初二数学反比例函数测试题

合集下载

(word完整版)初二数学反比例函数测试题

(word完整版)初二数学反比例函数测试题

反比例函数测试题一、选择题1.反比例函数y =-4x 的图象在 ()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是(• )3.已知反比例函数y =xk 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限4.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数x k y =在同一坐标系内的图象为( )B 6.在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数xkb y =的图像在( )A 第一二象限B 第三 四象限C 第一三象限D 第二三象限y o y o y o yo二、填空题:(3分×10=30分)1、y 与x 成反比例,且当y =6时,31=x ,这个函数解析式为 ;2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型)3、函数2x y -=和函数xy 2=的图象有 个交点; 4、反比例函数xk y =的图象经过(-23,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、右图3是反比例函数x k y 2-=的图象,则k 的取值范围是 . 8、函数xy 2-=的图象,在每一个象限内,y 随x 的增大而 ; 9、反比例函数xy 2=在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()522--=m x m y 是y 关于x 的反比例函数,则m 值为 ;(三)解答题1、已知一次函数b kx y +=与反比例函数xm y =的图像交于A (—2 ,1) B (1 ,n )俩点。

(word版)初二数学反比例函数测试题

(word版)初二数学反比例函数测试题

反比例函数测试题一、选择题4〔〕1.反比例函数y=-的图象在xA.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.关于x的函数y=k〔x+1〕和y=-k〔k≠0〕它们在同一坐标系中的大致图象是x〔?〕3.反比例函数y=k的图象经过点〔m,3m〕,那么此反比例函数的图象在〔〕xA.第一、二象限 B .第一、三象限C.第二、四象限 D .第三、四象限4.函数y k4,6〕,那么以下各点中在yk〕的图象经过点〔-图象上的是〔x xA、〔3,8〕B、〔3,-8〕C、〔-8,-3〕D、〔-4,-6〕5.正比例函数y kx和反比例函数k在同一坐标系内的图象为〔〕yy y x y yo x ox o x o xA B C D6.在同一直角坐标平面内,如果直线y k1x与双曲线y k2没有交点,那么k1和k2的x关系一定是〔〕A、k1<0,k2>0B、k1>0,k2<0C、k1、k2同号D、k1、k2异号7.一次函数y=kx+b的图像经过第一二四象限那么反比例函数kby的图像在x〔〕A 第一二象限B第三四象限C第一三象限D第二三象限二、填空题:〔3分×10=30分〕1、y 与x 成反比例,且当 y =6时,x1;,这个函数解析式为32、当路程s 一定时,速度 v 与时间t 之间的函数关系是;〔填函数类型〕3、函数yx2的图象有 个交点;和函数y x24、反比例函数 yk的图象经过〔- 3,5〕点、〔a ,-3〕及〔10,b 〕点,那么k =x,b = 2,a =;5y 4m 1xm 4是正比例函数,那么m,图象经过象、假设函数限;6、y 与x-2成反比例,当 x=3时,y=1,那么y 与x 间的函数关系式为;7、右图3是反比例函数y k 2的图象,那么k 的取值范围是.x28、函数y的图象,在每一个象限内,y 随x 的增大x而;9、反比例函y 2M 是图象数x 在第一象限内的图象如图,点上一点,MP垂直x轴于点P,那么△MOP的面积为;y10、y m2x m25是y关于x的反比例函数,那么m值为;MO P x 〔三〕解答题1、一次函数y kxb与反比例函数y m的图像交于A〔—2,1〕B〔1,n〕x俩点。

正比例函数、反比例函数测试题(经典)

正比例函数、反比例函数测试题(经典)

初二数学练习班级 姓名一、填空1、已知正比例函数图像上一点到x 轴距离与到y 轴距离之比为1︰2,则此函数解析式是2、23(2)my m x -=-是正比例函数,则m=3、已知正比例函数x a y )21(-=,如果y 的值随着x 的值增大而减小,则a 的取值范围是4、如果正比例函数y=kx (k ≠0)的自变量增加5,函数值减少2,那么当x=3时, y=5、若反比例函数232k x k y --=)(,则k = ,图象经过 象限 6、已知反比例函数xky =的图像经过点)4,5(-A 、)5,(a B ,则a = 7、函数21a y x+=(x>0),当x 逐渐增大时,y 也随着增大,则a 的范围 。

