空分生产工艺过程

合集下载

空分流程简介

空分流程简介

空分装置空分流程简述第一章精馏一、进塔流程:进塔流程(如图:1-1所示)(图:1-1)二、精馏过程:1、什么叫精馏:简单的说:精馏就是利用两种不同物质(气体)的沸点不同,多次地进行混合蒸气的部分冷凝和混合液体的部分蒸发的过程就叫做精馏。

2、进塔空气的作用:空气从纯化系统来经冷箱换热与膨胀后的空气混合后进入下塔底部,这部分气体做为下塔的上升蒸气;经高压节流的液空被送往下塔中部作为下塔的部分冷凝液;3、精馏---下塔液氮的分离:精馏塔下部的上升蒸气温度要比上部下流的液体温度高,所以膨胀空气进入下塔后空气温度会比上塔下流的温度高,当下塔的气体每穿过一块塔板就会遇到比它温度低的液体,这时,气体的温度会下降,并不断的被冷凝成液体,液体被部分气化;由于氧的液化温度最高,所以氧被较多的冷凝下来,剩下的蒸气含氮浓度就会有所提高。

就这样,一次,又一次的循环下去,到塔顶后,蒸气中的氧大部分被冷凝到液体中去了;从而得到了蒸气中含氮纯度达到99.9%的高纯氮;这部分气体被引入主冷,被上塔的液氧冷凝成液氮后部分做为回流液回流下塔再次精馏(如图:1-2所示),部分被送往上塔作为上塔的回流液。

同时下塔液空纯度也得到了含氧36%的液空。

(图:1-2)4、上塔精馏:将下塔液空经节流降压后送到上塔中部,作为上塔精馏原料;而从主冷部分抽出的液氮则成为上塔的回流液;与下塔精馏原理相同,液体下流时,经多次部分蒸发和冷凝,氮气较多的蒸发出来,于是下流液体中含氧浓度不断提高,到达上塔底部时,可以获得含氧99.9%的液氧;部分液氧作为产品抽出;由于下塔上升蒸气(纯氮气),被引入主冷冷凝,所以它将热量较多的传给了液氧,致使液氧复热蒸发作为上塔的上升气;在上升过程中,一部分蒸气冷凝成液体流下,另一部分蒸气随着不断上升,氮含量不断增加;到塔顶时,可得到99%以上的氮气。

第二章开车步骤一、启动步骤:1、空气压缩机;2、空气预冷系统;3、空气纯化系统;4、空气增压机;5、空气膨胀机;6、分馏塔系统操作。

空分的工艺流程

空分的工艺流程

空分的工艺流程
《空分工艺流程》
空分是一种将空气中的氧气、氮气、稀有气体和其他成分通过物理分离的工艺。

空分工艺通常包括空气压缩、冷却凝华、蒸汽冷凝和分离等步骤。

首先,空气通常会被压缩到高压状态,以便进行后续的处理。

然后,被压缩的空气会在减压阀的作用下迅速减压并且冷却,在这个过程中会发生冷凝和液化。

接着,液化后的空气还会在蒸馏塔中进行进一步的分离工艺。

在蒸馏塔中,液化的空气会被升温并且进入一个叫做精馏塔的设备,通过塔内填料层的多级分馏逐步分离成不同的成分。

这些成分包括氧气、氮气、稀有气体等。

通过这种分馏过程,不同的气体可以被选择性地收集和提纯。

最终,通过这种工艺流程,空气中的各种成分可以被有效地分离和提纯,得到高纯度的氧气、氮气和其他气体产品。

这些高纯度的气体产品被广泛应用于医疗、工业、科学研究等领域。

总的来说,《空分工艺流程》是一种高效的气体分离技术,其具体步骤和设备设计可以根据需要进行调整和优化,以满足不同领域的需求。

空分工艺有哪些操作规程

空分工艺有哪些操作规程

空分工艺有哪些操作规程
空分工艺是指通过各种化学和物理方法将混合气体分离成不同成分的工艺。

以下是空分工艺的常见操作规程:
1. 压缩:将混合气体压缩到一定压力,以利于后续的分离操作。

2. 冷却:冷却混合气体以降低气体温度,使得气体冷凝和液化。

3. 脱湿:去除混合气体中的水分,以防止水分对设备和分离效果的影响。

4. 脱硫:去除混合气体中的硫化物,以防止硫化物对设备和分离效果的影响。

5. 精馏:通过加热混合气体使其汽化,然后通过冷凝使其凝结,实现不同成分的分离。

6. 吸附:利用吸附剂对混合气体进行吸附,以分离不同成分。

7. 膜分离:利用合适的膜材料对混合气体进行分离,通过渗透和选择性通透来实现不同成分的分离。

8. 催化:利用适当的催化剂加速混合气体的化学反应,使其发生分解或转化,从而实现分离。

9. 合成:将分离出的不同成分再进行合成,形成所需的单一或高纯度的气体。

在实际的空分工艺操作中,通常会根据具体的要求和条件,选择合适的操作规程来进行不同成分的分离。

以上列举的操作规程只是一些常见的方法,实际操作中还会有更多的具体细节和改进措施。

空分车间生产工艺与原理

空分车间生产工艺与原理

空分车间生产基本工艺与原理1、空分综述1.1、空气及空气分离空气存在于我们地球表面,属典型的多组分混合物,主要成分有氮气、氧气及惰性气体,按体积含量计,氧气占20.95%、氮气占78.09%、氩占0.932%,此外还有微量的氢、氖、氦、氪、氙、氡,以及不定量的水蒸汽及二氧化碳。

