2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套文档 9.3 直线与圆、圆与圆的位置关系
2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案61古典概型

教案 61古典概型导学目标 : 1.理解古典概型及其概率计算公式 .2.会计算一些随机事件所含的基本领件数及事件发生的概率.自主梳理1.基本领件有以下特色:(1)任何两个基本领件是 ________的.(2)任何事件 (除不行能事件 )都能够表示成 ______________. 2.一般地,一次试验有下边两个特色(1)有限性.试验中所有可能出现的基本领件只有有限个;(2)等可能性.每个基本领件出现的可能性同样,称这样的概率模型为古典概型.判断一个试验是不是古典概型,在于该试验能否拥有古典概型的两个特色:有限性和等可能性.3.假如一次试验中可能出现的结果有 n 个,并且所有结果出现的可能性都相等,那么每一个基本领件的概率都是 ________;假如某个事件 A 包含的结果有 m 个,那么事件 A 的概率 P(A) = ________.自我检测1.(2011 ·州模拟滨 )若以连续掷两次骰子分别获得的点数m 、 n 作为点 P 的横、纵坐标,则点 P 在直线 x + y = 5 下方的概率为 ( )1 1 1 1A.6B.4C.12 D .9 2.(2011 临·沂高新区期末 )一块各面均涂有油漆的正方体被锯成 1 000 个大小同样的小正方体,若将这些小正方体均匀地搅混在一同,则随意拿出一个, 其两面涂有油漆的概率是 () 1 1 3 12 A.12 B.10 C.25D .1253.(2010 ·宁辽 ) 三张卡片上分别写上字母E , E , B ,将三张卡片随机地排成一行,恰巧排成英文单词 BEE 的概率为 ________.4.有 100 张卡片 (编号从 1 号到 100 号 ),从中任取 1张,取到卡号是 7 的倍数的概率为________.5. (2011 大·理模拟 )在平面直角坐标系中,从五个点: A(0,0) , B(2,0) , C(1,1) , D(0,2) ,E(2,2) 中任取三个,这三点能构成三角形的概率是 ________( 用分数表示 ).研究点一 基本领件的概率例 1 扔掷六个面分别记有1,2,2,3,3,3 的两颗骰子.(1)求所出现的点数均为 2 的概率; (2)求所出现的点数之和为 4 的概率.变式迁徙 1 一只口袋内装有大小同样的 5 只球,此中 3 只白球, 2 只黑球,从中一次摸出两只球.问:(1)共有多少个基本领件?(2)摸出的两只球都是白球的概率是多少?研究点二古典概型的概率计算例 2班级联欢时,主持人拟出了以下一些节目:跳双人舞、独唱、朗读等,指定 3 个男生和 2 个女生来参加,把 5 个人分别编号为1,2,3,4,5,此中 1,2,3 号是男生, 4,5 号是女生,将每一个人的号分别写在 5 张同样的卡片上,并放入一个箱子中充足混淆,每次从中随机地取出一张卡片,拿出谁的编号谁就参加表演节目.(1)为了选出 2 人来表演双人舞,连续抽取 2 张卡片,求拿出的 2 人不所有是男生的概率;(2)为了选出 2 人分别表演独唱和朗读,抽取并察看第一张卡片后,又放回箱子中,充足混淆后再从中抽取第二张卡片,求独唱和朗读由同一个人表演的概率.变式迁徙2同时扔掷两枚骰子,求起码有一个 5 点或 6 点的概率.研究点三古典概型的综合问题例 3 (2009 ·山东 )汽车厂生产 A,B ,C 三类轿车,每类轿车均有舒坦型和标准型两种型号,某月的产量以下表 (单位:辆 ):轿车A轿车B轿车C舒坦型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50 辆,此中有 A 类轿车 10 辆.(1)求 z 的值;(2)用分层抽样的方法在 C 类轿车中抽取一个容量为 5 的样本.将该样本当作一个整体,从中任取 2 辆,求起码有 1 辆舒坦型轿车的概率;(3) 用随机抽样的方法从B类舒坦型轿车中抽取8 辆,经检测它们的得分以下:9.4,8.6,9.2,9.6,8.7,9.3,9.0 ,8.2.把这 8 辆轿车的得分当作一个整体,从中任取一个数,求该数与样本均匀数之差的绝对值不超出0.5 的概率.变式迁徙3为了认识《中华人民共和国道路交通安全法》在学生中的普及状况,检查部门对某校 6 名学生进行问卷检查, 6 人得分状况以下:5,6,7,8,9,10.把这 6 名学生的得分当作一个整体.(1)求该整体的均匀数;(2)用简单随机抽样方法从这 6 名学生中抽取 2 名,他们的得分构成一个样本.求该样本均匀数与整体均匀数之差的绝对值不超出0.5 的概率.分类议论思想的应用例(12 分 )甲、乙二人用 4 张扑克牌 (分别是红桃2、红桃 3、红桃 4、方片 4)玩游戏,他们将扑克牌洗匀后,反面向上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设 (i, j) 分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有状况;(2)若甲抽到红桃3,则乙抽到的牌面数字比 3 大的概率是多少?(3)甲、乙商定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你以为此游戏能否公正,说明你的原因.多角度审题此题属于求较复琐事件的概率,重点是理解题目的实质含义,把实质问题转变为概率模型,联想掷骰子试验,把红桃2、红桃 3、红桃 4 和方片 4 分别用数字2,3,4,4′表示,抽象出基本领件,把复琐事件用基本领件表示,找出整体I 包含的基本领件总数n 及事件 A 包含的基本领件个数 m,用公式 P(A) =m求解. n【答题模板】解(1) 甲、乙二人抽到的牌的所有状况( 方片 4 用 4′表示,其余用相应的数字表示)为 (2,3) ,(2,4), (2,4′), (3,2), (3,4), (3,4′), (4,2), (4,3) , (4,4′),(4′,2), (4′,3), (4′,4),共 12 种不同状况. [6 分 ](2)甲抽到红桃3,乙抽到的牌的牌面数字只好是2,4,4′,所以乙抽到的牌的牌面数字比3大的概率为23.[9 分](3)甲抽到的牌的牌面数字比乙大的状况有(3,2), (4,2), (4,3), (4′,2), (4′,3),共 5 种,55故甲胜的概率P1=12,同理乙胜的概率P2=12.因为 P1= P2,所以此游戏公正.[12分]【打破思想阻碍】(1)对一些较为简单、基本领件个数不是太大的概率问题,计数时只要要用列举法即可计算一些随机事件所含的基本领件数及事件发生的概率,但应特别注意:计算时要严防遗漏,绝不重复.(2)取球模型是古典概型计算中的一个典型问题,很多实质问题都能够归纳到取球模型上去,特别是产品的抽样查验,解题时要分清“ 有放回” 与“ 无放回”,“ 有序” 与“ 无序” 等条件的影响.【易错点分析】1.题目中“红桃 4”与“方片 4”属两个不一样的基本领件,应用不一样的数字或字母标明.2.注意“抽出的牌不放回” 对基本领件数量的影响.1.基本领件的特色主要有两条:①任何两个基本领件都是互斥的;②任何事件都能够表示成基本领件的和.2.古典概型的基本特色是:①试验中所有可能出现的基本领件只有有限个;②每个基本领件出现的可能性相等.3.计算古典概型的基本步骤有:①判断试验结果能否为等可能事件;②求出试验包含的基本领件的个数n,以及所求事件 A 包含的基本领件的个数m;③代入公式P(A) =mn,求概率值.(满分: 75 分)一、选择题 (每题 5 分,共 25分 )1.(2011 浙·江宁波十校联考)将一枚骰子扔掷两次,若先后出现的点数分别为b,c,则方程 x2+ bx+ c= 0 有实根的概率为 ()191517A.36B.2C.9 D .362.(2009 ·建福)已知某运动员每次投篮命中的概率低于40%.现采纳随机模拟的方法预计该运动员三次投篮恰有两次命中的概率:先由计算器产生0 到 9 之间取整数值的随机数,指定1,2,3,4 表示命中, 5,6,7,8,9,0 表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模 生了以下 20 随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估 , 运 三次投 恰有两次命中的概率 ()A . 0.35B . 0.25C . 0.20D . 0.153. (2011 西·南名校 考 ) 两次骰子分 获得点数m 、 n , 向量 (m , n)与向量 (- 1,1)的 角 θ>90°的概率是 ( )5 7 1 1A.12B.12C.3 D .2 4. 会合 A = {1,2} , B = {1,2,3} ,分 从会合 A 和 B 中随机取一个数 a 和 b ,确立平面上的一个点 P(a , b), “点 P(a , b)落在直 x +y = n 上” 事件 C n (2≤ n ≤ 5, n ∈ N ),若事 件 C n 的概率最大, n 的所有可能 ( )A . 3B . 4C . 2,5D .3,4 5.在一个袋子中装有分 注数字 1,2,3,4,5 的五个小球, 些小球除 注的数字外完整同样. 从中随机拿出2 个小球, 拿出的小球 注的数字之和 3或 6的概率是 () 1 1 1 3A. 12B. 10C.5D.10二、填空 (每小 4 分,共 12 分 )6.在一次教 会上,到会的女教 比男教 多12 人,从 些教 中随机挑 一人表演 目.若 到男教 的概率9, 参加 会的教 共有________人.20n π7. (2011 上·海十四校 考 )在会合 { x|x = 6 , n = 1,2,3,⋯, 10} 中任取一个元素,所取元素恰巧 足方程 cos x = 1的概率是 ________.28.(2009 · 江 ) 有 5 根竹竿,它 的 度( 位: m)分 2.5,2.6,2.7,2.8,2.9,若从中一 次随机抽取 2 根竹竿, 它 的 度恰巧相差0.3 m 的概率 ________.三、解答 (共 38 分 )9.(12 分 )(2011 北·京旭日区模 )袋子中装有 号a ,b 的 2 个黑球和 号c ,d ,e 的3 个 球,从中随意摸出 2 个球.(1)写出所有不一样的 果; (2)求恰巧摸出 1 个黑球和 1 个 球的概率; (3)求起码摸出 1 个黑球的概率.10. (12 分 )(2010 天·津 海新区五校 考 )某商 行抽 活 ,从装有 号0,1,2,3 四个小球的抽 箱中,每次拿出后放回, 取两次,拿出的两个小球号 相加之和等于 5 中一等 ,等于 4 中二等 ,等于 3 中三等 .(1)求中三等 的概率; (2)求中 的概率.11. (14 分)(2011 广·州模 )已知数 a, b∈ { - 2,- 1,1,2} .(1)求直 y= ax+ b 不第四象限的概率;(2)求直 y= ax+ b 与 x2+ y2= 1 有公共点的概率.教案 61古典概型自主梳理1m1.(1)互斥(2)基本领件的和 3.n n自我141.A 2.D 3.3 4.0.14 5.5堂活区例 1 解引确立古典概型的基本领件有两条:一、每个事件生的可能性相等;二、事件空Ω 中的任一个事件都能够表示些基本领件的和,基本领件确实定有必定的相性,并不是一成不的.解因骰子出1,2,3 的概率不一,所以, 6 个面 1,a,b,x,y,z,此中 a,b 都表示 2, x, y, z 都表示 3,投两骰子,基本领件(1,1), (1, a), (1, b), (1,x),(1,y),(1 ,z),(a,1), (a,a),(a, b),(a,x),(a,y),(a,z),⋯, (z,1),(z,a),(z,b),(z,x), (z, y), (z, z)共 36 种果.(1)两骰子出点数均 2 的基本领件有 (a,a), (a,b), (b, a), (b, b)共 4 种,∴概4 1率 P1=36=9.(2)出点数之和 4,明有两种状况,即 1+ 3 或 2+ 2,基本领件有 (1,x),(1,y),(1,z), (x,1) ,(y,1), (z,1) , (a, a), (a, b), (b, a), (b, b)共 10 种,10 5∴概率 P2=36=18.式迁徙1解(1) 分白球1,2,3 号,黑球 A , B 号,从中摸出 2 只球,有以下基本领件:(1,2), (1,3) , (1,A) , (1, B) , (2,3), (2, A) ,(2,B) , (3, A) , (3, B) , (A , B),所以,共有 10 个基本领件.(2)上述 10 个基本领件生的可能性同样,且只有 3 个基本领件是摸到两只白球 (事3件 A) ,即 (1,2), (1,3), (2,3) ,故 P(A) =10.P(A) =m.由此可知,利用列法算出所有例 2 解引古典概型的概率算公式是n基本领件的个数 n 以及事件 A 包含的基本领件数m 是解关.必需能够采纳画状或列表法助列基本领件.解 (1) 利用树形图我们能够列出连续抽取2 张卡片的所有可能结果 (以下列图所示 ).