2016年绥化市中考数学试卷(带答案)

合集下载

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如下图所示的美丽图案中,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)长度单位1纳米=10-9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是()A . 10.1×10-8米B . 1.01×10-7米C . 1.01×10-6米D . 0.101×10-6米3. (2分) (2016七上·句容期中) 下列说法中正确的是()A . 如果两个数的绝对值相等,那么这两个数相等B . 有理数分为正数和负数C . 互为相反数的两个数的绝对值相等D . 最小的整数是04. (2分)如果3x+2=5,那么5x+1等于()A . 7B . 8C . 9D . 65. (2分)(2017·孝感模拟) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A . 2B . 8C . 2D . 26. (2分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A 与点D重合,折痕为EF ,则△DEF的周长为()A . 9.5B . 10.5C . 11D . 15.57. (2分)在等边△ABC内部任取一点P,将△ABP绕点A旋转到△ACQ,则△APQ为()A . 不等腰的直角三角形B . 腰和底不等的等腰三角形C . 等腰直角三角形D . 等边三角形8. (2分)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx+c的图象可能为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分) (2017八下·福州期中) 甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽取了20个测量其直径,进行数据处理后,发现三组数据的平均数都是60mm,它们的方差依次为,,,根据以上提供的信息,你认为生产螺丝的质量最好的是________机床.10. (1分)规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°=________11. (1分)七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为________ 元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.012. (1分) (2017八下·东台期中) 如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=________cm.13. (1分) (2018九上·华安期末) 如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为________(结果保留π).14. (1分) (2017七下·盐都开学考) 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、作图题 (共1题;共5分)15. (5分) (2015七下·南山期中) 如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB 于D,E两点,再分别以D,E为圆心,大于 DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.四、解答题 (共9题;共76分)16. (10分)计算:(1)sin45°+cos230°﹣(2)(1﹣x﹣)÷ .17. (5分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.18. (13分)某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=________,B=________,C=________.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?19. (5分)如图,身高1.6米的小明为了测量学校旗杆AB的高度,在平地上C处测得旗杆高度顶端A的仰角为30°,沿CB方向前进3米到达D处,在D处测得旗杆顶端A的仰角为45°,求旗杆AB的高度(,)20. (10分) (2015九上·阿拉善左旗期末) 已知,在同一直角坐标系中,反比例函数y= 与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m、c的值;(2)求二次函数图象的对称轴和顶点坐标.21. (10分)如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.22. (7分)(2018·枣阳模拟) 商场某种商品平均每天可销售30件,每件盈利50元。

【历年真题】黑龙江省绥化市中考数学真题汇总 卷(Ⅱ)(含详解)

【历年真题】黑龙江省绥化市中考数学真题汇总 卷(Ⅱ)(含详解)

