2010成人高考专升本高数二真题及答案解析

合集下载

山东高等数学2010年专升本试题答案

山东高等数学2010年专升本试题答案

山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C )A. 023=-+x yB. 03231=-+x yC.023=+-x yD. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。

把答案填在题中横线上。

1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π 14、定积分=⎰e xdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。

2010“专升本”《高数》试题及答案

2010“专升本”《高数》试题及答案

《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。

2010年山东专升本(数学)真题试卷(题后含答案及解析)

2010年山东专升本(数学)真题试卷(题后含答案及解析)

2010年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=-arccos的定义域是( )A.[-3,1]B.[ -8,-1)C.[-8,-1]D.[-1,1]正确答案:D解析:因,故,,所以-1≤x≤1,故选项D正确2.极限等于( )A.0B.1C.1/3D.3正确答案:D解析:,故选项D正确3.已知(1)=1,则等于( )A.1B.-1C.2D.-2正确答案:D解析:根据导数的定义,=-2(1)=-2,选D正确4.设φ(x)=,则(x)等于( )A.B.C.D.正确答案:C解析:(x)===,选项C正确5.曲线y=x2与直线y=1所围成的图形的面积为( )A.2/3B.3/4C.4/3D.1正确答案:C解析:曲线y=x2与曲线y=1的交点坐标为(-1,1)和(1,1),则所围图形的面积为(1-x2)dx-=.选项C正确6.定积分xcos xdx等于( )A.-1B.0C.1D.1/2正确答案:B解析:因被积函数xcosx在[-2,2]上为奇函数,故xcosxdx=0.选项B 正确7.已知向量=(-1,-2,1)与向量=(1,2,t)垂直,则t等于( ) A.-1B.1C.-5D.5正确答案:D解析:因向量a与b垂直,故a.b=0,即(-1).1+(-2).2+1.t=0,也即-5+t=0,故t=5.选项D正确8.曲线y=x2在点(1,1)处的法线方程为( )A.y=xB.y=+C.y=+D.y=--正确答案:B解析:根据导数的几何意义,切线的斜率k=|x=1=2x|x=1=2,故法线方程为y-1=(x-1),即y=-+,选B正确9.设函数f(x)在点x0处不连续,则( )A.(x0)存在B.(x0)不存在C.f(x)必存在D.f(x)在点x0处可微正确答案:B解析:根据“可导必连续”,则“不连续一定不可导”,选项B正确10.=0是级数收敛的( )A.必要条件B.充分条件C.充分必要条件D.不确定正确答案:A解析:根据收敛级数的性质,=0是级数收敛的必要条件.选项A正确填空题11.若函数f(x)=在x=1处连续,则a=_______.正确答案:f(x)=(-2x+1)=-1,f(x)=(x-a)=1-a,因f(x)在点x=1处连续,故f(x)=f(z),即-1=1-a,a=212.x=0是函数f(x)=xcos的第_______类间断点.正确答案:f(x)==0,故x=0是函数f(x)的第一类间断点13.若曲线y=f(x)在点(x0,f(x0))处的切线平行于直线y=2x-3,则(x0)=________.正确答案:切线与直线平行,则切线的斜率与直线的斜率相等,故(x0)=2 14.函数f(x)=2x3-9x2+12x的单调减区间是_______.正确答案:令(x)=6x2-18x+12=6(x-1)(x-2)=0,得驻点x=1和x=2;当x(x)>0,当1(x)2时,(x)>0,故函数的单调递减区间为[1,2]15.设y=cos(sin x),则dy=______.正确答案:dy=dcos(sinx)=-sin(sinx)cosxdx16.不定积分∫df(x)=________.正确答案:根据不定积分与微分的关系可得,∫df(x)=f(x)+C17.dx=________ .正确答案:由定积分的几何意义,dx表示曲线y=,直线x=0,x=1和x轴所围成的图形的面积,即圆面积,故18.“函数z=f(x,y)的偏导数,在点(z,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的_______条件.正确答案:根据二元函数微分的存在性定理可知,二元函数z=f(x,y)在点(x,y)处可微分则偏导数一定存在,但反之不一定成立,故“函数z=f(x,y)的偏导数、在点(x,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的必要非充分条件19.微分方程-4-5y=0的通解为_______.正确答案:原方程的特征方程为r2-4r-5=0,有两个不相等的实根r1=-1,r2=5,故原方程的通解为y=+20.幂级数的收敛区间为_______.正确答案:因==故R==+∞所以原幂级数的收敛区间为(-∞,+∞)解答题解答时应写出推理、演算步骤。

2010专升本试题参考答案

2010专升本试题参考答案

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试 高等数学 参考答案一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该替补得分. 1.D解:20111≤<⇒≤-<-x x ,应选D. 2.D解:根据偶函数的定义及结论得:()x e x f y x 5sin 2=,[]ππ,-∈x 为偶函数,应选D.3.D解:3232lim 3sin 1lim020==-→→x x x e x x x ,从而是同阶非等价无穷小,应选D. 4.A.解:()01sin lim lim 5200==+→→xx x f x x ;()0lim lim 100==--→→x x x e x f ,从而0=x 是可去间断点,应选A.5.C.解:构造函数,验证端点函数值异号,应选C. 6.D. 解:()()()232323lim0000='-=+-→x f h h x f x f h ,应选D.7.A.解:0,11ln 1ln ==⇒=+='⇒=y x x y x x y ,可得切线方程为1-=x y ,应选A.也可以根据切线与已知直线平行这个条件,直接得到.8.B.解:2215sin 21xx y x y --='⇒--=π,应选B.9.B.解:()()()C x dx xdx x x x f dx x x x df +=-=-=⇒-=⎰⎰22222cos sin sin 2sin 2,应选B.10.D.解:定积分是常数,其导数为0,应选D. 11.D.解:根据偶函数的图像关于y 轴的性质,在()0,∞-内有0,0>''<'f f ,应选D. 12.D.解:根据可能的极限点是驻点或不可导的点的结论知:0x 可能是()x f 的极值点,应选D. 13.C.解:()22=⇒-=''⇒-='⇒=----x e x y xe e y xe y x x x x ,应选C. 14.A.解:335arctan 2lim lim =⎪⎭⎫⎝⎛+=∞→∞→x x y x x ;∞≠=⎪⎭⎫ ⎝⎛+=→→51735arctan 2lim lim 00x x y x x ,仅有水平渐进线,应选A 。