8、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2•;(填“>”, “<”或“=”)9、直线 x 21=y 与双曲线 xy 2= 的交点是 10、已知函数xx x f 22)(-=,则=)2(f11、若函数12,1121-=-=x y x y ,则函数y =y 1+y 2中,自变量x 的 取值范围是12、如图:A 、B 是函数xy 1=图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,则△ABC 的面积是 .二、选择13、下列语句不正确的是 ( )(A)1+x 是x 的函数 (B )速度一定,路程是时间的函数(C )圆的周长一定,圆的面积是圆的半径的函数(D )直角三角形中,两个锐角分别是x 、y ,y 是x 的函数14、已知点P(a,b)在正比例函数y=kx(k≠0)的图像上,那么在这个图像上的点还有()(A)(a ,-b) (B) (-a ,b) (C) (-a ,-b) (D) (0 ,0)15、函数,ky kx y==-在同一直角坐标平面大致的图像可以是()A、C、D、16、若),(121A y-、),(21B y-、),(31C y三点都在函数xky=)0(>k的图像上,则1y、2y、3y的大小关系是()(A)213yyy>>;(B)312yyy>>;(C)132yyy>>;(D)123yyy>>.三、简答题17、已知正比例函数的图像过点A (-2 ,21) , B (6 ,m )求:(1)这个函数解析式;(2)B点的坐标;(3)如果y > 1,x的取值范围是什么?18、已知函数y=kx(k≠0)的图像经过P(1,2),Q 两点,并且P、Q两点间的距离是5,求Q点的坐标19、已知y 与2x 成反比例,x 与41z 成正比例,y 与z 之间成正比例还是反比例关系,为什么?四、解答题20、已知1232y y y =-,且1y 与2x +成正比例,2y 与x 成反比例,()y f x =的图象经过点(2,4)-及(2,12)和点(4,)b , 求:(1)y 与x 之间的函数关系式;(2)求b 的值;21、是否存在实数m ,使过点P (3,-2)、点Q (m +1,-m+1)的直线为正比例函数的图像?若存在,求出实数m ,若不存在,说明理由22、在反比例函数xk y =(k ≠0)的图像上有一点A ,它的横坐标n 使方程01x 2=-+-n nx 有两个相等的实数根,点A 与点B (0,0)和点C (3,0)围成的三角形面积等于6,求反比例函数的解析式23如图,在直角坐标平面内,函数y =xm(x >0,m 是常数)的图象经过A (1,4)、 B (a ,b ),其中a >1.过点B 作y 轴垂线,垂足为C ,连结AC 、AB 、CB ,若 △ABC 的面积为4,(1)求点B 的坐标;(2)求直线OB 的函数解析式。

初二数学反比例函数试卷

初二数学反比例函数试卷

一、选择题(每题5分,共20分)1. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = kx (k≠0)D. y = k/x (k≠0)2. 已知反比例函数y = k/x (k≠0) 中,当 x = 2 时,y = 4,则 k 的值为()A. 2B. 4C. 8D. 163. 在反比例函数y = k/x (k≠0) 中,当 x > 0 时,y 的值()A. 恒为正B. 恒为负C. 可能为正,也可能为负D. 无穷大4. 若两个反比例函数的图象分别位于一、三象限和二、四象限,则它们的比例系数 k ()A. 都大于0B. 都小于0C. 一个大于0,一个小于0D. 一个等于0,一个不等于05. 若反比例函数y = k/x (k≠0) 的图象经过点 (1, -2),则 k 的值为()A. -2B. -1C. 2D. 1二、填空题(每题5分,共20分)6. 若反比例函数y = k/x (k≠0) 的图象经过一、三象限,则 k 的取值范围是______。