由上图能够看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这 20 种结果出现的可能性是同样的,试验属于古典概型.用 A 1 表示事件 “连续抽取 2 人一男一女 ”, A 2 表示事件 “ 连续抽取 2 人都是女生 ”,则A 1 与 A 2 互斥,并且 A 1∪A2 表示事件 “连续抽取 2 张卡片,拿出的 2 人不所有是男生 ”,由列出 的所有可能结果能够看出, A 1 的结果有 12 种,A 2 的结果有 2 种,由互斥事件的概率加法公式,可得P(A 1∪A 2)= P(A 1)+P(A 2)= 1220+ 202= 107=0.7,即连续抽取 2 张卡片,拿出的 2 人不所有是男生的概率为 0.7.(2)有放回地连续抽取2 张卡片,需注意同一张卡片可再次被拿出,并且它被拿出的可能性和其余卡片相等,我们用一个有序实数对表示抽取的结果,比如 “ 第一次拿出 2 号,第二次拿出 4 号 ” 就用 (2,4)来表示,所有的可能结果能够用下表列出.第二次抽取12345 第一次抽取1 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1) (5,2) (5,3) (5,4)(5,5)试验的所有可能结果数为25,并且这 25 种结果出现的可能性是同样的,试验属于古典概型.用 A 表示事件 “ 独唱和朗读由同一个人表演 ”,由上表能够看出, A 的结果共有 5 种,因此独唱和朗读由同一个人表演的概率P(A) = 5= 0.2.25变式迁徙2解方法一同时扔掷两枚骰子,所有基本领件以下表:1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有 36 个不一样的结果,此中 “起码有一个 5 点或 6 点 ”的基本领件数为 20,所以起码有一个 5 点或 6 点的概率为 P = 20 5 36= 9.方法二 利用对峙事件求概率. “ 起码有一个5 点或6 点”的对峙事件是 “没有 5 点或 6 点 ”,如上表,“ 没有 5 点或 6 点 ”包含 16 个基本领件,没有5 点或6 点的概率为 P =16= 436 9.∴起码有一个 5 点或 6 点的概率 1-4= 59 9. 例 3 解 引 本 主要考 抽 的方法及古典概型概率的求法,考 用概率知 解 决 的能力.解 (1) 厂 个月共生n ,50 10由 意得 n =,所以 n = 2 000.100+ 300z = 2 000-(100+ 300)- (150 +450)- 600=400. (2) 所抽 本中有 a 舒坦型 ,由 意得 1400000= a5,即 a = 2.所以抽取的容量 5 的 本中,有2 舒坦型 ,3 准型 .用 A 1,A 2 表示 2 舒坦型 ,用B 1,B 2,B 3 表示 3 准型 .用E 表示事件 “在本中任取2 ,此中起码有 1 舒坦型 ”,基本领件空 包含的基本领件有:(A 1 ,A 2 1,B 1 1,B 2 1, B 3),(A 2,B 12,B 2 ,(A 2,B 31, B 2),(B 1,),(A ),(A ) ,(A),(A)),(B32,B 3(A 1,A21, B 1),(A1 ,B 21,B 3B ),(B)共 10 个.事件 E 包含的基本领件有:),(A),(A),(A 2, B 1), (A 2, B22, B 3)共 7 个.), (A7 7故 P(E) = 10,即所求概率 10.(3) 本均匀数x = 1× (9.4+ 8.6+ 9.2+ 9.6+ 8.7+ 9.3+ 9.0+8.2)= 9.8D 表示事件 “ 从 本中任取一数, 数与 本均匀数之差的 不超0.5”, 基本领件空 中有 8 个基本领件,事件D 包含的基本领件有:9.4,8.6,9.2,8.7,9.3, 9.0,共 6 个,所以 P(D) = 6 3 38= 4,即所求概率4.1×(5+ 6+ 7+ 8+ 9+ 10)= 7.5.式迁徙 3 解 (1) 体均匀数6(2) A 表示事件 “ 本均匀数与 体均匀数之差的 不超0.5”.从 体中抽取2 个个体所有可能的基本 果有:(5,6), (5,7), (5,8), (5,9), (5,10),(6,7) ,(6,8), (6,9), (6,10) , (7,8) , (7,9), (7,10) , (8,9), (8,10) , (9,10) ,共 15个基本 果.事件 A 包含的基本 果有:(5,9), (5,10) ,(6,8) ,(6,9),(6,10) ,(7,8), (7,9),共有7 个基本 果.7所以所求的概率 P(A) = 15.后 区 1.A2.B [ 由 意知在20 随机数中表示三次投 恰有两次命中的有:191、271、932、812、393,共 5 随机数,故所求概率5 = 1= 0.25.]20 43.A [由 意知, (m , n) ·(-1,1)=- m + n<0 ,∴m>n.基本领件 共有6× 6= 36(个 ),切合要求的有 (2,1) ,(3,1),(3,2),(4,1),(4,2) ,(4,3),(5,1),⋯,(5,4), (6,1), ⋯ , (6,5),共 1+ 2+ 3+ 4+ 5=15( 个).15 5∴P = 36= 12.]124.D[落在直 x +y = 2 上的概率 P(C 2)=6,落在直 x + y = 3 上的概率 P(C 3)= 6;落2 1在直 x + y = 4 上的概率 P(C 4)= 6;落在直 x + y = 5上的概率 P(C 5 )=6,故当 n3 和 4,事件 C n 的概率最大. ]5.D[由袋中随机拿出2 个小球的基本领件 数 10,拿出小球 注数字和3 的事件1,2.拿出小球 注数字和6 的事件 1,5 或 2,4.∴拿出的小球 注的数字之和3或6的概率1+ 2 3P =10= 10.]6.120分析男教 有 n 人, 女教 有 (n + 12)人.由已知从 些教 中 一人, 到男教 的概率P = n = 9,得 n =54,2n + 12 20故参加 会的教 共有 120 人.17.5分析 cosπ5π 13= cos 3 =2,共 2 个.21x 体共有 10 个,所以概率 10= 5. 8.0.2分析 从 5 根竹竿中一次随机抽取 2 根竹竿共有 10( 种 ) 抽取方法,而抽取的两根竹竿度恰巧相差 0.3 m 的状况是 2.5 和 2.8,2.6 和 2.9 两种,∴概率 P = 2= 0.2.10 9.解 (1)ab , ac , ad ,ae , bc , bd , be , cd ,ce , de.共 10 种不一样 果. (2 分 )(2)“ 恰巧摸出 1 个黑球和 1 个 球 ” 事件 A , 事件A 包含的基本领件ac , ad ,6ae , bc , bd , be ,共 6 个基本领件.所以P(A) =10= 0.6.所以恰巧摸出 1 个黑球和 1 个 球的概率 0.6.(7 分)(3)“起码摸出1 个黑球 ” 事件 B , 事件 B 包含的基本领件ab ,ac , ad ,ae , bc ,bd , be ,共 7 个基本领件,7所以 P(B) = 10= 0.7.所以起码摸出 1 个黑球的概率0.7.(12 分 )10. 解“ 中三等 ” 的事件 A ,“ 中 ” 的事件 B ,从四个小球中有放回的取两个共有 (0,0), (0,1),(0,2) ,(0,3) , (1,0) ,(1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0) ,(3,1), (3,2), (3,3)16 种不一样的方法. (2 分 )(1)两个小球号 相加之和等于 3 的取法有 4 种:(0,3)、 (1,2) 、 (2,1)、 (3,0).故 P(A) = 4 = 1分 ) 16 4.(6 (2)由 (1)知,两个小球号码相加之和等于 3 的取法有 4 种.两个小球号码相加之和等于4 的取法有 3 种: (1,3), (2,2) , (3,1), (8 分 ) 两个小球号码相加之和等于5 的取法有 2 种: (2,3), (3,2) ,4329P(B) =16 + 16+16=16.(12 分 )11.解因为实数对 (a ,b)的所有取值为: ( -2,- 2), (- 2,- 1),(- 2,1),(- 2,2),(-1,- 2), (- 1,- 1), (- 1,1), (-1,2) ,(1,- 2), (1,- 1), (1,1), (1,2), (2,- 2), (2,-1), (2,1), (2,2),共 16 种. (3 分 )设“ 直线 y = ax + b 不经过第四象限 ” 为事件 A ,“ 直线 y = ax + b 与圆 x 2+ y 2= 1 有公共点”为事件 B.(1)若直线 y = ax + b 不经过第四象限,则一定知足a ≥ 0,即知足条件的实数对(a , b)b ≥ 0,有 (1,1), (1,2), (2,1), (2,2),共 4 种.∴P(A) = 4 116= 4.故直线 y =ax + b 不经过第四象限的概率为1 4.(6 分)(2)若直线 y = ax +b 与圆 x 2+ y 2= 1 有公共点, 则一定知足|b|≤ 1,即 b 2≤ a 2+ 1.(8 分 )a 2+ 1若 a =- 2,则 b =- 2,- 1,1,2 切合要求,此时实数对 (a , b)有 4 种不一样取值;若 a =- 1,则 b =- 1,1 切合要求,此时实数对 (a , b)有 2 种不一样取值;若 a = 1,则 b =- 1,1 切合要求,此时实数对(a , b)有 2 种不一样取值,若 a = 2,则 b =- 2,- 1,1,2 切合要求,此时实数对 (a , b)有 4 种不一样取值.∴知足条件的实数对 (a , b)共有 12 种不一样取值.123∴P(B) = 16= 4.故直线 y =ax + b 与圆 x 2+y 2= 1 有公共点的概率为34.(14 分)。
2016届高考数学文自由复习步步高系列专题01函数(通用版)(原卷版)

2016年高考备考之考前十天自主复习第一天 函数(文科)第一块 集合与简易逻辑考点一 集合的概念及运算[1]集合概念,元素与集合的属于关系1. 已知集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .52. ( 四川省遂宁市2016届高三第二次诊断考试数学) 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9[2]集合间的关系(相等与包含)3.已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA 4. 设集合A ={(x ,y )|x +y =1},B ={(x ,y )| x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3 5.已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个 6. (2016年杭州市严州中学高三阶段测试)已知集合{}2/320A x x x =-+=,{}/05,B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B . 2C .3D .4 [3]集合间的运算7. (江西省六校2016届高三3月联考数学)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m-1}.若B ⊆A ,则实数m 的取值范围是( )A .-3≤m ≤4B .-3<m <4C .2<m ≤4D .m ≤48. (吉林省长春市普通高中2016届高三质量监测(二))已知集合{}0x x P =≥,1Q 02x x x ⎧+⎫=≥⎨⎬-⎩⎭,则()R Q P =I ð( )A .(),2-∞B .(],1-∞-C .()1,0-D .[]0,2 9. 已知集合{}2430A x x x =-+<,{}24B x x =<<,则AB =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)[4]韦恩图10. (宁夏回族自治区银川一中2016届高三第一次模拟考试数学) 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)[5]新概念11. 已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1, 2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1 考点二 命题[6]命题的真假判断与四种命题(原命题,否命题,逆命题,逆否命题)12. (黄冈中学2016届高三(上)期末考试数学试题)以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题; ②命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”; ③命题“若x ,y 都是偶数,则x +y 也是偶数”的逆命题为真命题; ④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价.13. ( 2016年2月甘肃省部分普通高中高三第一次联考)下列推断错误的是( ) A.