在标准状况下,空气液化温度为87.7K。

空气分离是指把空气通过一定的方法分离出氧气、氮气和惰性气体的过程。

目前分离的方法主要有深冷法、变压吸附法、膜分离法,它们各有自己的优缺点。

变压吸附法、膜分离法主要用于低纯度、小型空分设备;焦炉煤气制合成氨项目用产品气量大且纯度要求高,故采用深冷法。

深冷法基本原理是:将空气液化后,根据各组份沸点不同,通过精馏将各组分进行分离。

空气分离的主要产品为氧气及部分氮气。

1.2、空分装置简介1.2.1.装置特点我公司选用了由开封黄河制氧厂生产的第六代空分装置,流程上采用全低压、外压缩,不提氩的结构。

主要特点:⑴采用带自动反吹的自洁式空气过滤器,保证了运行周期及运行效果;⑵预冷系统利用多余的污氮气及氮气对水进行冷却,降低冷水机组热负荷,减小冷水机组功率选型,不但节能且充分利用了富余气体干基吸湿潜热;⑶采用分子筛吸附,大大简化空气净化工艺,延长了切换周期,减少加工空气切换损失。

利用分子筛所具有的选择性高吸附率,提高了净化效果,减少碳氢化合物、氮氧化物及二氧化碳进入液氧的量,确保主冷的安全同时延长装置大加温周期;⑷采用增压机制动的透平膨胀机,提高单位气体制冷量,减少膨胀空气对上塔精馏段的影响,优化了精馏操作;⑸分馏塔下塔采用高效塔板,上塔采用规整填料,降低精馏塔操作压力,提高了塔板和填料的精馏效率,保证了氧的提取率、降低制氧单耗;⑹设置液氧贮槽及汽化系统,加大主冷液氧排放量,杜绝碳氢化合物、氮氧化物及二氧化碳在液氧中析出,最大限度保证主冷安全。

液氧汽化系统为空分装置短停时系统用氧提供了方便,确保后工段工艺连续,减少后工段开停车损失;⑺装置采用DCS集散控制系统,使操作更加方便和稳定。

空分工艺流程简介

空分工艺流程简介

和远气体 技术中心
三、压缩系统
电机
压缩机头
润滑系统
冷却系统
电控、仪表系统
压缩系统
压缩系统将空气压缩到一定压力,为节流或膨胀产生冷量,为气体液化做准备。压缩系统耗电是空分系统耗能主要来源,无论从安全还是能耗角度来看,压缩系统地位都尤为突出突出,是制冷液化系统的心脏!
带动压缩机
压缩空气
润滑压缩机和电机轴承
污氮预冷水冷塔
换热效果
换热温差
换热系数
换热器材料结构
换热器是否结垢、阻塞
流体流动速度、流向
换热介质
水冷塔
空冷塔
和远气体 技术中心
四、冷却系统
冷箱内换热系统
主换热器
冷凝蒸发器
过冷器
是上塔底部液氧汽化、下塔顶部氮气液化,冷量自上塔传至下塔
回收返流气体的冷量
将空气冷却到所需状态
过冷去上塔夜空、液氮,减小节流气化率,增加回流液。
二、净化系统
和远气体 技术中心
净化系统主要由自洁式空气过滤器、纯化器组成。前者原理为过滤除尘,后者原理为吸附法除水蒸气、二氧化碳、碳氢化合物。具体的原理及操作,我们以后再讲,这里强调一下日常我们所要关注的内容。
1、流量(处理能力):选加工空气量的两倍; 2、压力损失; 3、除尘效率; 4、寿命
1、温度 2、压力 3、出纯化器后空气露点 4、出纯化器二氧化碳含量
三、压缩系统
1、活塞式压缩机从低压到超高压,适用范围广;效率高,排量范围广; 2、排气不稳定,脉动大;结构复杂,易损件多;活塞油润滑,导致空气带油。
压缩机应用实况
1、转速高,处理气量大,体积质量相对较小;结构简单;排气平稳,不受润滑油污染; 2、气量小的时侯效率低

空分工艺流程介绍07

空分工艺流程介绍07

5.分子筛纯化系统
分子筛纯化系统由两台分子筛吸附器和 三台电加热器组成。
分子筛吸附器吸附空气中的水份、二氧 化碳和一些碳氢化合物,两台分子筛吸附 器一台工作,另一台再生,交替运行。再 生气的加热由电热器提供热量在其中完成。
6.分馏塔精馏系统 出分子筛吸附器的空气首先分为两部分:
第一部分直接进入主换热器冷却后进入 下塔;
第二部分通过空气增压机进一步压缩, 经增压机末级后冷却器冷却后再次分成两 部分。
一部分经膨胀机增压端增压并冷却后进 入主换热器,在主换热器合适的位置抽出, 进入膨胀机膨胀端膨胀后进入下塔参加精馏;
另一部分经过主换热器,然后经节流阀 节流成液体后进入下塔参加精馏。
下塔中的上升气体通过与回流液体接触 含氮量增加。所需的回流液氮来自下塔顶部 的冷凝蒸发器,在这里液氧得到蒸发,而气 氮得到冷凝。
利用双泵内压缩的流程使其投资低、安全 性能高、操作方便,还能控制优化。
二、工艺技术总述
本套制氧站工艺流程采用常温分子筛 预净化,空气增压透平膨胀机提供装置 所需冷量,双塔精馏,单泵内压缩流程, 同时设有液体贮存及汽化装置系统,整套 空分装置采用DCS系统控制。
三、总工艺流程图
四、工艺流程说明
空气经下塔初步精馏后,在下塔底部获 得液空,在顶部获得纯液氮。
6.1下塔从上到下产生以下产品或中间 产物:
·压力氮气 ·污液氮 ·富氧液空(36~40%) 下塔各产品去向如下:
①压力氮气:从下塔顶部抽出后经主换 复热后进入氮气压缩系统。
②污液氮:污液氮在过冷器中过冷后送 入上塔顶部作回流液。
1.流路简述 整套空分设备包括: 空气过滤系统、空气压缩系统、空气预 冷系统、分子筛纯化系统、分馏塔系统、 液体贮存系统、仪控系统、电控系统等八 大系统。