7. 若反比例函数y = k/x (k≠0) 的图象经过二、四象限,则 k 的取值范围是______。

8. 反比例函数y = k/x (k≠0) 的图象与坐标轴围成的图形的面积是______。

9. 已知反比例函数y = k/x (k≠0) 中,当 x = 3 时,y = -6,则 k 的值为______。

10. 若反比例函数y = k/x (k≠0) 的图象经过点 (2, -3),则 k 的值为______。

三、解答题(每题10分,共20分)11. (1)已知反比例函数y = k/x (k≠0) 的图象经过点 (1, 2),求 k 的值。

(2)求反比例函数y = k/x (k≠0) 的图象与 x 轴、y 轴所围成的图形的面积。

12. (1)已知反比例函数y = k/x (k≠0) 的图象经过点 (-2, 3),求 k 的值。

初二数学反比例函数练习试题

初二数学反比例函数练习试题

初二数学反比例函数练习试题初二数学反比例函数练习试题在社会的各个领域,我们都不行避开地会接触到试题,试题是命题者依据确定的考核需要编写出来的。

那么你知道什么样的试题才能有效关怀到我们吗?以下是我为大家收集的初二数学反比例函数练习试题,希望能够关怀到大家。

初二数学反比例函数练习试题篇1一、选择题:(每小题3分,共18分)1.下列函数中,是反比例函数的是( )A.y=-3xB.y=-3x11C.y=-3x2D.y=-3x22.假如双曲线y=k过点A(3,-2),那么下列各点在双曲线上的是( )A.(2,3)B.(6,1)C.(-1,-6)D.(-3,2)3.确定质量的二氧化碳,当它的体积V=5m3,密度p=1.98kg/m3时,p与V 之间的函数关系式是( )A.p=9.9VB.9.9C.V D.9.9V2 9.94.若点A(-2,y1),B(-1,y2),C(1,y3)在反比例函数y=1的图象上,则下列结论正确的是( )A.y1y2y3B.y3y1y2C.y2y1y3D.y3y2y15.已知y1+y2=y,其中y1与成反比例,且比例系数为k1,而y2与x2成正比例,x且比例系数为k2,若x=-1时,y=0,则k1,k2的`关系是( )A.k1k2 =0B.k1k2 =1C.k1k2 =0D.k1k2 =-1二、填空题:(每小题4分,共28分)1.已知y与2x+1成反比例,且当x=1时,y=2,那么当x=0时,y=________2.已知函数y=(k21)xkk1,当k=____时,它的图象是双曲线2.已知函数y=3k6在每个象限内,y随x的减小而减小,则k的取值范围是x_______4已知反比例函数y=kx12k,当x0时,y随x的________而增大5.已知正比例函数y=kx(k≠0),y随x的增大而减小,那么反比例函数y=k,当x 0时,y随x的增大而_______6.若函数y=k的图象在其次、四象限,则函数y=kx-1的图象经过第____象限.7.若反比例函数y=(2m-1)xm2 的图象在第一、三象限,则函数的解析式为______三、基础训练:(每小题12分,共24分)1.已知矩形的面积为48cm2,求矩形的长y(cm)与宽x(cm)之间的函数关系式,并写出自变量的取值范围,画出图象2.如图所示,一个反比例函数的图象在其次象限内,点A 是图象上的任意一点,AM⊥x轴于M,O是原点,若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1. 如图,矩形AOBC 中,顶点C 的坐标(4,2),又反比例函数y =的图像经过矩形的对角线的交点P ,则该反比例函数关系式是( )A .y =(x >0)B .y =(x >0)C .y =(x >0)D .y =(x >0)【答案】B【解析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图, ∵四边形OACB 为矩形,点P 为对角线的交点, ∴S 矩形OEPF =S 矩形OACB =×8=2. ∴k=2.∴反比例函数关系式为y=(x >0), 故选:B .【考点】反比例函数图象上点的坐标特征2. 已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是( ) A .>> B .>> C .>>D .>>【答案】A.【解析】试题解析:∵-k 2-1<0 ∴反比例函数y=的图象在第二、四象限∴>> 故选A.【考点】反比例函数图象上点的坐标特征.3. 已知长方形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为图中的( )A .B .C .D .【答案】A【解析】由长方形的面积公式得y=,且x >0,y >0,而B 中有x <0,y <0的情况,C ,D 中有x=0或y=0的情况,据此即可得出结果. 解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.4.下列函数中,y是x的反比例函数的是()A.y=﹣B.y=﹣C.y=D.y=【答案】B【解析】此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解:A、是正比例函数,故错误;B、是反比例函数,故正确;C、不符合反比例函数的定义,故错误;D、不符合反比例函数的定义,故错误.故选B.点评:本题考查反比例函数的定义,熟记反比例函数解析式的一般式(k≠0)是解决此类问题的关键.5.已知一次函数y=x+2与反比例函数y=(x≠﹣1)的图象在第一象限内的交点为P(x,3).(1)求x的值;(2)求反比例函数的解析式.【答案】(1)x=1 (2)y=【解析】(1)先把P点坐标代入一次函数解析式得到得x0+2=3,然后解一次方程可得到x的值;(2)先写出P点坐标,然后把P点坐标代入反比例解析式求出m即可.解:(1)把P(x0,3)代入y=x+2得x+2=3,解得x=1;(2)P点坐标为(1,3),把P(1,3)代入y=得m+1=1×3=3,解得m=2,故反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.6.如图是我们学过的反比例函数图象,它的函数解析式可能是()A.B.C.D.【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.由图可得它的函数解析式可能是故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.如果函数的图象是双曲线,且在第二、四象限内,求k的值.【答案】-2【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.∵该函数的图象是双曲线且在第二、四象限∴,解得∴.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,平行于y轴的直尺(一部分)与双曲线()交于点、,与轴交于点、,连结,, ,点、的刻度分别为5、2(单位:),直尺的宽度为,.(1)试求反比例函数的解析式和点的坐标;(2)试求的面积.【答案】(1),;(2)【解析】(1)由题意得AB=5-2=3,即可求得点A纵坐标为3,再结合OB=2cm可求得点A 的坐标,从而可以求得反比例函数的解析式,再根据点C的横坐标即可求得C点的坐标;(2)由根据三角形、梯形的面积公式求解即可.(1)由题意得AB=5-2=3,∴点A纵坐标为3又∵OB=2cm∴点A的坐标是(2,3).∴k=6∴反比例函数的解析式为∵点C的横坐标是4,把x=4代入得,,∴C点坐标为;(2)∴.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.已知y与x+2成反比例,且当x=5时,y=-6,求:(1)y与x的关系式;(2)当y=2时x的值。

八年级下《反比例函数》检测题含答案

八年级下《反比例函数》检测题含答案

八年级下《反比例函数》检测题含答案反比例函数 检测题(满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列函数是反比例函数的是( )A.y x =B.1y kx -=C.8y x =-D.28y x= 2.若反比例函数8y x=的图象经过点(2,)m -,则m 的值是( ) A.14 B.14- C.-4 D.4 3.在同一坐标系中,函数ky x=和3y kx =+的图象大致是( )4.当k >0,x <0时,反比例函数ky x=错误!未找到引用源。

的图象在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若函数错误!未找到引用源。

的图象经过点(3,-7),则它一定还经过点( ) A.(3,7) B.(-3,-7) C.(-3,7) D.(2,-7)6.如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( )A.12B.20C.24D.32第6题图第7题图7.如图,A 为反比例函数ky x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A.6B.3C.23D.不能确定 8.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 错误!未找到引用源。

的大小关系是( )A.123y y y <<错误!未找到引用源。

B.321y y y <<错误!未找到引用源。

C.312y y y <<错误!未找到引用源。

D.213y y y <<错误!未找到引用源。

9.在反比例函数1ky x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以第19题图是( )A.-1B.0C.1D.2 10.已知1(1,)A y -,2(2,)B y 两点在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A.0m < B.0m > C.32m >- D.32m <-二、填空题(每小题3分,共24分)11.已知y 错误!未找到引用源。