黑龙江省绥化市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,E 、F 分别是正方形ABCD 的边CD 、BC 上的点,且CE BF =,AF 、BE 相交于点G ,下列结论中正确的是( ) ①AF BE =;②AF BE ⊥;③AG GE =;④ABG CEGF S S =四边形△.A .①②③B .①②④C .①③④D .②③④ 2、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,点E 为对角线BD 上任意一点,连接AE 、CE . 若AB =5,BC =3,则AE 2-CE 2等于( )·线○封○密○外A .7B .9C .16D .253、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒4、有理数,a b 在数轴上对应点的位置如图所示,下列结论中正确是( )A .2a <B .0a b +>C .a b ->D .0b a -<5、下列图像中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个6、如图,点F 在BC 上,BC =EF ,AB =AE ,∠B =∠E ,则下列角中,和2∠C 度数相等的角是( )A .AFB ∠ B .EAF ∠C .EAC ∠D .EFC ∠7、如图,O 是直线AB 上一点,则图中互为补角的角共有( )A .1对B .2对C .3对D .4对 8、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A.B.C .4 D.9、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )·线○封○密○外A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 10、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --= C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.2、如图所示,已知直线m n ∥,且这两条平行线间的距离为5个单位长度,点P 为直线n 上一定点,以P 为圆心、大于5个单位长度为半径画弧,交直线m 于A 、B 两点.再分别以点A 、B 为圆心、大于12AB 长为半径画弧,两弧交于点Q ,作直线PQ ,交直线m 于点O .点H 为射线OB 上一动点,作点O 关于直线PH 的对称点O ',当点O '到直线n 的距离为4个单位时,线段PH 的长度为______.3、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在Rt ABC 中,90BAC ∠=︒,3AC =,4AB =.分别以AB ,AC ,BC 为边向外作正方形ABMN ,正方形ACKL ,正方形BCDE ,并按如图所示作长方形HFPQ ,延长BC 交PQ 于G .则长方形CDPG 的面积为______.4、下列各数①-2.5,②0,③π3,④227,⑤()24-,⑥-0.52522252225…,是无理数的序号是______.5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠1的度数为________º.·线○封○密·○外三、解答题(5小题,每小题10分,共计50分)1、如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,且a 、c 满足()22100a c ++-=.若点A 与点B 之间的距离表示为AB a b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A 、C 之间,且满足2BC AB =.(1)=a ___________,b = ___________,c =___________.(2)动点M 从B 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,同时动点N 从A 点出发,沿数轴以每秒2个单位的速度向C 点运动,设运动时间为t 秒.问:当t 为何值时,M 、N 两点之间的距离为3个单位?2、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=.①若OB 平分EOD ∠,求α;②若4AOC BOD ∠=∠,求α.3、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:(1)本次调查共抽取了多少名学生? (2)①请补全条形统计图; ②求出扇形统计图中表示“及格”的扇形的圆心角度数. (3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名? 4、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD . (1)若CD 平分∠ACB ,求证:四边形DECF 为菱形;(2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值. 5、解方程 (1)2210x x -+=(2)22730x x -+= -参考答案-一、单选题 ·线○封○密·○外1、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD AD ===,90ABC BCD ∠=∠=︒,在ABF 与BCE 中,AB BC ABC BCD BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴ABF BCE ≅,∴AF BE =,①正确;∵90BAF BFA ∠+∠=︒,BAF EBC ∠=∠,∴90EBC BFA ∠+∠=︒,∴90BGF ∠=︒,∴AF BE ⊥,②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,③错误;∵ABF BCE ≅,∴ABF BCE S S =,∴ABF BGF BCE BGF S S S S -=-,即ABG CEGF S S =四边形,④正确; 综上可得:①②④正确, 故选:B . 【点睛】 题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键. 2、C 【解析】 【分析】 连接AC ,与BD 交于点O ,根据题意可得AC BD ⊥,在在Rt AOE 与Rt COE 中,利用勾股定理可得2222AE CE AO CO -=-,在在Rt AOB 与Rt COB 中,继续利用勾股定理可得2222AO CO AB BC -=-,求解即可得. 