'(x)>0.又因为,ln(x0+2)=﹣x0,所以当x∈(﹣2,+∞)时h(x)>0,即e x>ln(x+7).所以当a≥1,b≤2时,f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)由曲线C1的参数方程消去参数t可得,曲线C1的普通方程为4x﹣3y﹣8=0.由x=ρcosθ,y=ρsinθ可得,曲线C2的直角坐标方程为y2=2x(x≠0).所以点P在曲线C1上.将曲线C6的参数方程(t为参数)代入y2=2x,设点M,N对应的参数分别为t1,t2,则,.所以.一、选择题23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.【分析】(1)根据f(x)≤2,利用零点分段法,求出不等式的解集即可;(2)问题转化为f(x)max>|a+2|,得到关于a的不等式,解出即可.解:(1)由题意得|x﹣1|﹣2|x+2|≤2.①当x≥1时,不等式|x﹣2|﹣2|x+1|≤2可化为x﹣1﹣2x﹣4≤2,解得x≥﹣5,所以x≥1.②当﹣1≤x<1时,不等式|x﹣1|﹣5|x+1|≤2可化为1﹣x﹣2x﹣2≤7,解得x≥﹣1,所以﹣1≤x<1.③当x<﹣1时,不等式|x﹣1|﹣2|x+3|≤2可化为1﹣x+2x+2≤2,解得x≤﹣2,所以x<﹣1.(2)由(1)知,对于任意x∈R,f(x)≤2,且当x=﹣1时取等号,关于x的不等式f(x)>|a+7|的解集不是空集,所以实数a的取值范围为(﹣4,0).。

2020年高三第三次模拟考试卷理科数学(四)(含答案)

2020年高三第三次模拟考试卷理科数学(四)(含答案)

那么外接球的表面积是 4π ( 3) 2 12π.
10.答案: B
x
x
解: f (x)
et dt
costdt
(et
x
)
(sin t
x
)
(ex 1)sin x ,
0
0
0
0
则 f (x)
x
e
sin
x
( ex
1)cos x
ex (sin x cos x) cos x ,
π 则f( )
4
2

2
11.答案: D
并指出轨迹是什么图形.
2020 届高三第三次模拟考试卷
理 科 数 学(四)答 案
第Ⅰ卷
一、选择题:本大题共
12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.答案: B
解:可得 z 2 1 i ,则 z 1 i ,那么 z z 2 . 1i
2.答案: D
3

2
2
2
2
4
π ∵ 0 A ,∴ sin A
3 ,∴ A 60 .
2
2
( 2) bc cosA 12 ,∴ bc 24 ,
由 a2
2
b
2
c
2
2bc cos A ,得 b
2
c
52 ,
∵ b c ,∴ b 4 , c 6 . 18.答案:( 1) 0.784 ;(2)分布列见解析, EX 240 元.
C. 2
11.设方程 3 x ln x 的两个根分别为 x1 , x2 ,则(

A. x1x2 0
B. x1x2 1

2020年广东省第三次高考模拟考试理科数学试题与答案

2020年广东省第三次高考模拟考试理科数学试题与答案

2020年广东省第三次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}{}22|22,|log A x Z x B x y x =∈-<<==,则AB =( )A .{}1,1-B .{}1,0,1-C .{}1D .{}0,12. 复数z 满足(1)|1|z +=+,则z 等于( )A .1B .1C .12D 12i -3. 已知实数,满足约束条件,则的最大值为( )A.B.C. D. 24. 在由直线,和轴围成的三角形内任取一点,记事件为,为,则( )A.B. C. D.5. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15B. 16C. 18D. 216. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种7. 若1x 是方程4xxe =的解,2x 是方程ln 4x x =的解,则12x x +等于( ) A .4B .2C .eD .18. 已知函数()2()12sin 06f x x πωω⎛⎫=-+> ⎪⎝⎭在区间,62ππ⎡⎤⎢⎥⎣⎦为单调递减函数,则ω的最大值是( ) A .12 B .35 C .23 D .349. 已知三棱锥的底面是以为斜边的等腰直角三角形,且,则该三棱锥的外接球的表面积为 A.B.C.D.10. 函数的图象大致是( )A. B. C. D.11.已知函数a x ax e ex f +--+=)(,若c b a ==3log 3,则( )A.)(a f <)(b f <)(c fB.)(b f <)(c f <)(a fC.)(a f <)(c f <)(b fD.)(c f <)(b f <)(a f12.已知函数1,)21(1,2542{)(≤>-+-=x x x x x x f ,若函数()()g x f x mx m =--的图象与x 轴的交点个数不少于2个,则实数m 的取值范围为( )A.1,64⎡⎢⎣ B.1,64⎡⎢⎣C .][1,2ln2,64⎛-∞-⋃ ⎝ D .][1,2ln2,64e ⎛-∞-⋃ ⎝ 二、填空题:本题共4小题,每小题5分,共20分。

