等比数列性质及其应用知识点总结材料与典型例题(经典版)
高中数学等比数列(全面知识点+精选例题)精编材料word版

四、等比数列1.等比数列的定义如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q 表示(0q ≠).递推式表示为1n na q a +=或1(2)nn a q n a -=≥. 例如:数列{}n a 满足12n n a a +=,则数列{}n a 是公比为2的等比数列.特别注意:等比数列中任何一项都不为0,公比0q ≠,若一个数列是常数列,则此数列一定是等差数列,除了0,0,0,L 这样的常数列之外,其余的也都是等比数列. 注:10a >,1q >时,{}n a 是递增的等比数列;10a >,01q <<时,{}n a 是递减的等比数列; 10a <,01q <<时,{}n a 是递增的等比数列; 10a <,1q >时,{}n a 是递减的等比数列; 1q =时,{}n a 是非零常数列; 0q <时,{}n a 是摆动数列.2.等比中项若三个数a ,G ,b 成等比数列,则G 叫作a 与b 的等比中项. 此时2G ab = 例如:2和8的等比中项为4±. 注:①一个等比数列,从第2项起,每一项都是它的前后两项的等比中项,即212n n n a a a ++=,每一项都是前后距离相同两项的等比中项,即2n n m n m a a a -+=.②当三个数成等比数列时,当四个数成等比数列时,常设这3.等比数列的通项公式等比数列{}n a 的首项为1a ,公比为q ,则11n n a a q -=.4.等比数列的性质(1)等比数列{}n a 的第m 项为m a ,则n mn m a a q -=.★ 例如:7652812310a a q a q a q a q -=====L .(2)若m n p q +=+,则m n p q a a a a =,若2m n p +=,则2m n p a a a =.★例如:2192837465a a a a a a a a a ====,12132n n n a a a a a a --===L .(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,L 组成公比为mq 的等比数列. 例如:135721,,,,,,n a a a a a -L L 组成公比为2q 的等比数列;51015205,,,,,,n a a a a a L L 组成公比为5q 的等比数列.(4){}n a 是公比为q 的等比数列,则{}n ka 也是等比数列,公比为q . (5){}n a ,{}n b 都是等比数列,则{}n ka ,{||}n a ,2{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列.5.判断一个数列是等比数列的方法 (1)定义法:1n na q a +=(常数).★ (2)等比中项法:212+=n n n a a a +或211-+=n n n a a a .★ (3)通项公式法:11=n n a a q-(公比为q ).(4)前n 项和公式法:(0,0)nn S Aq A A q =-≠≠.例10 已知11a =,121n n a S +=+,试判断{}n a 是否为等比数列,并证明. 解析:121n n a S +=+,则121(2)n n a S n -=+≥,两式相减得112()2n n n n n a a S S a +--=-=,故13(2)n n a a n +=≥又21121213a S a =+=+=,所以213a a = 所以{}n a 是首项为1,公比为3的等比数列. 例11 已知数列{}n a 满足11a =,121n n a a +=+.(1)求证:数列{1}n a +是等比数列;(2)求数列{}n a 的通项公式.解析:(1)121n n a a +=+Q ,两边同时加1,有112(1)n n a a ++=+由11a =知1120a +=≠,所以10n a +≠,故1121n n a a ++=+ 数列{1}n a +是首项为2,公比为2的等比数列.(2){1}n a +是等比数列,通项为1111(1)222n n nn a a q --+=+=⨯= 故21nn a =-.数学浪子整理制作,侵权必究。
等比数列知识点总结与典型例题-(精华版)

等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等比数列定义知识点归纳总结

等比数列定义知识点归纳总结等比数列是数学中常见的一种数列形式,它在各个领域都有广泛的应用。
本文将对等比数列的定义、性质和应用进行归纳总结,以帮助读者更好地理解和运用等比数列。
一、等比数列的定义等比数列是指一个数列中,从第二项起,每一项与前一项的比值都相等的数列。
比值常用字母q表示,称为公比。
换言之,一个数列满足an+1 = an * q的关系,其中an表示第n项,an+1表示第n+1项,q表示公比。
二、等比数列的性质1. 公比的影响:公比q的绝对值决定了等比数列的性质。
当|q|<1时,等比数列的值越来越小;当|q|>1时,等比数列的值越来越大;当q=1时,等比数列的值保持不变。
2. 通项公式:对于等比数列an,第n项的通项公式为an = a1 *q^(n-1),其中a1为首项。
3. 公式推导:可以通过递归或数学归纳法得到等比数列的通项公式,进而求解数列中任意一项的值。
4. 前n项和:等比数列的前n项和(部分和)可用以下公式表示:Sn = a1 * (1 - q^n)/(1 - q),其中a1为首项,q为公比。
三、等比数列的应用等比数列在诸多领域有广泛的应用,如金融、物理、工程等。
以下列举几个常见的应用场景:1. 财务投资:与利率相关的问题往往可以转化为等比数列问题,如计算定期存款每年的本息总额。
2. 自然科学:许多自然界的现象或物理规律可以用等比数列来描述,如累积衰减、分裂增殖等。
3. 几何问题:等比数列广泛应用于几何问题中,如计算等比数列构成的等边三角形的面积。
4. 数据分析:等比数列可用于分析一些数据序列或随机变量的增长规律,如人口增长、疾病传播等。
综上所述,等比数列是一种重要的数列形式,具有较广泛的应用价值。
通过对等比数列的定义、性质和应用的归纳总结,读者可更好地理解等比数列,并能在实际问题中灵活运用。
在解决问题时,读者可以根据题目给定的条件,利用等比数列的相关公式和性质进行推导和计算,以得到准确的结果。