2010河南专升本高等数学真题及答案详解

2010河南专升本高等数学真题及答案详解

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。

本试卷的试题答案必须答在答题卡上,答在试卷上无效。

一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

1.设函数)(x f 的定义域为区间(1,1]-,则函数(1)e f x -的定义域为A .[2,2]-B .(1, 1]-C .(2, 0]-D .(0, 2]2.若()f x ()x R ∈为奇函数,则下列函数为偶函数的是A .()y x =,[1, 1]x ∈-B .3()tan y xf x x =+,(π, π)x ∈-C .3sin ()y x x f x =-,[1, 1]x ∈-D .25()e sin x y f x x =,[π, π]x ∈- 3.当0→x 时,2e1x-是sin 3x 的A .低阶无穷小B .高阶无穷小C .等价无穷小D .同阶非等价无穷小4.设函数2511sin , 0()e , 0xx x x f x x ⎧>⎪=⎨⎪<⎩,则0x =是)(x f 的 A .可去间断点 B .跳跃间断点 C .连续点D .第二类间断点5.下列方程在区间(0, 1)内至少有一个实根的为 A .220x +=B .sin 1πx =-C .32520x x +-=D .21arctan 0x x ++=6.函数)(x f 在点0x x =处可导,且1)(0-='x f ,则000()(3)lim2h f x f x h h→-+=A .23B .23-C .32-D .327.曲线x x y ln =的平行于直线01=+-y x 的切线方程是 A .1-=x y B .)1(+-=x y C .1y x =-+D .)1)(1(ln -+=x x y8.设函数π2sin 5y =,则='y A.π2cos 5-B.CD.2πcos 55-9.若函数()f x 满足2d ()2sin d f x x x x =-,则()f x = A .2cos xB .2cos x C +C .2sin x C +D .2cos x C -+10.d e sin(12)d d b xax x x --=⎰ A .e sin(12)x x -- B .e sin(12)d x x x -- C .e sin(12)x x C --+D .011.若()()f x f x -=,在区间(0, )+∞内,()0f x '>,()0f x ''>,则()f x 在区间(, 0)-∞内A .()0f x '<,()0f x ''<B .()0f x '>,()0f x ''>C .()0f x '>,()0f x ''<D .()0f x '<,()0f x ''>12.若函数()f x 在区间(, )a b 内连续,在点0x 处不可导,0(, )x a b ∈,则 A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点 C .0x 不是()f x 的极值点 D .0x 可能是()f x 的极值点13.曲线e xy x -=的拐点为 A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭14.曲线2arctan 35xy x=+ A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 15.若x cos 是)(x f 的一个原函数,则=⎰)(d x fA .sin x C -+B .sin xC + C .cos x C -+D .cos x C +16.设曲线()y f x =过点(0, 1),且在该曲线上任意一点(, )x y 处切线的斜率为e x x +,则=)(x fA .2e 2x x -B .2e 2x x +C .2e x x +D .2e x x -17.2 π4πsin d 1x xx x -=+⎰A .2B .0C .1D .1-18.设)(x f 是连续函数,则2()d x af t t ⎰是A .)(x f 的一个原函数B .)(x f 的全体原函数C .)(22x xf 的一个原函数D .)(22x xf 的全体原函数19.下列广义积分收敛的是 A.1x +∞⎰ B .2 e ln d xx x +∞⎰C .2e1d ln x x x+∞⎰D .21d 1xx x+∞+⎰20.微分方程0)(224=-'+''y x y y x 的阶数是 A .1B .2C .3D .421.已知向量{5, , 2}a x =-和{, 6, 4}b y = 平行,则x 和y 的值分别为A .4-,5B .3-,10-C .4-,10-D .10-,3-22.平面1x y z ++=与平面2=-+z y x 的位置关系是 A .重合 B .平行C .垂直D .相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是 A .221y z += B .22z x y =+ C .222z x y =+D .22z x y =-24.关于函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩下列表述错误的是A .(, )f x y 在点(0, 0)处连续B .(0, 0)0x f =C .(0, 0)0y f =D .(, )f x y 在点(0, 0)处不可微25.设函数)ln(y x y x z -=,则=∂∂yzA .)(y x y x -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 26.累次积分2d (, )d x f x y y ⎰⎰写成另一种次序的积分是A .1d (, )d yyy f x y x -⎰⎰B.2d (, )d y f x y x ⎰⎰C.11d (,)d y f x y x -⎰⎰D.11 11d (, )d y f x y x -⎰⎰27.设{(, )|D x y x =≤2, y ≤2},则⎰⎰=Dy x d dA .2B .16C .12D .428.若幂级数∑∞=0n nnx a的收敛半径为R ,则幂级数∑∞=-02)2(n n n x a 的收敛区间为A.( B .(2, 2)R R -+ C .(, )R R -D.(2 229.下列级数绝对收敛的是 A .∑∞=-11)1(n nnB .∑∞=-1223)1(n n nnC .∑∞=-+-1121)1(n n n nD .∑∞=--1212)1(n nn n30.若幂级数(3)nn n a x ∞=-∑在点1x =处发散,在点5x =处收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有A .0个B .1个C .2个D .3个二、填空题(每空2分,共20分)31.设(32)f x -的定义域为(3, 4]-,则)(x f 的定义域为________. 32.极限limx =________.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________.34.设参数方程22 1 31x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d d yx =________. 35.(ln 1)d x x +=⎰________.36.点(3, 2, 1)-到平面10x y z ++-=的距离是________. 37.函数(1)x z y =+在点(1, 1)处的全微分d z =________.38.设L 为三个顶点分别为(0, 0),(1, 0)和(0, 1)的三角形边界,L 的方向为逆时针方向,则2322()d (3)d Lxyy x x y xy y -+-=⎰ ________.39.已知微分方程x ay y e =+'的一个特解为x x y e =,则a =________.40.级数03!nn n ∞=∑的和为________.三、计算题(每小题5分,共45分)41.求极限2040sin d (e 1)sin lim 1cos x x x t t x x x →⎛⎫- ⎪- ⎪- ⎪⎝⎭⎰. 42.设由方程22e e y xy -=确定的函数为)(x y y =,求d d x yx =. 43.求不定积分2xx .44.求定积分( 2d x x ⎰.45.求过点(1, 2, 5)-且与直线213 3 x y z x y -+=⎧⎨-=⎩平行的直线方程.46.求函数x xy y x y x f 823),(22+-+=的极值. 47.将23()21xf x x x =+-展开成x 的幂级数. 48.计算二重积分Dσ⎰⎰,其中D 是由圆223x y +=所围成的闭区域.49.求微分方程069=+'-''y y y 的通解.四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 51.平面图形D 由曲线2x y =,直线x y -=2及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且(0)0f =,(1)2f =.证明:在)1,0(内至少存在一点ξ,使得()21f ξξ'=+成立.2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试题参考答案及评分标准一、选择题(每小题2分,共60分)二、填空题(每小题2分,共20分)31.[5, 9)- 32.5233.24 34.3235.ln x x C + 3637.2ln 2d d x y + 38.0 39.1- 40.3e三、计算题(每小题5分,共45分)41.3242.222002d d 24e d d e 0x x y y y xx-======- 43.322(e 1)3x C +-44.π22+ 45.125315x y z --+==- 46.函数在(6, 2)--处有极小值(6, 2)24f --=- 47.00111()(1)2[(1)2], , 22nnnnn n nn n n f x x x x x ∞∞∞===⎛⎫=--=--∈- ⎪⎝⎭∑∑∑48.49.1312()e x y C C x =+(1C ,2C 是任意常数) 四、应用题(每小题8分,共16分)50.3232ππ2πππV h V V V r r r r V===⋅=⋅= 51.(1) 1201d 112A x x =+⋅⋅⎰ 13015326x =+= (2) 14201πd π113x V x x =+⋅⋅⎰ 150π8ππ5315x =+=第51题图五、证明题(9分)52.证明:构造函数2()()F x f x x =-,因)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,所以函数)(x F 在闭区间]1,0[上连续,在开区间)1,0(内可导,且()()2F x f x x ''=-.于是)(x F 在]1,0[上满足拉格朗日中值定理的条件,故在开区间)1,0(内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,将(0)0f =,(1)2f =代入上式,得(1)(0)()[(1)1][(0)0]110F F F f f ξ-'==---=-,即()21f ξξ'-=,于是()21f ξξ'=+.。