2020年高考模拟山西省临汾市高考数学第三次模拟试卷(理科) 含解析

2020年高考模拟山西省临汾市高考数学第三次模拟试卷(理科) 含解析

2020年高考模拟高考数学第三次模拟试卷(理科)一、选择题1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx04.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+188.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4] 10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+112.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;(2)我们知道抛物线有性质:“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)【分析】求出集合A,B,由此能求出A∩B.解:∵函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},∴A={x|x2﹣2x≤0}={x|0≤x≤2},B={2x﹣2≤0}={x|x≤1},∴A∩B={x|0≤x≤1}.故选:C.2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i【分析】根据复数的基本运算法则进行化简即可.解:复数z=1+i,|z|=,z2=(1+i)2=2i,则+z2===1﹣i+2i=1+i故选:A.3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx0【分析】根据全称量词命题的否定是存在量词命题,写出即可.解:全称量词命题的否定是存在量词命题,所以命题“∀x∈(0,1),e﹣x>lnx”的否定是:“∃x∈(0,1),e﹣x≤lnx”.故选:D.4.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣【分析】运用向量垂直的条件:数量积为0,以及向量的平方即为模的平方,和向量投影的概念,计算即可得到所求值.解:||=,||=2,若⊥(﹣),则•(﹣)=0,即为•=2=3,(+)•=•+2=3+4=7,则向量+在向量方向的投影为=.故选:B.5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【分析】根据充分条件和必要条件的定义分别进行判断即可.解:sin A>sin B⇔a>b⇔π>A>B>0,∵π>A>B>0推不出tan A>tan B,tan A>tan B推不出π>A>B>0,∴“sin A>sin B”是“tan A>tan B”的既不充分也不必要条件.故选:D.6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算变量n×S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:执行程序框图,可得S=0,n=2,满足条件,S=,n=4,满足条件,S==,n=6,满足条件,S=+=,n=8,由题意,此时应该不满足条件,退出循环,输出S的值为=.故选:D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+18【分析】首先把三视图转换为几何体,进一步求出几何体的体积.解:由已知中的三视图知圆锥底面半径为,圆锥的高h=,圆锥母线l=,截去的底面弧的圆心角为120°,底面剩余部分的面积为S==,故几何体的体积为:V=,故选:C.8.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]【分析】利用辅助角公式进行转化,结合三角函数的单调性进行求解即可.解:因为y=cos2x﹣sin2x=2cos(2x+),由2kπ﹣π≤2x+≤2kπ,k∈Z,解得2kπ﹣≤2x≤2kπ﹣,k∈Z,即kπ﹣≤x≤kπ﹣,k∈Z,即函数的增区间为[kπ﹣,kπ﹣],k∈Z,所以当k=1时,增区间为[,],∵x∈[0,],∴增区间为[,],故选:D.9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4]【分析】作出不等式组对应的平面区域,根据线性规划的知识,结合直线斜率与区域的关系进行求解即解:作出不等式对应的平面区域,如图所示:其中A(2,6),直线x+my+1=0过定点D(﹣1,0),当m=0时,不等式x+1≤0表示直线x+1=0及其左边的区域,不满足题意;当m>0时,直线x+my+1=0斜率﹣<0,不等式x+my+1≤0表示直线x+my+1=0下方的区域,不满足题意;当m<0时,直线x+my+1=0的斜率﹣>0,不等式x+my+1≤0表示直线x+my+1=0上方的区域,要使不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,只需直线x+my+1=0的斜率﹣≤K AD=2,解得m.综上可得实数m的取值范围为(﹣∞,﹣],故选:B.10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]【分析】先对函数f(x)求导,然后结合导数与函数的性质可求m,代入不等式可求n 的范围,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,分离参数后结合对勾函数的性质可求.解:因为f(x)=e x﹣1+x﹣2,且f(1)=0,所以函数f′(x)=e x﹣1+x﹣2单调递增且有唯一的零点为m=1,所以|1﹣n|≤1,∴0≤n≤2,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,即a===x+1+﹣2,在区间[0,2]上有解,而根据“对勾函数”可知函数y=x+1+﹣2,在区间[0,2]的值域为[2,3],∴2≤a≤3,故选:D.11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+1【分析】先根据导函数的几何意义求出点Q的坐标,再代入双曲线方程结合c=1,c2=a2+b2,从而求出离心率.解:依题意可得,抛物线y2=4x的焦点为F(1,0),F关于原点的对称点(﹣1,0),∵2=4α,,所以,f'(x)=,设Q,则,解得x0=1,∴Q(1,1),可得,又c=1,c2=a2+b2,可解得a=,故双曲线的离心率是,故选:B.12.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]【分析】函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.利用导数可得,当x∈(0,e],0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,分析知F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,可得当x∈(0,x1)时,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F(x)在(x1,e)上是减函数.结合∀x0∈(0,e],方程lnx ﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,得F(x)max=F(x1)>1,且F(e)≤0.由此求得1<a<2e.解:函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.f′(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x,∴当x∈(0,1)时,f′(x)>0,f(x)是增函数;当x∈(1,e]时,f′(x)<0,f(x)是减函数,因此0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,F′(x)=,若F′(x)=0在(0,e)上无解,则F(x)在(0,e]上是单调函数,不合题意;F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,当x∈(0,x1)时,F′(x)>0,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F′(x)<0,F(x)在(x1,e)上是减函数.∵∀x0∈(0,e],方程lnx﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,∴F(x)max =F(x1)>1,且F(e)≤0.由F(e)≤0,即lne﹣e2+ae+1≤0,解得a≤e﹣.由F(x)max=F(x1)>1,即>1,∴>0.∵,∴,代入>0,得>0.设m(x)=lnx+x2﹣1,m′(x)=>0,∴m(x)在(0,e)上是增函数,而m(1)=ln1+1﹣1=0,由>0,可得m(x1)>m(1),得1<x1<e.由在(1,e)上是增函数,得1<a<2e.综上所述1<a≤e﹣,故选:D.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为3.【分析】由二项式定理及展开式的通项公式即可求解.解:由(1﹣x)6展开式的通项为:T r+1=(﹣1)r x r;得(1﹣2x)(1+x)6的展开式中x2的系数为+(﹣2)=3.故答案为:3.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.【分析】由已知结合两角和的三角公式及同角平方关系可求cos∠ACB,然后结合余弦定理可求AB,代入已知公式即可求解.解:因为tan∠ACB=tan(∠ACD+∠BCD)==﹣,所以cos∠ACB=﹣,由余弦定理可知AB2=AC2+BC2﹣2AC•BC cos∠ACB,==16,即AB=4,根据“三斜求积术”可得S2==,所以S=.故答案为:15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为【分析】求出圆的圆心与半径,利用四边形面积的最小值求出MC的最小值,利用点到直线的距离求解即可.解:连接MC,由圆的切线性质可知,AC⊥MA,BC⊥MB,又因为圆C:x2+y2+2y=0的圆心C(0,﹣1),半径r=1,所以S MACB=2△MAC=2×=MA=,要使得四边形MACB的面积最小,则MC最小,即当CM垂直直线y=kx+7时,满足题意,此时|MC|min=,S MACB的最小值为,又因为1≤k≤4,解可得,,故所求的概率为:.故答案为:.16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是①②③.(把你认为正确命题的序号都填上)【分析】①由线面垂直的判定定理与性质定理即可判断;②三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,进而求出外接球的半径,即可得解;③由线面垂直的判定定理可知SO⊥平面ABC,所以SO⊥OC,再结合勾股定理以及内切圆的半径公式可求得SO=1,最后利用三棱锥的体积公式即可得解;④因为SA⊥平面ABC,所以直线PS与平面SBC所成的角最大时,P点与A点重合,再在△SCA中,求出tan∠ASC即可得解.解:对于①,因为SA⊥平面ABC,所以SA⊥AC,SA⊥AB,SA⊥BC,又BC⊥AC,所以BC⊥平面SAC,所以BC⊥SC,故四个面都是直角三角形,∴①正确;对于②,若AC=4,BC=4,SC=4,SC⊥平面ABC,∴三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设△ABC内心是O,则SO⊥平面ABC,连接OC,则有SO2+OC2=SC2,又内切圆半径,所以,SO2=SC2﹣OC2=3﹣2=1,故SO=1,∴三棱锥S﹣ABC的体积为,∴③正确;对于④,若SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的角最大时,P点与A 点重合,在Rt△SCA中,,∴∠ASC=45°,即直线PS与平面SBC所成的最大角为45°,∴④不正确,故答案为:①②③.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.【分析】(1)设数列{a n}的公差为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求通项公式;(2)求得b n=(n+1)•2n+1,运用数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和.解:(1)设数列{a n}的公差为d,a4+a6=18,可得2a1+8d=18,即a1+4d=9,S11=121,可得11a1+×11×10d=121,即a1+5d=11,解得a1=1,d=2,可得a n=1+2(n﹣1)=2n﹣1;(2)由(1)可知b n=(a n+3)2n=(n+1)•2n+1,数列{b n}的前n项和为T n=2•22+3•23+…+(n+1)•2n+1,2T n=2•23+3•24+…+(n+1)•2n+2,两式作差,得﹣T n=8+23+24+…+2n+1﹣(n+1)•2n+2=8+﹣(n+1)•2n+2,化简可得T n=n•2n+2.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.【分析】(1)由已知可得列联表,利用K2计算公式即可得出.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,利用超几何分布列计算公式即可得出.解:(1)由频率分布直方图可得,男生书虫、非书虫的人数分别为12,38,女生书虫、非书虫的人数分别为4,46,故得如下2×2列联表:男生女生总计书虫12416非书虫384684总计5050100根据列联表中数据可得:K2==4.762.由于4.762>3.841,所以在犯错误的概率不超过5%的前提下,可以认为“书虫”与性别有关.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为X012PX的数学期望为E(X)=0×+1×+2×=.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.【分析】(1)取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.EO⊥平面ABCD.EO ⊥BD,由四边形ABCD为菱形,得BD⊥AC,BD⊥OF,由此能证明BD⊥平面EOF.从而BD⊥EF.(2)连结DO,由题意知EO⊥AB,DO⊥AB.推导出DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.利用向量法能求出二面角E﹣DF﹣B的余弦值.解:(1)证明:取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.又因为平面ABCD⊥平面ABE,所以EO⊥平面ABCD.因为BD⊂平面ABCD,所以EO⊥BD,因为四边形ABCD为菱形,所以BD⊥AC,又因为OF∥AC,所以BD⊥OF,所以BD⊥平面EOF.又EF⊂平面EOF,所以BD⊥EF.(2)解:连结DO,由题意知EO⊥AB,DO⊥AB.又因为平面ABCD⊥平面ABE,所以DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.则O(0,0,0),E(,0,0),D(0,0,),F(0,,),B(0,1,0),=(,0,﹣),=(0,).设平面DEF的一个法向量为=(x,y,z),则,令x=1,所以=(1,,1).又由(1)可知EO⊥平面ABCD,所以平面DFB的一个法向量为=(1,0,0),设二面角E﹣DF﹣B的平面角为θ,则cosθ==.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|(2)我们知道抛物线有性质:=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.【分析】(1)利用椭圆的定义,结合三角形的周长,求出a,设出椭圆方程,代入点的坐标求解即可点的椭圆方程.(2)求出F2(1,0),设直线l的方程为x=my+1,与椭圆方程联立,消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),利用韦达定理,不妨设y1>0,y2<0,求出|AF2|,|BF2|,通过,转化求解,推出|AF2|+|BF2|=|AF2|•|BF2|,点的存在实数.解:(1)根据椭圆的定义,可得|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,△AF1B的周长为4a=8,得a=2,所以,椭圆E的方程为:+=1,将点P(1,)代入椭圆E的方程可得b=,所以椭圆E的方程为+=1.(2)由(1)可知c==1,得F2(1,0),依题意可知直线l的斜率不为0,故可设直线l的方程为x=my+1,由消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=,,不妨设y1>0,y2<0,|AF2|===,同理|BF2|=,所以===•=,即|AF2|+|BF2|=|AF2|•|BF2|,所以存在实数,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.【分析】(1)利用导数的几何意义即可求解;(2))根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y ﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,利用基本不等式得到对x∈(0,+∞)恒成立,令h(x)=,利用导数得到当x=2 时,h(x)取得最小值,为h(2)=,所以m≤2,从而求得实数m的取值范围.解:(1)设t(x)=f(2x)=e2x﹣2+1,则t'(x)=2e2x﹣2,当x=1时,t(1)=2,t'(1)=2,∴函数f(2x)在x=1 处的切线方程为:y﹣2=2(x﹣1),即2x﹣y=0;(2)根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,∵g(x)=e x+y﹣2+e x﹣y﹣2+2=e x﹣2(e y+e﹣y)+2(当且仅当y=0时取等号),∴由题意可得2e x﹣2+2≥mx,即有对x∈(0,+∞)恒成立,令h(x)=,则h'(x)=2×=2×,令h'(x)=0,即有(x﹣1)e x﹣2=1,令m(x)=(x﹣1)e x﹣2,则m'(x)=e x﹣2+(x ﹣1)e x﹣2=xe x﹣2,当x>0 时,m'(x)=xe x﹣2>0,∴m(x)在(0,+∞)上单调递增,又∵m(2)=(2﹣1)e2﹣2=1,∴(x﹣1)e x﹣2=1有且仅有一个根x=2,当x∈(2,+∞)时,h'(x)>0,h(x)单调递增,当x∈(0,2)时,h'(x)<0,h (x)单调递减,∴当x=2 时,h(x)取得最小值,为h(2)=,∴m≤2,∴实数m的取值范围(﹣∞,2].请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.【分析】(Ⅰ)直接利用转换关系把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.解:(Ⅰ)直线l的参数方程为(t为参数).转换为直角坐标方程为:.圆C的极坐标方程为ρ=cos().转换为直角坐标方程为:.(Ⅱ)由于:直线l与圆C相交于A,B两点,故:圆心()到直线的距离d=,则:=.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.【分析】(1))利用函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,分段解不等式f(2x)﹣f(x﹣4)>2即可;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,利用绝对值不等式的意义,可得⇔,f(ax)+af(x)=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,再解|2a﹣2|≥a+1即可.解:(1))函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,当x<﹣1时,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6;当﹣1≤x<2时,不等式即3x>2,求得x>,<x<2;当x≥2时,不等式即x+4>2,求得x>﹣2,∴x≥2.综上所述,不等式的解集为{x|>或x<﹣6}.(2)当a>0时,f(ax)+af(x)=|ax+2|+a|x+2|=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,∵不等式f(ax)+af(x)≥a+1恒成立,∴|2a﹣2|≥a+1,2a﹣2≥a+1或2a﹣2≤﹣1﹣a,解得a≥3或0<a≤,∴实数a的取值范围为(0,]∪[3,+∞).。

2020届江西省上饶市高三第三次模拟考试 数学(理)

2020届江西省上饶市高三第三次模拟考试 数学(理)

上饶市2020届第三次高考模拟考试数学(理科)试题卷1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,答在本试题上无效。

第I卷一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|3x-<2},B={x|x≤5},则A∩B=A.{x|x≤5}B.{x|3≤x≤5}C.{x|3≤x<7}D.{x|3<x≤5}2.设复数z满足zi=1+2i(为虚数单位),则z在复平面内所对应的点所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限3.(x -1)5的展开式中1x项的系数为A.-5B.-10C.5D.104.执行如图的程序框图,若输入x=2,则输出的值为A.5B.7C.9D.155.若1sin()63πα+=,则5sin(2)6πα+=A.79B.13C.89D.236.已知等差数列{a n }的前项和为S n,且2783622011a a a a a ++=+,则118S S = A.37 B.16 C.511 D.547.将曲线x 2+y 2=|x|+|y|围成的区域记为I ,曲线|x|+|y|=1围成的区域记为II ,在区域I 中随机取一点,此点取自区域II 的概率为A.12π+B.11π+C.22π+D.21π+ 8.在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算。

算筹实际上是一根根相同长度的小木棍,算筹有纵式和横式两种,如图是利用算筹表示1~9的数字,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,例如,137可以用7根小木棍表示“”,则用6根小木棍(要求用完6根)能表示不含“0”且没有重复数字的三位数的个数是A.12B.18C.24D.279.已知函数f(x)=-x 2+2+cos 2x (x ∈[-π,π]),则不等式f(x +1)-f(2)>0的解集为 A.[-π,-3)∪(1,π] B.[-π,-1)∪(3,π] C.(-3,1) D.(-1,3)10.半径为2的球O 内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为A.93B.123C.163D.18311.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1作斜率为22的直线l 与双曲线C 的左、右两支分别交于A 、B 两点,若|AF 2|=|BF 2|,则双曲线的离心率为A.2 2 5 312.已知函数y=e x+22xx e和函数ax(a∈R),关于这两个函数图像的交点个数,下列四个结论:①当时a<22,两个函数图像没有交点;②当221eae+=时,两个函数图像恰有三个交点;③当22<a<221ee+时,两个函数图像恰有两个交点;④当a>221ee+时,两个函数图像恰有四个交点。