等比数列知识点总结与典型例题

等⽐数列知识点总结与典型例题等⽐数列1、等⽐数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公⽐ 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===??≠?≠,⾸项:1a ;公⽐:q推⼴:n m n m n n n m m a a a q q q a --=?=?=3、等⽐中项:(1)如果,,a A b 成等⽐数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等⽐中项,并且它们的等⽐中项有两个((2)数列{}n a 是等⽐数列211n n n a a a -+?=? 4、等⽐数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-?=---(,,','A B A B 为常数)5、等⽐数列的判定⽅法:(1)⽤定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠?或为常数,为等⽐数列(2)等⽐中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等⽐数列(3)通项公式:()0{}n n n a A B A B a =??≠?为等⽐数列 6、等⽐数列的证明⽅法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等⽐数列 7、等⽐数列的性质:(2)对任何*,m n N ∈,在等⽐数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。
(精品等比数列知识点总结

(精品等比数列知识点总结等比数列是数学中的一个重要概念,它在代数、几何等学科中都有广泛的应用。
下面是精品等比数列的知识点总结:一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比相等的数列。
通常用a1,a2,a3,…,an表示一个等比数列,其中a1是首项,r是公比。
例如,1,2,4,8,16,32,64,...就是一个等比数列,其中首项a1=1,公比r=2二、等比数列的通项公式等比数列的通项公式是指通过首项和公比可以求得数列中任意一项的公式。
通项公式为:an=a1 * r^(n-1)其中,an表示数列中的第n项,a1表示首项,r表示公比。
例如,对于数列1,2,4,8,16,32,64,...,我们可以通过n来求得数列中的任意一项。
其中,首项a1=1,公比r=2,假设要求第6项,代入公式中得到a6=1*2^(6-1)=32三、等比数列的性质1.公比为零或负数时,数列不存在。
当公比r为0时,根据通项公式,数列中的所有项都为0,而等比数列至少要有一个非零项;当公比r为负数时,根据通项公式,数列中的项会在正负之间来回变换,不满足等比数列的定义。
2.公比大于1或小于-1时,数列的项会随着n的增大趋于无穷大或无穷小。
当公比r大于1时,数列中的项会随着n的增大趋于无穷大;当公比r小于-1时,数列中的项会随着n的增大趋于无穷小。
3.公比介于-1和1之间时,数列的项会趋于0。
当公比r介于-1和1之间时,数列中的项会随着n的增大趋于0。
4.等比数列的和等比数列的所有项的和称为等比数列的和,记作Sn。
当公比r为1时,等比数列变为等差数列,求和公式为:Sn=n*(a1+an)/2当公比r不为1时,等比数列的和公式为:Sn=a1*(1-r^n)/(1-r),其中n为项数。
四、等比数列的常见应用1.等比数列在财务和投资领域的应用等比数列的通项公式可以用于计算利息复利,投资收益率等问题,帮助分析和预测资金的增长趋势。
等比数列的性质含例题总结归纳

一、等比数列基本概念: 1. 等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2. 通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠, 首项:1a ;公比:q 注:当1q ≠时等比数列通项公式()1110n n nn a a a q q A B A B q-===⋅⋅≠是关于n 的带有系数的指数类函数,底数为公比q ,若11,n q a na ==则. 3. 等比中项(1) 如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注: 同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数(2) 数列{}n a 是等比数列⇔211n n n a a a -+=⋅ (11n n a a +-≠0)二、等比数列的性质:例 1. 在等比数列{}n a 中,320,2a q ==,求6,n a a例2. 等比数列{}n a ,121a a +=3,a +4a =9 则45a a += .例3.等比数列{}n a 中,910111264a a a a ⋅⋅⋅=则813a a ⋅= .例4. 在等比数列{}n a 中, 0n a >, 24a a +3546236a a a a +=, 则35a a +=例5. 如果数列{}n a 是等比数列, 那么( )A. 数列2{}n a 是等比数列B. 数列{2}n a是等比数列 C. 数列{lg }n a 是等比数列 D. 数列{}n na 是等比数列例. 已知四个实数中, 前三个数成等差数列, 后三个数成等比数列, 中间两数之积为16, 收尾两数之积为128-, 求这四个数.例6.等比数列{}n a 中, 154510,90,a a == 则60a = .例7.在等比数列{}n a 中, 12330a a a ++=789+120a a a +=,131415a a a ++=例8. 在等比数列{}n a 中, 3453a a a ⋅⋅=67824a a a ⋅⋅=,则91011a a a ⋅⋅=例. 已知{}n a 的前n 项和为n S , 且满足120(2)n n n a S S n -+⋅=≥, 112a =(1) 求证1{}nS 是等差数列 (2) 求{}n a 的通项公式.。