初二八年级下册数学反比例函数测试题及试卷答案

初二八年级下册数学反比例函数测试题及试卷答案

数学反比例函数测试题及试卷答案(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分)1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是 ( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x的图象在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( ) A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 33)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面 积为 ( ) A .2 B . 4 C .6 D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时, y 1<y 2,则m 的取值范围 ( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____. 10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两 个交点,你认为这两位同学所描述的反比例函数的解析式是 . 15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 . 17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x =的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;O 12 第17题④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x的函数表达式,并画出函数的图象.21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m - (1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?图1图2月)y ()28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式;(2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B;2. A;3. B;4. A ;5. B ;6. C ;7.A ;8. C.二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y =x 3 15.B16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k =-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =x k(k >0),当x 变小时,y 增大 27.(1)y =t6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =15 28.(1)8xy =-;(2)126。

浙教版初中数学八年级下册第六单元《反比例函数》(标准困难)(含答案解析)(含答案解析)

浙教版初中数学八年级下册第六单元《反比例函数》(标准困难)(含答案解析)(含答案解析)

浙教版初中数学八年级下册第六单元《反比例函数》(标准困难)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列说法正确的是( )A. 圆面积公式S=πr2⋅中,S与r成正比例关系B. 三角形面积公式S=1aℎ中,当S是常量时,a与ℎ成反比例关系2C. y=2+2中,y与x成反比例关系xD. y=x+1中,y与x成正比例关系32. 若函数y=x2m+1为反比例函数,则m的值是( )A. 1B. 0C. 0.5D. −13. 下列说法中,正确的是( )A. 矩形的面积公式S=ab中,当S是常量时,a与b成反比例关系B. 圆的面积公式S=πr2,S与r成正比例关系C. 函数y=1中,y与x成反比例关系x−1D. 函数y=1−1中,y与x成正比例关系x4. 如图,长方体的体积是100m3,底面一边长为2m.记底面另一边长为x m,底面的周长为l m,长方体的高为ℎm.当x在一定范围内变化时,l和ℎ都随x的变化而变化,则l与x,ℎ与x满足的函数关系分别是( )A. 一次函数关系,二次函数关系B. 反比例函数关系,二次函数关系C. 反比例函数关系,一次函数关系D. 一次函数关系,反比例函数关系5. 反比例函数y=k的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是( )xA. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 已知双曲线y=kx(k<0)过点(3,y1)、(1,y2)、(−2,y3),则下列结论正确的是( )A. y3>y1>y2B. y3>y2>y1C. y2>y1>y3D. y2>y3>y17. 如图是三个反比例函数y1=k1x ,y2=k2x,y3=k3x在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为( )A. k1>k2>k3B. k3>k1>k2C. k2>k3>k1D. k3>k2>k18. 在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=k2x(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为( )A. x<1B. x>3C. 0<x<1D. 1<x<39. 如图,过y轴上任意一点P作x轴的平行线,分别与反比例函数y=−2x 和y=6x的图象交于A点和B点,若C为x轴上任意一点,连接AC、BC,则△ABC的面积为( )A. 3B. 4C. 5D. 810. 如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间的函数关系的大致图象是( )A.B.C.D.11. 如图,点B 在反比例函数y =8x (x >0)的图象上,点C 在反比例函数y =−2x (x >0)的图象上,且BC//y 轴,AC ⊥BC ,垂足为点C ,交y 轴于点A.则△ABC 的面积为( )A. 4B. 5C. 8D. 1012. 如图,平行于x 轴的直线与函数y =k 1x(k 1>0,x >0),y =k 2x(k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1−k 2的值为( )A. 8B. −8C. 4D. −4第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知函数y =20x,当y =14时,x = .14. 已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y关于x的函数表达式为____________.15. 如图,点P为双曲线y=8x(x>0)上一点,PA⊥x轴于点A,PB⊥y轴于点B,PA,PB分别交双曲线y=kx(x>0)于C,D两点,若S△PCD=1,则k=.16. 如图,平行于x轴的直线与函数y=k1x (k1>0,x>0)和y=k2x(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1−k2的值为______.三、解答题(本大题共9小题,共72.0分。