2020届高考高三第三次模拟考试卷 理科数学(一) 含答案解析

2020届高考高三第三次模拟考试卷 理科数学(一) 含答案解析

2020届高三第三次模拟考试卷 理 科 数 学(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{0,1}A =,{0,1,2}B =,则满足A C B =U 的集合C 的个数为( )A .4B .3C .2D .12.已知i 为虚数单位,复数93i2i 1i z -=++,则||z =( )A .235+B .2022 C .5 D .253.抛物线22y x =的通径长为( )A .4B .2C .1D .124.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加 5.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,,9L 填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方记(3)n n ≥阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么8N 的值为( ) A .260 B .369 C .400 D .420 6.根据如下样本数据 得到的回归方程为ˆˆˆy bx a =+,则( ) A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b > 7.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为n S ,2n S ,3n S ,则下列等式中恒成立的是( ) A .322n n n S S S += B .2233()()n n n n n n S S S S S S -=- C .223n n n S S S = D .223()()n n n n n n S S S S S S -=- 8.设2019log 2020a =,2020log 2019b =,120202019c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 9.已知函数()sin()(0,π0)f x x ωϕωϕ=+>-<<的最小正周期是π,将函数()f x 的图象向左平移π3个单位长度后所得的函数图象过点(0,1)P ,则下列结论中正确的是( ) A .()f x 的最大值为2 B .()f x 在区间ππ(,)63-上单调递增 C .()f x 的图像关于直线π12x =对称 D .()f x 的图像关于点π(,0)3对称 10.过正方体1111ABCD A B C D -的顶点A 作平面α,使得正方体的各棱与平面α所成的角都相等,此卷只装订不密封 班级姓名准考证号考场号座位号则满足条件的平面α的个数为( )A .1B .3C .4D .611.椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( )A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+=C .2212221cos sin e e θθ+= D .2212221sin cos e e θθ+=12.已知正方形ABCD 的边长为1,M 为ABC △内一点,满足10MDB MBC ∠=∠=︒, 则MAD ∠=( )A .45︒B .50︒C .60︒D .70︒第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.26(32)x x ++展开式中x 的系数为 .14.设实数x ,y 满足不等式211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,当3z x y =+时取得最小值时,直线3z x y =+与以(1,1)为圆心的圆相切,则圆的面积为 .15.已知等差数列{}n a 的公差(0,π)d ∈,1π2a =,则使得集合{|sin(),}n M x x a n *==∈N ,恰好有两个元素的d 的值为 .16.在三棱锥P ABC -中,2PA PC ==,1BA BC ==,90ABC ∠=︒,若PA 与底面ABC 所成的角为60︒,则点P 到底面ABC 的距离是 ;三棱锥P ABC -的外接球的表面积是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知A 、B 分别在射线CM 、CN (不含端点C )上运动,2π3MCN ∠=,在ABC △中,角A 、B 、C 所对的边分别是a ,b ,c . (1)若a ,b ,c 依次成等差数列,且公差为2,求c 的值; (2)若c =ABC θ∠=,试用θ表示ABC △的周长,并求周长的最大值. 18.(12分)如图,在三棱锥P ABC -中,底面是边长为4的正三角形,2PA =,PA ⊥底面ABC ,点E ,F 分别为AC ,PC 的中点. (1)求证:平面BEF ⊥平面PAC ; (2)在线段PB 上是否存在点G ,使得直线AG 与平面PBC所成的角的正弦值为5?若存在,确定点G 的位置;若不存在,请说明理由.19.(12分)已知(1,0)A -,(1,0)B ,AP AB AC =+u u u r u u u r u u u r ,||||4AP AC +=u u u r u u u r .(1)求P 的轨迹E ; (2)过轨迹E 上任意一点P 作圆22:3O x y +=的切线1l ,2l ,设直线OP ,1l ,2l 的斜率分别是0k ,1k ,2k ,试问在三个斜率都存在且不为0的条件下,012111()k k k +时候是定值,请说明理由,并加以证明. 20.(12分)已知函数242()x x x f x e ++=.(1)求函数()f x的单调区间;(2)若对任意的(2,0]x∈-,不等式2(1)()m x f x+>恒成立,求实数m的取值范围.21.(12分)2019年3月5日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:20192020-年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量()m m*∈N在17与26之间,日需求量m(件)的频率()P m分布如下表所示:己知其成本为每件5元,售价为每件10元若供大于求,则每件需降价处理,处理价每件2元.(1)设每天的进货量为(16,1,2,,10)n nX X n n=+=L,视日需求量(16,1,2,,10)i iY Y i i=+=L的频率为概率(1,2,,10)iP i=L,求在每天进货量为nX的条件下,日销售量nZ的期望值()nE Z(用iP表示);(2)在(1)的条件下,写出()nE Z和1()nE Z+的关系式,并判断X为何值时,日利润的均值最大.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线l的参数方程为31x ty t=-⎧⎨=+⎩(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线π:)4C ρθ=-. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求曲线C 上的点到直线l 的距离的最大值.23.(10分)【选修4-5:不等式选讲】设0a >,0b >,且a b ab +=.(1)若不等式2x x a b +-≤+恒成立,求实数x 的取值范围;(2)是否存在实数a ,b ,使得48a b +=?并说明理由.2020届好教育云平台高三第三次模拟考试卷理 科 数 学(一)答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.【答案】A【解析】由A C B =U 可知集合C 中一定有元素2,所以符合要求的集合C 有{2},{2,0},{2,1},{2,0,1}共4种情况.2.【答案】C【解析】对复数z 进行化简:93i (93i)(1i)2i 2i 34i 1i 2z ---=+=+=-+,所以5z ==.3.【答案】D【解析】标准化212x y =,通径122p =.4.【答案】D【解析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A ,2015年一本达线人数为0.28S ,2018年一本达线人数为0.24 1.50.36S S ⨯=, 可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=, 显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年,艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S ,2018年不上线人数为0.28 1.50.42S S ⨯=, 不达线人数有所增加.5.【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(125N =+345678910111213141516171819+++++++++++++++++202122232425)65++++++=,…, ∴222211(1)(1)(12345)22n n n n n N n n n ++=++++++=⨯=L , ∴288(81)2602N +==. 6.【答案】A 【解析】画出散点图知0a >,0b <,故选A . 7.【答案】D 【解析】由等比数列的性质得n S ,2n n S S -,32n n S S -成等比数列,2232()()n n n n n S S S S S -=-,化简得223()()n n n n n n S S S S S S -=-. 8.【答案】C 【解析】220192019201920191111log 2019log log 2020log 201912222a =<==<=,2020202020201110log log 2019log 2020222b <==<=,1202020191c =>. 9.【答案】B 【解析】由条件知π()sin(2)6f x x =-,结合图像得B . 10.【答案】C 【解析】在正方体1111ABCD A B C D -中,四面体11A B D C -的四面与12条棱所成的角相等, ∴正方体的12条棱所在的直线所成的角均相等的平面有4个. 11.【答案】B 【解析】设椭圆的长轴长为12a ,双曲线的实轴长为22a , 交点P 到两焦点的距离分别为,(0)m n m n >>,焦距为2c , 则2222cos 2(2)m n mn c θ+-=, 又12m n a +=,22m n a -=,故12m a a =+,12n a a =-,2222222221212222212sin cos sin cos (1cos 2)(1cos 2)211a a a a c c c e e θθθθθθ-++=⇒+=⇒+=. 12.【答案】D 【解析】设正方形ABCD 的边长为1, 在BMD △中,由正弦定理得2sin 35sin 35sin135DM DB DM =⇒=︒︒︒,在AMD △中,由余弦定理得2214sin 354sin35cos551AM =+︒-︒︒=,∴AMD △为等腰三角形,70MAD ∠=︒.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】576【解析】26(32)x x ++展开式中含x 的项为15565C (3)C 26332576x x x ⋅⋅=⨯⨯=,即x 的系数为576.14.【答案】5π2 【解析】当直线过点(1,2)-时,3z x y =+取得最小值1-,故1010r d ===,从而圆的面积为5π2.15.【答案】2π3【解析】要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,此时2π3d =.16.【答案】3;5π【解析】将三棱锥P ABC -置于长方体中,其中1PP ⊥平面ABC ,由PA 与底面ABC 所成的角为60︒,可得13PP =,即为点P 到底面ABC 的距离, 由11PP A PPC ≌△△,得111P A PC ==,如图,PB 就是长方体(三条棱长分别为1,1,3)外接球的直径,也是三棱锥P ABC -外接球的直径,即5PB =, 所以球的表面积为254π()5π=.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)7;(2)周长π()2sin()33f θθ=+,π6θ=时,()f θ取得最大值为23. 【解析】(1)a ,b ,c 成等差数列,且公差为2,∴4a c =-,2b c =-, 又2π3MCN ∠=,1cos 2C =-,∴222(4)(2)12(4)(2)2c c c c c -+--=---, 恒等变形得29140c c -+=,解得7c =或2c =, 又∵4c >,∴7c =. (2)在ABC △中,sin sin sin AC BC AB ABC BAC ACB ==∠∠∠, ∴32πsin sin()sin 33AC BC θθ===-,2sin AC θ=,π2sin()3BC θ=-, ∴ABC △的周长π()||||||2sin 2sin()33f AC BC AB θθθ=++=+-+13π2[sin ]32sin()323θθθ=++=++, 又∵π(0,)3θ∈,∴ππ2π333θ<+<, 当ππ32θ+=,即π6θ=时,()f θ取得最大值23. 18.【答案】(1)证明见解析;(2)存在,G 为线段PB 的中点. 【解析】(1)证明:∵AB BC =,E 为AC 的中点,∴BE AC ⊥, 又PA ⊥平面ABCP ,BE ⊂平面ABC ,∴PA BE ⊥, ∵PA AC A =I ,∴BE ⊥平面PAC , ∵BE ⊂平面BEF ,∴平面BEF ⊥平面PAC . (2)如图,由(1)知,PA BE ⊥,PA AC ⊥,点E ,F 分别为AC ,PC 的中点,∴EF PA ∥,∴EF BE ⊥,EF AC ⊥, 又BE AC ⊥,∴EB ,EC ,EF 两两垂直, 分别以EB u u u r ,EC uuu r ,EF u u u r 方向为x ,y ,z 轴建立坐标系,则(0,2,0)A -,(0,2,2)P -,(23,0,0)B ,(0,2,0)C ,设(23,2,2)BG BP λλλλ==--u u u r u u u r ,[0,1]λ∈, 所以(23(1),2(1),2)AG AB BG λλλ=+=--u u u r u u u r u u u r ,(23,2,0)BC =-u u u r ,(0,4,2)PC -u u u r ,设平面PBC 的法向量为(,,)x y z =n ,则023204200BC x y y z PC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-=⎪⋅=⎪⎩⎩u u ur u u u r n n ,令1x =,则3y =,23z =,∴(1,3,23)=n ,由已知221515431552||||416(1)4AG AG λλλ⋅=⇒=⇒=⋅-+uu u ru u u r n n 或1110(舍去), 故12λ=,故线段PB 上存在点G ,使得直线AG 与平面PBG 所成的角的正弦值为155,此时G 为线段PB 的中点.19.【答案】(1)22:143x y E +=;(2)为定值,详见解析.【解析】(1)方法一:如图因为AP AB AC =+u u u r u u u r u u u r ,所以四边形ACPB 是平行四边形, 所以||||BP AC =u u u r u u u r ,由||||4AP AC +=u u u r u u u r ,得||||4AP BP +=u u u r u u u r ,所以P 的轨迹以A ,B 为焦点的椭圆易知24a =,1c =,所以方程E 为22143x y +=.方法二:设(,)P x y ,由AP AB AC =+u u u r u u u r u u u r ,得(1,)AC AP AB BP x y =-==-u u u r u u u r u u u r u u u r ,再||||4AP AC +=u u u r u u u r ,得2222(1)(1)4x y x y +++-+=, 移项2222(1)4(1)x y x y ++=--+,平方化简得22143x y +=. (从2222(1)(1)4x y x y +++-+=发现是椭圆方程也可以直接得24a =,1c =). (2)设00(,)P x y ,过P 的斜率为k 的直线为00()y y k x x -=-, 由直线与圆O 相切可得0231k =+,即2220000(3)230x k x y k y --+-=, 由已知可得1k ,2k 是方程(关于k )2220000(3)230x k x y k y --+-=的两个根, 所以由韦达定理:0012202012202333x y k k x y k k x ⎧+=⎪-⎪⎨-⎪=⎪-⎩,两式相除0012212023x y k k k k y +=⋅-, 又因为2200143x y +=,所以2200334y x -=-, 代入上式可得01212083y k k k k x +=-⋅,即0121118()3k k k +=-为定值. 20.【答案】(1)见解析;(2)2(1,]e . 【解析】(1)2(22)()x x x f x e -+-'=,记2()22g x x x =--+, 令()0g x >,得1313x -<<-,函数()f x 在(13,13)--上单调递增;()0g x <,得13x <-13x >-+()f x 在(,13)-∞--或(13,)-++∞上单调递减.(2)记2()2(1)42x h x me x x x =+---,由(0)0221h m m >⇒>⇒>,()0h x '=,得2x =-或ln x m =-,∵(2,0]x ∈-,所以2(2)0x +>.①当21m e <<时,ln (2,0)m -∈-,且(2,ln )x m ∈--时,()0h x '<; (ln ,0)x m ∈-时,()0h x '>,所以min ()(ln )ln (2ln )0h x h m m m =-=⋅->,∴(2,0]x ∈-时,()0h x >恒成立;②当2m e =时,2()2(2)(1)x h x x e +'=+-,因为(2,0]x ∈-,所以()0h x '>,此时()h x 单调递增,且22(2)2(1)4820h e e --=--+-=,所以(2,0]x ∈-,()(2)0h x h >-=成立; ③当2m e >时,2(2)220mh e -=-+<,(0)220h m =->,所以存在0(2,0)x ∈-使得0()0h x =,因此()0h x >不恒成立,综上,m 的取值范围是2(1,]e .21.【答案】(1)见解析;(2)20件.【解析】(1)当日需求量n m X ≤时,日销售量n Z 为m ;日需求量n m X >时,日销售量n Z 为n X ,故日销售量n Z 的期望()n E Z 为:当19n ≤≤时,1011()(16)(16)n n i i i i n E Z i P n P ==+=+++∑∑;当10n =时,10101()(16)i i E Z i P ==+∑.(2)1101010112111()(16)(161)(16)(161)()n n n i i i i n i i i n i i n i n E Z i P n P i P n P E Z P ++==+==+=+=++++=++++=+∑∑∑∑∑, 设每天进货量为n X ,日利润为n ξ,则()5()3[(16)()]8()3(16)n n n n E E Z n E Z E Z n ξ=-+-=-+,111210()()8[()()]38()3n n n n n n E E E Z E Z P P P ξξ++++-=--=+++-L , 由1125()()08n n n E E P P P ξξ+-≥⇒+++≤L , 又∵123450.668P P P P +++=>,12350.538P P P ++=<, ∴4()E ξ最大,所以应进货20件时,日利润均值最大. 22.【答案】(1):40l x y +-=,22:(1)(1)2C x y -+-=;(2). 【解析】(1)由31x t y t =-⎧⎨=+⎩,消去t ,得40x y +-=, 所以直线l 的普通方程为40x y +-=,由πππ)cos sin sin )2cos 2sin 444ρθθθθθ=-=+=+, 得22cos 2sin ρρθρθ=+, 将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 得曲线C 的直角坐标方程为2222x y x y +=+,即22(1)(1)2x y -+-=. (2)设曲线C上的点为(1,1)P αα++, 则点P 到直线l的距离d ==π|2sin()2|α+-= 当πsin()14α+=-时,max d = 所以曲线C 上的点到直线l的距离的最大值为 23.【答案】(1)[]1,3-;(2)不存在,详见解析. 【解析】(1)由a b ab +=,得111a b +=,11()()4a b a b a b +=++≥=, 当且仅当2a b ==时""=成立.不等式2x x a b +-≤+,即为24x x +-≤,当0x <时,不等式为224x -+≤,此时10x -≤<; 当02x ≤≤时,不等式24≤成立,此时02x ≤≤; 当2x >时,不等式为224x -≤,此时23x <≤, 综上,实数x 的取值范围是[]1,3-.(2)由于0a >,0b >, 则1144(4)()5b a a b a b a b a b +=++=++59≥+=, 当且仅当4b a a b a b ab⎧=⎪⎨⎪+=⎩,即32a =,3b =时,4a b +取得最小值9, 所以不存在实数a ,b ,使得48a b +=成立.。