等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题1、等比数列的定义:*12,n na q q n n Na 0且,q 称为公比2、通项公式:11110,0n nnna a a qqA Ba qA B q,首项:1a ;公比:q推广:n mn mn n n mn m mma a a a q qqa a 3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2Aab或Aab注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列na 是等比数列211nnna a a 4、等比数列的前n 项和n S 公式:(1)当1q时,1n S na (2)当1q时,11111nn na q a a q S qq11''11nnna a qA A BA BA qq(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n nn nn na a qa q q a a a 或为常数,为等比数列(2)等比中项:21111(0){}nn n n nn a a a a a a 为等比数列(3)通项公式:0{}nnn a A BA Ba 为等比数列6、等比数列的证明方法:依据定义:若*12,n na q q n n Na 0且或1{}n n n a qa a 为等比数列7、等比数列的性质:(2)对任何*,m n N,在等比数列{}n a 中,有n mn m a a q。
(3)若*(,,,)m nst m n s tN ,则n ms t a a a a 。
特别的,当2m n k 时,得2n mka a a注:12132n nna a a a a a 等差和等比数列比较:经典例题透析类型一:等比数列的通项公式等差数列等比数列定义da a n n1)0(1qq a a nn 递推公式d a a nn 1;mda a nmnqa a n n1;mn m n qa a 通项公式dn a a n )1(111n n qa a (0,1q a )中项2kn kna a A(0,,*knN kn ))0(knk n knk n a a a a G (0,,*knN kn )前n 项和)(21n n a a n S dn n na S n2)1(1)2(111)1(111q qq a a qq a q na S n nn重要性质),,,,(*q pnmN q p n m a a a a qpn m ),,,,(*q p n mN q p n m a a a a qp n m例1.等比数列{}n a 中,1964a a , 3720a a ,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937,可以利用性质可求出3a 、7a ,再求11a .总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{}为等比数列,a 1=3,a 9=768,求a 6。
(完整版)等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q 推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab =A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当时,1q =1n S na =(2)当时,1q ≠()11111n n n a q a a qS q q--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q qa a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明方法:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
特别的,当时,得*(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=注:2n m k a a a ⋅=12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1a q 和,可得;或注意到下标,可以利用性质可求出、,再求.1a q 11a 1937+=+3a 7a 11a 解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ (4)421()64a q =418a q =(3)÷(4)得:,42120582q q +==∴,解得或422520q q -+=22q =212q =当时,,;22q =12a =1011164a a q =⋅=当时,,.21q =132a =101111a a q =⋅=定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{}n a 中,1964a a ⋅=, 3720a a +=,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a . 解析:法一:设此数列公比为q ,则8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:241(1)20a q q +=..........(3) ∴10a >.由(1)得:421()64a q = , ∴418a q = (4)(3)÷(4)得:42120582q q +==, ∴422520q q -+=,解得22q =或212q =当22q =时,12a =,1011164a a q =⋅=; 当212q =时,132a =,101111a a q =⋅=. 法二:∵193764a a a a ⋅=⋅=,又3720a a +=, ∴3a 、7a 为方程220640x x -+=的两实数根,∴⎩⎨⎧==41673a a 或⎩⎨⎧==16473a a ∵23117a a a ⋅=, ∴271131a a a ==或1164a =.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零). 举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
【答案】±96法一:设公比为q ,则768=a 1q 8,q 8=256,∴q=±2,∴a 6=±96; 法二:a 52=a 1a 9⇒a 5=±48⇒q=±2,∴a 6=±96。