空分工艺流程

空分工艺流程

第三部分空分工艺流程的组成一、工艺流程的组织我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;第二代:石头蓄冷除杂质,空气透平膨胀低压循环;第三代:可逆式换热器;第四代:分子筛纯化;第五代:,规整填料,增压透平膨胀机的低压循环;第六代:内压缩流程,规整填料,全精馏无氢制氩;○全低压工艺流程:只生产气体产品,基本上不产液体产品;○内压缩流程:化工类:5~8:临界状态以上,超临界;钢铁类:3.0,临界状态以下;二、各部分的功用净化系统压缩冷却纯化分馏(制冷系统,换热系统,精馏系统)液体:贮存及汽化系统;气体:压送系统;○净化系统:除尘过滤,去除灰尘和机械杂质;○压缩气体:对气体作功,提高能量、具备制冷能力;(热力学第二定律)○预冷:对气体预冷,降低能耗,提高经济性有预冷的一次节流循环比无预冷的一次节流循环经济,增加了制冷循环,减轻了换热器的工作负担,使产品的冷量得到充分的利用;○纯化:防爆、提纯;吸附能力及吸附顺序为:;○精馏:空气分离换热系统:实现能量传递,提高经济性,低温操作条件;制冷系统:维持冷量平衡液化空气膨胀机方法节流阀膨胀机制冷量效率高:膨胀功W;冷损:跑冷损失 Q1复热不足冷损 Q2生产液体产品带走的冷量Q3第一节净化系统一、除尘方法:1、惯性力除尘:气流进行剧烈的方向改变,借助尘粒本身的惯性作用分离;2、过滤除尘:空分中最常用的方法;3、离心力除尘:旋转机械上产生离心力;4、洗涤除尘:5、电除尘:二、空分设备对除尘的要求对0.1以下的粒子不作太多要求,因过滤网眼太小,阻力大;对0.1以上的粒子要100%的除去;三、过滤除尘的两种过滤方式1、内部过滤:松散的滤料装在框架上,尘粒在过滤层内部被捕集;2、表面过滤:用滤布或滤纸等较薄的滤料,将尘粒黏附在表面上的尘粒层作为过滤层,进行尘粒的捕集;自洁式过滤器:1以上99.9%以上;阻力大于1.5KPa。