2020高考模拟数学试题(全国Ⅲ卷)-理科

2020高考模拟数学试题(全国Ⅲ卷)-理科

绝密★启用前|铭师堂试题2020高考模拟数学试题(全国Ⅲ卷)—理科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={﹣2,﹣1,0,1,2,3},B ={x ∈Z |x 2﹣1<0},则A ∩(∁A B )=( ) A .{﹣2,-1,1,2,3} B .{﹣2,﹣1,0,1,2,3} C .{﹣2,2,3}D .{﹣1,0,1}2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.(1+2x 2)(x −1x )6的展开式中,含x 2的项的系数是( ) A .﹣40B .﹣25C .25D .554.在△ABC 中,B =2π3,AB =3,E 为AB 的中点,S △BCE =3√38,则AC 等于( ) A .√13 B .√10C .√7D .35.已知函数y =asinxx在点M (π,0)处的切线−1πx +b =y ,则( )A .a =﹣1,b =1B .a =﹣1,b =﹣1C .a =1,b =1D .a =1,b =﹣1 6.函数f(x)=2x 2+3xx的大致图象是( )A .B .C .D .7.已知函数f(x)=Asin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点(−π,0)对称 B .函数的图象关于直线x =−π6对称 C .函数f (2x )的最小正周期为π D .当π6≤x ≤7π6时,函数f (x )的图象与直线y =2围成的封闭图形面积为2π8.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我也不知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q9.已知三棱锥D ﹣ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D ﹣ABC 的体积取到最大值时,球O 的表面积为( ) A .5π3B .2πC .5πD .20π310.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .√10−1 B .2√2−1 C .2√2 D .√1011.过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于B ,点Q 是圆x 2+y 2=a 2上的动点.若FB →=2FA →,|BQ |的最大值为9,则此双曲线的方程为( ) A .x 24−y 212=1 B .x 24−y 216=1 C .x 29−y 227=1D .x 29−y 236=112.已知函数f (x )={|log 2x|,x >0x 2+4x +1,x ≤0,若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则x 4x 3−x 1x 32+x 2x 324的取值范围是( )A .(2,+∞)B .[2,174)C .(2,174]D .[2,+∞)第II 卷二、非选择题:本卷包括填空题和解答题两部分。

2020年东北三省三校高考数学三模试卷(理科)

2020年东北三省三校高考数学三模试卷(理科)