【详解】 解:如图所示:连接AC ,与BD 交于点O ,∵对角线互相垂直的四边形叫做“垂美”四边形, ∴AC BD ⊥, 在Rt AOE 中,222AE AO OE =+,·线○封○密○外在Rt COE 中,222CE CO OE =+,∴2222AE CE AO CO -=-,在Rt AOB 中,222AO AB OB =-,在Rt COB 中,222CO BC OB =-,∴2222225316AO CO AB BC -=-=-=,∴2216AE CE -=,故选:C .【点睛】题目主要考查勾股定理的应用,理解题意,熟练运用勾股定理是解题关键.3、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.4、C【解析】【分析】利用数轴,得到32a -<<-,01b <<,然后对每个选项进行判断,即可得到答案.【详解】解:根据数轴可知,32a -<<-,01b <<, ∴2a >,故A 错误; 0a b +<,故B 错误; a b ->,故C 正确; 0b a ->,故D 错误; 故选:C 【点睛】 本题考查了数轴,解题的关键是由数轴得出32a -<<-,01b <<,本题属于基础题型. 5、A 【解析】 【分析】 函数就是在一个变化过程中有两个变量x ,y ,当给定一个x 的值时,y 由唯一的值与之对应,则称y 是x 的函数,x 是自变量,注意“y 有唯一性”是判断函数的关键. 【详解】 解:根据函数的定义,每给定自变量x 一个值都有唯一的函数值y 与之相对应, 故第2个图符合题意,其它均不符合, 故选:A . 【点睛】 本题考查函数图象的识别,判断方法:做垂直x 轴的直线在左右平移的过程中,与函数图象只会有一个交点. 6、D·线○封○密·○外【解析】【分析】根据SAS 证明△AEF ≌△ABC ,由全等三角形的性质和等腰三角形的性质即可求解.【详解】解:在△AEF 和△ABC 中,AB AE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△ABC (SAS ),∴AF =AC ,∠AFE =∠C ,∴∠C =∠AFC ,∴∠EFC =∠AFE +∠AFC =2∠C .故选:D .【点睛】本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.7、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC 与∠BOC ,∠AOD 与∠BO D ,共2对,故选:B .【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.8、A【解析】【分析】连接CD ,由等弧所对的圆周角相等逆推可知AC =DC ,∠ACD=90°,再由勾股定理即可求出AC = 【详解】 解:连接CD ∵DAC ABC ∠=∠ ∴AC =DC 又∵AD 为O 的直径 ∴∠ACD =90° ∴222AC DC AD += ∴222AC AD =∴8AC AD ===故答案为:A . 【点睛】 ·线○封○密○外本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.9、B【解析】【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OEFC CO OF==,故A正确,不符合题意;∵AD∥BC,∴△DOE∽△BOF,∴DE OE DO BF OF BO==,∴AE DE FC BF=,∴AE FCDE BF=,故B错误,符合题意;∵AD∥BC,∴△AOD∽△COB,∴AD AO DO BC CO BO==,∴AD OEBC OF=,故C正确,不符合题意;∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键. 10、D 【解析】 【分析】 根据等式的性质解答. 【详解】 解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意; B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意; 故选:D . 【点睛】 此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键. 二、填空题 1、4m +12##12+4m 【解析】 ·线○封○密○外【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m +3)2-m 2=(m +3+m )(m +3-m )=3(2m +3).由长方形的宽为3,可得长方形的长是(2m +3),长方形的周长是2[(2m +3)+3]=4m +12.故答案为:4m +12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.2、3【解析】【分析】根据勾股定理求出PE =3,设OH =x ,可知,DH =(x -3)或(3- x ),勾股定理列出方程,求出x 值即可.【详解】解:如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ',由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,1O D DE O E ''=-=,设OH =x ,可知,DH =(3- x ),222(3)1x x -+= 解得,53x =,PH = 如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ', 由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,9O D DE O E ''=+=, 设OH =x ,可知,DH =(x -3), 222(3)9x x -+= 解得,15x =,PH故答案为:·线○封○密○外【点睛】本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.3、12【解析】【分析】证明Rt △AIC ≌Rt △CGK ,得到AI =CG ,利用勾股定理结合面积法求得CG =125,进一步计算即可求解.【详解】解:过点A 作AI ⊥BC 于点I ,∵正方形ACKL ,∴∠ACK =90°,AC =CK ,∴∠ACI +∠KCG =90°,∠ACI +∠CAI =90°,∴Rt △AIC ≌Rt △CGK ,∴AI =CG ,∵90BAC ∠=︒,3AC =,4AB =.