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。

0B。

1C。

2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。

4,12B。

4,6C。

8,12D。

8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。

二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP =S△ABO,若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)双曲线的函数关系式为y=﹣;(2)当x<﹣1时,0<y<2;(3)存在;点P坐标为(﹣,4).【解析】(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP =S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.试题解析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵yA =yB,∴AB∥x轴,∴S△ABP =S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(yP ﹣2)=5,即×5×(yP﹣2)=5,解得yP=4,∴点P坐标为(﹣,4).【考点】1、相似三角形的判定与性质;2、待定系数法;3、函数大小的比较;4、反比例函数2.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).⑴求反比例函数的解析式;⑵若点P(n,-1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.⑶若B(2,1),当x为何值时,一次函数的值大于反比例函数的值【答案】(1)反比例函数解析式为:y=;=.(2)S△CEF(3)当x>2或- 1<x<0时,一次函数的值大于反比例函数的值.【解析】(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,将点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积;(3)直接根据图像即可得到.试题解析:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=;(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,=CE×EF=.故可得S△CEF(3)根据图象可知:当x>2或- 1<x<0时,一次函数的值大于反比例函数的值,【考点】反比例函数与一次函数的交点问题.3.某函数具有下列性质:①图像在二、四象限内;②在每个象限内,函数值随自变量的增大而增大.则其函数解析式可以为.【答案】y=.【解析】首先根据题意可得此函数可以是反比例函数,并且k<0,所以函数解析式可以为:y=.故答案是y=.【考点】反比例函数的性质.4.已知,与成反比例,与成正比例,并且当时,,当时,.(1)求关于的函数关系式;(6分)(2)当时,求的值.(4分)【答案】(1)y关于x的函数关系式为y=+4(x﹣2);(2)y=5.【解析】(1)根据正比例函数和反比例函数的定义,可设y1=,y2=b(x﹣2),则y=﹣b(x﹣2),再把x=3时,y=5,当x=1时,y=﹣1得到关于a和b的方程组,解方程组得到a=3,b=﹣4,所以y=+4(x﹣2);(2)把x=代入y=+4(x﹣2)中,计算出对应的函数值即可.试题解析:(1)设y1=,y2=b(x﹣2),则y=﹣b(x﹣2),根据题意得,解得,所以y关于x的函数关系式为y=+4(x﹣2);(2)把x=代入y=+4(x﹣2)得y=12+4×(﹣2)=5.【考点】待定系数法求反比例函数解析式.5.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题解析:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故选C.【考点】反比例函数系数k的几何意义.6.下列函数中,y是x的反比例函数的是()A.y=﹣B.y=﹣C.y=D.y=【答案】B【解析】此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解:A、是正比例函数,故错误;B、是反比例函数,故正确;C、不符合反比例函数的定义,故错误;D、不符合反比例函数的定义,故错误.故选B.点评:本题考查反比例函数的定义,熟记反比例函数解析式的一般式(k≠0)是解决此类问题的关键.7.函数yl=x(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.【答案】①③④【解析】逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.解:①根据题意列解方程组,解得,;∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;②当x>3时,y1在y2的上方,故y1>y2,错误;③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9﹣1=8,正确;④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,y 2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.因此①③④正确,②错误.故答案为:①③④.点评:本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.8.如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).(1)求反比例函数的解析式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)y=(2)存在.理由见解析【解析】(1)先把M(3,m)代入y=2x﹣2求出m,确定M点的坐标,然后利用待定系数法确定反比例函数解析式;(2)先确定A点坐标为(0,﹣2),B点坐标为(1,0),再根据勾股定理计算出AB=;根据M点坐标得到MC=4,BC=2,则利用勾股定理可计算出BM=2,然后证明Rt△OBA∽Rt△MBP,利用相似比计算出BP,于是可确定P点坐标.解:(1)把M(3,m)代入y=2x﹣2得m=2×3﹣2=4,∴M点坐标为(3,4),把M(3,4)代入y=得k=3×4=12,∴反比例函数的解析式为y=;(2)存在.作MC⊥x轴于C,如图,把x=0代入y=2x﹣2得y=﹣2;把y=0代入y=2x﹣2得2x﹣2=0,解得x=1,∴A点坐标为(0,﹣2),B点坐标为(1,0),∴OA=2,OB=1,在Rt△OAB中,AB==,∵M点坐标为(3,4),∴MC=4,BC=3﹣1=2,在Rt△MBC中,MB==2,∵MA⊥MB,∴∠BMP=90°,而∠OBA=∠MBP,∴Rt△OBA∽Rt△MBP,∴=,即=,∴BP=10,∴OP=11,∴点P的坐标为(11,0).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法确定函数解析式;熟练运用勾股定理和相似比进行几何计算.9.如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.(3)求△AOB 的面积.【答案】(1)y= y=x+2 (2)x <﹣3或0<x <1 (3)4【解析】(1)把A (1,3)代入反比例函数即可得到k=3,然后把B (n ,﹣1)代入y=求出n ,再把A 点和B 点坐标代入y=mx+b 中得到关于m 、b 的方程组,然后解方程组即可;(2)观察图象可得到当x <﹣3或0<x <1时,反比例函数的图象都在一次函数的图象的上方; (3)先求出直线AB 与x 轴的交点C 的坐标,则S △OAB =S △OAC +S △OBC ,然后利用三角形的面积公式计算即可.解:(1)把A (1,3)代入反比例函数,∴k=1×3=3,∴反比例函数的解析式为y=, 把B (n ,﹣1)代入y=得,n=﹣3,∴点B 的坐标为(﹣3,﹣1),把A (1,3)、点B (﹣3,﹣1)代入一次函数y=mx+b 得,m+b=3,﹣3m+b=﹣1,解得m=1,b=2,∴一次函数的解析式为y=x+2;(2)当x <﹣3或0<x <1时,反比例函数的值大于一次函数的值; (3)连OA 、OB ,直线AB 交x 轴与C 点,如图, 对于y=x+2,令y=0,x=﹣2, ∴C 点坐标为(﹣2,0),∴S △OAB =S △OAC +S △OBC =×2×3+×2×1=4.点评:本题考查了反比例函数与一次函数的交点问题:同时满足反比例函数的解析式和一次函数的解析式的点的坐标为它们图象的交点坐标.也考查了待定系数法求函数的解析式以及坐标轴上点的坐标特点.10. 已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( ) A .y=B .y=C .y=D .y=2x【答案】C【解析】由点A(1,2)在反比例函数y=的图象上根据待定系数法即可求得结果. 解:∵点A(1,2)在反比例函数y=的图象上 ∴∴该反比例函数的解析式是y= 故选C.【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.当k<0,反比例函数和一次函数的图象大致是()【答案】B【解析】根据反比例函数和一次函数的性质分析即可.解:因为k<0,所以反比例函数的图象经过第二、四象限,一次函数的图象经过第二、三、四象限,符合条件的只有B选项,故选B.【考点】反比例函数和一次函数的图象点评:解题的关键是熟练掌握一次函数的性质:当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.12.若y-2与x成反比例且当x=3时y=1,则y与x之间函数关系式为。