命题“若2320,x x -+=则1x = ”的逆否命题为“若1x ≠则2320x x -+≠”B.命题:p 存在R x ∈0,使得20010x x ++<,则非:p 任意R x ∈,都有210x x ++≥C.若p 且q 为假命题,则q p ,均为假命题D.“1x <”是“2320x x -+>”的充分不必要条件 14.命题“若4πα=,则tan 1α=”的逆否命题是( )A .若α ≠4π,则tan α≠1 B . 若α=4π,则tan α≠1C . 若tan α≠1,则α≠4πD . 若tan α≠1,则α=4π15. (四川省雅安中学2016届高三开学考试数学)下列命题正确的是( ) ①若2(3)4log 32x f x =+,则8(2)(4)...(2)180f f f +++=;②函数()tan 2f x x =的对称中心是)0,2(πk (k Z ∈); ③“32,10x R x x ∀∈-+≤”的否定是“01,23>+-∈∃x x R x ”;④设常数a 使方程sin x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++73π=A .①③B .②③C .②④D .③④[7]简单的逻辑连接词(真值表,否定)16. (广东省汕头市2016年高三第一次模拟考试数学)已知命题:p R x ∃∈,2lg x x ->,命题:q R x ∀∈,1x e >,则( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题17. ( 吉林省吉林市第一中学校2016届高三3月“教与学”质量检测(一)数学) 若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[8]全称与特称命题(命题真假与否定)18.命题"存在实数x ,使得1"x >的否定( )A .对任意实数x ,都有1x >B .不存在实数x ,使得1x ≤C .对任意实数x ,都有1x ≤D .存在实数x ,使得1x ≤19.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝20.若命题“2,(1)10x R x a x ∃∈+-+<”是假命题,则实数a 的取值范围是 .考点三 充要条件的判断[9]充要条件的判断(大范围小范围)21.“2320x x -+->”是“1x >”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件22.已知函数lg(4)y x =-的定义域为A ,集合{|}B x x a =<,若P :“x A ∈”是 Q :“x B ∈”的充分不必要条件,则实数a 的取值范围 .[10] 充要条件的判断(递推关系,命题真假)23. ( 四川省遂宁市2016届高三第二次诊断考试数学)设a 、b 是实数,则“22a b >”是“0a b >>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件24. ( 2016年浙江省杭州市严州中学高三三月阶段测试数学)若π02x <<,则1tan <x x 是1sin <x x 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25. ( 2016漳州市普通高中毕业班质量检查数学) “211n n n a a a +-=,2n ≥且n ∈N ”是“数列{}n a 为等比数列”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件[11]已知条件关系求条件26.双曲线221y x m-=的充分必要条件是( )A .12m >B .1m ≥C .1m >D .2m >27. (安徽省安庆五校联盟2016届高三下学期3月联考数学)已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是 .第二块 基本初等函数 函数与方程及函数的应用考点一 基本初等函数的图像与性质 [1]基本初等函数图像1. ( 2016漳州市普通高中毕业班质量检查数学) 函数f (x )=2x +sin x 的部分图象可能是( )2. 已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )3.函数13y x x=-的图像大致为( )[2]基本初等函数性质4. (怀化市中小学课程改革教育质量监测2016年高三第一次模考数学)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是() A.(-∞,-1)∪(2,+∞) B.(-1,2)C.(-2,1) D.(-∞,-2)∪(1,+∞)5. (江西省六校2016届高三3月联考数学)若函数221,0()(1),0axax xf xa e x⎧+≥⎪=⎨-<⎪⎩在(,)-∞+∞上单调,则实数a的取值范围是.6.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x[3]指对数运算(求值)7. 已知函数f (x )=⎩⎪⎨⎪⎧log 4x ,x >0,2-x,x ≤0,则f (f (-4))+f ⎝⎛⎭⎫log 216=________. 8.方程91331x x+=-的实数解为 .9. lg 51 000-823=( )A .235B .-175C .-185 D .410.已知y x ,为正实数,则( ) A .y x yx lg lg lg lg 222+=+ B . lg()lg lg 222x y x y += C .y x y x lg lg lg lg 222+=∙ D .lg()lg lg 222xy x y =11.23log 9log 4⨯=( ) A .14B .12C .2D .4[4]指对数大小比较12. 已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c13.若()ln 1ln 1,1,ln ,,2xx x e a x b c e -⎛⎫∈=== ⎪⎝⎭则a ,b , c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c[5]幂函数概念14.已知幂函数()y f x =的图象过点1(2,则4log (2)f 的值为( ) A . 14 B .-14C .2D .-215.已知幂函数()253()1m f x m m x---=-在(0,+∞)上是增函数,则m =________.[6]反函数16.设函数()y f x =存在反函数1()y fx -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 .考点二 函数零点[7]零点存在性定理(正向用 逆向用)17. 已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)18. 若函数f (x )=⎩⎪⎨⎪⎧x ln x -a ,x >0,-x 2-2x -a ,x ≤0,有三个零点,则实数a 的取值范围是________.[8]二次函数零点问题19. (四川省雅安中学2016届高三开学考试数学)函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( ) A. ()1xf x e =-B. ()2(1)f x x =-[9]分段函数的零点问题20. (浙江省绍兴市2016届高三上学期期末统考)已知()11f x x =-,()()()111n n f x n f x +=+-,n *∈N ,若函数()3y f x kx =-恰有4个不同零点,则正实数k的值为 .21. (山东省潍坊市第一中学2014届高三1月期末考前模拟数学)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是(A )2k ≤ (B )10k -<< (C )21k -≤<- (D )2k ≤-[11]图像交点(数形结合)22. (江苏省扬州中学2016届高三3月期初考试数学试题12)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,()|2|f x x x =-.若关于x 的方程2()()0(,)f x af x b a b R ++=∈恰有10个不同实数解,则a 的取值范围为 ___ .23.设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则( ) A .0a b <<B .0b a <<C .0a b <<D .0b a <<24.对实数a 和b ,定义运算“⊗”: a b ⊗=,1,1a ab b a b -≤⎧⎨->⎩,设函数2()(2)(1)f x x x =-⊗-,x R ∈.若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(1,1](2,)-⋃+∞B .(2,1](1,2]--⋃C . (,2)(1,2]-∞-⋃D .[2,1]-- [11]二分法25.用二分法研究函数()331f x x x =+-的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈______,第二次应计算________. 考点三 函数的实际应用 [12]二次,三次等多项式函数模型26. (怀化市中小学课程改革教育质量监测2016年高三第一次模考)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x)(+∈N x 名员工从事第三产业,调整后他们平均每人每年创造利润为3x 10(a-)500万元)0(>a ,剩下的员工平均每人每年创造的利润可以提高%2.0x .(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(Ⅱ)在(Ⅰ)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?1. (黄冈中学2016届高三(上)期末考试数学试题)设全集U =R ,{}111,202xA x xB x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合( )A .()2,0-B .(]2,1--C .(1,0]-D .(1,0)- 2.已知集合32A x x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭且,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .53.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( ) A .(0,13) B .(13 ,+∞) C .(-13,0)∪(13,+∞) D .(-∞,-13)∪(0,13) 4. (2016年3月德阳市四校高三联合测试数学)下列命题中,真命题是( )A.000≤∈∃x eR x , B.11>>b a ,是1>ab 的充分条件C.R x ∈∀,22x x> D. 0=+b a 的充要条件是1-=ba5.函数1,0()2,0x x x f x x x +≤⎧=⎨->⎩,则f (f (0))的值为_________.6.已知函数f (x )=x -[x ],其中[x ]表示不超过实数x 的最大整数,若关于x 的方程f (x )=kx +k 有三个不同的实根,则实数k 的取值范围是__________.7. (2016年3月德阳市四校高三联合测试数学理10)已知函数⎪⎩⎪⎨⎧<-+-+≥-+=0)3()4(0)1()(2222x a x a a x x a k kx x f ,,,其中a ∈R ,若对任意非零实数1x ,存在唯一实数)(212x x x ≠,使得)()(21x f x f =成立,则实数k 的最小值为( )A.-8B.-6C.6D.88. ( 2016江西省景德镇高三第二质检数学)已知函数()(2)(-5)f x x x ax =++2的图象关于点(-2,0)中心对称,设关于x 的不等式()()f x m f x +<的解集为A ,若(5,2)A --⊆,则实数m 的取值范围是 .9.已知12)(-=x x f ,21)(x x g -=,规定:当)(|)(|x g x f ≥时, |)(|)(x f x h =;当)(|)(|x g x f <时, )()(x g x h -=,则)(x h ( )A . 有最小值1-,最大值1B . 有最大值1,无最小值C . 有最小值1-,无最大值D . 有最大值1-,无最小值10. ( 2016年东北三省四市教研联合体高考模拟试)已知函数()()()()211221x x x x f x x e e x e e ---=----,则满足()0f x >的实数x 的取值范围为 .。
2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案70 算法与程序框图

第二步,设i的值为2.