∴BC =5,∵1122AB AC BC AI ⨯=⨯, ∴AI =125,则CG =125, ∵正方形BCDE , ∴CD =BC =5, ∴长方形CDPG 的面积为512125⨯=. 故答案为:12. . 【点睛】 本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键. 4、③ 【解析】 【分析】 根据无理数的定义逐个判断即可. 【详解】 ·线○封○密·○外解:-2.5,227是分数;-0.52522252225…是无限循环小数,是有理数;0,()24-是整数;无理数有π3,故答案为:③.【点睛】本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.5、70【解析】【分析】如图(见解析),先根据三角形的内角和定理可得270,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:2180506070∠=︒-︒-︒=︒,图中的两个三角形是全等三角形,在它们中,边长为b和c的两边的夹角分别为2∠和1∠,1270∴∠=∠=︒,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.三、解答题1、 (1)-2,2,10;(2)1或7【解析】【分析】(1)根据非负性,得到a +2=0,c -10=0,将线段长转化为绝对值即|b -c |=2||a -b ,化简绝对值;(2)先用t 分别表示M ,N 代表的数,根据MN =3,转化为绝对值问题求解.(1) ∵|a +2|+(a −10)2=0, ∴a = -2,c =10, ∵点B 在点A 、C 之间,且满足2BC AB , ∴10-b =2(b +2), 解得b =2, 故答案为:-2,2,10; (2) 设运动时间为t 秒,则点N 表示的数为2t -2;点M 表示的数为t +2, 根据题意,得|t +2-(2t -2)|=3, ∴-t +4=3或-t +4= -3, 解得t =1或t =7, 故t 为1或7时,M 、N 两点之间的距离为3个单位. 【点睛】 本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键. 2、 (1)75°; (2)①15°;②40°.·线○封○密○外【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠aaa =12×120°=60°,再根据两角差a =∠aaa −∠aaa =15°即可; ②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠aaa=35°,求出∠aaa =4∠aaa =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠aaa =12×120°=60°,∵45AOB ∠=︒,∴a =∠aaa −∠aaa =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠aaa =4∠aaa ,解得:∠aaa =35°,∴∠aaa =4∠aaa =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°.【点睛】本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方程,本题难度不大,是角中计算的典型题. 3、 (1)100名 (2)①见解析;②108︒ (3)1440名 【解析】 【分析】 (1)用不及格的人数除以不及格的人数占比即可得到总人数; (2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案; (3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可. (1) 解:由题意得抽取的学生人数为:1010100÷%=(名); (2) 解:①由题意得:良好的人数为:1004040⨯=%(名), ∴优秀的人数为:10040103020---=(名), ∴补全统计图如下所示: ·线○封○密○外②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=30360108100︒⨯=︒; (3) 解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有402024001440100+⨯=(名).【点睛】 本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.4、 (1)见解析(2)EN =2bc a c+ 【解析】【分析】(1)根据三角形的中位线定理先证明四边形DECF 为平行四边形,再根据角平分线+平行证明一组邻边相等即可;(2)由(1)得//DE AC ,所以要求EN 的长,想到构造一个“A “字型相似图形,进而延长MN 交CA 于点G ,先证明ENO FGO ∆≅∆,得到EN FG =,再证明MEN MCG ∆∆∽,然后根据相似三角形对应边成比例,即可解答.(1)证明:D 、E 、F 分别是ABC ∆各边的中点,DF ∴,DE 是ABC ∆的中位线,//DF BC ∴,//DE AC ,∴四边形DECF 为平行四边形, CD 平分ACB ∠, ACD DCE ∴∠=∠,//DF BC , CDF DCE ∴∠=∠, ACD CDF ∴∠=∠, DF CF ∴=,∴四边形DECF 为菱形; (2) 解:延长MN 交CA 于点G ,//DE AC , MED MCA ∴∠=∠,NEO GFO ∠=∠,ENO FGO ∠=∠, 四边形DECF 为平行四边形, OE OF ∴=, ()ENO FGO AAS ∴∆≅∆, EN FG ∴=, EMN CMG ∠=∠, ·线○封○密○外MEN MCG ∴∆∆∽, ∴EN ME CG MC=, ∴EN c b EN c a=-+, 2bc EN a c ∴=+. 【点睛】本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.5、 (1)x 1=x 2=1(2)x 1=12,x 2=3【解析】【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.(1)解:2210x x -+=,即(x -1)2=0,∴x 1=x 2=1.(2)解:22730x x -+=,因式分解得:(2x -1)(x -3)=0,∴2x -1=0或x -3=0,∴x 1=12,x 2=3. 【点睛】 本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键. ·线○封○密·○外。