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。

则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。

12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。

2010成人高考专升本高数试题及答案

2010成人高考专升本高数试题及答案

存在主义的根本观点是,把孤立的个人的非理性意识活动当作最真实的存在,并作为其全部哲学的出发点。

存在主义自称是一种以人为中心,尊重人的个性和自由的哲学。

存在主义超出了单纯的哲学范围,波及西方社会精神生活的各个方面,在文学艺术方面的影响尤为突出。

存在主义以人为中心、尊重人的个性和自由,认为人是在无意义的宇宙中生活,人的存在本身也没有意义,但人可以在存在的基础上自我造就,活得精彩。

存在主义最著名和最明确的倡议是让·保罗·萨特的格言:“存在先于本质”(l'existence précède l'essence)。

意思是说,除了人的生存之外没有天经地义的道德或体外的灵魂;道德和灵魂都是人在生存中创造出来的;人没有义务遵守某个道德标准或宗教信仰,人有选择的自由;要评价一个人,要评价他的所作所为,而不是评价他是个什么人物。

存在主义否认神或其它任何预先定义的规则的存在。

让·保罗·萨特反对任何人生中“阻逆”的因素,因为它们缩小人的自由选择的余地。

假如没有这些阻力的话,那么一个人的唯一的要解决的问题是他选择哪一条路走。

然而人是自由的;即使他在自欺中,仍有潜力与可能。

让·保罗·萨特也提出:“他人是地狱”。

这一观点看似与“人有选择的自由”观点相矛盾,其实每个人选择是自由的,但对于选择后的结果,每个人有无法逃避的责任,人在选择的过程中,面对的最大问题就是他人的选择,因为每个人都有选择的自由,但每个人的自由就可能影响他人的自由,所以称“他人是地狱”。

编辑本段产生背景存在主义产生于第一次世界大战之后。

第一次世界大战是欧洲资产阶级文明终结的开端。

随着现代时期的到来,人进入了历史中的非宗教阶段。

此时,虽然人们拥有了前所未有的权利、科技、文明,但也同时发现自己的无家可归。

随着宗教这一包容一切的框架的丧失,人不但变得一无所有,而且变成一个支离破碎的存在物。

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

2010成人高考专升本高数二真题及答案解析

2010成人高考专升本高数二真题及答案解析

2010成人高考专升本高数二真题及答案解析一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

确答案:A【解析】根据函数的连续性立即得出结果【点评】这是计算极限最常见的题型。

在教学中一直被高度重视。

正确答案:【解析】使用基本初等函数求导公式【点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

正确答案:C【解析】使用基本初等函数求导公式【点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

【答案】D【解析】本题考查一阶求导简单题,根据前两个求导公式选D正确答案:D【解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定【点评】这是判断函数单调性比较简单的题型。