空分设备的工艺流程

空分设备的工艺流程

空分设备的工艺流程
你知道吗,我刚接触这玩意儿的时候,那叫一个头大!感觉就像走进了一个迷宫,找不着北。

但慢慢地,我算是摸出了点门道。

先来说说空气过滤这一步吧,就好比给空气洗个澡,把那些杂质啥的都给弄出去。

这一步要是没做好,后面可就麻烦大啦!我记得有一次,就因为这过滤没弄好,唉,那设备闹脾气,可把我折腾惨了!
然后呢,就是压缩环节。

哇,那机器嗡嗡响,震得我耳朵都快聋啦!压缩的时候可得注意压力,不然就容易出岔子。

接下来是冷却,这一步就像是给热得发烫的家伙冲个凉水澡,让它冷静冷静。

我跟你说啊,有一回我不小心操作失误,温度没控制好,那后果不堪设想!
再往后就是精馏分离啦。

这可是个精细活儿,就像分宝贝似的,得小心翼翼。

我当初学这个的时候,那是绞尽脑汁啊,反复琢磨,才算是搞明白了。

对了,说到这,我想起个事儿。

有个同行跟我说,他有次居然把流程顺序给搞混了,哈哈,是不是特逗?
还有啊,这空分设备的发展也是日新月异。

想当年,技术可没现在这么先进,我们操作起来那叫一个费劲。

现在可好啦,各种新玩意儿不断,不过我这脑子有时候还真跟不上。

嗯...我这讲得是不是有点乱?不管啦,反正就是这么个大概意思。

要是您有啥不明白的,尽管问我!我这又扯远啦,咱接着说。

空分流程详细讲解

空分流程详细讲解

空分流程详细讲解
在化工生产中,空分技术是一项非常重要的工艺,它能够将空气中的氧气、氮
气等气体进行分离,以满足工业生产和生活需求。

下面我们将详细介绍空分的工艺流程。

首先,空分的工艺流程可以分为压缩、预冷、精馏、蒸汽回收等步骤。

1. 压缩空气从大气中获取,首先需要将其进行压缩,以增加气体分子的密度,提高分离效率。

压缩后的空气会进入压缩机,经过一系列压缩工艺,压缩比达到要求后,进入下一个环节。

2. 预冷压缩后的空气含有大量水分和杂质,需要通过冷却器进行预冷处理。

在预冷过程中,空气中的水分和杂质会凝结成液体,然后通过分离装置将其分离出去,以保证后续工艺的顺利进行。

3. 精馏精馏是空气分离的核心步骤,通过精馏塔将空气中的氧气、氮气等气体按照其沸点的不同进行分离。

在精馏塔内,气体混合物被加热至沸点,然后在不同高度上凝结成液体,从而实现气体的分离。

4. 蒸汽回收在精馏过程中,会产生大量的废热,为了提高能源利用效率,通常会将废热通过蒸汽回收装置进行回收利用。

蒸汽回收装置可以将废热转化为蒸汽,用于加热其他部分的工艺设备,实现能量的循环利用。

通过以上流程,空分技术能够高效地将空气中的氧气、氮气等气体进行有效分离,为工业生产和生活提供了重要的物质基础。

在实际应用过程中,还需要根据不同的需求和工艺要求进行调整和优化,以实现最佳的分离效果和能源利用效率。

空分技术作为一种成熟的工艺,在化工领域中扮演着至关重要的角色,不仅广
泛应用于气体生产、化工生产等领域,还在医疗、食品加工等领域有着重要的应用价值。

随着工业化进程的不断推进,空分技术将继续发挥重要作用,为人类的生产生活提供更广阔的发展空间。

空分工艺流程简介

空分工艺流程简介
特点
设备紧凑,能耗低,操作简便。但膜材料性能要求较高,分离效率受膜材料影响较大。
03
空分设备组成及功能
空气压缩机
01
将大气中的空气吸入并进行压缩,提高空气的压力 和温度。
02
为后续的冷却、纯化和分离过程提供必要的动力。
03
通常采用多级压缩和级间冷却的方式,以提高压缩 效率和降低能耗。
冷却器与纯化器
原理
空分工艺主要基于空气中氧气、氮气等组分的沸点不同,通过精馏方法将其分 离。在低温条件下,空气被液化后送入精馏塔,经过多次部分汽化和部分冷凝, 实现各组分的分离。
空分工艺应用领域
冶金工业
用于高炉富氧炼铁、炼 钢吹氧等,提高产量和
降低能耗。
化学工业
石油工业
医疗保健
作为合成氨、合成甲醇 等化工过程的原料气。
分离过程
精馏塔分离
利用精馏塔中的温度梯度和浓度梯度,使空气组分在塔内多次部分汽化和部分冷凝,实现氧气、氮气等组 分的分离。
冷凝蒸发法
通过冷凝器将空气液化后,利用不同组分的沸点差异进行分离。液氧在冷凝蒸发器中蒸发,同时吸收热量, 使液氮冷凝成液体,从而实现氧氮分离。
产品输出与储存
产品输出
将分离得到的氧气ቤተ መጻሕፍቲ ባይዱ氮气等产品通过管道 输送至用户端或储存设备。
再生技术
采用加热、减压等方法对 吸附剂进行再生,恢复其 吸附性能。
膜分离法关键技术与参数
膜材料选择
选用具有高渗透性、选择 性和稳定性的膜材料,如 有机膜、无机膜等。
膜组件设计
通过合理的膜组件结构设 计和优化,提高膜分离效 率。
操作条件
控制适当的操作温度、压 力和膜两侧浓度差,以实 现目标组分的有效分离。

空分车间工艺流程

空分车间工艺流程

空分车间工艺流程空分车间工艺流程简介空分车间是空气分离设备的生产车间,主要用于将空气中的不同成分进行分离,以获取纯净的气体产品。

以下是空分车间工艺流程的详细说明。

工艺流程1.原料空气进料–空气通过进气管道进入空分车间。

–空气中的杂质通过过滤器进行初步过滤,以确保进入空分设备的空气质量。

2.原料空气压缩–空气通过压缩机进行压缩,以提高其浓度。

–压缩机会消耗一定能量,因此需要进行能量平衡计算,以确保生产的经济性和能源效率。

3.空分设备分离–经压缩的空气进入空分设备,如空分列塔。

–在空分设备中,空气中的氮气、氧气等成分会因其沸点差异而分离出来。

–不同的空分设备可能采用不同的分离方式,如吸附、膜分离等。

4.产品收集–分离后的纯净气体产品根据需要进行收集。

–收集方式可以是直接存储在储罐中,也可以通过管道输送至其他生产线。

5.尾气处理–分离过程中产生的尾气需要进行处理,以减少对环境的污染。

–尾气处理方式可以是燃烧、吸附等,以将有害物质转化为无害物质或减少其污染程度。

6.能源回收–在空分车间的工艺流程中,可以采用能量回收系统,将一部分能量进行回收利用。

–回收的能量可以用于提供压缩机、空分设备等的动力需求,从而降低能源消耗。

结论空分车间工艺流程的设计和优化对于提高空分设备的生产效率、节约能源和降低环境污染具有重要意义。

通过合理规划每个流程的参数和操作方式,可以实现高效、可持续的空气分离生产。

工艺流程的顺序、参数和设备的选择对空气分离的效果和经济效益有着重要影响。

以下是一些在设计和运营空分车间时需要考虑的因素:1.原料空气质量:为确保分离效果和产品质量,需要对原料空气的质量进行监控和控制。

通过定期清洁和更换过滤器,可以避免杂质对设备的损坏和产品的污染。

2.压缩机效率:压缩机在空气分离工艺中起到关键作用。

选择高效率的压缩机,优化压缩比和排气温度,可以提高工艺的能源利用率和经济性。

3.分离设备选择:根据产品需求和生产规模,选择适合的空分设备。

空分工艺描述

空分工艺描述

1 工艺流程叙述:空气通过自洁式空气过滤器(F01),除去大颗粒的尘埃和其它机械杂质后进入空气压缩机(C01)经过三级压缩和中间冷却器的冷却后,压力达到0.57-0.63 MPa(G),温度130℃左右。

然后进入双级冷却的空冷塔(E07),先用来自凉水塔的冷却水冷却和清洗,再经来自氮水冷却塔(E60),温度为8℃的冷冻水进一步冷却和清洗,除去大量有害物质SO2、SO3等酸性物质及NH3,该低温水是在带混凝土外壳的氮水塔(E60)和冷冻机组(X60)中被冷却的。