绥化市中考数学试卷及答案

绥化市中考数学试卷及答案

二○○八年绥化市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .D OC B A 第3题图 O B A 第4题图 5cmADCEF GB第9题图2341 6 5 第6题图一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNM CNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省绥化市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.910.6或10或1211.12n -⎛ ⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分)242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩ ·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩B9590 85 80 7570分数/分竞选人A B C答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.x (分)B ME A C N D∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷姓名:________ 班级:________ 成绩:________一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分)1. (2分) (2019七上·正镶白旗月考) 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差().A . 0.8㎏B . 0.6㎏C . 0.5㎏D . 0.4㎏2. (2分) (2018八上·长春期末) 如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A . AB=DEB . DF∥ACC . ∠E=∠ABCD . AB∥DE3. (2分)(2020·盐城模拟) 下列计算结果正确的是()A .B .C .D .4. (2分)(2016·临沂) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .5. (2分)(2017·南宁) 在下列几何体中,三视图都是圆的为()A .B .C .D .6. (2分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A .B .C .D .7. (2分) (2019八下·罗湖期末) 下列语句:①每一个外角都等于的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为()A . 1B . 2C . 3D . 48. (2分)(2020·温州模拟) 一个正整数N的各位数字不全相等,且都不为0,现要将N的各位数字重新排列,可得到一个最大数和一个最小数,此最大数与最小数的和记为N的“和数”;此最大数与最小数的差记为N的“差数”。