正确答案:A【解析】基本积分公式【点评】这是每年都有的题目。

【点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。

应当也一直是教学的重点正确答案:C【解析】变上限定积分求导【点评】这类问题一直是考试的热点。

正确答案:D【解析】把x看成常数,对y求偏导【点评】本题属于基本题目,是年年考试都有的内容【点评】古典概型问题的特点是,只要做过一次再做就不难了。

二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

【解析】直接代公式即可。

【点评】又一种典型的极限问题,考试的频率很高。

【答案】0【解析】考查极限将1代入即可,【点评】极限的简单计算。

【点评】这道题有点难度,以往试题也少见。

【解析】求二阶导数并令等于零。

解方程。

题目已经说明是拐点,就无需再判断【点评】本题是一般的常见题型,难度不大。

【解析】先求一阶导数,再求二阶【点评】基本题目。

正确答案:2【解析】求出函数在x=0处的导数即可【点评】考查导数的几何意义,因为不是求切线方程所以更简单了。

【点评】这题有些难度。

很多人不一定能看出头一步。

专升本高数二真题答案解析

专升本高数二真题答案解析

专升本高数二真题答案解析导读:高等数学是专升本考试中的一门重要科目,也是考生们最担心的科目之一。

为了帮助考生更好地理解和掌握高数知识,本文将对专升本高数二真题进行答案解析,希望能够对考生们的备考有所帮助。

第一题:解析:本题是一道求导题,要求求出函数f(x) = x^3 - x的导函数。

首先,我们可以按照求导法则对每一项进行求导,得到f'(x) = 3x^2 - 1。

所以答案是f'(x) = 3x^2 - 1。

第二题:解析:本题是一道定积分题,要求计算∫(0到1) (3x^2 + 2x + 1)dx。

根据定积分的性质,我们可以将被积函数的各项分别进行积分,并进行求和。

∫(0到1) (3x^2 + 2x + 1)dx = ∫(0到1) 3x^2 dx + ∫(0到1) 2x dx + ∫(0到1) 1 dx依次求积分,得到(3/3)x^3 + (2/2)x^2 + (1)x = x^3 + x^2 +x。

所以答案是∫(0到1) (3x^2 + 2x + 1)dx = x^3 + x^2 + x。

第三题:解析:本题是一道极限题,要求求出lim(x趋近无穷) (3x^2 + 2x + 1)。

对于x趋于无穷时,我们可以略去低阶无穷小,只保留最高次的项。

所以lim(x趋近无穷) (3x^2 + 2x + 1) = lim(x趋近无穷)3x^2 = +无穷。

所以答案是lim(x趋近无穷) (3x^2 + 2x + 1) = +无穷。

第四题:解析:本题是一道微分方程题,要求求出微分方程dy/dx = x + 1的通解。

对于一阶线性微分方程dy/dx + P(x)y = Q(x),我们可以使用积分因子法进行求解。

首先,将方程改写为dy/dx + 1y = x,并求出积分因子μ(x) = e^∫1dx = e^x。

然后,将方程两边同时乘以积分因子μ(x),得到e^xdy/dx +e^xy = xe^x。

成人高考专升本考试高等数学(二)真题汇编3(含答案)

成人高考专升本考试高等数学(二)真题汇编3(含答案)

成人高考专升本考试高等数学(二)真题汇编3 一、单项选择题√解析:本题考查了不定积分的知识点.本题考查了不定积分的知识点.A.∞B.0C.1√解析:本题考查了极限(洛必达法则)的知识点.A.一定有定义B.一定有f(x0)=AC.一定连续D.极限一定存在√解析:本题考查了极限的知识点.A.1 √B.2C.3D.4解析:本题考查了函数在一点处连续的知识点.f(x)在x=0处连续,所以f(x)在x=0处左连续、右连续,5.对于函数z=xy,原点(0,0)()A.不是函数的驻点B.是驻点不是极值点√C.是驻点也是极值点D.无法判定是否为极值点解析:本题考查了函数的驻点、极值点的知识点.6.下列反常积分发散的是()√解析:本题考查了无穷区间反常积分的发散性的知识点.7.函数f(x)=x4-24x2+6x在定义域内的凸区间是()A.(-,0)B.(-2,2)√C.(0,+∞)D.(-∞,∞)解析:本题考查了函数的凸区间的知识点.8.设y=xn,n为正整数,则y(n)=()A.0B.1C.nD.n! √解析:本题考查了一元函数的高阶导数的知识点.9.下列四个函数不能做随机变量x的分布函数的是()√解析:本题考查了分布函数的知识点.A.F(cosx)+CB.F(sinx)+C√C.-F(cosx)+CD.-F(sinx)+C解析:本题考查了不定积分的换元积分法的知识点.二、填空题填空项1:__________________(正确答案:无)解析:本题考查了简单有理函数的积分的知识点.填空项1:__________________(正确答案:mk)解析:本题考查了函数在一点处连续的的知识点.填空项1:__________________(正确答案:f1y+f2)解析:本题考查了复合函数的一阶偏导数的知识点.14.设曲线y=x2+x-2在点M处切线的斜率为2,则点M的坐标为()填空项1:__________________(正确答案:无)解析:本题考查了曲线上一点处的切线的知识点.15.填空项1:__________________(正确答案:-1)解析:本题考查了定积分的性质的知识点.填空项1:__________________(正确答案:1/2)解析:本题考查了无穷区间的反常积分的知识点.填空项1:__________________(正确答案:1)解析:本题考查了函数可导的定义的知识点.填空项1:__________________(正确答案:e-1)解析:填空项1:__________________(正确答案:无)解析:本考题考查了一元函数的一阶倒数的知识点填空项1:__________________(正确答案:1/2)解析:本题考查了极限的知识点.三、问答题_____________________________________________________________________ _____________________正确答案:(无)解析:_____________________________________________________________________ _____________________正确答案:(无)_____________________________________________________________________ _____________________正确答案:(无)解析:24.电路由两个并联电池A与B,再与电池C串联而成,设电池A、B、C损坏的概率分别是0.2,0.2,0.3,求电路发生间断的概率。