第三步,如果i≤100执行第四步,否则转去执行第七步.
第四步,计算S乘i并将结果赋给S.
第五步,计数i加1并将结果赋给i.
第六步,转去执行第三步.
第七步,输出S的值并结束算法.
根据自然语言描述,程序框图如下:
变式迁移3286
解析数列{an}:4,7,10,…为等差数列,令an=4+(n-1)×3=40,得n=13,∴s=4+7+…+40==286.
自我检测
1.A[由循环结构的程序框图可知需添加的运算为S=x1+x2+…+x10的累加求和.]
2.D[第一次运行N=5,k=1,S=0,S=0+,1<5成立,进入第二次运行;k=2,S=+,2<5成立,进入第三次运行;k=3,S=++,3<5成立,进入第四次运行;k=4,S=+++,4<5成立,进入第五次运行;k=5,S=++++=1-=,5<5不成立,此时退出循环,输出S.]
变式迁移1阅读如图的程序框图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是()
A.75、21、3ቤተ መጻሕፍቲ ባይዱB.21、32、75
C.32、21、75D.75、32、21
探究点二算法的条件结构
例2 (2011·杭州模拟)函数y=,写出求该函数的函数值的算法,并画出程序框图.
变式迁移2给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是()
3.D[由框图可知i=0,s=2→i=1,s=→i=2,s=-→i=3,s=-3→i=4,s=2,循环终止,输出s,故最终输出的s值为2.]
4.68
解析当输入l=2,m=3,n=5时,不满足l2+m2+n2=0,因此执行:y=70l+21m+15n=70×2+21×3+15×5=278.由于278>105,故执行y=y-105,执行后y=278-105=173,再执行一次y=y-105后y的值为173-105=68,此时68>105不成立,故输出68.
2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案51 椭圆

学案51 椭 圆导学目标: 1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义,几何图形、标准方程及其简单几何性质.自主梳理1.椭圆的概念在平面内与两个定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫________.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若________,则集合P 为椭圆; (2)若________,则集合P 为线段; (3)若________,则集合P 为空集. 2.椭圆的标准方程和几何性质自我检测1.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .122.(2011·揭阳调研)“m >n >0”是方程“mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件3.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( ) A.⎝⎛⎭⎫3π4,π B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫π2,3π44.椭圆x 212+y 23=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍 5.(2011·开封模拟)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A .-1 B .1 C. 5 D .- 5探究点一 椭圆的定义及应用例1 (教材改编)一动圆与已知圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,试求动圆圆心的轨迹方程.变式迁移1 求过点A (2,0)且与圆x 2+4x +y 2-32=0内切的圆的圆心的轨迹方程.探究点二 求椭圆的标准方程例2 求满足下列各条件的椭圆的标准方程: (1)长轴是短轴的3倍且经过点A (3,0);(2)经过两点A (0,2)和B ⎝⎛⎭⎫12,3.变式迁移2 (1)已知椭圆过(3,0),离心率e =63,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1)、P 2(-3,-2),求椭圆的标准方程.探究点三 椭圆的几何性质例3 (2011·安阳模拟)已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.变式迁移3 已知椭圆x 2a 2+y 2b2=1(a >b >0)的长、短轴端点分别为A 、B ,从此椭圆上一点M (在x 轴上方)向x 轴作垂线,恰好通过椭圆的左焦点F 1,AB ∥OM .(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 1、F 2分别是左、右焦点,求∠F 1QF 2的取值范围.方程思想的应用例 (12分)(2011·北京朝阳区模拟)已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32),过点P (2,1)的直线l 与椭圆C 相交于不同的两点A ,B .(1)求椭圆C 的方程;(2)是否存在直线l ,满足P A →·PB →=PM →2?若存在,求出直线l 的方程;若不存在,请说明理由.【答题模板】解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎨⎧1a 2+94b 2=1,c a =12,a 2=b 2+c 2.解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.[4分](2)若存在直线l 满足条件,由题意可设直线l 的方程为y =k (x -2)+1,由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)+1,得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0.[6分] 因为直线l 与椭圆C 相交于不同的两点A ,B , 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 所以Δ=[-8k (2k -1)]2-4·(3+4k 2)·(16k 2-16k -8)>0.整理得32(6k +3)>0,解得k >-12.[7分]又x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,且P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54,所以(x 1-2)(x 2-2)(1+k 2)=54,即[x 1x 2-2(x 1+x 2)+4](1+k 2)=54.[9分]所以[16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4](1+k 2)=4+4k 23+4k 2=54,解得k =±12.[11分]所以k =12.于是存在直线l 满足条件,其方程为y =12x .[12分]【突破思维障碍】直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题.反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·温州模拟)若△ABC 的两个顶点坐标分别为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 (y ≠0)B.y 225+x 29=1 (y ≠0)C.x 216+y 29=1 (y ≠0)D.y 216+x 29=1 (y ≠0) 2.已知椭圆x 210-m +y2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .83.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是( )A.32B.22C.2-1D. 2 4.(2011·天门期末)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.椭圆x 225+y29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8 D.32二、填空题(每小题4分,共12分)6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为______________.7.(2011·唐山调研)椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________.8.如图,已知点P 是以F 1、F 2为焦点的椭圆x 2a 2+y2b2=1 (a >b >0)上一点,若PF 1⊥PF 2,tan ∠PF 1F 2=12,则此椭圆的离心率是______.三、解答题(共38分)9.(12分)已知方向向量为v =(1,3)的直线l 过点(0,-23)和椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若已知点D (3,0),点M ,N 是椭圆C 上不重合的两点,且DM →=λDN →,求实数λ的取值范围.10.(12分)(2011·烟台模拟)椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.11.(14分)(2010·福建)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程.(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.学案51 椭 圆自主梳理1.椭圆 焦点 焦距 (1)a>c (2)a =c (3)a<c 自我检测1.C 2.C 3.D 4.A 5.B 课堂活动区例1 解 如图所示,设动圆的圆心为C ,半径为r.则由圆相切的性质知, |CO 1|=1+r ,|CO 2|=9-r , ∴|CO 1|+|CO 2|=10, 而|O 1O 2|=6,∴点C 的轨迹是以O 1、O 2为焦点的椭圆,其中2a =10,2c =6,b =4. ∴动圆圆心的轨迹方程为 x 225+y 216=1. 变式迁移1 解 将圆的方程化为标准形式为: (x +2)2+y 2=62,圆心B(-2,0),r =6. 设动圆圆心M 的坐标为(x ,y), 动圆与已知圆的切点为C.则|BC|-|MC|=|BM|, 而|BC|=6, ∴|BM|+|CM|=6. 又|CM|=|AM|,∴|BM|+|AM|=6>|AB|=4.∴点M 的轨迹是以点B(-2,0)、A(2,0)为焦点、线段AB 中点(0,0)为中心的椭圆. a =3,c =2,b = 5.∴所求轨迹方程为x 29+y 25=1.例2 解题导引 确定一个椭圆的标准方程,必须要有一个定位条件(即确定焦点的位置)和两个定形条件(即确定a ,b 的大小).当焦点的位置不确定时,应设椭圆的标准方程为x 2a 2+y 2b2=1 (a>b>0)或y 2a 2+x2b 2=1 (a>b>0),或者不必考虑焦点位置,直接设椭圆的方程为mx 2+ny 2=1(m>0,n>0,且m ≠n).解 (1)若椭圆的焦点在x 轴上,设方程为x 2a 2+y 2b2=1 (a>b>0).∵椭圆过点A(3,0),∴9a2=1,∴a =3,又2a =3·2b ,∴b =1,∴方程为x 29+y 2=1.若椭圆的焦点在y 轴上,设方程为y 2a 2+x 2b2=1 (a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b =3,又2a =3·2b ,∴a =9,∴方程为y 281+x 29=1.综上可知椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设经过两点A(0,2),B ⎝⎛⎭⎫12,3的椭圆标准方程为mx 2+ny 2=1,将A ,B 坐标代入方程得⎩⎪⎨⎪⎧ 4n =114m +3n =1⇒⎩⎪⎨⎪⎧m =1n =14,∴所求椭圆方程为x 2+y 24=1.变式迁移2 解 (1)当椭圆的焦点在x 轴上时,∵a =3,c a =63,∴c =6,从而b 2=a 2-c 2=9-6=3,∴椭圆的标准方程为x 29+y 23=1.当椭圆的焦点在y 轴上时,∵b =3,c a =63,∴a 2-b 2a =63,∴a 2=27. ∴椭圆的标准方程为x 29+y227=1.