2020年东北三省三校高考数学三模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B的子集个数为()A. 2B. 4C. 6D. 82.已知复数z=sinθ−2√23+(cosθ−13)i为纯虚数,则tanθ=()A. −2√2B. −√24C. √24D. 2√23.小赵到哈尔滨南岗区7个小区和道里区8个小区调查空置房情况,将调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中的南岗区空置房套数的中位数与道里区空置房套数的中位数之差为()A. 4B. 3C. 2D. 14.“新冠肺炎”疫情的控制需要根据大数据进行分析,并有针对性的采取措施.如图是甲、乙两个省份从2月7日到2月13日一周内的新增“新冠肺炎”确诊人数的折线图,根据图中甲、乙两省的数字特征进行比对,下列说法错误的是()A. 2月7日到2月13日甲省的平均新增“新冠肺炎”确诊人数低于乙省B. 2月7日到2月13日甲省的单日新增“新冠肺炎”确诊人数最大值小于乙省C. 2月7日到2月13日乙省相对甲省的新增“新冠肺炎”确诊人数的波动大D. 后四日(2月10日至13日)乙省每日新增“新冠肺炎“确诊人数均比甲省多5.某多面体的三视图如图所示,则该多面体的体积为()A. 23B. 43C. 53D. 736.如图是秦九韶算法的一个程序框图,则输出的S为()A. a1+x0(a3+x0(a0+a2x0))的值B. a3+x0(a2+x0(a1+a0x0))的值C. a0+x0(a1+x0(a2+a3x0))的值D. a2+x0(a0+x0(a3+a1x0))的值7.函数y=sinx+√3cosx的图象向右平移2π3个单位长度得到函数f(x)的图象,则下列说法不正确的是()A. 函数f(x)的最小正周期2πB. 函数f(x)的图象关于直线x=5π6对称C. 函数f(x)的图象关于(π3,0)对称中心D. 函数f(x)在[5π6,11π6]上递增8.如图,直四棱柱ABCD−A1B1C1D1的底面是菱形,AA1=AB=2,∠BAD=60°,M是BB1的中点,则异面直线A1M与B1C所成角的余弦值为()A. −√105B. −15 C. 15D. √1059. 已知圆M :x 2+y 2=12,过圆M 内一点E(1,√2)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 6√2B. 12√2C. 12√3D. 24√310. 已知函数f(x)={|x −1+1|,x <0|x −1|−1,x ≥0,若函数g(x)=2f(x)−2kx −1有三个零点,则实数k 的取值范围为( )A. [−1,12) B. (−∞,−116)∪(12,+∞) C. [−116,12)D. {−116}∪[0,12)11. 已知双曲线C :x 2a 2−y 2b2=1(a,b >0)的右焦点为F ,过原点的直线l 交双曲线C 于A 、B 两点,且|BF|=3|AF|,则双曲线C 的离心率取值范围为( )A. (1,2]B. (1,3]C. (3,+∞)D. [2,+∞)12. 若对任意x ∈(0,+∞),不等式2e 2x −alna −alnx ≥0恒成立,则实数a 的最大值为( )A. √eB. eC. 2eD. e 2二、填空题(本大题共3小题,共15.0分)13. 2020年5月17日晚“2019年感动中国人物名单揭晓”,中国女排位列其中,在感动中国的舞台上,她们的一句“我们没赢够”,再次鼓舞中国人民.中国之光--中国女排,一次次在逆境中绝地反击赢得奥运冠军,“女排精神”也是我们当前处于“新冠”逆境中的高三学子们学习的榜样,前进的动力.一次比赛中,中国女排能够闯入决赛的概率为0.8,在闯入决赛条件下中国女排能够获胜的概率是0.9,则中国女排闯进决赛且获得冠军的概率是______.14. 稠环芳香烃化合物中有不少是致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它是由一个苯环和一个芘分子结合而成的稠环芳香烃类化合物,长期食用会致癌.下面是一组稠环芳香烃的结构简式和分子式: 名称 萘蒽并四苯……并n 苯结构简式…… …… 分子式C 10H 8 C 14H 10C 18H 12…………由此推断并十苯的分子式为______.15. f(x)是定义在R 上的函数,其导函数为f′(x),若2f(x)+f′(x)>2,f(1)=2,则不等式f(x)>e 2−2x +1(其中e 为自然对数的底数)的解集为______. 三、多空题(本大题共1小题,共5.0分)16.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且满足2c⋅tanB=b⋅(tanA+tanB),则A=;若O是△ABC外接圆的圆心,且cosB2sinC ⋅AB⃗⃗⃗⃗⃗ +cosC2sinB⋅AC⃗⃗⃗⃗⃗ =m AO⃗⃗⃗⃗⃗ ,则实数m=.四、解答题(本大题共7小题,共82.0分)17.已知数列{a n},{b n}(b n≠0,n∈N∗),满足a1=2b1,a n b n+1−a n+1b n+2b n+1b n=0.(Ⅰ)令c n=a nb n,证明:数列{c n}为等差数列,并求数列{c n}的通项公式;(Ⅱ)若b n=13 n,求数列{a n}的前n项和S n.18.新冠肺炎疫情这只“黑天鹅”的出现,给经济运行带来明显影响,住宿餐饮、文体娱乐、交通运输、旅游等行业受疫情影响严重.随着复工复产的有序推动,我市某西餐厅推出线上促销活动:A套餐(在下列食品中6选3)西式面点:蔓越莓核桃包、南瓜芝士包、黑列巴、全麦吐司;中式面点:豆包、桂花糕.B套餐:酱牛肉、老味烧鸡熟食类组合.复工复产后某一周两种套餐的日销售量(单位:份)如表:(Ⅰ)根据该西餐厅上面一周A、B两种套餐的销售情况,结合两种套餐的平均销售量和方差,评价两种套餐的销售情况(不需要计算,只给出结论即可);(Ⅱ)如果该西餐厅每种套餐每日销量少于20份表示业绩“一般”,销量大于等于20份表示业绩“优秀”,求该西餐厅在这一周内B套餐连续两天中至少有一天销量业绩为“优秀”的概率;(Ⅲ)某顾客购买一份A套餐,求她所选的面点中所含中式面点个数X的分布列及数学期望.19. 如图1,在直角梯形ABCD 中,AB//DC ,∠BAD =90°,AB =4√2,AD =2√2,DC =3√2,点E 在CD 上,且DE =2√2,将三角形ADE 沿线段AE 折起到PAE 的位置,PB =2√6(如图2).(Ⅰ)求证:平面PAE ⊥平面ABCE ;(Ⅱ)在线段PC 上存在点F ,满足PC =4PF ,求平面PAE 与平面ABF 所成的锐二面角的余弦值.20. 已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0),P 1(1,1),P 2(0,2),P 3(√32,−1),P 4(√32,1)四点中恰有三点在椭圆C 1上,抛物线C 2:y 2=2px(p >0)焦点到准线的距离为12. (Ⅰ)求椭圆C 1、抛物线C 2的方程;(Ⅱ)过椭圆C 1右顶点Q 的直线l 与抛物线C 2交于点A 、B ,射线OA 、OB 分别交椭圆C 1于点M 、N . (i)证明:OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 为定值; (ii)求△AOB 、△MON 的面积分别为S 1、S 2,求S 1S 2的最小值.21. 已知函数f(x)=sinx +cosx −ax(a ∈R).(Ⅰ)当a =1时,求f(x)在[−π4,π2]上最值;(Ⅱ)若对一切x ∈[−π,0],不等式f(x)≤1恒成立,求实数a 的取值范围.22. 已知曲线C 1:{x =4t1+t 2y =1−t 21+t 2(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2,正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为(2,π4). (Ⅰ)求曲线C 1的普通方程及点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.23. 已知函数f(x)=|ax −1|(a >0).(Ⅰ)若不等式f(x)+f(x −1)≥1对一切实数x 恒成立,求实数a 的取值集合A ; (Ⅱ)若x ,y ∈A ,求证:x +y +1xy ≤1x +1y +xy .答案和解析1.【答案】B【解析】解:解{x 2+y 2=1y =x得,{x =−√22y =−√22或{x =√22y =√22;∴A ∩B ={(−√22,−√22),(√22,√22)}; ∴A ∩B 子集个数为C 20+C 21+C 22=22=4.故选:B .可解方程组{x 2+y 2=1y =x得出{x =−√22y =−√22,或{x =√22y =√22,从而得出A ∩B 有两个元素,从而得出A ∩B 的子集个数为C 20+C 21+C 22=4.考查描述法表示集合的概念,交集的定义及运算,以及子集的定义,子集个数的求法.2.【答案】A【解析】解:∵z =sinθ−2√23+(cosθ−13)i 为纯虚数,∴{sinθ−2√23=0cosθ−13≠0,解得sinθ=2√23,cosθ=−13.则tanθ=sinθcosθ=−2√2. 故选:A .由已知可得{sinθ−2√23=0cosθ−13≠0,求得cosθ与sinθ的值,即可得解. 本题考查复数的概念,同角三角函数的基本关系,是基础题.3.【答案】D【解析】解:因为南岗区空置房套数有7套,则其中位数是79;道里区空置房套数有8套,则其中位数为76+802=78,所以两中位数之差是79−78=1. 故选:D .由茎叶图分别求出两区的中位数,相减即可. 本题通过茎叶图考查中位数的求法,属于基础题.4.【答案】C【解析】解:根据图象所给数据可得2月7日到2月13日甲省的平均新增“新冠肺炎”确诊人数约为19,方差为53,单日新增最大值为28,2月7日到2月13日乙省的平均新增“新冠肺炎”确诊人数约为22,方差约为17,单日新增最大值为29,故可得AB正确,C错误,由图可知,后四日乙人数均比甲人数多,故D正确,故选:C.根据图象计算平均数、方差进行比较即可本题考查学生合情推理能力,考查统计的相关知识,属于基础题.5.【答案】B【解析】解:根据几何体的三视图转换为直观图为:该几何体为四棱锥体.如图所示:所以:V=13×2×2×1=43.故选:B.直接利用三视图转换为直观图,进一步求出几何体的体积.本题考查的知识要点:三视图和直观图形之间的转换,几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.【答案】C【解析】解:模拟程序的运行,可得k=3,S=a3,满足条件k>0,执行循环体,k=2,S=a2+a3x0,满足条件k>0,执行循环体,k=1,S=a1+x0(a2+a3x0),满足条件k>0,执行循环体,k=0,S=a0+x0(a1+x0(a2+a3x0)),不满足条件k>0,退出循环,输出S的值为a0+x0(a1+x0(a2+a3x0)).故选:C.模拟程序的运行,依次写出每次循环得到的k ,S 的值,当k =0时,不满足条件k >0,退出循环,输出S 的值为a 0+x 0(a 1+x 0(a 2+a 3x 0)).本题主要考查了循环结构的程序框图的应用,依次正确写出每次循环得到的S ,k 的值是解题的关键,属于基础题.7.【答案】D【解析】解:把函数y =sinx +√3cosx =2sin(x +π3)的图象向右平移2π3个单位长度, 得到函数f(x)=2sin(x −π3)的图象, 显然,f(x)的周期为2π,故A 正确; 当x =5π6时,f(x)=2,为最大值,故f(x)的图象关于直线x =5π6对称,故B 正确;当x =π3时,f(x)=0,故f(x)的图象关于点(π3,0)对称,故C 正确; 在[5π6,11π6]上,x −π3∈[π2,3π2]上,f(x)单调递减,故D 错误,故选:D .利用三角恒等变换化简函数的解析式,函数y =Asin(ωx +φ)的图象变换规律,正弦函数的图象和性质,得出结论. 本题主要考查三角恒等变换,函数y =Asin(ωx +φ)的图象变换规律,正弦函数的图象和性质,属于中档题.8.【答案】D【解析】解:∵M 是BB 1的中点,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12A 1A ⃗⃗⃗⃗⃗⃗⃗ ,B 1C ⃗⃗⃗⃗⃗⃗⃗ =A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A ⃗⃗⃗⃗⃗⃗⃗ ,∵AA 1=AB =2,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形, ∴|A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√5,|B 1C ⃗⃗⃗⃗⃗⃗⃗ |=2√2,又∠BAD =60°,∠AA 1B 1=∠AA 1D 1=90°,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗ =(A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12A 1A ⃗⃗⃗⃗⃗⃗⃗ )⋅(A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A ⃗⃗⃗⃗⃗⃗⃗ )=A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12A 1A ⃗⃗⃗⃗⃗⃗⃗ 2=2×2×12+12×4=4,∴cos <A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 1C ⃗⃗⃗⃗⃗⃗⃗ >=A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||B 1C⃗⃗⃗⃗⃗⃗⃗⃗ |=√5×2√2=√105, ∴异面直线A 1M 与B 1C 所成角的余弦值为√105. 故选:D .可以得出A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12A 1A ⃗⃗⃗⃗⃗⃗⃗ ,B 1C ⃗⃗⃗⃗⃗⃗⃗ =A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A ⃗⃗⃗⃗⃗⃗⃗ ,|A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√5,|B 1C ⃗⃗⃗⃗⃗⃗⃗ |=2√2,进行数量积的运算即可求出A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗ 的值,然后即可求出cos <A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,B 1C ⃗⃗⃗⃗⃗⃗⃗ >的值,从而得出异面直线A 1M 与B 1C 所成角的余弦值.本题考查了用向量求异面直线所成角的方法,异面直线所成角的定义,正四棱柱的定义,向量夹角的余弦公式,考查了计算能力,属于基础题.9.【答案】C【解析】解:如图,|OE|=√12+(√2)2=√3,则|BD|=2√12−3=6, |AC|=4√3.∴四边形ABCD 的面积为12×6×4√3=12√3. 故选:C .由题意画出图形,分别求出最长弦和最短弦的值,再由12|AC|⋅|BD|求解. 本题考查直线与圆的性质,考查数形结合的解题思想方法,是基础题.10.【答案】D【解析】解:函数g(x)=2f(x)−2kx −1有三个零点,即方程kx +12=f(x)有三个根. 函数y =kx +12过定点P(0,12).作出函数y =f(x)与y =kx +12的图象如图:当直线y =kx +12过(−1,0)与(0,12)时,k =12−00−(−1)=12; 当直线y =kx +12与y =1x +1(x <−1)相切时,联立{y =kx +12y =1x+1,得2kx 2−x −2=0. 由△=(−1)2+16k =0,解得k =−116.结合图象可知,若函数y =f(x)与y =kx +12的图象有3个交点, 则实数k 的取值范围为{−116}∪[0,12). 故选:D .函数g(x)=2f(x)−2kx −1有三个零点,即方程kx +12=f(x)有三个根.由函数y =kx +12过定点P(0,12).作出函数y =f(x)与y =kx +12的图象,求出直线y =kx +12过(−1,0)时的斜率,再利用判别式法求出直线y =kx +12与y =1x +1(x <−1)相切时直线的斜率,数形结合可得实数k 的取值范围.本题考查函数零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,是中档题.11.【答案】A【解析】解:设双曲线的左焦点为F 1,根据对称性知AFBF 1是平行四边形,所以有|AF|=|BF 1|, 又点B 在双曲线上,所以|BF|−|BF 1|=2a因为|BF|=3|AF|,所以|BF|−|BF 1|=3|AF|−|AF|=2|AF|=2a ,即|BF|=3a ,|BF 1|=a , 而在三角形BFF 1中,|BF|+|BF 1|=4a ≥2c ,|BF|−|BF 1|=2a <2c , 所以双曲线的离心率e ∈(1,2], 故选:A .由双曲线的对称性,连接A ,B 与右焦点F 的连线,可得AFBF 1是平行四边形,对应边平行且相等,3|AF|=|BF|,推出|BF|−|BF 1|=3|AF|−|AF|=2|AF|=2a ,然后结合三角形的边长关系,求和双曲线的离心率的范围. 本题考查双曲线的性质及三角形的性质,属于中档题.12.【答案】C【解析】解:依题意,对任意x ∈(0,+∞),2e 2x ≥aln(ax)恒成立, 记f(x)=2e 2x ,g(x)=aln(ax)(x >0),则f′(x)=4e 2x ,g′(x)=ax , 易知函数f(x)在(0,+∞)上单增,显然a >0,则函数g(x)在(0,+∞)上递增, 要使f(x)≥g(x)在(0,+∞)上恒成立,只需x ∈(0,+∞)时,函数f(x)的图象在函数g(x)图象的上方,如图可知,a 越大,函数g(x)图象的开口越大,故当两函数恰好相切时,此时实数a 取得最大值,设切点为(m,n),则{am=4e2m2e2m=n aln(am)=n ,解得{m=12n=2ea=2e,则实数a的最大值为2e.故选:C.记f(x)=2e2x,g(x)=aln(ax)(x>0),则只需x∈(0,+∞)时,函数f(x)的图象在函数g(x)图象的上方,当a取得最大值时,两函数恰好相切,设出切点,建立方程组,解出即可.本题考查利用导数研究函数的最值,考查不等式的恒成立问题,同时也涉及了导数的几何意义的运用,考查转化思想及运算能力,属于中档题.13.【答案】0.72【解析】解:一次比赛中,中国女排能够闯入决赛的概率为0.8,在闯入决赛条件下中国女排能够获胜的概率是0.9,则中国女排闯进决赛且获得冠军的概率为:P=0.8×0.9=0.72.故答案为:0.72.利用相互独立事件概率乘法公式能求出中国女排闯进决赛且获得冠军的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.14.【答案】C42H24【解析】解:设并n苯的分子式中C原子的个数为a n,H原子的个数是b n,由题干数据可知{a n}是公差为4的等差数列,{b n}是公差为2的等差数列,因为a2=10,b2=8,所以a n=10+4(n−2)=4n+2,b n=8+2(n−2)=2n+4,所以a10=42,b10=24,所以并十苯的分子式为C42H24,所以答案为C42H24.本题主要考察等差数列.设并n苯分子式中C原子的个数为a n,H原子的个数是b n,由题干数据可知{a n}是公差为4的等差数列,{b n}是公差为2的等差数列,进而求得n=10时a n和b n的值,从而得到并十苯的分子式.