系统启动时氮水塔(E60)所需降温气体来自E07少部分空气,对冷却水进行降温。

从空冷塔出来温度为 13~15℃的气体去由两台立式充满氧化铝和分子筛的纯化器(R01/R02),在交替使用的吸附器中除去空气中的H2O、CO2、碳氢化合物;当一只纯化器吸附时,另一只纯化器被来自冷箱的干燥污氮气再生。

出纯化器被净化后露点为<-60 ℃的干燥空气分以下五部分进入后系统:第一部分空气直接进入冷箱在主换热器(E01)中与返流气体换热达到露点后,直接进入中压塔参与精馏。

第二部分空气被送入空气增压机(C05)经过五级压缩、五级冷却后增压到4.9MPaG后又分为两路,一路进入主换热器被冷却到适当的温度(-101.6~ -110℃左右)后经膨胀增压机的膨胀端膨胀降温后与第一路从纯化器来的空气会合送入中压塔K01。

另一路经增压膨胀机的增压端增压,经后冷却器冷却后,在主换热器中与液体产品换热被冷却液化,并经一高压节流阀(FV1532)节流,在气液分离罐(V03)中分离后进入中压塔和低压塔。

同时从增压机(C05)一级后抽出压力为0.9MPaG的压力空气作为仪表空气进入仪表空气管网。

第三部分空气进入加温解冻系统作为加温解冻气。

第四部分空气作为空分自用仪表空气送入仪表空气管网。

第五部分空气经减压后去吸附器(R01/R02)再生管网作为启动时的再生空气。

出中压塔物料:进入中压塔(K01)的空气经过初步的精馏,在塔的上部产生纯度≥99.99﹪的纯氮气,在底部产生纯度为 32-38﹪富氧液空。

空分工艺流程描述

空分工艺流程描述

空分工艺流程描述2工艺流程总体概述2.1空气过滤及压缩来自大气中的空气经自洁式过滤器S01101,将空气中大于1μm的尘埃与机械杂质清除后,送离心式空气压缩机K01101,自洁式空气过滤器使用PLC操纵,带自动反吹系统,反吹系统有的时候间、压差、时间与压差三种操纵程序。

流量约168000Nm3/h、常温常压的空气在由电机驱动的单轴离心式空气压缩机K01101中,经四级压缩,压力被提升到0.632MPa(A)。

温度<105℃后进入空气预冷系统。

空气流量由空压机入口导叶B011101的开度来调节,空压机K01101使用3组内置段间冷却器冷却压缩空气;并在末级出口还设有一放空阀BV011121,在开车、停车期间,部分空气将由BV011121放空,以防止压缩机喘振。

润滑油系统:空压机与增压机共用一个润滑油站T011101,油系统包含润滑油系统、事故油系统(2个高位油箱与4个蓄能器,空压机组与增压机组各1个高位油箱,2个蓄能器)。

润滑油要紧对机组各轴承起润滑、冷却及清洗杂质等作用。

油箱内的润滑油经润滑油泵加压后后送入润滑油冷却器E-011101A/B中冷却,经温度调节阀操纵好油温后进入润滑油过滤器S-011101A/B,过滤掉油中杂质后进入润滑油总管,然后送到各润滑点经机组润滑后返回油箱;润滑油泵出口有一总管压力调节阀,用于调节润滑油过滤器S-011101A/B出口总管油压。

该油路同时为增压机提供润滑油,在空压机供油总管与增压机供油总管上分别设置有蓄能器与高位油箱。

以保证在主、辅油泵出现故障情况下向空压机、增压机供油,保证压缩机组的安全。

2.2空气预冷系统经空压机压缩后的压力为0.632MPa(A)、温度<105℃的空气由底部进入空冷塔C01201内;空冷塔的水分循环冷却水与循环冷冻水两路,进入空冷塔的空气首先经循环冷却水泵P01201A/B送至下塔顶部,流量为452t/h 、32℃的冷却水洗涤冷却,再通过循环冷冻水泵P01202A/B送至上塔上部流量为100t/h 、8℃的冷冻水进行洗涤冷却后由塔顶出来,温度被降至10℃送进入分子筛纯化系统。

18000Nm3h空分工艺流程介绍

18000Nm3h空分工艺流程介绍

18000Nm3h 空分工艺流程介绍法液空18000Nm3/h 空分工艺流程介绍一、空分工艺流程概况:空气主要是由O2、N2组成的混合物,其中N2占78.084%,O2占20.948%,Ar占0.934%。

在一个标准大气压的下,各组分的沸点不同,N2:-195.8OC,Ar:-185.9 OC,O2:-183.0 OC。

我们装置就是利用了空气混合物中各组分的沸点这一物理性质的不同,采用深度冷冻法的原理,通过精馏来达到分离空气中各组分的目的。

空气分离装置主要由空气压缩、预冷、净化、热交换、制冷、精馏和产品气的压缩七个系统组成,另外,空分还有一个精氩生产系统。

空气压缩系统主要是由空气吸入过滤器、压缩机组和冷却器组成,用来压缩空气至所需的分离压力,压力太高,能耗增大;压力太低,空气分离困难。

空气预冷系统主要由空冷塔、水冷塔、水泵、冷冻机组成,采用经过冷却的水来冷却空气,减少空气中的含水量,减轻分子筛吸附器的工作负荷,延长分子筛的使用寿命。

同时,也起到洗涤空气的作用,如一些灰尘,细小的机械杂质和空气中的一些有害气体(硫化物等)。

空气净化系统主要由分子筛吸附器、蒸汽(或电)加热器组成,主要用来清除空气中的H2O、C2O和部分碳氢化合物,防止它们进入管道和设备,造成管道和设备堵塞,阻力增加,甚至造成安全等事故,影响设备的正常运行。