八年级数学反比例函数综合检测题(含答案)

八年级数学反比例函数综合检测题(含答案)

反比例函数练习一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z成反比例,则y 与z 之间的关系是(). A 、成正比例 B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的 密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系A . B . C . .是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6, 则b = .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的 平行线,若S 阴影=5,则此反比例函数解析式为 . 17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为 B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3, 到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式, 并画出函数图象.举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A 、B 两点, 且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于 M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)间函数关系式为y =x2(x >0).23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. (2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

初二数学反比例函数练习卷

初二数学反比例函数练习卷

反比例函数练习卷一、基础知识1、一般地:形如 的函数称为反比例函数:比例系数为 。

其中:自变量x 的取值范围是 。

2、反比例函数的两种基本形式:① ②3、反比例函数的图象名称是 :它有 个分支:它们关于 对称:并且随着x 的不断增大(或减小):曲线越来越接近坐标轴。

但永远不会与坐标轴相交。

45、画反比例函数图象的三个步骤: 、 、 。

二、基础练习 (一)填空题 1、反比例函数xky =的图象经过点P (-4:3):则k 的值是 。

2、若一反比例函数的图象经过点(1:2)则函数的解析式是 。

3、某厂有煤1500吨:求得这些煤能用的天数y 与平均每天用煤吨数x 之间的函数关系式为 。

4、下列函数:①xy=31-:②y=5-x :③x y 52-=:④143--=x y :⑤y=-3x :其中是反比例函数的是 。

5、若反比例函数22)12(-+=k x k y 在每个象限内y 随x 的增大而增大:则k= 。

6、若函数mxm y 1+=为反比例函数:则m= 。

7、若点(-2:-1)在反比例函数xky =的图象上:则当x>0时:y 随x 的增大而 。

8、反比例函数xk y 1+=的图象经过P (3:7)和Q (1:m )两点:则k= ,m= 。

9、反比例函数xk k y 222+=+图象的两个分支分别位于 。

10、若反比例函数xk y 3-=的图象位于一、三象限内:正比例函数x k y )92(-=过二、四象限:则k 的整数值是 。

11、点P 既在反比例函数xky =(k ≠0)的图象上:又在正比例函数y=-x 的图象上:则点P 的坐标是 。

12、正比例函数y=mx 与反比例函数xky =的一个交点A 的坐标为(3:2):则它们的另一个交点坐标为 。

13、如果一次函数y=mx+n 与反比例函数x m n y -=3的图象相交于点(21:2):那么这两个函数解析式分别为 、 。

14、设有反比例函数xk y 1+=:(11,y x )、),(22y x 为其图象上两点:若2121,0y y x x ><<:则k 的取值范围是 。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1.如图,经过原点的两条直线、分别与双曲线相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求值及点坐标;(4分)(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(4分)(3)若P点坐标为(m,n),且,求P点坐标.(4分)【答案】(1)k=3,B点坐标为(﹣3,﹣1);(2)a=1,四边形APBQ的面积为16;(3P点坐标为(1,3).【解析】(1)根据分别莲花山图象上点的坐标特征得到k=3×1=3,再根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣3,﹣1);(2)根据反比例函数图象上点的坐标特征得到a=1,即P点坐标为(1,3),再根据正比例函数图象和反比例函数图象的性质得到点P与点Q关于原点对称,所以点Q的坐标为(﹣1,﹣3),由于OA=OB,OP=OQ,则根据平行四边形的判定得到四边形APBQ为平行四边形,然后根据两点间的距离公式计算出AB,PQ,可得到即AB=PQ,于是可判断四边形APBQ为矩形,再计算出PA和PB,然后计算矩形APBQ的面积;(3)由于四边形APBQ为平行四边形,加上∠APB=90°,则可判断四边形APBQ为矩形,则OP=OA,根据两点间的距离公式得到m2+n2=10,且mn=3,则利用完全平方公式得到(m+n)2﹣2mn=10,可得到m+n=4,根据根与系数的关系可把m、n看作方程x2﹣4x+3=0的两根,然后解方程可得到满足条件的P点坐标.