∴所求椭圆的标准方程为x 29+y 23=1或x 29+y 227=1.(2)设椭圆方程为mx 2+ny 2=1 (m>0,n>0且m ≠n). ∵椭圆经过P 1、P 2点,∴P 1、P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.例3 解题导引 (1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a 、c 的关系.(2)对△F 1PF 2的处理方法⎩⎪⎨⎪⎧定义式的平方余弦定理面积公式⇔⎩⎪⎨⎪⎧(|PF 1|+|PF 2|)2=(2a )2,4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ,S △=12|PF 1||PF 2|sin θ.(1)解 设椭圆方程为x 2a 2+y 2b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n.在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mn cos 60°.∵m +n =2a ,∴m 2+n 2=(m +n)2-2mn =4a 2-2mn. ∴4c 2=4a 2-3mn ,即3mn =4a 2-4c 2. 又mn ≤⎝⎛⎭⎪⎫m +n 22=a 2(当且仅当m =n 时取等号), ∴4a 2-4c 2≤3a 2.∴c 2a 2≥14,即e ≥12.∴e 的取值范围是⎣⎡⎭⎫12,1.(2)证明 由(1)知mn =43b 2,∴S △PF1F2=12mn sin 60°=33b 2,即△PF 1F 2的面积只与短轴长有关.变式迁移3 解 (1)∵F 1(-c,0),则x M =-c ,y M =b 2a,∴k OM =-b 2ac .∵k AB =-ba ,OM ∥AB ,∴-b 2ac =-b a ,∴b =c ,故e =c a =22.(2)设|F 1Q|=r 1,|F 2Q|=r 2,∠F 1QF 2=θ, ∴r 1+r 2=2a ,|F 1F 2|=2c ,cos θ=r 21+r 22-4c22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2(r 1+r 22)2-1=0, 当且仅当r 1=r 2时,cos θ=0,∴θ∈[0,π2].课后练习区1.A 2.D 3.C 4.B 5.B 6.x 236+y 29=1 7.2 120° 8.539.解 (1)∵直线l 的方向向量为v =(1,3), ∴直线l 的斜率为k = 3. 又∵直线l 过点(0,-23), ∴直线l 的方程为y +23=3x .∵a >b ,∴椭圆的焦点为直线l 与x 轴的交点.∴c =2.又∵e =c a =63,∴a = 6.∴b 2=a 2-c 2=2.∴椭圆方程为x 26+y 22=1.(6分)(2)若直线MN ⊥y 轴,则M 、N 是椭圆的左、右顶点, λ=3+63-6或λ=3-63+6,即λ=5+26或5-2 6. 若MN 与y 轴不垂直,设直线MN 的方程为x =my +3(m ≠0).由⎩⎪⎨⎪⎧x 26+y 22=1,x =my +3得(m 2+3)y 2+6my +3=0.设M 、N 坐标分别为(x 1,y 1),(x 2,y 2),则y 1+y 2=-6mm 2+3,①y 1y 2=3m 2+3,②Δ=36m 2-12(m 2+3)=24m 2-36>0,∴m 2>32.∵DM →=(x 1-3,y 1),DN →=(x 2-3,y 2),DM →=λDN →,显然λ>0,且λ≠1, ∴(x 1-3,y 1)=λ(x 2-3,y 2).∴y 1=λy 2.代入①②,得λ+1λ=12m 2m 2+3-2=10-36m 2+3.∵m 2>32,得2<λ+1λ<10,即⎩⎪⎨⎪⎧λ2-2λ+1>0,λ2-10λ+1<0,解得5-26<λ<5+26且λ≠1.综上所述,λ的取值范围是5-26≤λ≤5+26, 且λ≠1.(12分)10.解 方法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0. 而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22,代入上式可得b =2a .(4分)由方程组⎩⎪⎨⎪⎧ax 2+by 2=1x +y -1=0,得(a +b )x 2-2bx +b -1=0,∴x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,再由|AB |=1+k 2 |x 2-x 1|=2|x 2-x 1|=22,得⎝ ⎛⎭⎪⎫2b a +b 2-4·b -1a +b=4,(8分) 将b =2a 代入得a =13,∴b =23. ∴所求椭圆的方程是x 23+2y 23=1.(12分) 方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1 得(a +b )x 2-2bx +b -1=0.(2分)设A (x 1,y 1)、B (x 2,y 2),则|AB |=(k 2+1)(x 1-x 2)2=2·4b 2-4(a +b )(b -1)(a +b )2. ∵|AB |=22,∴a +b -ab a +b=1.①(6分) 设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =a a +b, ∵OC 的斜率为22,∴a b =22.(9分) 代入①,得a =13,b =23. ∴椭圆方程为x 23+2y 23=1.(12分) 11.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧ c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(5分) (2)假设存在符合题意的直线l ,设其方程为y =32x +t . 由⎩⎨⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.(7分) 因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3.(9分)另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213.(12分) 由于±213∉[-43,43],所以符合题意的直线l 不存在.(14分)方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12或b 2=-3(舍去).从而a 2=16.(3分) 所以椭圆C 的方程为x 216+y 212=1.(5分) (2)同方法一.。
2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]
![2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]](https://img.taocdn.com/s3/m/0b8e82c0f111f18582d05a2b.png)
教案 58变量间的有关关系学目: 1.会作两个有关量的数据的散点,会利用散点量的有关关系 .2.认识最小二乘法的思想,能依据出的性回方程系数公式成立性回方程.自主梳理1.两个量的性有关(1)正有关在散点中,点分布在从__________到 ________的地区,于两个量的种有关关系,我将它称正有关.(2)有关在散点中,点分布在从________到 ________的地区,两个量的种有关关系称有关.(3)性有关关系、回直假如散点中点的分布从整体上看大概在一条直邻近,我就称两个量之拥有性有关关系,条直叫做回直.2.回方程(1)最小二乘法求回直使得本数据的点到它的________________________ 的方法叫做最小二乘法.(2)回方程^^^方程 y = b x+ a 是两个拥有性有关关系的量的一数据(x1,y1 ),(x2,y2),⋯, (x n,^^y n)的回方程,此中 a , b 是待定参数.自我1.以下有关性回的法,不正确的选项是()A.有关关系的两个量不必定是因果关系B.散点能直地反应数据的有关程度C.回直最能代表性有关的两个量之的关系D.任一数据都有回直方程2.(2009 海·南,宁夏 )量 x, y 有数据 (x i, y i)(i =1,2,⋯, 10),得散点 (1) ;量 u,v 有数据 (u i,v i)(i = 1,2,⋯, 10),得散点 (2).由两个散点能够判断()A.量 x 与 y 正有关, u 与 v 正有关B.量 x 与 y 正有关, u 与 v 有关C.量 x 与 y 有关, u 与 v 正有关D.量 x 与 y 有关, u 与 v 有关3.(2011 ·川模 )下表是某厂1~4 月份用水量 (位:百吨 )的一数据:月份 x1234用水量 y 4.543 2.5^由散点图可知,用水量y 与月份 x 之间有较好的线性有关关系,其回归直线方程是y =^^- 0.7x +a ,则 a 等于 ()A. 10.5B. 5.15C. 5.2 D .5.254.(2010 广·东 )某市居民2005 ~ 2009 年家庭年均匀收入x(单位:万元 )与年均匀支出Y( 单位:万元 ) 的统计资料以下表所示:年份20052006200720082009收入 x11.512.11313.315支出 Y 6.88.89.81012依据统计资料,居民家庭年均匀收入的中位数是_________________________________ ,家庭年均匀收入与年均匀支出有______ 线性有关关系.5.(2011 金·陵中学模拟 )已知三点 (3,10), (7,20), (11,24) 的横坐标 x 与纵坐标 y 拥有线性关系,则其回归方程是________________.研究点一利用散点图判断两个变量的有关性例 1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,获取一个卖出热饮杯数与当日气温的对照表:温度- 504712151923273136(℃ )热饮15615013212813011610489937654杯数(1)画出散点图;(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁徙1某班5个学生的数学和物理成绩如表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们能否有有关关系?研究点二求回归直线方程例 2 假定对于某设施的使用年限x 和所支出的维修花费y(万元 ) 有以下统计资料:使用年限 x23456维修花费 y 2.2 3.8 5.5 6.57.0^^^若由资料知 y 对 x 呈线性有关关系.试求回归方程y = b x+a .变式迁徙2已知变量x 与变量 y 有以下对应数据:x1234y 1323 22且 y 对 x 呈线性有关关系,求y 对 x 的回归直线方程.研究点三利用回归方程对整体进行预计例 3 下表供给了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨 )与相应的生产能耗 y(吨标准煤 )的几组比较数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;^^^(2)请依据上表供给的数据,用最小二乘法求出y 对于 x 的回归方程 y= b x+a ;(3)已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试依据(2)求出的回归方程,展望生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?(参照数值: 3×2.5+ 4× 3+ 5× 4+6× 4.5= 66.5)变式迁徙 3 (2011 ·盐城期末 )某单位为了认识用电量y 度与气温 x℃之间的关系,随机统计了某 4 天的用电量与当日气温,并制作了比较表:气温 (℃)181310- 1用电量 (度 )24343864^^^^由表中数据得回归方程y = b x+a 中 b =- 2,展望当气温为- 4℃时,用电量的度数约为 ________.1.有关关系与函数关系不一样.函数关系中的两个变量间是一种确立性关系.而有关关系是一种非确立性关系,即有关关系是非随机变量与随机变量之间的关系.函数关系是一种因果关系,而有关关系不必定是因果关系,也可能是陪伴关系.2.回归直线方程:设x 与 y 是拥有有关关系的两个变量,且相应于n 个观察值的n 个点大概分布在某一条直线的邻近,就能够以为y 对 x 的回归函数的种类为直线型:^^^y= b x+ a .