本题考查等差数列,要求学生能够利用已知归纳出等差数列的首项和公差,进而求解指定项.属于基础题.15.【答案】(1,+∞)【解析】解:f(x)>e2−2x+1,即e2x f(x)−e2x>e2,令g(x)=e2x f(x)−e2x,则g′(x)=e2x[2f(x)+f′(x)−2]>0,故g(x)在R递增,而g(1)=e2f(1)−e2=e2,∴e2x f(x)−e2x>e2,即g(x)>g(1),即x>1,故不等式的解集是(1,+∞),故答案为:(1,+∞)令g(x)=e2x f(x)−e2x,得到g(x)>g(1),结合函数的单调性求出不等式的解集即可.本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题.16.【答案】π3√32【解析】解:①2c⋅tanB=b⋅(tanA+tanB),2sinC⋅tanB=sinB⋅(tanA+tanB),因为sinC=sin[π−(A+B)]=sin(A+B)=sinAcosB+cosAsinB,代入上式得,2[sinAcosB+cosAsinB]⋅sinBcosB=sinB⋅(sinAcosA+sinBcosB)2[sinAcosB+cosAsinB]⋅1cosB =sinAcosA+sinBcosB,2[sinAcosB+cosAsinB]⋅cosA=sinAcosB+sinBcosA,2sinAcosAcosB+2cosAcosAsinB=sinAcosB+sinBcosA,2sinAcosAcosB+2cosAcosAsinB−sinAcosB−sinBcosA=0,sinAcosB(2cosA−1)+cosAsinB(2cosA−1)=0,(2cosA−1)(sinAcosB+cosAsinB)=0,(2cosA−1)sin(A+B)=0,(2cosA−1)sinC=0,所以2cosA−1=0,即cosA=12,因为是锐角三角形,所以A=π3,②取AB边中点D,则AB⊥ODcosB 2sinC ⋅AB⃗⃗⃗⃗⃗ +cosC2sinB⋅AC⃗⃗⃗⃗⃗ =m AO⃗⃗⃗⃗⃗ ,cosB2sinC⋅AB⃗⃗⃗⃗⃗ +cosC2sinB⋅AC⃗⃗⃗⃗⃗ =m(AD⃗⃗⃗⃗⃗⃗ +DO⃗⃗⃗⃗⃗⃗ )cosB 2sinC ⋅AB⃗⃗⃗⃗⃗ 2+cosC2sinB⋅AC⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗ =m(AD⃗⃗⃗⃗⃗⃗ +DO⃗⃗⃗⃗⃗⃗ )⋅AB⃗⃗⃗⃗⃗ ,cosB 2sinC ⋅c2+cosC2sinB⋅b⋅c⋅cosA=m(AD⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗ +DO⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗ ),cosB 2sinC ⋅sin2C+cosC2sinB⋅sinB⋅sinC⋅cosA=m⋅12AB⃗⃗⃗⃗⃗ 2,cosB 2sinC ⋅sin2C+cosC2sinB⋅sinB⋅sinC⋅cosA=12m⋅sin2C,cosB+cosAcosC=msinC,所以m=cosB+cosAcosCsinC =cos[π−(A+C)]+cosAcosCsinC=−cosAcosC+sinAsinC+cosCcosAsinC=sinA=√32.故答案为:π3,√32.①利用正弦定理边化角,结合两角和差公式进行化简变形,即可得答案.②取AB边中点D,则AB⊥OD,cosB2sinC ⋅AB⃗⃗⃗⃗⃗ +cosC2sinB⋅AC⃗⃗⃗⃗⃗ =m(AD⃗⃗⃗⃗⃗⃗ +DO⃗⃗⃗⃗⃗⃗ )cosB2sinC⋅AB⃗⃗⃗⃗⃗ 2+cosC2sinB⋅AC⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗ =m(AD⃗⃗⃗⃗⃗⃗ +DO⃗⃗⃗⃗⃗⃗ )⋅AB⃗⃗⃗⃗⃗ ,利用正弦定理边化角,化简即可得出答案.本题考查正弦定理,向量数量积,属于中档题.17.【答案】解:(Ⅰ)证明:∵b n≠0,a n b n+1−a n+1b n+2b n+1b n=0,∴a nb n −a n+1b n+1+2=0.又c n=a nb n,∴c n−c n+1+2=0,即c n+1−c n=2,c1=a1b1=2,∴{cn}为首项、公差均为2的等差数列,∴c n=2n;(Ⅱ)解:由(Ⅰ)得c n=a nb n =2n,∵bn=13 n,∴a n=2n×(13)n.∵S n=2[1×13+2×(13)2+3×(13)3+⋯n⋅(13)n]①,∴13S n=2[1×(13)2+2×(13)3+⋯(n−1)⋅(13)n+n⋅(13)n+1]②,由①−②可得:23S n=2[13+(13)2+(13)3+⋯+(13)n−n⋅(13)n+1]=2[13[1−(13)n]1−13−n⋅(13)n+1]=1−(2n3+1)⋅(13)n,∴S n=32−2n+32⋅13n.【解析】(Ⅰ)先由题设条件⇒a n bn −a n+1b n+1+2=0,再由c n=a nb n⇒c n+1−c n=2,进而证明数列{cn}为等差数列,求出其通项公式;(Ⅱ)先由(Ⅰ)和题设条件求出a n ,再利用错位相减法求其前n 项和即可.本题主要考查等差数列的定义、通项公式及错位相减法在数列求和中的应用,属于中档题.18.【答案】解:(Ⅰ)根据所给数据可知B 套餐的平均销售高于A 套餐,但A 套餐销售情况比B 套餐更稳定,波动性小;(Ⅱ)设“一周内B 套餐连续两天中至少有一天销量业绩优秀”为事件C , 则P(C)=36=12;(Ⅲ)由题意知,随机变量X 的可能取值为0,1,2; 计算P(X =0)=C 43C 63=15,P(X =1)=C 21⋅C 42C 63=35,P(X =2)=C 22⋅C 41C 63=15, 所以随机变量X 的分布列为, X 012P153515数学期望为E(X)=0×15+1×35+2×15=1.【解析】(Ⅰ)根据所给数据分析判断即可; (Ⅱ)利用古典概型的概率公式计算就;(Ⅲ)由题意知随机变量X 的可能取值,计算对应的概率值,写出分布列,求出数学期望.本题考查了离散型随机变量的分布列和数学期望的计算问题,也考查了运算求解能力,是基础题.19.【答案】解:(Ⅰ)证明:取AE 中点O ,连结OB ,∵在直角梯形ABCD 中,AB//DC ,∠BAD =90°,AB =4√2,AD =2√2,DC =3√2,点E 在CD 上,且DE =2√2,将三角形ADE 沿线段AE 折起到PAE 的位置,PB =2√6, ∴∠OAB =π4,AO =12AE =2,在△OAB 中,AO =2,AB =4√2,∠OAB =π4, ∴OB 2=4+32−2×2×4√2×√22=20,在Rt △DAE 中,PO =12AE =2,PB =2√6, ∴PB 2=OB 2+PO 2,∴PO ⊥OB ,∵PA =PE ,AO =OE ,∴PO ⊥AE , ∵OB ∩AE =O ,∴PO ⊥平面ABCE , 又PO ⊂面DAE ,∴平面PAE ⊥平面ABCE . (Ⅱ)解:取AB 中点M ,连结OM , ∵AM =12AB =2√2,AO =2,∠OAB =π4,∴OM ⊥AE ,∵PO ⊥面ABCE ,∴PO ,OM ,AE 两两垂直, 如图,建立空间直角坐标系,A(0,−2,0),E(0,2,0),M(2,0,0), 又∵M 是AB 中点,∴B(4,2,0),P(0,0,2),EC ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ =(1,1,0), ∴C(1,3,0),又PF ⃗⃗⃗⃗⃗ =14PC ⃗⃗⃗⃗⃗ =(14,34,−12),∴F(14,34,32), 设平面ABF 的法向量n⃗ =(x,y ,z), AB ⃗⃗⃗⃗⃗ =(4,4,0),AF ⃗⃗⃗⃗⃗ =(14,114,32), 则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4x +4y =0n ⃗ ⋅AF ⃗⃗⃗⃗⃗ =x 4+11y 4+3z2=0,取y =1,得n ⃗ =(−1,1,−53), 平面PAE 的法向量m⃗⃗⃗ =(1,0,0), 设平面PAE 与平面ABF 所成的锐二面角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=√43=3√4343, ∴平面PAE 与平面ABF 所成的锐二面角的余弦值为3√4343.【解析】(Ⅰ)证明:取AE 中点O ,连结OB ,推导出PO ⊥OB ,PO ⊥AE ,从而PO ⊥平面ABCE ,由此能证明平面PAE ⊥平面ABCE .(Ⅱ)取AB 中点M ,连结OM ,推导出PO ,OM ,AE 两两垂直,建立空间直角坐标系,利用向量法能求出平面PAE 与平面ABF 所成的锐二面角的余弦值.本题考查考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查了学生运用数学基础知识解决实际问题的能力,是中档题.20.【答案】解:(Ⅰ)由C 1关于x 轴对称,P 3,P 4关于x 轴对称,所以P 3,P 4在C 1上,所以34b +1a =1,若P 1在C 1上,则1b 2+1a 2>34b 2+1a 2=1,所以P 1不在C 1上,P 2在C 1上, 所以a =2,b =1,即C 1:y 24+x 2=1,又由p =12,可得C 2:y 2=x ;(Ⅱ)(i)证明:设直线l :x =my +1,代入y 2=x 中,可得y 2−my −1=0, 所以y 1+y 2=m ,y 1y 2=−1,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=y 12y 22+y 1y 2=1−1=0;(ii)设直线OA :x =m 1y(m 1>0),将直线OA 代入C 1中, 可得y2(4m 12+1)=4,即y M =√1+4m 1,同理可得y N =1√4+m 1, S 1S 2=12|OA|⋅|OB|12|OM|⋅|ON|=|OA||OM|⋅|OB||ON|=|y 1||y M |⋅|y 2||y N |=|y 1y 2||y M y N |=√4m 12+1⋅√m 12+44|m 1|=14√4m 12+4m 12+17≥14√2√16+17=54,当且仅当m 12=1m 12,即m 1=1时取得等号.【解析】本题考查椭圆的方程和性质,考查直线和抛物线的位置关系,注意联立直线方程和抛物线方程,运用韦达定理,考查化简运算能力,属于较难题目.(Ⅰ)由椭圆的对称性,判断P 3,P 4在C 1上,再由椭圆的范围可得P 1不在C 1上,P 2在C 1上,可得a ,b ,即有椭圆方程,由p 的值,可得抛物线的方程;(Ⅱ)(i)设直线l :x =my +1,联立抛物线的方程,运用韦达定理和向量数量积的坐标表示,即可得证; (ii)设直线OA :x =m 1y(m 1>0),将直线OA 代入C 1中,求得M 的纵坐标,同理可得N 的纵坐标,再由三角形的面积公式和基本不等式,即可得到所求最小值.21.【答案】解:(I)f′(x)=cosx −sinx −a ,当a =1时,f′(x)=cosx −sinx −1=−√2sin(x −π4)−1,令f′(x)>0可得sin(x −π4)<−√22可得x ∈[−π4,0),令f′(x)<0可得sin(x −π4)>−√22可得x ∈(0,π2],故f(x)在[−π4,0)上单调递增,在(0,π2)上单调递减, 故f(x)max =f(0)=1, ∵f(−π4)=π4,f(π2)=1−π2<π4, ∴f(x)min =f(π2)=1−π2, (II)f(−π)=aπ−1≤1,故a ≤2π, f′(x)=−√2sin(x −π4)−a ,∵−π≤x ≤0,∴−5π4≤x −π4≤−π4,∴−1≤sin(x −π4)≤√22,−1≤−√2sin(x −π4)≤√2,(i)a ≤−1时,f′(x)≥0,f(x)在[−π,0]上单调递增,f(x)<f(0)=1恒成立, (ii)−1<a ≤2π时,当−π≤x ≤−π4时,f′(x)单调递增,当−π4≤x ≤0时,f′(x)单调递减, ∴f′(π)=−1−a <0,f′(−π4)=√2−a >0,f′(0)=1−a >0, ∴存在a ∈(−π,−π4),使得f′(a)=0,所以当−π≤x <a 时,f′(x)<0,函数f(x)单调递减,当a <x ≤0时,f′(x)>0,函数单调递增, 又因为f(−π)=aπ−1≤1,f(0)=1≤1, ∴f(x)≤1,∴a ≤2π【解析】(I)把a =1代入,然后对函数求导,然后结合导数与单调性的关系可求函数的最值;(II)由已知不等式恒成立转化为求解函数的最值,结合导数对a 进行分类讨论,然后结合导数与单调性关系及函数性质可求.本题主要考查了利用导数求解函数的最值,及由不等式的恒成立求解参数范围问题,体现了分类讨论思想的应用. 22.【答案】解:(Ⅰ)曲线C 1:{x =4t1+t 2y =1−t 21+t 2(t 为参数)整理得x 2=2t 1+t 2,y =−1+21+t 2≠−1, 所以转换为直角坐标方程为:x 24+y 2=1(y ≠−1).曲线C 2的极坐标方程为ρ=2,正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为(2,π4).转换为直角坐标为(√2,√2) 所以B(2,3π4)转换为直角坐标为(−√2,√2),C(2,5π4)转换为直角坐标为(−√2,−√2),D(2,7π4)转换为直角坐标为(√2,−√2).(Ⅱ)设点P(x 0,y 0),则:x 024+y 02=1,所以|PA|2+|PB|2+|PC|2+|PD|2=4x 02+4y 02+16=3x 02+20, 由于0≤x 02≤4,所以|PA|2+|PB|2+|PC|2+|PD|2的取值范围为[20,32].【解析】(Ⅰ)直接利用参数方程极坐标方程和直角坐标方程之间的转换求出结果.(Ⅱ)利用曲线上的点的范围,进一步求出关系式的范围.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(Ⅰ)f(x)+f(x−1)≥1,即为|ax−1|+|ax−a−1|≥1,而a>0时,|ax−1|+|ax−a−1|≥|ax−1−ax+a+1|=|a|=a,当且仅当(ax−1)(ax−a−1)≤0时,上式取得等号.即有|ax−1|+|ax−a−1|的最小值为a,由题意可得1≤(|ax−1|+|ax−a−1|)min,则a≥1,即A=[1,+∞);(Ⅱ)证明:x+y+1xy −(1x+1y+xy)=(x−1x)+(y−xy)+(1xy−1y)=(x−1)(x+1)x+y(1−x)+1xy(1−x)=x−1xy [(x+1)y−xy2−1]=x−1xy[xy(1−y)+(y−1)]=(x−1)(xy−1)(1−y)xy,由x,y∈[1,+∞),可得x−1≥0,1−y≤0,xy≥1,即xy−1≥0,则(x−1)(xy−1)(1−y)xy≤0,可得x+y+1xy≤1x+1y+xy.【解析】(Ⅰ)由题意可得1≤(|ax−1|+|ax−a−1|)min,由绝对值不等式的性质可得最小值,即可得到所求集合A;(Ⅱ)运用作差比较法,结合因式分解和不等式的性质,即可得证.本题考查不等式恒成立问题的解法,以及不等式的证明,考查绝对值不等式的性质和作差比较法的运用,考查运算能力和推理能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx 届高考理科数学第三次模拟考试试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1 计算21ii- = A .3i -+B .1i -+C .1i -D .22i -+2 过点()3,2-的直线l 经过圆2220x y y +-=的圆心,则直线l 的倾斜角大小为A .30︒B .60︒C .150︒D .120︒3 设函数f(x)的图象关于点(1,23)对称,且存在反函数1-f ( x ),若f(3) = 0,则1-f(3)等于A .-1B .1C .-2D .24 设m ,n 是两条不同的直线,α、β、γ是三个不同的平面 给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ; ②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若α∥β,β∥γ,m ⊥α,,则m ⊥γ其中正确命题的序号是:A .①和②B .②和③C .③和④D .①和④5.已知一个正四棱锥的各棱长均相等,则其相邻两侧面所成的二面角的大小为A .arcos 31B .arcsin-322.C .arctan 22-.D .arccot 42-.6 {}{}211,,log 1,A x x x R B x x x R =-≥∈=>∈,则“x A ∈”是“x B ∈”的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件7 若点(3,1)p -在双曲线22221(0,0)y x ab a b =>>-的左准线上,过点p 且方向向量为(2,5)a =r的光线,经直线2y =-反射后通过双曲线的左焦点,则这个双曲线的离心率A .153B .33C .53D .438.已知四面体A BCD -中,2,1,AB CD AB ==与CD 间的距离与夹角分别为3与30o,则四面体A BCD -的体积为A .12B .1C .2D9.从1,2,3,4,5 中取三个不同数字作直线0=++c by ax 中c b a ,,的值,使直线与圆122=+y x 的位置关系满足相离,这样的直线最多有A .30条B .20条C .18条D .12条10.已知等差数列{a n }与等差数列{b n }的前n 项和分别为S n 和T n ,若3213+-=n n T S n n ,则=1010b a A .23B .1314C .2329D .4156 11.若3a >,则方程3210x ax -+=在0,2.上恰有 个实根.A .0B .1C .2D .312.已知M 点为椭圆上一点,椭圆两焦点为F 1,F 2,且210,26a c ==,点I 为12MF F V 的内心,延长MI 交线段F 1F 2于一点N ,则MI IN的值为A .54B .53C .43D .34二、填空题:(本大题共4小题,每小题4分,共16分)13 已知,x y 满足11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为14 12nx x ⎛⎫- ⎪⎝⎭的展开式的二项式系数之和为64,则展开式中常数项为15 已知定义在正实数集上的连续函数()212(01)11(1)x f x x x x ax ⎧+<<⎪=--⎨⎪+≥⎩,则实数a 的值为16.若函数f x .=)3(log 1ax a a -+-在0,3.上单调递增,则a ∈三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17 (本小题12分)已知函数()()22sin cos 2cos 2f x x x x =++-(1).求函数()f x 的最小正周期; (2).当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值,最小值18 (本小题12分)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行不放回抽检以决定是否接收 抽检规则是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品(1).求这箱产品被用户拒绝接收的概率;(2).记ξ表示抽检的产品件数,求ξ的概率分布列及期望19 (本小题满分12分)如图,已知正三棱柱ABC - 111C B A ,D 是AC 的中点,∠1C DC = 60°(1).求证:A 1B ∥平面B 1C D ; (2).求二面角D -B 1C -C 的大小。