气体的热交换系统主要是各流体在热交换器中发生热量交换,使热流体空气冷却至液化温度,而冷流体O2、N2、WN2被复热至常温出冷箱。

制冷系统主要由膨胀机和冷却器组成,用于制冷量,来补充热交换不完全损失(热端温差)、跑冷损失(箱板等结霜)和排液损失(液体产品的生产)等损失冷量。

精馏系统主要由精馏塔(下塔、主塔、上塔、辅塔)和过冷器组成,通过冷热流体的接触换热和多次部分蒸发和部分冷凝,低沸点组分被蒸发,高沸点组分被冷凝,从而在塔的下部得到纯度较高的高沸点组分,而在塔的上部得到纯度较高的低沸点组分。

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程和各部件工作原理

空分设备的工艺流程及各部件工作原理空分设备部分部机及单元设备1.空冷塔作用:把出空压机的高温气体(≤100℃)冷却到~18℃,以改善分子筛的工作情况结构:立式圆筒型塔,分上下部分,上下段均为填料塔,塔顶设有分配器,不锈钢丝捕雾器使用:出空压机的空气从下部进入空冷塔,水通过布水器均匀地分布到填料上,顺填料空隙流下,空气则逆水而上与水进行热质交换,经不锈钢丝网捕雾器出塔,进入分子筛吸附系统。

2。

水冷却塔作用:用空分塔来的污氮气和纯氮气冷却外界供水,后由水泵送入空冷塔的上段结构:填料塔,顶设捕雾器和布水器,填料分两层装入塔内,在两填料中间设再分配器,保证让水始终均匀分布,提高水冷塔的效率使用:被冷却的水自上而下流经填料,与空分出来的~33。

6℃的污氮气和纯氮气进行热质交换,使水冷却下来,在塔底被水泵抽走,污氮气从塔顶排除3.分子筛吸附器作用:吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2 含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。

4.主热交换器作用:进行多股流之间的热交换结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:对经分子筛吸附除去水和CO2的压缩空气进行冷却,各返流气(液)在此被加热至常温5。

液空液氮过冷器作用:对低温液体进行过冷结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:液空、液氮和污氮气在经过过冷器时被氮气和污氮气进一步冷却,使之低于饱和温度,这样,液体在节流后可以减少气化,改善上塔的精馏工况.6。

冷凝蒸发器作用:是氮气冷凝和液氧蒸发用,以维持精馏过程的进行结构:为多层板翅式,相邻通道间物流通过翅片进行良好的换热使用:其一般置于上下塔之间,下塔上升的氮气在其间被冷凝,而上塔回流的液氧在其间被蒸发.该过程得以进行是因为氮气压力高,液氧压力低,即可以进行氮气的冷凝和液氧的蒸发。

空分工艺流程简述

空分工艺流程简述

空分工艺流程简述
空分工艺是一种利用空气中的氧气和氮气进行分离的过程,其主要技术是低温制氧工艺。

其流程一般包括以下几个步骤:
1. 压缩:将空气经过多级压缩,使其压力达到一定范围,以便后续的分离处理。

2. 制冷:采用制冷机组将压缩后的空气冷却到低温,这样可以使空气中的水分、二氧化碳、氩等杂质尽可能地冷凝和分离出来。

3. 脱水:通过脱水器,将冷凝得到的水分和可溶性气体从空气中分离出来。

4. 吸附:利用吸附剂将包括氮气、氧气等在内的气体分离开,取出纯氧气或纯氮气。

5. 稳定:通过特殊的处理,使产生的纯氮气或纯氧气达到所需的纯度和流量,并稳定输出。

6. 除尘:最后,对输出的气体进行除尘处理,以满足使用要求。

空分生产工艺过程

空分生产工艺过程
主要设备及参数:
设备名称
型号
空压机 DA350—61
DA350—64
5TYD144
4TYD122
流量、电功率、排气压力 20000M3/h、2500Kwh 、0.63Mpa 20000M3/h、2500Kwh 、0.63Mpa 20000M3/h、2500Kwh、 0.67Mpa 52000M3/h、5200Kwh、 0.61Mpa
①空气的过滤和压缩; ②压缩空气的初步冷却; ③空气的净化即空气中微量水份、CO2、乙 炔和碳氢化合物的清除 ; ④空气被冷却到液化温度; ⑤冷量的制取; ⑥液化和精馏; ⑦危险杂质的排除。
空分生产流程图
原料空气 空压机 空冷系统 纯化系统
热交换系统 膨胀机系统 精馏系统 产品压缩机
液体储存系统 控制系统
氮压机
主要产品质量控制指标
工艺氧气纯度≥99.0% 工业氧纯度(液氧)≥99.2% 氮气纯度≥99.99% 液氩纯度≥99.999%
空分生产的主要设备
透平式空压机
6台,用于压缩原料空气,为空分装置提供动力。 1#、2#、3#、4#、5#空压机处理空气量约2100024000m³/h,电功率2500KW。 6#空压机处理空气量 约52000 m³/h,电功率 5200KW。 运行模式一大三小,二备。
液化空气在精馏塔中被分离为纯净的 氧气、氮气。
产品输送系统
生产的氧气、氮气需要一定的压 力才能满足后工序的使用。
主要由各种不同规格的氧气压缩 机和氮气压缩机组成。
液体贮存系统
空分设备能生产一定的液氧和液氩 (氮)等产品,进入贮存系统,以备需要时 使用。
主要由各种不同规格的低温贮槽、低 温液体泵和汽化器组成。
②产品流量与产品纯度成反比,气体产品取出越多, 产品纯度就会下降。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氮压机岗位
任务是 将低压氮气经氮压机加压至< 3.0MPa后,再送往净化甲烷化配氮用; 经干螺杆氮压机加压至<0.8MPa用于 煤气化工段干灰脱除工序的气提、通气及 仪表气源; 经联合氮压机加压至<5.2MPa后送往煤气 化给料包调压、氧管线吹扫、煤进料罐加 速器的吹扫;加压至<7.2MPa后送往煤气 化及中高温高压过滤器、激冷器和合成气 冷却器的进口的反吹。
制冷系统
空分设备是 通过压缩空气在 膨胀机内进行绝 热膨胀,产生空 分装置所必需低 温,提供冷量。
热交换系统
空分的热平衡是通过制冷系统和 热交换系统来完成的。 经过初步降温、 净化后的常温空气在 主换热器中被低温氧 气、氮气、污氮气冷 却至液化点,同时氧、 氮、污氮气被空气加 热至常温。
精馏系统
空分生产的重点岗位