此中我们称这个方程为y 对 x 的回归直线方程.此中x =1ni,y=1 ni,( x,y )称为∑∑n i =1xn i= 1y样本点的中心.n n^ 3.求回归直线方程的步骤:(1) 计算出 x 、 y 、∑x i2、∑x i y i的值; (2) 计算回归系数 a 、i =1i= 1^^^^b; (3) 写出回归直线方程 y = b x+ a .(满分: 75 分)一、选择题 (每题 5 分,共 25 分 )1.以下命题:①线性回归方法就是由样本点去找寻一条切近这些样本点的直线的数学方法;②利用样本点的散点图能够直观判断两个变量的关系能否能够用线性关系表示;^^^^③经过回归直线y 此中正确的命题是A.①②=b x+ a 及回归系数 b ,能够预计和展望变量的取值和变化趋向.()B.①③C.②③D.①②③^2.设有一个回归直线方程为y = 2- 1.5x,则变量x 增添一个单位时() A. y 均匀增添 1.5 个单位B. y 均匀增添 2 个单位C. y 均匀减少 1.5 个单位D. y 均匀减少 2 个单位3.(2011 ·西 ) (x 1, y1), (x2, y2),⋯, (x n, y n) 是量 x 和 y 的 n 个本点,直l 是由些本点通最小二乘法获取的性回直(如 ),以下中正确的选项是 ()A. x 和 y 的有关系数直l 的斜率B. x 和 y 的有关系数在 0 到 1 之C.当 n 偶数,分布在l 两的本点的个数必定同样D.直 l 点 ( x , y )4.(2011 山· ) 某品的广告用x 与售 y 的数据以下表:广告用 x(万元 )4235售 y(万元 )49263954^^^^依据上表可得性回方程y =b x+ a 中的 b9.4,据此模型广告用 6 万元售 ()A. 63.6 万元B. 65.5 万元C. 67.7 万元D. 72.0 万元5.(2011 青· 模 )了观察两个量x 和 y 之的性有关性,甲、乙两位同学各自独立做了 10 次和 15 次,而且利用性回方法,求得回直分l1、 l2,已知两人所得的数据中,量 x 和 y 的数据的均匀都相等,且分是s、t ,那么以下法中正确的是 ()A.直 l1和 l2必定有公共点 (s, t)B.直 l1和 l2订交,但交点不必定是(s,t)C.必有 l1∥ l 2D. l1与 l 2必然重合二、填空 (每小 4 分,共 12分 )6.以下关系中,是有关关系的________. (填序号 )①学生的学度与学成之的关系;②教的教水平与学生的学成之的关系;③学生的身高与学生的学成之的关系;④家庭的条件与学生的学成之的关系.(12.5,8.25),回直的回7.已知回直的斜率的估是 0.73,本点的中心方程是______________ .8.(2011 ·名月考茂 )在研究硝酸的可溶性程度,它在不一样温度的水中的溶解度,得果以下表:温度 (x)010205070溶解度 (y)66.776.085.0112.3128.0由此获取回直的斜率________.三、解答 (共 38 分 )9.(12 分 )(2011 威·海模 )某了定工定,需要确立加工部件所花的,此做了四次,获取的数据以下:部件的个数 x(个 )2345加工的 y(小 ) 2.534 4.5(1)在定的坐系中画出表中数据的散点;^^^(2)求出 y 对于 x 的回归方程 y= b x+a ,并在座标系中画出回归直线;(3)试展望加工10 个部件需要多少时间?n^∑ x i y i- n x y ^^(注: b =i= 1, a = y - b x )n∑ x i2- n x 2i =110. (12 分 )(2010 许·昌模拟 )某种产品的宣传费支出 x 与销售额 y(单位:万元 ) 之间有以下对应数据:x24568y3040605070(1)画出散点图;(2)求回归直线方程;(3)试展望宣传费支出为10 万元时,销售额多大?11. (14 分) 某公司上半年产品产量与单位成本资料以下:月份产量 (千件 )单位成本(元)127323723471437354696568(1)求出回归方程;(2)指出产量每增添 1 000 件时,单位成本均匀改动多少?(3)假定产量为 6 000 件时,单位成本为多少元?教案 58变量间的有关关系自主梳理1.(1)左下角右上角(2)左上角右下角 2.(1)距离的平方和最小n n∑ x i- x y i- y∑ x i y i- n x yi=1i=1(2)n n∑ x i- x 2∑ x i2- n x 2i= 1i= 1^y - b x自我检测1.D 2.C 3.D^7234.13正 5.y =4x+4讲堂活动区例 1 解题导引判断变量间能否线性有关,一种常用的简易可行的方法就是作散点图.散点图是由大批数据点分布组成的,是定义在拥有有关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地剖析它们有没关系及关系的亲密程度.解 (1) 以 x 轴表示温度,以 y 轴表示热饮杯数,可作散点图,以下图.(2)从图中能够看出,各点分布在从左上角到右下角的地区里,所以,气温与热饮销售杯数之间是负有关关系,即气温越高,卖出去的热饮杯数越少.从散点图能够看出,这些点大概分布在一条直线邻近.变式迁徙1解以x轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图以以下图所示:由散点图可见,二者之间拥有有关关系.例 2 解题导引依据题目给出的数据,利用公式求回归系数,而后获取回归方程.解制表以下:i12345共计x i2345620y i 2.2 3.8 5.5 6.57.025x i y i 4.411.422.032.542.0112.3x i 2491625369055x = 4; y =5; ∑ x2i = 90;∑ x i y i =112.3i =1i =1^112.3- 5× 4×5于是有 b=2= 12.3= 1.23;^^90- 5× 410a = y -b x=5- 1.23×4= 0.08.^∴回归直线方程为 y = 1.23x + 0.08.变式迁徙 2解x = 1+ 2+ 3+4 54= 2,1+3+2+ 322= 7,y =4n4 ∑x i 2=12+ 22+ 32+ 42= 30,i =1n3+3× 2+ 4× 3= 43,∑x i y i =1× 1+ 2×i =1 n 22243- 4×5× 7^∑ x i y i -n x y∴b i =1= 22 4=n25 = 0.8,2 230- 4×∑= x i - n x4i 1^^5=- 0.25,a = y -b x =7- 0.8×42^∴ y = 0.8x -0.25.例 3 解题导引 利用描点法获取散点图,按求回归方程的步骤和公式,写出回归方程,最后对整体进行预计.利用回归方程能够进行展望,回归方程将部分观察值所反应的规律进行延长,是我们对有线性有关关系的两个变量进行剖析和控制,依照自变量的取值预计和预告因变量值的基础和依照,有宽泛的应用.解 (1) 散点图:(2) x = 3+4+ 5+ 6 =4.5, y = 2.5+ 3+ 4+ 4.5=3.5,4 4 4∑x i y i =3× 2.5+ 4× 3+ 5× 4+6× 4.5= 66.5.i =14 ∑x 2i =32+ 42+ 52+ 62= 86,i =14^∑i =1x i y i -4 x y ∴b = 4∑i =1x 2i - 4 x 266.5- 4× 4.5× 3.5=86- 4× 4.52=0.7,^^a = y -b x =3.5- 0.7× 4.5= 0.35.^∴所求的回归方程为 y = 0.7x + 0.35. (3)此刻生产 100 吨甲产品用煤^y = 0.7× 100+ 0.35=70.35,∴降低 90- 70.35= 19.65(吨标准煤 ). 变式迁徙 3 68 分析x = 10, y = 40,回归方程过点( x , y ),^^∴40=- 2× 10+ a .∴a = 60. ^∴ y =- 2x + 60.^令 x =- 4,y = (- 2)× (- 4)+ 60=68. 课后练习区1.D [依据线性回归的含义、方法、作用剖析这三个命题都是正确的. ]2.C[设(x 1, y 1), (x 2 ,y 2)在直线上,若 x 2=x 1+ 1,则 y 2- y 1= (2- 1.5x 2)- (2- 1.5x 1)= 1.5(x 1-x 2 )=- 1.5, y 均匀减少 1.5个单位. ]3.D [由于有关系数是表示两个变量能否拥有线性有关关系的一个值,它的绝对值越接近 1,两个变量的线性有关程度越强,所以 A 、B 错误. C 中 n 为偶数时,分布在 l 双侧的样本点的个数能够不同样,所以 C 错误.依据线性回归方程必定经过样本中心点可知D 正确.所以选 D .]4+ 2+ 3+5= 7, y = 49+ 26+ 39+ 544.B [∵x =44 = 42,2^^^7^ ^又y = b x +a 必过 ( x, y ) ,∴ 42= 2× 9.4+ a , ∴a = 9.1.^∴线性回归方程为 y = 9.4x + 9.1.^∴当x = 6 时, y = 9.4×6+ 9.1=65.5(万元 ). ]^^^^^5.A[回归直线方程为 y= b x +a.而 a = y - b x ,^^^^即a = t -b s , t = b s + a .∴(s ,t) 在回归直线上. ∴直线 l 1 和 l 2 必定有公共点 (s , t). ] 6.①② 分析①中学生的学习态度与学习成绩之间不是因果关系,但拥有有关性,是有关关系.②教师的执教水平与学生的学习成绩之间的关系是有关关系.③④都不具备有关关系.^7.y = 0.73x - 0.875^ ^分析 a = y - bx =8.25- 0.73× 12.5=- 0.875.8.0.880 9分析x = 30, y = 93.6,5 5∑x i 2=7 900, ∑x i y i = 17 035,i =1i = 1∴回归直线的斜率为5^∑ i i - 5 xy17 035- 5× 30× 93.6 i =1x yb =5= ≈0.880 9.∑x i 2- 5 x27 900- 4 500i = 19.解(1)散点图以下图.(4 分 )4 (2)由表中数据得 ∑x i y i = 52.5,i =14x = 3.5, y = 3.5, ∑x 2i =54,i =1 ^ ^^∴b = 0.7.∴a = y - b x = 1.05.^∴ y = 0.7x +1.05.回归直线如图中所示. (10 分 ) (3)将 x = 10 代入回归直线方程, 得 y = 0.7×10+ 1.05=8.05( 小时 ),∴展望加工 10 个部件需要 8.05 小时. (12 分 )10. 解 (1)依据表中所列数据可得散点图以下图:(4 分)25250(2)计算得: x = 5=5, y = 5 = 50,55∑ i2=145, ∑ i y i =1 380.i = 1xi =1x5- 5 xy^∑1 380- 5×5× 50i = 1x i y i,于是可得 b=522 = 5×5 2=6.5-5 x 145-∑ x i^^i =1a = y -b x =50- 6.5×5= 17.5,^所以,所求回归直线方程是 y = 6.5x + 17.5.(10 分 )^(3)由上边求得的回归直线方程可知,当宣传费支出为10 万元时, y = 6.5× 10+ 17.5=82.5(万元 ),即这类产品的销售大概为82.5 万元. (12 分 )6611. 解(1)n = 6, ∑x i = 21, ∑y i = 426, x = 3.5, y = 71,i =1i = 166∑x i 2=79, ∑x i y i = 1 481,i = 16i =1^∑ i i - 6 xy1 481- 6×3.5× 71i =1x yb =6i 2- 6 x 2 = 79- 6× 3.52≈-1.82.∑i = 1x(3 分)2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]^^a= y - b x =71+ 1.82× 3.5= 77.37.(5 分 )^^^∴回归方程为 y = a +bx= 77.37-1.82x.(6 分 )^(2)由于单位成本均匀改动 b =- 1.82<0 ,且产量 x 的计量单位是千件,所以依据回归系数b 的意义有:产量每增添一个单位即 1 000 件时,单位成本均匀减少 1.82 元. (10 分)(3)当产量为 6 000 件时,即 x= 6,代入回归方程:^y = 77.37-1.82× 6=66.45(元 ).∴当产量为 6 000 件时,单位成本为66.45 元.(14 分)-11-。
高中数学步步高大一轮复习讲义文科专题一PPT课件

故 f(x)的单调递增区间为(-∞,
-1),(0,+∞),单调递减区
间为(-1,0).