往年成人高考专升本高等数学二真题及答案

往年成人高考专升本高等数学二真题及答案

往年成人高考专升本高等数学二真题及答案答案必须答在答题卡上指定的位置,答在试卷上无效.......。

选择题一、选择题:1~10小题,每小题4分,共40分。

在每小题给出的四个选项中, 只有一项是符合题目要求的,把所选项前的字母填涂在答题卡相应题号的信点.......... 上.。

A.2πB.2π-C.2πD.2π-2、设函数ln 3x y e =-,则dydx= A.x eB.13x e +C.13D.13x e -3、设函数()ln(3)f x x =,则'(2)f =B.ln 6C.12D.164、设函数3()1f x x =-在区间(,)-∞+∞A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加5、21dx x ⎰=A.1C x+ B.2ln x C +C.1C x-+ D.21C x+6、2(1)x d dt t dx +⎰= A.2(1)x +C.31(1)3x +D.2(1)x +7、曲线||y x =与直线2y =所围成的平面图形的面积为8、设函数cos()z x y =+,则(1,1)|zx ∂=∂ A. cos 2B.cos 2-C.sin 2D.-sin 29、设函数yz xe =,则2z x y∂∂∂=A. x eB.y eC.y xeD.x ye10、设A ,B 是两随机事件,则事件A B -表示A.事件A ,B 都发生B.事件B 发生而事件A 不发生C.事件A 发生而事件B 不发生D.事件A ,B 都不发生 非选择题二、填空题:11~20小题,每小题4分,共40分,将答案填写在答题卡相应题...... 号后..。

11、3123x xlimx→-=_______________.12、设函数ln ,1,(),1x x f x a x x ≥⎧=⎨-<⎩在1x =处连续,则a =_______________.13、曲线23354y x x x =-+-的拐点坐标为_______________. 14、设函数1x y e +=,则''y =_______________.15、31(1)xx lim x→∞+=_______________.16、设曲线22y x ax =+在点(1,2)a +处的切线与直线4y x =平行,则a =_______. 17、3x dx e =⎰_______________. 18、131(3)x dx x -+=⎰_______________.19、xdx e -∞=⎰_______________. 20、设函数2ln z y x =+,则dz =_______________.三、解答题:21~28题,共70分。

【专升本】2010年高等数学(二)及参考答案

【专升本】2010年高等数学(二)及参考答案

绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

1.A、 B.0 C. D.—2.设函数,则′=A、2B、1C、D、−3.设函数,则′=A.2B.-2C.D.-4.下列在区间(0,+)内单调减少的是A.y=xB.y=C.y=D.y=5.dx=A.-+CB.+CC.+CD.+C6.曲线y=1-与x轴所围成的平面图形的面积S=A.2B.C.1D.7.已知=dt,则′=A. B.+1 C. D.8.设函数z=,则│A.0B.C.1D.29.设函数z=,则=A.-B.C.D.10.袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出2个球均为白色球的概率为A. B. C. D.二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

11、12、当0时,与是等价无穷小量,则13、设函数在点处的极限存在,则a=14、曲线y=+3+1的拐点坐标为15、设函数y=,则=16、设曲线y=ax在x=0处的切线斜率为2,则a=17、=18、=19、=20、函数z=2的驻点坐标为三、解答题:21-28题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后。

21、(本题满分8分)计算 .22、(本题满分8分)设y=,求 .23、(本题满分8分)计算。

24、(本题满分8分)计算。

25、(本题满分8分)(1)求常数a .(2)求X的数学期望EX和方差DX.26、(本题满分10分)在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各位多少时,矩形面积最大?最大值是多少?27、(本题满分10分)证明:当x1时,x1.28、(本题满分10分)求二元函数,=++xy,在条件x+2y=4下的极值.绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:每小题4分,共40分.1. A2. C3. B4. D5. A6. B7. C8.D9.A 10.B二、填空题:每小题4分,共40分.11. 0 12. 113.1 14.15.16. 217.+ C 18. e 119.20.三、解答题:共70分.21.解:=6分= . 8分22.解:y′=′2分= . 6分所以 = y′=8分23.解:=6分=+ C 8分24.解:设 = t,则 =2t . 2分当x=0时,t=0;当x=1时,t=1 . 3分则 =2=2=2t25.解:(1)因为0.2 + 0.1 + 0.3 + a = 1,所以a=0.4 . 3分(2)EX=00.2=1.9 5分 DX=0.2+++0.4=1.29 8分26.解:如图,设x轴通过半圆的直径,y轴垂直且平分直径 .设OA=x,则AB= .矩形面积S=2x . 2分S′=2 -=2 . 6分令S′=0,得x=R (舍去负值). 8分由于只有一个驻点,根据实际问题,x=R必为所求.则AB=R.所以,当矩形的长为R,宽为R时,矩形面积最大,且最大值S= . 8分27.解:设= x-1-,2分则′=1- .当 x1时,′0,则单调上升 .所以当x1时,= 0. 6分即 x-1-0 ,得 x6分28.解:设F,, =,= . 4分令,①,②,③8分由①与②消去得x=0,代入③得y = 2 .所以函数,的极值为4 . 10分。