透平空压机岗位 分馏岗位 氧压机岗位 氮压机岗位
透平空压机岗位
岗位任务是:将空气经过三段(或五级、四 级)压缩至≤0.626MPa(表)并冷却后进 入空气冷却系统。
透平空气压缩机工作原理: 连续性气体在工作轮作用下,利用气流惯性力 在随后的减速运动中,使气体分子之间距离更加接 近而达到气体压力提高的目的。 主要设备及参数:
空分生产的主要设备
氧气压缩机 卧式往复氧压机7 台,四缸四级压缩, 用于加压氧气输送 1-5#机处理气量3500 m³ /h,6、7#处理气 量4000 m³ /h,终压 <4.325Mpa,电功率 800KW 运行模式六开一备
空分生产的主要设备
氮气压缩机
卧式往复氮压机7台,加压氮气输送 • 1#、2#、3#、4#、5#均为四缸三级压缩,处理气量3500 m³ /h,终压< 3.0Mpa,电功率630KW; • 6#氮压机为四缸四级压缩,处理气量3500 m³ /h,终压3.0Mpa,电功率 800KW; • 7#氮压机六缸四级压缩,处理气量14000 m³ /h,终压<3.0Mpa,电功率 2500KW。 运行模式一大四小二备


另一种采用的是第 六代空分设备,常温分 子筛净化,增压膨胀空 气进上塔,填料型上塔, 全精馏无氢制氩流程。 特点采用多项新技术, 节能效果显著,与第五 代空分设备相比装置总 能耗下降8%~10%,制氧 能耗为0.37~0.43 KW· 。 h/m³ 以 KDON10000/20000型空 分为代表,实际出氧 9500M3/h以上,纯度 99.6%,出氮19000M3/h 以上,纯度99.99%,出氩 200~300M3/h,纯度达 99.999%以上。
1台
1台
分馏岗位
岗位任务是将空压机送来的压缩原料空气经过冷却、净化、 液化、精馏等过程制取纯度达99.0%以上的低压氧气99.99% 的低压氮气、99.2%以上的液氧及纯度≥99.999%的液氩等产品。
本岗位包括空气预冷系统、分子筛纯化系统、增压膨胀 机系统及空气精馏系统。 主要技术工艺参数: 产品氧气纯度≥98.5% 出上塔污氮气纯度≤5%O2 产品氮气纯度≥99.99% 下塔液空纯度38%O2 空气吸附后的CO2含量<1ppm 膨胀机出口温度控制:
控制系统
大型空分设备都采用计算机集散控制 系统,实现自动控制。
空气分离的工艺流程
原料空气在过滤器中除去灰尘和机械杂质, 进入空压机压缩至<0.625Mpa后,送入空气冷 却塔进行清洗和预冷。压缩空气在空冷塔内自 下而上被循环水和低温水冷却降温至≤15℃。
出空冷塔的空气进入交替使用的分子筛吸 附器,除去水分、二氧化碳和乙炔等杂质。一 只工作的同时另一只利用污氮气加热、吹冷进 行再生活化,整个工作或再生时间约4小时。
空分生产的主要设备
联合氮压机
卧式往复联合氮 压机2台:加压氮 气输送 四缸二级压缩, 一级入口压力< 3.0Mpa;一级出口 压力< 5.2Mpa, 二级出口压力< 7.2Mpa,电功率 800KW。 运行模式 一开一备。