第4页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1) 思维启迪 解析 思维升华
(2)f(x)=x(ex-1-ax),
-ax2.
令 g(x)=ex-1-ax,
(1)若 a=12,求 f(x)的单调区间; g′(x)=ex-a.
思维启迪 解析 思维升华
(2)解 2xln x≥-x2+ax-3, 则 设ha(≤x)2=ln2lxn+x+x+x+3x,3x(x>0), 则h′(x)=x+3x2x-1, ①当x∈(0,1)时,h′(x)<0,h(x)
单调递减, ②当x∈(1,+∞)时,
h′(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4,对一切
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
求出 f′(x),分析函数的单 调性,得出结论.
的取值范围.
第3页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1)
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
若 a≤1,则当 x∈(0,+∞)时, g′(x)>0,g(x)为增函数,
的取值范围.
而 g(0)=0,
从而当 x≥0 时,g(x)≥0,
即 f(x)≥0.
若 a>1,则当 x∈(0,ln a)时, g′(x)<0,g(x)为减函数,
2016届《步步高》高考数学大一轮总复习(人教新课标文科)配

x-y=-1,由 得交点 A(-3,-2, x+y=-5 则目标函数 z=x -5y 过 A 点时取得最大值. zmax=-3-5×(-2=7,不满足题意,排除 A,C 选项.当 a=3 时,作出不等式组表示的可行域,如图(2(阴影部分. x-y=-1,由 得交点 B(1,2, x+y=3 则目标函数 z=x+3y 过 B 点时取得最小值. zmin=1+3×2=7,满足题意. x-y-1≤0, 13.(2014·山东已知 x,y 满足约束条件 当目标函数 z=ax+by(a>0,b>0在 2x-y-3≥0,该约束条件下取到最小值 2 5时,a2+b2 的最小值为( A.5 B.4 C. 5 答案 B 解析方法一线性约束条件所表示的可行域如图所示. x-y-1=0, x=2,由 解得 2x-y-3=0, y=1, D.2 所以 z=ax+by 在 A(2,1处取得最小值,故 2a+b=2 5, a2+b2=a2+(2 5-2a2=( 5a-42+4≥4. 方法二画出满足约束条件的可行域知,当目标函数过直线 x-y-1=0 与 2x-y-3=0 的交点(2,1时取得最小值,所以有 2a+b=2 5. 又因为 a2+b2 是原点(0,0到点(a,b的距离的平方,故当 a2+b2为原点到直线 2a+b-2 5=0 的距离时最小, - 16 -所以 a2+b2的最小值是 |-2 5| =2, 22+12 所以 a2+b2 的最小值是 4.故选 B. x+2y-3≤0, 14.已知变量 x, y 满足约束条件 x+3y-3≥0, y-1≤0,处取得最大值,则 a 的取值范围是__________. 1 答案 2,+∞ 解析画出 x、y 满足约束条件的可行域如图所示,要使目标函数 z =ax+y 仅在点(3,0处取得最大值,则直线 y=-ax+z 的斜率应小 1 1 于直线 x+2y-3=0 的斜率,即-a<-,∴a> . 2 2 x+y-3≤0, 15.若函数 y=log2x 的图象上存在点(x,y,满足约束条件 2x-y+2≥0, y≥m,值为________.答案 1 解析如图,作出函数的可行域,当函数 y=log2x 过点(2,1时,实数 m 有最大值 1. 若目标函数z=ax+y(其中 a>0仅在点(3,0 则实数 m 的最大 16.一个化肥厂生产甲、乙两种混合肥料,生产 1 车皮甲种肥料的主要原料是磷酸盐 4 吨,硝酸盐 18 吨;生产 1 车皮乙种肥料需要的主要原料是磷酸盐 1 吨,硝酸盐 15 吨.现库存磷酸盐 10 吨,硝酸盐 66 吨,在此基础上生产这两种混合肥料.如果生产 1 车皮甲种肥料产生的利润为 10 000 元,生产 1 车皮乙种肥料产生的利润为 5 000 元,那么适当安排生产,可产生的最大利润是________元.答案 30 000 解析设生产甲种肥料 x 车皮,生产乙种肥料 y 车皮,则 z=10 000x+5 000y, - 17 -4x+y≤10, 18x+15y≤66, x≥0, y≥0,画出图形可知,目标函数在 D(2,2处有最大值,且 zmax=10 000×2+5 000×2=30 000(元. - 18 -。
专题06 立体几何-2016年高考数学(文)自由复习步步高系列(通用版)(原卷版)

2016年高考备考之考前十天自主复习 第6天(文科)1. 四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2. 空间几何体的三视图(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线. 3. 直观图的斜二测画法空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 4. 空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径).(2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3.回顾二:空间中的平行于垂直1.线面平行与垂直的判定定理、性质定理2.提醒 3. 平行关系及垂直关系的转化示意图热点一:三视图与表面积、体积【典例】( 福建省龙岩市2016届高三教学质量检查数学文8)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的表面积是()A B C D 1【题型概述】这类题以三视图为载体,考查面积、体积的计算,尤其三视图及柱、锥与球的接切问题相结合是考试的重点和热点,这类题的解决方法一般为将三视图还原几何体,再利用几何体的表面积公式或体积公式计算,解决的关键是要熟悉常见几何体的三视图,尤其注意几何体的不同摆放位置三视图会发生变化.【跟踪练习1】( 2016年浙江省杭州市严州中学高三三月阶段测试数学文10)一个简单几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是等腰直角三角形,则该几何体的体积为 ,表面积为 .【跟踪练习2】( 东北三省三校2016年高三第一次联合模拟考试文6)已知三棱锥的三视图,则该三棱锥的体积是 ( )A . B.C. D.热点二:证明或判断空间平行、垂直关系【典例】( 四川省遂宁市2016届高三第二次诊断考试数学文18)如图,四边形ABCD 为梯形,AB ∥CD ,PD ⊥平面ABCD , =ADC=90BAD ∠∠o ,22,DC AB a DA ===,E 为BC 中点.(1)求证:平面PBC ⊥平面PDE ;(2)线段PC 上是否存在一点F ,使P A //平面BDF ?若有,请找出具体位置,并进行证明;若无,请分析说明理由.【题型概述】空间中的平行关系在高考命题中主要与平面问题中的平行、简单几何体的结构特征等问题相结合,重点考查空间中直线与平面平行、平面与平面平行的判定及性质,解决该类题的关键是注意线线位置关系、线面位置关系、面面位置关系的转化.【跟踪练习1】(江西省六校2016届高三3月联考数学文4)设α,β是空间两个平面,m, n 是空间两条直线,则下列选项不正确...的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m β⊥”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件【跟踪练习2】( 2014-2016江西省景德镇高三第二质检数学文19)在平行六面体1111ABCD A B C D -中,12AA AD AB ===,160A AD DAB ∠=∠=︒,O 是AD 的中点.(1)证明AD ⊥面1AOB ; (2)当平面ABCD ⊥平面11AA D D ,求11B CDD V -.1A【跟踪练习3】如图所示,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC .P1.(2014——2016学年度上学期辽宁省丹东五校协作体高三期末考试文5)某几何体三视图如下,其中三角形的三边长与圆的直径均为2,则该几何体体积为().A.B.C.D π2.等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画出的直观图''''A B C D 的面积为_______.3.(山东省潍坊市第一中学2014届高三1月期末考前模拟数学文7)设,m n 是两条不同直线,,αβ是两个不同的平面,下列命题正确的是(A )//,////,//m n m n αβαβ且则 (B ),m n αβαβ⊥⊥⊥且,则m n ⊥ (C ),,m n m n αβ⊥⊂⊥,则αβ⊥ (D ),,//,//m n m n ααββ⊂⊂,则//αβ 4.如图,四边形ABCD 为矩形,AD ⊥平面ABE,F 为CE 上的点,且BF ⊥平面ACE. (1)求证:AE ⊥平面BCE ;(2)设M 在线段AB 上,且满足AM=2MB,试在线段CE 上确定一点N,使得MN ∥平面DAE .5.已知直三棱柱ABC-A 1B 1C 1中,AC=BC,点D 是AB 的中点. (1)求证:BC 1∥平面CA 1D ; (2)求证:平面CA 1D ⊥平面AA 1B 1B ;6. (甘肃省兰州市2016年高三诊断考试文18)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,2AB =,1BC CD ==AB ∥CD ,顶点1D 在底面ABCD 内的射影恰为点C .(Ⅰ)求证:1AD BC ⊥;(Ⅱ)在AB 上是否存在点M ,使得1C M ∥平面11ADD A ?若存在,确定点M 的位置;若不存在,请说明理由.7. (吉林省长春市普通高中2016届高三质量监测(二)文19)如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形D AB ⊥A ,C//D B A 且C 4B =,点M 为C P 中点.()1求证:平面D A M⊥平面CPB;()2求点P到平面DA M的距离.:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆方程