成人高考专升本(高等数学二)考试真题答案

成人高考专升本(高等数学二)考试真题答案

空间解析几何:空间直线、平面、曲面、 球面、柱面等几何体的性质和计算
向量与空间解析几何的关系:向量在空间 解析几何中的应用,如向量积、混合积等
向量代数与空间解析几何在成人高考专 升本(高等数学二)考试中的重要性:作 为考试重点内容,需要熟练掌握和运用
提前规划好答 题时间,避免
时间不足
遇到难题时, 不要过于纠结, 先做其他题目
常微分方 程的解: 满足方程 的函数
常微分方 程的解法: 包括分离 变量法、 积分法、 幂级数法 等
无穷级数 的收敛性: 判断无穷 级数是否 收敛,包 括绝对收 敛、条件 收敛等
无穷级数 的求和: 计算无穷 级数的和, 包括直接 求和、积 分法求和 等
向量代数:向量的加法、减法、数乘、向 量积、混合积等运算
答案:2
解析:利用洛必达法则求 解
解析:利用洛必达法则求 解
● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2
合理分配答题 时间,确保每 道题目都有足 够的时间完成
考试结束前, 检查答题卡是 否填写完整,
避免遗漏
阅读题目,理解题意
确定答题顺序,先易 后难
仔细审题,避免漏题
答题时,注意书写工 整,保持卷面整洁
答题完毕,检查答案, 确保无误
审题不清:仔细阅读题目,理 解题意

2010成人高考专升本高数二真题及答案解析

2010成人高考专升本高数二真题及答案解析

2010成人高考专升本高数二真题及答案解析2010年成人高考专升本政治真题及答案解析一、选择题:1-40小题,每小题2分,共80分。

在每小题给出的四个选项中,选出一项最符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。

1、下列选项中,属于哲学基本问题内容的是A、物质世界是否运动发展B、物质世界是否普遍联系C、矛盾是不是事物发展的动力D、物质和意识何者为第一性正确答案:D解析:哲学的基本问题是思维与存在的关系问题,包括思维与存在何为第一性和思维与存在是否具有同一性两方面内容。

A、B、C是关于辩证法的问题,因此选D.点评:这道题考查识记能力,比较简单。

明年考试应注重哲学基本问题第二方面的内容,即思维与存在是否具有同一性。

2、“心外无物”,“存在就是被感知”,这两种说法都是A、客观唯心主义观点B、主观唯心主义观点C、形而上学唯物主义观点D、相对主义诡辩论观点正确答案:B解析:主观唯心主义把人的意志、感觉、情感等主观意识当作世界的本原;客观唯心主义把某种神秘的客观精神当做世界本原,如“绝对精神”、“绝对理念”、“天理”等。

因此选B点评:这道题考查理解能力,难度适中。

明年考试应注重客观唯心主义的观点。

3、意识对物质具有能动反作用,它可以通过指导实践A、改造客观世界B、创造自然规律C、改变历史规律D、创造宇宙万物解析:意识对物质的反作用突出地表现在通过实践改造客观世界。

规律既不能创造也不能改变,因此B、C、D错误,只能选A点评:这道题考查理解能力,比较简单。

类似的题还应注意社会意识相对独立性突出地表现在对社会存在的改造上。

4、唯物辩证法有两个最基本特征,一是强调普遍联系的观点,另一个是强调A、辩证否定的观点B、对立统一的观点C、质量互变的观点D、永恒发展的观点正确答案:D解析:普遍联系的观点和永恒发展的观点是唯物辩证法有两个最基本特征或者说是总特征。

因此选D,此知识点不容错过。

点评:这道题考查识记能力,比较简单。

河南省普通高等学校10年专升本高数真题答案

河南省普通高等学校10年专升本高数真题答案

gm2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学 答案及【解析】析一、选择题(每小题2分,共60分) 1.答案:D【解析】:由题意可知:1(1,1]x -∈-,所以(0, 2]x ∈.选D. 2.答案:D【解析】:A 选项为非奇非偶;B 选项中()xf x 为奇函数,3tan x 也为奇函数,因此整体为奇函数;C 选项中3sin x x 为偶函数,()f x 为奇函数,因此整体为非奇非偶;D 选项中()f x 为奇函数,2e x 为偶函数,5sin x 为奇函数,奇⨯偶⨯奇为偶函数。

选D. 3.答案:D【解析】:22e 1~200sin3~3e 122lim lim sin 333xx x x x x xx x x -→→-==,因此为同阶非等价无穷小量。

选D. 4.答案:A【解析】:2501lim sin 0x x x+→=(无穷小量乘以有界变量还是无穷小量);10lim e 0x x -→=,即左极限=右极限=0,但该函数在0x =处没有定义,因此为可去间断点。

选A. 5.答案:C【解析】:对C 选项来说,令32()52f x x x =+-,显然在区间[]0,1上连续,有(0)20f =-<,(1)40f =>,根据零点定理可知,区间(0, 1)内至少有一个实根。

其他选项均不满足零点定理,取法判断。

选C. 6.答案:D【解析】:根据某点处导数的定义可知:00000()(3)33limlim ()222h h f x f x h f x h →→-+'=-=.选D.7.答案:A【解析】:ln 1y x '=+,切线斜率为1,对应的切点0ln 11x +=,可【解析】得为(1,0).故切线方程为1-=x y .选A. 8.答案:B【解析】:根据求导法则可得:y '=.选B.gm9.答案:B【解析】:22d ()2sin d d cos f x x x x x =-=,2()cos f x x C ∴=+两边同时求积分可有.选B. 10.答案:D【解析】:定积分表示的是常数,常数求导就是0.选D. 11.答案:D 【解析】:()()f x f x -=,()(),()()f x f x f x f x ''''''∴--=-=.当(, 0)x ∈-∞时,(0, )x -∈+∞,有()0f x '->,()0f x ''->,所以()()0,()()0f x f x f x f x ''''''∴=--<=->.选D.12.答案:D【解析】:极值点是驻点或者不可导点,根据题意无法判断是否是极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010成人高考专升本高数二真题及答案解析2010年成人高考专升本政治真题及答案解析一、选择题:1-40小题,每小题2分,共80分。