空分生产的主要设备
干螺杆氮气压缩机
仪表氮压机 3台, 提供仪表氮气 处理气量 2400m³ /h,出 口压力0.8Mpa, 电功率260KW。 运行模式二开一 备
在上塔底部获得氧气,经主换热器复热至
18℃后出冷箱作为产品输出。液氧产品从冷 凝蒸发器底部抽出,进入液氧贮槽。 从上塔中部抽取约11140m³ /h、含氩711%(含氧92%左右)的氩馏分送入粗氩塔。 粗氩塔在结构上分为两段,第二段粗氩塔底 部的液体经循环液氩泵加压至0.8Mpa被送入 第一段顶部作为回流液。经粗氩塔精馏得到 氩含量≥98.5%、氧含量≤2pmm流量约347 m³ /h的粗氩气,进入精氩塔中部。经精氩塔 精馏实现氩氮分离,在精氩塔底部得到含量 99.999%的精液氩。
空分设备的核心,实现低温分离的 重要设备。 采用高、低压两级精馏方式。由低压 塔、中压塔和冷凝蒸发器组成。 液化空气在精馏塔中被分离为纯净的 氧气、氮气。
产品输送系统
生产的氧气、氮气需要一定的压 力才能满足后工序的使用。 主要由各种不同规格的氧气压缩 机和氮气压缩机组成。
液体贮存系统
空分设备能生产一定的液氧和液氩 (氮)等产品,进入贮存系统,以备需要时 使用。 主要由各种不同规格的低温贮槽、低 温液体泵和汽化器组成。
Mpa 0.41 - 174.9
液化温度 ℃
- - 174.4 173.9
- - - - 173.4 173.0 172.5 171.7
影响产品产量和纯度的因素:
①加工空气量越多,气体产品越多,空气量受季节、 环境温度的影响,夏季相对冬季来讲,空气量要 少一些。 ②产品流量与产品纯度成反比,气体产品取出越多, 产品纯度就会下降。 ③膨胀空气量过大,不利于产品纯度提高。 ④精馏塔的精馏工况和精馏效率。 ⑤节流调节阀开度的影响。
净化后的加工空气分两股:一股经增压膨胀
机膨胀后送入上塔参与精馏。另一股进入主 换热器被返流气体冷却至液化温度-173℃后 进入下塔。 空气在下塔初步精馏后,在下塔底部获得含 氧38%的液空,在下塔顶部获得纯液氮。抽 取下塔液空、纯液氮进入上塔相应部位,在 上塔顶部获得纯氮气。经过冷器、主换热器 复热至18℃后出冷箱作为产品输出。
在标准状态下,空气液化温度172℃,氧的液化温度-182.8℃,氮的液 化温度-195.7℃,氩的液化温度-185.7℃。 氧氮沸点相差13℃,氩氮沸点相差 10℃,这就是能够利用低温精馏法将空气 分离成氧、氮和氩气的基础。
空分装置的工作过程
①空气的过滤和压缩; ②压缩空气的初步冷却; ③空气的净化即空气中微量水份、CO2、乙 炔和碳氢化合物的清除 ; ④空气被冷却到液化温度; ⑤冷量的制取; ⑥液化和精馏; ⑦危险杂质的排除。
制氧的工艺原理

低温精馏分离法制氧就是以自然 界中取之不尽、用之不竭的空气 为原料,先使空气在低温下液化, 然后在精馏塔中利用氧、氮各组 分沸点的不同,分离为氧气和氮 气。
干燥空气的组成
空气是一种均匀的多组分混合气体, 主要成分是氧、氮、氩,此外还有微量的 惰性气体。 根据地区条件不同,空气中含有不定 量的二氧化碳、水蒸汽以及乙炔等碳氢化 合物。 空气中氮占78.084%、氧占20.95%、氩 占0.932%。
氧压机岗位
岗位任务是将纯度≥99.0%的 低压氧气经氧压机 加压至<4.315MPa后送往煤气化供粉煤造气。
氧压机着火原因:
与氧气接触的零件脱脂不彻底,有油渍。 刮油器、挡油圈效果不好,造成活塞杆带油。 填料漏氧。 机组断水或水量不足。 工况波动大,压力温度不稳定,压缩比异常。 吸气温度高,造成排气温度高。 活塞杆温度高。 因各种原因引起火花。 内吹氮中断。
从上塔中上部引出污气,经过冷器、主换热
器复热后出冷箱,一部分进入蒸汽加热器作 为分子筛再生气体,一部分经污氮鼓风机加 压至0.050Mpa输出,其余气体送入水冷塔。
双环公司空分装置所采用的流程形式
一种采用的是第五代空分设备,常温分子筛净 化空气,增压膨胀空气进上塔的流程。 特点:氧提取率进一步提高,可达到 93%~97%、能耗进一步下降,约为 0.47~0.53KW· 。 h/m³ 以DON3200/4500型空分为代表,实际出氧 4000M3/h、纯度99.6%,出氮6000M3/h、纯度 99.99%。两套KDON4000/6000型、一套 KDON3200/5000型空分分别由原来三套 KDON3200/3200型石头蓄冷器流程相继改造而成。
空分生产工艺过程介绍


空分,顾名思义就是空气分离。 就是要设法将空气中的氧气分离出来, 因此也叫“制氧”。制氧机也被称作 “空气分离设备”。 由于氧、氮在工业生产和科学技术 发展中有重要的作用,工业上制氧的 方法有:化学法、电解法、吸附法和 低温精馏分离法。
空气分离目前主要采用低温 精馏分离法,特点是生产成本低、 技术成熟,不仅最经济,又能大量 生产氧、氮气,而且适合大规模工 业化生产,成为工业上制取氧气的 主要方法。
出口压力 Mpa 警戒温度 ℃ 液化温度 ℃ 压力 0.02 0.03 0.04 0.05 0.06 -187.5 0.53 0.55 0.07 -184.0 -186.9 0.57 - 171.2 -187.0 -186.4 -185.7 -185.2 -184.6 -190.0 -189.4 -188.7 -188.1 0.43 0.45 0.49 0.51
设备名称 空压机 型号 DA350—61 DA350—64 流量、电功率、排气压力 20000M3/h、2500Kwh 、0.63Mpa 20000M3/h、2500Kwh 、0.63Mpa 数量 3台 1台
5TYD144
4TYD122
20000M3/h、2500Kwh、 0.67Mpa
52000M3/h、5200Kwh、 0.61Mpa
7.2Mpa 送 煤气化
空分系统流程示意图
动力系统:指原料空气压缩机。
相关文档
最新文档