1.圆的定义 在平面内,到定点的距离等于定长的点的集合叫圆. 2.确定一个圆最基本的要素是圆心和半径. 3.圆的标准方程 (x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心,r 为半径. 4.圆的一般方程 D E x2+y2+Dx+Ey+F=0 表示圆的充要条件是 D2+E2-4F>0,其中圆心为 - 2 ,- 2 ,半径 r = D2+E2-4F . 2
x0=x+3 x x0-3 y y0+4 故 = , = .从而 . 2 2 2 2 y0=y-4
-5-
N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4. 因此所求轨迹为圆:(x+3)2+(y-4)2=4, 9 12 21 28 但应除去两点 -5, 5 和- 5 , 5 (点 P 在直线 OM 上的情况). 思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程. ④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等. (2014· 课标全国Ⅰ)已知点 P(2,2),圆 C:x2+y2-8y=0,过点 P 的动直线 l 与圆 C 交于 A,B 两点,线段 AB 的中点为 M,O 为坐标原点. (1)求 M 的轨迹方程; (2)当|OP|=|OM|时,求 l 的方程及△POM 的面积. 解 (1)圆 C 的方程可化为 x2+(y-4)2=16, 所以圆心为 C(0,4),半径为 4. → → 设 M(x,y),则CM=(x,y-4),MP=(2-x,2-y). → → 由题设知CM· MP=0, 故 x(2-x)+(y-4)(2-y)=0, 即(x-1)2+(y-3)2=2. 由于点 P 在圆 C 的内部, 所以 M 的轨迹方程是(x-1)2+(y-3)2=2. (2)由(1)可知 M 的轨迹是以点 N(1,3)为圆心, 2为半径的圆. 由于|OP|=|OM|,故 O 在线段 PM 的垂直平分线上. 又 P 在圆 N 上,从而 ON⊥PM. 1 因为 ON 的斜率为 3,所以 l 的斜率为- , 3 1 8 故 l 的方程为 y=- x+ . 3 3 又|OM|=|OP|=2 2, 4 10 O 到 l 的距离为 , 5 |PM|= 4 10 , 5
1+E+F=0, 则有3+2 2 +D3+2 3-2 2 +D3-2
2 2
2+F=0, 2+F=0,
D=-6, 解得E=-2, F=1,
故圆的方程是 x2+y2-6x-2y+1=0. 巧妙解法 (几何法)曲线 y=x2-6x+1 与 y 轴的交点为(0,1),与 x 轴的交点为(3+2 2,0),(3 -2 2,0). 故可设 C 的圆心为(3,t),则有 32+(t-1)2=(2 2)2+t2, 解得 t=1.则圆 C 的半径为 32+t-12=3, 所以圆 C 的方程为(x-3)2+(y-1)2=9. 温馨提醒 (1)一般解法(代数法):可以求出曲线 y=x2-6x+1 与坐标轴的三个交点,设圆的 方程为一般式,代入点的坐标求解析式. (2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设 圆的方程为标准式,简化计算.显然几何法比代数法的计算量小,因此平时训练多采用几何 法解题.
-2-
题型一 求圆的方程 例 1 根据下列条件,求圆的方程. (1)经过 P(-2,4)、Q(3,-1)两点,并且在 x 轴上截得的弦长等于 6; (2)圆心在直线 y=-4x 上,且与直线 l:x+y-1=0 相切于点 P(3,-2). 思维点拨 (1)设圆的一般方程,利用待定系数法求解. (2)求圆心和半径,确定圆的标准方程. 解 (1)设圆的方程为 x2+y2+Dx+Ey+F=0, 将 P、Q 两点的坐标分别代入得
-1-
4AF>0.( √ ) (4)方程 x2+2ax+y2=0 一定表示圆.( × ) 1 (5)圆 x2+2x+y2+y=0 的圆心是 1,2.( × )
1.x2+y2-4x+6y=0 的圆心坐标是( A.(2,3) C.(-2,-3) 答案 D
)
B.(-2,3) D.(2,-3)
D E 2 2 解析 圆 x2+y2+Dx+Ey+F=0 的圆心为 - 2 ,- 2 ,∴圆 x +y -4x+6y=0 的圆心为(2, -3). 2.若点(1,1)在圆(x-a)2+(y+a)2=4 的内部,则实数 a 的取值范围是( A.-1<a<1 C.a>1 或 a<-1 答案 A 解析 ∵点(1,1)在圆的内部, ∴(1-a)2+(1+a)2<4,∴-1<a<1. 3.方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆,则 a 的取值范围是( 2 A.a<-2 或 a> 3 C.-2<a<0 答案 D 解析 由题意知 a2+4a2-4(2a2+a-1)>0, 2 解得-2<a< . 3 4.已知圆 C 经过 A(5,1),B(1,3)两点,圆心在 x 轴上,则圆 C 的方程为______________. 答案 (x-2)2+y2=10 解析 设圆心坐标为(a,0), 易知 a-52+-12= a-12+-32, 解得 a=2,∴圆心为(2,0),半径为 10, ∴圆 C 的方程为(x-2)2+y2=10. 2 B.- <a<0 3 2 D.-2<a< 3 ) B.0<a<1 D.a=± 1 )
5.确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D、E、F 的方程组; (3)解出 a、b、r 或 D、E、F 代入标准方程或一般方程. 6.点与圆的位置关系 点和圆的位置关系有三种. 圆的标准方程(x-a)2+(y-b)2=r2,点 M(x0,y0) (1)点在圆上:(x0-a)2+(y0-b)2=r2; (2)点在圆外:(x0-a)2+(y0-b)2>r2; (3)点在圆内:(x0-a)2+(y0-b)2<r2. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ ) (2)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)= 0.( √ ) (3) 方程 Ax2 + Bxy+ Cy2 +Dx +Ey +F = 0 表示圆的充要条件是 A =C≠0, B= 0 ,D2 + E2-
故(y-x)min=-2- 6. (3)x2+y2 是圆上点与原点的距离的平方,故连接 OC,
-4-
与圆交于 B 点,并延长交圆于 C′,则 (x2+y2)max=|OC′|2=(2+ 3)2=7+4 3, (x2+y2)min=|OB|2=(2- 3)2=7-4 3. 思维升华 (1)与圆相关的最值,若几何意义明显时,可充分利用几何性质,借助几何直观求
2D-4E-F=20, 3D-E+F=-10.
① ②
又令 y=0,得 x2+Dx+F=0.③ 设 x1,x2 是方程③的两根, 由|x1-x2|=6 有 D2-4F=36,④ 由①、②、④解得 D=-2,E=-4,F=-8,或 D=-6,E=-8,F=0. 故所求圆的方程为 x2+y2-2x-4y-8=0,或 x2+y2-6x-8y=0. 4x0-2 (2)方法一 如图,设圆心(x0,-4x0),依题意得 =1, 3-x0 ∴x0=1,即圆心坐标为(1,-4),半径 r=2 2, 故圆的方程为(x-1)2+(y+4)2=8. 方法二 设所求方程为(x-x0)2+(y-y0)2=r2, y =-4x , 3-x +-2-y =r , 根据已知条件得 |x +y -1| 2 =r,
16 所以△POM 的面积为 . 5
-6-
利用几何性质巧设方程求半径 典例:在平面直角坐标系 xOy 中,曲线 y=x2-6x+1 与坐标轴的交点都在圆 C 上,求圆 C 的 方程. 思维点拨 本题可采用两种方法解答,即代数法和几何法. 规范解答 解 一般解法 (代数法)曲线 y=x2-6x+1 与 y 轴的交点为(0,1),与 x 轴的交点为(3+2 2, 0),(3-2 2,0),设圆的方程是 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0),
故圆上的点 P 到直线 AB 的距离的最大值是 又|AB|= 5, 故△PAB 面积的最大值和最小值分别是 2+ 题型三 与圆有关的轨迹问题
5 5 ,2- . 2 2
例 3 设定点 M(-3,4), 动点 N 在圆 x2+y2=4 上运动, 以 OM、 ON 为两边作平行四边形 MONP, 求点 P 的轨迹. 思维点拨 结合图形寻求点 P 和点 M 坐标的关系,用相关点法(代入法)解决. x y 解 如图所示,设 P(x,y),N(x0,y0),则线段 OP 的中点坐标为 2,2, 线段 MN 的中点坐标为 x0-3 y0+4 2 , 2 .由于平行四边形的对角线互相平分,
解.否则可转化为函数求最值. y-b (2)①形如 u= 形式的最值问题,可转化为动直线斜率的最值问题;②形如 t=ax+by 形式 x-a 的最值问题,可转化为动直线的截距的最值问题;③形如(x-a)2+(y-b)2 形式的最值问题, 可转化为动点到定点的距离的平方的最值问题. 已知两点 A(-1,0),B(0,2),点 P 是圆(x-1)2+y2=1 上任意一点,则△PAB 面积 的最大值与最小值分别是( 1 A.2, (4- 5) 2 1 1 B. (4+ 5), (4- 5) 2 2 C. 5,4- 5 1 1 D. ( 5+2), ( 5-2) 2 2 答案 B 解析 如图,圆心(1,0)到直线 AB: 2x-y+2=0 的距离为 d= 4 , 5 4 4 +1,最小值是 -1, 5 5 )