在每小题给出的四个选项中,选出一项最符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。

1、下列选项中,属于哲学基本问题内容的是A、物质世界是否运动发展B、物质世界是否普遍联系C、矛盾是不是事物发展的动力D、物质和意识何者为第一性正确答案:D解析:哲学的基本问题是思维与存在的关系问题,包括思维与存在何为第一性和思维与存在是否具有同一性两方面内容。

A、B、C是关于辩证法的问题,因此选D.点评:这道题考查识记能力,比较简单。

明年考试应注重哲学基本问题第二方面的内容,即思维与存在是否具有同一性。

2、“心外无物”,“存在就是被感知”,这两种说法都是A、客观唯心主义观点B、主观唯心主义观点C、形而上学唯物主义观点D、相对主义诡辩论观点正确答案:B解析:主观唯心主义把人的意志、感觉、情感等主观意识当作世界的本原;客观唯心主义把某种神秘的客观精神当做世界本原,如“绝对精神”、“绝对理念”、“天理”等。

因此选B点评:这道题考查理解能力,难度适中。

明年考试应注重客观唯心主义的观点。

3、意识对物质具有能动反作用,它可以通过指导实践A、改造客观世界B、创造自然规律C、改变历史规律D、创造宇宙万物解析:意识对物质的反作用突出地表现在通过实践改造客观世界。

规律既不能创造也不能改变,因此B、C、D错误,只能选A点评:这道题考查理解能力,比较简单。

类似的题还应注意社会意识相对独立性突出地表现在对社会存在的改造上。

4、唯物辩证法有两个最基本特征,一是强调普遍联系的观点,另一个是强调A、辩证否定的观点B、对立统一的观点C、质量互变的观点D、永恒发展的观点正确答案:D解析:普遍联系的观点和永恒发展的观点是唯物辩证法有两个最基本特征或者说是总特征。

因此选D,此知识点不容错过。

点评:这道题考查识记能力,比较简单。

5、在马克思主义普遍原理指导下建设中国特色社会主义。

从哲学上讲,这体现了A、矛盾的同一性和斗争性的统一B、矛盾的普遍性和特殊性的统一C、事物的发展是量变和质变的统一D、事物的发展是前进性和曲折性的统一正确答案:B解析:马克思主义普遍原理是指矛盾的普遍性,建设中国特色社会主义是指矛盾的特殊性,因此选B点评:这道题考查理解能力,难度适中。

矛盾的普遍性和特殊性的统一原理是矛盾的精髓问题,是多年考查的重点,明年的考试考生应引起足够的重视。

6、下列选项中,体现量变引起质变哲学道理的是A、千里之堤,溃于蚁穴B、月晕而风,础润而雨C、祸兮福所倚,福兮祸所伏D、世上无难事,只怕有心人解析:量变到一定程度超过了度的范围必然引起质变,因此选A。

C体现的是矛盾对立统一性,D强调的是意识的能动性原理。

点评:这道题考查理解能力,难度适中。

此种类型的题在成考中属于比较灵活的题,要善于总结成语、俗语、典故所体现的哲学道理。

7、实践是认识的来源表明A、只有直接经验来自社会实践B、只要参加实践就能获得正确认识C、一切认识都要直接参加实践才能获得D、一切认识归根到底都是从实践中获得的正确答案:D解析:实践对认识具有决定作用,是认识的基础。

一切认识归根到底都是从实践中获得的。

但知识的获得有两种途径:直接经验和间接经验。

因此A、B、C错误,应选D点评:这道题考查理解能力,难度适中。

8、先进的社会意识之所以能对社会的发展起积极的促进作用,关键在于它A、是对社会存在的反映B、具有历史继承性C、正确地反映了社会发展规律D、对人们的活动有重要影响正确答案:C解析:此题考查意识对存在的反作用。

社会意识都对人们的活动有重要影响都是对社会存在的反映,而只有正确地反映了社会发展规律即先进的社会意识才对社会的发展起积极的促进作用。

因此A、B、D错误,应选C点评:这道题考查理解能力,难度适中9、社会历史发展是一个自然历史过程。

这句话是说A、社会发展与自然界发展一样是纯粹客观的B、社会发展与自然界发展一样是有规律的C、社会发展不受人的思想动机影响D、社会规律与自然规律完全相同正确答案:B解析:历史唯物主义认为社会发展和自然界一样都是有规律的,不以人的意识为转移,但社会发展有人的意识的参与,是合规律性与合目的性的统一。

因此B,点评:这道题考查理解能力,难度适中10、从根本上讲,上层建筑属于A、社会思想关系B、社会物质关系C、社会伦理关系D、社会法律关系正确答案:A解析:上层建筑包括政治上层建筑和思想观念上层建筑,反映经济基础并反作用于经济基础,点评:这道题考查理解能力,难度适中11、历史唯物主义认为,杰出人物是A、专指无产阶级政治家和思想家B、专指被压迫阶级的政治领袖C、对历史发展起重大促进作用的人物D、专指著名科学家、文学家和艺术家正确答案:C解析:历史唯物主义认为历史人物包括杰出人物和反动人物,杰出人物指对历史发展起重大促进作用的人物,因此选C点评:这道题考查识记能力,比较简单。

历史唯物主义认为人民群众是历史发展的主体,但不反对个人的历史作用。

12、下列选项中,属于共产主义人生价值观的是A、知足常乐,随遇而安B、主观为自己,客观为别人C、宁让我负天下人,不让天下人负我D、毫不利已,专门利人正确答案:D解析:此题简单。