20 (本小题12分)已知函数21()()axf x x x e a=--(0a >)(1)当2a =时,求函数()f x 的单调区间; (2)若不等式3()0f x a+≥对x R ∈恒成立,求a 的取值范围21 本小题12分.如图,在直角坐标系中,O 为坐标原点,直线AB ⊥x 轴于点C , ||4OC =u u u r,3CD DO =u u u r u u u r ,动点M 到直线AB 的距离是它到点D 的距离的2倍(1)求点M 的轨迹方程;(2)设点K 为点M 的轨迹与x 轴正半轴的交点,直线l 交点M 的轨迹于,E F 两点,E F 与点K 均不重合.,且满足KE KF ⊥u u u r u u u r求直线EF 在X 轴上的截距;(3)在(2)的条件下,动点P 满足2OP OE OF =+u u u r u u u r u u u r,求直线KP 的斜率的取值范围22.(本小题14分)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320kkx k x k -++=g的两个根,且212(123)k k a a k -=L ≤,,,. (1)求1a ,3a ,5a ,7a ;(2)求数列{}n a 的前2n 项的和2n S ;(3)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.一、选择题:题号1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题:13、14、15、16、三、解答题:17、18、19、20、21、22、(注:解答题答题卷的空间自留)一、选择题 1.B 2.D 3 .A4.D5.D6.B7.A8.A9.C10.D11.B12.B二、填空题13、3 14、-160 15、32- 16、31,2⎛⎤⎥⎝⎦三、解答题17、(1)()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭ …… 3分∴()f x 的最小正周期为π ………………… 5分(2)337,,244444x x πππππ⎡⎤∈∴≤+≤⎢⎥⎣⎦Q , ………………… 7分1sin 242x π⎛⎫∴-≤+≤⎪⎝⎭………………… 10分∴()1f x ≤≤ ………………… 11分∴当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为1,最小值………… 12分18、(1)设这箱产品被用户拒绝接收事件为A,被接收为A ,则由对立事件概率公式()1()P A P A =-,得:8768()1109815P A ⨯⨯=-=⨯⨯158………… 6分(2)1,2,3.ξ的可能取值为218288728(1),(2),(3)1051094510945P ξP P ξξ⨯⨯=========⨯⨯ ξ的分布列为 ………… 10分P51 458 4528 …………11分∴ E ξ=10945…………12分 19、解法一:(1)连结B 1C 交BC 1于O ,则O 是B 1C 的中点,连结DO 。