试题解析:(1)把A(3,1)代入y=得k=3×1=3,∵经过原点的直线l与双曲线y=(k≠0)相交于A、B、1∴点A与点B关于原点对称,∴B点坐标为(﹣3,﹣1);(2)把P(a,3)代入y=得3a=3,解得a=1,∵P点坐标为(1,3),∵经过原点的直线l与双曲线y=(k≠0)相交于P、Q点,2∴点P与点Q关于原点对称,∴点Q的坐标为(﹣1,﹣3),∵OA=OB,OP=OQ,∴四边形APBQ为平行四边形,∵AB2=(3+3)2+(1+1)2=40,PA2=(1+1)2+(3+3)2=40,∴AB=PQ,∴四边形APBQ为矩形,∵PB 2=(1+3)2+(3+1)2=32,PQ2=(3﹣1)2+(1﹣3)2=8,∴PB=4,PQ=2,∴四边形APBQ的面积=PA•PB=2•4=16;(3)∵四边形APBQ为平行四边形,而∠APB=90°,∴四边形APBQ为矩形,∴OP=OA,∴m2+n2=32+12=10,而mn=3,∵(m+n)2﹣2mn=10,∴(m+n)2=16,解得m+n=4或m+n=﹣4(舍去),把m、n看作方程x2﹣4x+3=0的两根,解得m=1,n=3或m=3,n=1(舍去),∴P点坐标为(1,3).【考点】反比例函数综合题.2.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题解析:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故选C.【考点】反比例函数系数k的几何意义.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A. 12米B. 13米C.14米D.15米【答案】A【解析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A .点评:此题是勾股定理在实际生活中的运用,比较简单.4. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( ) A .(x >0)B .(x≥0)C .y=300x (x≥0)D .y=300x (x >0)【答案】A【解析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可. 解:∵煤的总吨数为300,平均每天烧煤的吨数为x , ∴这些煤能烧的天数为y=(x >0),故选:A .点评:此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.5. 如图,反比例函数的图象与一次函数y=mx+b 的图象交于A (1,3),B (n ,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.(3)求△AOB 的面积.【答案】(1)y= y=x+2 (2)x <﹣3或0<x <1 (3)4【解析】(1)把A (1,3)代入反比例函数即可得到k=3,然后把B (n ,﹣1)代入y=求出n ,再把A 点和B 点坐标代入y=mx+b 中得到关于m 、b 的方程组,然后解方程组即可;(2)观察图象可得到当x <﹣3或0<x <1时,反比例函数的图象都在一次函数的图象的上方; (3)先求出直线AB 与x 轴的交点C 的坐标,则S △OAB =S △OAC +S △OBC ,然后利用三角形的面积公式计算即可.解:(1)把A (1,3)代入反比例函数,∴k=1×3=3,∴反比例函数的解析式为y=, 把B (n ,﹣1)代入y=得,n=﹣3,∴点B 的坐标为(﹣3,﹣1),把A (1,3)、点B (﹣3,﹣1)代入一次函数y=mx+b 得,m+b=3,﹣3m+b=﹣1,解得m=1,b=2,∴一次函数的解析式为y=x+2;(2)当x <﹣3或0<x <1时,反比例函数的值大于一次函数的值; (3)连OA 、OB ,直线AB 交x 轴与C 点,如图, 对于y=x+2,令y=0,x=﹣2,∴C 点坐标为(﹣2,0),∴S △OAB =S △OAC +S △OBC =×2×3+×2×1=4.点评:本题考查了反比例函数与一次函数的交点问题:同时满足反比例函数的解析式和一次函数的解析式的点的坐标为它们图象的交点坐标.也考查了待定系数法求函数的解析式以及坐标轴上点的坐标特点.6. 已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( ) A .y=B .y=C .y=D .y=2x【答案】C【解析】由点A(1,2)在反比例函数y=的图象上根据待定系数法即可求得结果. 解:∵点A(1,2)在反比例函数y=的图象上 ∴∴该反比例函数的解析式是y=故选C.【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 如图,正方形ABOC 的面积为4,反比例函数的图象过点A ,则k = .【答案】—4 【解析】反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为.解:依题意得, 又∵图象位于第二象限, ∴ ∴.【考点】反比例函数中k 的几何意义点评:本题属于基础应用题,只需学生熟练掌握反比例函数中k 的几何意义,即可完成.8. 如图,在平面直角坐标系中,已知点在双曲线上,轴于D ,轴于,点在轴上,且,则图中阴影部分的面积之和为A .6B .12C .18D .24【答案】B【解析】过A 作AG 垂直于x 轴,交x 轴于点G ,由AO=AF ,利用三线合一得到G 为OF 的中点,根据等底同高得到三角形AOD 的面积等于三角形AFD 的面积,再由A ,B 及C 三点都在反比例函数图象上,根据反比例的性质得到三角形BOD ,三角形COE 及三角形AOG 的面积都相等,都为,由反比例解析式中的k 值代入,求出三个三角形的面积,根据阴影部分的面积等于三角形BOD 的面积+三角形COE 的面积+三角形AOG 的面积+三角形AFG 的面积=4三角形AOD 的面积,即为2|k|,即可得到阴影部分的面积之和.解:过A 作AG ⊥x 轴,交x 轴于点G∵AO=AF ,AG ⊥OF ,∴G 为OF 的中点,即OG=FG , ∴S △OAG =S △FAG ,又A ,B 及C 点都在反比例函数上,∴S △OAG =S △BOD =S △COE ==3,∴S △OAG =S △BOD =S △COE =S △FAG =3,则S 阴影=S △OAG +S △BOD +S △COE +S △FAG =12, 故选B .【考点】反比例函数的性质,等腰三角形的性质,三角形的面积公式 点评:反比例函数(k≠0)图象上的点到坐标轴的垂线,此点到原点的连线及坐标轴围成的直角三角形的面积等于,熟练掌握此性质是解本题的关键.9. 如图所示,设A 为反比例函数图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 .【答案】【解析】由矩形ABOC 的面积为3根据反比例函数系数k 的几何意义可得,再根据图象在第二象限即可求得结果.解: 因为矩形ABOC 的面积为3 所以,解得 因为图象在第二象限, 所以, 所以这个反比例函数解析式为.