根据常识就能选对。

点评:这道题考查识记能力,比较简单。

13、对待毛泽东思想的科学态度是A、学习毛泽东著作B、纠正毛泽东晚年的错误思想C、坚持和发展毛泽东思想D、铭记毛泽东的丰功伟绩正确答案:C解析:此题简单。

点评:这道题考查识记能力,比较简单。

14、毛泽东在《反对资本主义》中所反对的主要错误倾向是A、教条主义B、经验主义C、冒险主义D、宗派主义正确答案:A解析:本本主义即教条主义,生搬硬套书本理论,不重实际应用。

毛泽东在《反对本本主义》中批判了这种教条主义的错误思想。

点评:这道题考查理解能力,难度适中。

15、在孙中山的思想中,“平均地权”、“节制资本”属于A、民族主义B、民权主义C、民生主义D、民主主义正确答案:C解析:此题考查三民主义内容,民族、民权、民生。

民生主义即“平均地权”、“节制资本”点评:这道题考查识记能力,比较简单。

考生还应注意识记民权和民生主义内容。

16、工人阶级在中国近代民主革命中所处的地位是A、领导者B、先锋队C、主力军D、参与者正确答案:A解析:工人阶级在民主革命中既是基本动力也是领导力量,这是由工人阶级的性质和特点决定的。

点评:这道题考查识记能力,比较简单。

考生还应注意农民阶级在民主革命中的地位和作用。

17、中国共产党独立领导革命战争和创建人民军队始于A、南昌起义B、秋收起义C、广州起义D、百色起义正确答案:A解析:此题根据常识即可判断。

点评:这道题考查识记能力,比较简单。

18、“兵民是胜利之本”所体现的军事思想是A、正规军、地方军与民兵三结合B、人民战争C、战略上藐视敌人,战术上重视敌人D、积极防御正确答案:B解析:人民战争思想主要体现为“兵民是胜利之本,是战争伟力之最深厚根源”。

点评:这道题考查理解能力,难度适中。

19、中国民族资产阶级在抗日民族统一战线中属于A、左翼势力B、右翼势力C、中间势力D、顽固势力正确答案:C解析:统一战线中的左派指工人、农民和小资产阶级;中间派指民族资产阶级;右派指大地主大资产阶级。

点评:这道题考查理解能力,难度适中。

20、中国共产党的建设,一开始就是按照A、第一国际的建党原则进行的B、第二国际的建党原则进行的C、毛泽东的建党原则进行的D、列宁的建党原则进行的正确答案:D解析:共产党的指导思想是马克思列宁主义。

点评:这道题考查识记能力,比较简单。

21、毛泽东在《论联合政府》中指出,以马克思列宁主义的理论武装起来的中国共产党,在中国人民中产生了新的工作作风。

其中集中体现党的实事求是思想路线的优良作风是A、批评与自我批评B、密切联系群众C、理论联系实际D、艰苦奋斗正确答案:C解析:实事求是的要求就是理论联系实际,一切从实际出发。

点评:这道题考查运用能力,难度适中。

考生还应注意实事求是的含义、出处、基本要求。

22、在新民主主义社会经济成分中,国营经济同私人资本主义经济合作的经济形式是A、民营经济B、合作社经济C、国有经济D、国家资本主义经济正确答案:D解析:国家资本主义经济包括低级和高级国家资本主义。

公私合营是一种高级国家资本主义。

点评:这道题考查理解能力,较难。

23、1954年9月召开的第一届全国人民代表大会选举出的中华人民共和国主席是A、毛泽东B、宋庆龄C、周恩来D、朱德正确答案:A解析:根据常识即可判断。

毛泽东之后的国家主席是刘少奇。

点评:这道题考查识记能力,比较简单。

24、毛泽东指出,对待外国文化的正确方针是A、去粗取精B、去伪存真C、中体西用D、洋为中用正确答案:D解析:此题考查“二为”方针,对待传统文化是古为今用,对待外国文化是洋为中用,此题简单。

点评:这道题考查识记能力,比较简单。

考生还应识记“双百”方针。

25、马克思主义与中国实际相结合的第一次历史性飞跃形成的理论成果是A、毛泽东思想B、邓小平理论C、“三个代表”重要思想D、科学发展观正确答案:A解析:马克思主义与中国实际相结合有两次历史性飞跃,第一次产生于新民主主义革命时期,成果是毛泽东思想。

点评:这道题考查识记能力,比较简单。

考生还应识记第二次飞跃的时间和成果26、“三个代表”重要思想形成的时代背景是A、国际局势和世界格局的深刻变化B、社会主义兴衰成败的历史经验C、国情和党情的变化D、改革开放的进一步深化正确答案:A解析:此题简单。

点评:这道题考查识记能力,比较简单。

27、邓小平指出,中国解决所有问题的关键是要靠A、稳定的国内环境B、自己的发展C、坚持四项基本原则D、和平的国际环境正确答案:B解析:邓小平指出,中国解决所有问题的关键是要靠自己的发展;江泽民指出发展是执政兴国的第一要务;胡锦涛指出,科学发展观第一要务是发展。

点评:这道题考查识记能力,比较简单。

28、系统阐述社会主义初级阶级理论的党的会议是A、十二大B、十三大C、十四大D、十五大正确答案:B解析:此题简单。

十三大还提出了三步走的发展战略,即初级阶段基本路线。

点评:这道题考查识记能力,比较简单。

29、坚持党在社会主义初级阶级基本路线的关键是坚持A、四项基本原则B、以经济建设为中心C、对外开放D、改革创新正确答案:B解析:此题简单。

点评:这道题考查识记能力,比较简单。

30、科学发展观强调的全面发展是指A、社会的全面发展B、经济的全面发展C、文化的全面发展D、人和社会的全面发展正确答案:D解析:全面发展包括政治、经济、文化等各个方面的发展,即人和社会的全面发展。

点评:这道题考查理解能力,难度适中。

相关文档
最新文档