【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。
【答案】64;∵21894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。
【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。
【答案】12n n a -=或32n n a -=;法一:∵2132a a a =,∴312328a a a a ==,∴22a = 从而13135,4a a a a +=⎧⎨=⎩解之得11a =,34a =或14a =,31a =当11a =时,2q =;当14a =时,12q =。
故12n n a -=或32n n a -=。
法二:由等比数列的定义知21a a q =,231a a q =代入已知得2111211178a a q a q a a q a q ⎧++=⎪⎨⋅⋅=⎪⎩ 21331(1)7,8a q q a q ⎧++=⎪⇒⎨=⎪⎩211(1)7,(1)2(2)a q q a q ⎧++=⇒⎨=⎩ 将12a q=代入(1)得22520q q -+=, 解得2q =或12q =由(2)得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩ ,以下同方法一。
类型二:等比数列的前n 项和公式例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q ≠1.由3692S S S +=得,369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得q 3(2q 6-q 3-1)=0,由q ≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,因q 3≠1,故312q =-,所以2q =-。
举一反三:【变式1】求等比数列111,,,39L 的前6项和。
【答案】364243; ∵11a =,13q =,6n =∴666111331364112324313S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-。
【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】1211219或; ∵322273a a =⇒=,31(1)113313a q q q q -=⇒==-或,则a 1=1或a 1=9 ∴5555191131213121S 113913S ⎛⎫⨯ ⎪-⎝⎭==--或==-.【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -⋅=,126n S =,求n 和q 。
【答案】12q =或2,6n =; ∵211n n a a a a -⋅=⋅,∴1128n a a =解方程组1112866n n a a a a =⎧⎨+=⎩,得1642n a a =⎧⎨=⎩ 或1264n a a =⎧⎨=⎩①将1642n a a =⎧⎨=⎩代入11n n a a q S q -=-,得12q =,由11n n a a q -=,解得6n =;②将1264n a a =⎧⎨=⎩代入11n n a a q S q -=-,得2q =,由11n n a a q -=,解得6n =。
∴12q =或2,6n =。
类型三:等比数列的性质例3. 等比数列{}n a 中,若569a a ⋅=,求3132310log log ...log a a a +++. 解析:∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ⋅=⋅=⋅=⋅=⋅=∴1032313log log log a a a +++Λ553123103563log ()log ()log 910a a a a a a =⋅⋅=⋅==L 举一反三:【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________. 【答案】100;∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100) 而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。
【变式2】在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。
【答案】216;法一:设这个等比数列为{}n a ,其公比为q ,∵183a =,445127823a a q q ===⋅,∴48116q =,294q = ∴23362341111a a a a q a q a q a q ⋅⋅=⋅⋅=⋅33389621634⎛⎫⎛⎫=⋅== ⎪⎪⎝⎭⎝⎭。
法二:设这个等比数列为{}n a ,公比为q ,则183a =,5272a =,加入的三项分别为2a ,3a ,4a ,由题意1a ,3a ,5a 也成等比数列,∴238273632a =⨯=,故36a =,∴23234333216a a a a a a ⋅⋅=⋅==。
类型四:等比数列前n 项和公式的性质例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。
思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。
解析:法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n 观察b 1=a 1+a 2+……+a n ,b 2=a n+1+a n+2+……+a 2n =q n (a 1+a 2+……+a n ), b 3=a 2n+1+a 2n+2+……+a 3n =q 2n (a 1+a 2+……+a n )易知b 1,b 2,b 3成等比数列,∴2223112348b b b ===,∴S 3n =b 3+S 2n =3+60=63. 法二:∵22n n S S ≠,∴1q ≠,由已知得121(1)481(1)601n na q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩①② ②÷①得514n q +=,即14n q = ③ ③代入①得1641a q=-, ∴3133(1)164(1)6314n n a q S q -==-=-。