【考点】反比例函数系数k 的几何意义点评:反比例函数系数k 的几何意义:过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为.10.如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.【答案】(1)m=3,k=12;(2)或【解析】(1)根据反比例函数图象上的点的坐标的特征可得,即可求得结果;(2)存在两种情况,①当M点在x轴的正半轴上,N点在y轴的正半轴上时,②当M点在x轴的负半轴上,N点在y轴的负半轴上时,根据平行四边形的性质求解即可.(1)由题意可知,解得m1=3,m2=-1(舍去)∴A(3,4),B(4,3);∴k=4×3=12;(2)存在两种情况,如图:①当M点在x轴的正半轴上,N点在y轴的正半轴上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).∵四边形AN1M1B为平行四边形,∴线段N1M1可看作由线段AB向左平移3个单位,再向下平移3个单位得到的由(1)知A点坐标为(3,4),B点坐标为(4,3),∴N1点坐标为(0,1),M1点坐标为(1,0)设直线M1N1的函数表达式为,把x=1,y=0代入,解得.∴直线M1N1的函数表达式为;②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,∴N1M1∥M2N2,N1M1=M2N2.∴线段M2N2与线段N1M1关于原点O成中心对称.∴M2点坐标为(-1,0),N2点坐标为(0,-1).设直线M2N2的函数表达式为,把x=-1,y=0代入,解得,∴直线M2N2的函数表达式为所以,直线MN的函数表达式为或.【考点】反比例函数的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.11.如图,点A(x1,y1)、B(x2,y2)都在双曲线上,且,;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析为 .【答案】【解析】根据S 矩形AEOC =S 矩形OFBD =(S 五边形AEODB -S △AGB -S 四边形FOCG )+S 四边形FOCG ,先求得S 矩形AEOC 和S 矩形OFBD 的值,利用k=AE•AC=FB•BD 即可求得函数解析式. ∵x 2-x 1=4,y 1-y 2=2 ∴BG=4,AG=2 ∴S △AGB =4∵S 矩形AEOC =S 矩形OFBD ,四边形FOCG 的面积为2即AE•AC=6 ∴.【考点】反比例函数与一次函数的性质点评:此题难度稍大,综合性比较强,注意反比例函数上的点向x 轴y 轴引垂线形成的矩形面积等于反比例函数的k 值.12. 如图,正方形OABC 的面积为9,点O 为坐标原点B 在函数的图象上,点P (m ,n )在的图象上任意一点,过P 分别作x 轴y 轴的垂线,垂足分别是E ,F ,并设长方形OEPF 和正方形OABC 不重合部分的的面积为S 。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数测试题
一、选择题
1.反比例函数y =-4x
的图象在 ( ) A .第一、三象限 B .第二、四象限
C .第一、二象限
D .第三、四象限
2.已知关于x 的函数y =k (x +1)和y =-
k x (k ≠0)它们在同一坐标系中的大致图象是(• )
3.已知反比例函数y =x
k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限
C .第二、四象限
D .第三、四象限
4.函数x k y =的图象经过点(-4,6),则下列各点中在x
k y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数
x k y =在同一坐标系内的图象为( )
A B C D
6.在同一直角坐标平面内,如果直线x k y 1=与双曲线x
k y 2=
没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号
7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x
kb y =
的图像在( ) y x o y x o y x o y
x o
A 第一二象限
B 第三 四象限
C 第一三象限
D 第二三象限
二、填空题:(3分×10=30分)
1、y 与x 成反比例,且当y =6时,3
1=x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型)
3、函数2x y -
=和函数x
y 2=的图象有 个交点; 4、反比例函数x
k y =的图象经过(-23,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;
6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;
7、右图3是反比例函数x k y 2-=
的图象,则k 的取值范围是 . 8、函数x
y 2-=的图象,在每一个象限内,y 随x 的增大而 ; 9、反比例函数x
y 2=在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ;
10、()522--=m
x m y 是y 关于x 的反比例函数,则m 值为 ;
(三)解答题
1、已知一次函数b kx y +=与反比例函数x
m y =
的图像交于A (—2 ,1) B (1 ,n )俩点。

求 ⑴ 反比例函数和一次函数的表达式?
⑵ 求△AOB 的面积?
y x O P M
2、如图所示:已知直线y=
x 21与双曲线y=)0(>k x k 交于A B两点,且点A的横坐标为4
⑴ 求k的值?
⑵ 若双曲线y=
)0(>k x
k 上的一点C 的纵坐标为8,求△AOC 的面积?
3.双曲线5y x
=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).
(1)求点A 的横坐标a 与k 之间的函数关系式;
(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.
x y A
B O
O A
D
C (1,5) x y 第3题图。

相关文档
最新文档