∵在△A 1B C 中,O 、D 均为中点, ∴A 1B ∥DO …………………………2分 ∵A 1B ⊄平面B 1C D ,DO ⊂平面B 1C D , ∴A 1B ∥平面B 1C D 。

…………………4分 (2)设正三棱柱底面边长为2,则DC = 1,∵∠1C DC = 60°,∴C 1C =3,作DE ⊥BC 于E∵平面BC 1C ⊥平面ABC ,∴DE ⊥平面BC 1C 1B 作EF ⊥B 1C 于F ,连结DF ,则 DF ⊥B 1C ,∴∠DFE 是二面角D -B 1C -C 的平面角……………………………………8分在Rt △DEC 中,DE =21,23=EC 在Rt △BFE 中,EF = BE ·sin 723373231=⨯=BC C ∴在Rt △DEF 中,tan ∠DFE =37337223=⋅=EF DE ∴二面角D -B 1C -C 的大小为arctan37………………1分 解法二:以AC 的中D 为原点建立坐标系,如图,设| AD | = 1∵∠1C DC =60°∴| C 1C | =3,则A 1,0,0.,B 0,3,0.,C -1,0,0,1A 1,03.,()3,3,01B ,()3,0,11-C(1)连结1B C 交B 1C 于O是1B C的中点,连结DO ,则O ⎪⎪⎭⎫⎝⎛-23,23,21,1AB =2∵A 1B ⊄平面B 1C D ,∴A 1B ∥平面B 1C D . ………4分(2)1DC =-1,0,3.,()3,3,11=C设平面B 1C D 的法向量为n =(x , y , z ),则1100n DC n C B ⋅=⋅=u u u u v u u u u v 且即⎪⎩⎪⎨⎧=-+=+-03303z y x z x 则有y 3= 0令z = 1,则n =(3,0,1)………8分设平面BC 1C 1B 的法向量为m =( x ′ ,y ′,z ′)1CC u u u u r =0,0,3.,, ⎪⎩⎪⎨⎧=⋅=⋅011B C m CC m 即=-+=00∴z′= 0令y = -1,解得m =3,-1,0.二面角D —B 1C —C 的余弦值为cos <n , m >=∴二面角D —B 1C —C 的大小为arccos43…………12分 20、对函数()f x 求导得:()(2)(1)axf x e ax x '=+- ……………2分(1)0当2a =时, 2()(22)(1)xf x e x x '=+-令()0f x '>解得 1x >或1x <-()0f x '<解得11x -<<所以, ()f x 单调增区间为(,1)-∞-,(1,)+∞,()f x 单调减区间为-1,1. ………5分34n m n m ⋅=⋅(1C B =u u u u r(2)令()0f x '=,即(2)(1)0ax x +-=,解得2x a=-或1x = …… 6分 由0a >时,列表得:……………8分对于2x a <-时,因为220,,0x x a a >->>,所以210x x a-->, ∴()f x >0… 10 分对于2x a ≥-时,由表可知函数在1x =时取得最小值1(1)0af e a=-< 所以,当x R ∈时,min 1()(1)af x f e a==-由题意,不等式3()0f x a+≥对x R ∈恒成立,所以得130a e a a-+≥,解得0ln3a <≤ …12分21、(1)依题意知,点M 的轨迹是以点D 为焦点、直线AB 为其相应准线,离心率为12的椭圆,设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c ,又||4OC =u u u r ,3CD DO =u u u r u u u r ,∴点D 在x 轴上,且3CD =u u u r ,则2a c c -=3,12c a =解之得:2,1a c ==,b =O 为椭圆的对称中心∴动点M 的轨迹方程为:22143x y += …… 4分 (2)设()()1122,,,E x y F x y ,设直线EF 的方程为x my n =+(-2〈n 〈2〉,代入22143x y +=得()2223463120m y mny n +++-= …… 5分()()22223612344m n m n ∆=-+-,21212226312,3434mn n y y y y m m -+=-=++ ()221212122284122,3434n n m x x m y y n x x m m -+=++==++…… 6分 Q KE KF ⊥u u u r u u u r ,K2,0.,1212(2)(2)0x x y y ∴--+=,22222412161216312034n m n m n m --+++-∴=+,271640n n ∴-+= 解得:2,7n =2n =舍, ∴ 直线EF 在X 轴上的截距为 27 …………8分 (3)设00(,)P x y ,由2OP OE OF =+u u u r u u u r u u u r 知,121200,22x x y y x y ++== 直线KP 的斜率为020278y m k x m ==-+ ………… 10分 当0m =时,0k =;当0m ≠时,187k m m =+,87m m m +≥=Q “=”)或87m m m+≤-= “=”), k ⎡⎫⎛∴∈⋃⎪ ⎢⎣⎭⎝,综上所述:k ⎡∈⎢⎣⎦….12分 22、(1)方程2(32)320k k x k x k -++=g的两个根为13x k =,22k x =, 当1k =时,1232x x ==,,所以12a =;当2k =时,16x =,24x =,所以34a =;当3k =时,19x =,28x =,所以58a =时;当4k =时,112x =,216x =,所以712a =. ………… 4分(2)2122n n S a a a =+++L 2(363)(222)nn =+++++++L L 2133222n n n ++=+-. ………… 8分(3)证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++L ,所以112116T a a ==, 2123411524T a a a a =+=. ………… 9分 当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++L , 345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭L ≥2311111662622n ⎛⎫+-++ ⎪⎝⎭L g ≥ 1116626n =+>g …… 11分 同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++L 5678212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭L ≤31511112492922n ⎛⎫-+++ ⎪⎝⎭L g ≤ 515249224n =-<g ………… 13分 综上,当n ∈N*时,15624n T ≤≤ ………… 14分。

相关文档
最新文档