2016年绥化市中考数学试卷带答案

2016年绥化市中考数学试卷带答案

..(解析版)2016年中考数学试卷黑龙江省绥化市30310分)一、选择题(共分,满分小题,每小题1940 )万,这个数用科学记数法表示正确的是(.今年我国参加高考的考生人数约为5667 0.9410 D B94109.4 CA941010×..×..××2①②③④⑤平行四边形中,既是轴对称矩形;.在图形:菱形;线段;等边三角形;)图形又是中心对称图形的个数是(A2B3C4D5....3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么)既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(DA BC....20ky=y=kx4)时,反比例函数的图象大致是(和一次函数 +.当>C B DA....5③①②挖去一个三角形小孔,则展、图对折两次后,再按如图.把一张正方形纸片如图)开后图形是(D B AC....;...6OA处)门前有一条东西走向的公路,经测得有一水塔(图中点.如图,小雅家(图中点60500AB°是(米处,处)在距她家北偏东那么水塔所在的位置到公路的距离方向的)D500C A250 B250 米..米米..米7y=x).函数的取值范围是(自变量xxxA DBx C>≥≤....2cm1cm830cm就可成为一个正,若这个长方形的长减少.一个长方形的周长为,宽增加xcm)方形,设长方形的长为,可列方程为(2 15xx2 Dx1=302 B30xx1=15x2 Cx1=xA1=+﹣))﹣.++﹣(.﹣)﹣(.﹣﹣)(.+﹣(a19))的结果是(.化简﹣( +D BC A .﹣.﹣..AC=4ACBDDEO10ABCDACBDCE,则.如图,矩形,的对角线∥、,若相交于点,∥OCED)四边形的周长为(1210 D4 B8 CA....30103分)二、填空题(共分,满分小题,每小题______11.的相反数的倒数是.﹣D4BC12A个完全相同的小球,随机摸取一个小球然,,.在一个不透明的口袋中,装有,______.后放回,再随机摸取一个小球,两次摸到同一个小球的概率是AFC=15EFAB13CDA=30C=______°°.,若∠∥.如图,∥,∠,则∠;...3﹣1=______4tan4514°.﹣)﹣|+|.计算:(232x4115y=3个单位长度,平移后﹣向右平移)个单位长度,再向下平移.将抛物线+(______.抛物线的解析式是OM=6cmMOABCD16OCD=20cmAB,的弦,,垂足为.如图,⊙是⊙的直径⊥,,若______cmAB.的长为则DAB90BC17AC2°,的扇形内,.如图,在半径以为于点,圆心角为为直径作半圆,交弦______CD.连接,则图中阴影部分的面积是DC60ABC=3018ABCDDCB°°的中,∠后,点,将△.如图,在四边形顺时针旋转绕点BEBC=4BD=______ AACEAB=3)则,若可连接,(提示:,对应点恰好与点得到△重合,21153610119…叫做三角数,它有一定的规律性.若把第,,,.古希腊数学家把数,,,aaaaaaaaan……,第二个三角数记为,,计算,第++,个三角数记为+,一个三角数记为214n21323 =______aa.由此推算+400399ABD=45CDB=90DAB=ABCD20BDEAC°°,、∠对角线∠∠,在四边形.相交于点,如图,中,AE=______ABDDCA=30 AB=°的垂线)作∠,(提示:可过点,则;...608分)三、解答题(共小题,满分211200“”大赛,为了传承优秀传统文化,我市组织了一次初三年级汉字听写名学生参加的.10050分),名学生的成绩(满分为了更好地了解本次大赛的成绩分布情况,随机抽取了整理得到如下的统计图表:成绩363738394041424344454647484950(分)461298336751511821人数频率成绩分组频数38 x350.03 3 <≤41 38x0.12 a <≤44 x410.20 20 <≤47 44x0.35 35 <≤50x47b30≤≤请根据所提供的信息解答下列问题:1______ 分;()样本的中位数是2a=______b=______ ;()频率统计表中,3 )请补全频数分布直方图;(441 分的学生有多少人?()请根据抽样统计结果,估计该次大赛中成绩不低于;...22x2m=0 22xx有两个不相等的实数根..关于+的一元二次方程+1m 的取值范围;()求222=8mxxxx 2x2m=0x2的值.是一元二次方程+的两个根,且+(,求)若,+221123ABA20B15380元;两种商品,若购进种商品种商品.某商场计划购进件和、件需A15B10280 元.件和种商品件需若购进种商品1AB 两种商品的进价分别是多少元?(、)求2AB100900A种商品多少、两种商品共(元,问最多能购进)若购进件,总费用不超过件?24EABCAEBCFABC的外接圆相交的延长线与.如图,点,与△是△相交于点的内心,D于点1BFDABD ;)求证:△∽△(2DE=DB .()求证:25.自主学习,请阅读下列解题过程.2 x05x.>解一元二次不等式:﹣220x=5xy=x05xx5x=0x=0)和,则抛物线轴的交点坐标为(与,解:设﹣﹣,,解得:212x05xx05y=x,或﹣).画出二次函数<(,的大致图象(如图所示),由图象可知:当225x5x0x0x5yx>>,即,所以,一元二次不等式﹣﹣>时函数图象位于轴上方,此时>xx005.的解集为:<,或>通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:;...1____________ .(只填序号)和()上述解题过程中,渗透了下列数学思想中的③②①数形结合思想分类讨论思想转化思想25x0______ 2x.﹣(的解集为)一元二次不等式<22x303x .(﹣)用类似的方法解一元二次不等式:﹣>260.5小时到达甲地,游玩一段时间.周末,小芳骑自行车从家出发到野外郊游,从家出发12010分钟后,妈妈驾车沿相同路线前往乙地,行驶后按原速前往乙地,小芳离家小时ykmxh)的函数()与小芳离家时间分钟时,恰好经过甲地,如图是她们距乙地的路程(图象.1______km/hH______ .(,)小芳骑车的速度为点坐标2 )小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比(预计时间早几分钟到达乙地?CDCQBCPABCDPB27边上,为正方形的边不重合),点上一动点(、与在.如图,QNBQNEBQCBQAPBP=CQBQ,延长,将△所在直线对折得到△交于点且沿,连接、MBA.交的延长线于点APBQ1;)求证:⊥(BP=2PCAB=3QM2的长;,()若,求AMPC=nBP=m3的长.,()当时,求;...20B5bxA1y=ax281020160?),﹣经过点((.(分)(,,绥化)如图,抛物线)和点+ Cy.轴交于点与1)求抛物线的解析式;(yAABC2A轴有怎样的位置关系,并,请判断⊙(相切的⊙)以点为圆心,作与直线与说明理由;PBCPBPCP3BC的面积是否存在、,连接,请问:△()在直线上方的抛物线上任取一点P的坐标;若不存在,请说明理由.最大值?若存在,求出这个值和此时点;...2016年黑龙江省绥化市中考数学试卷参考答案与试题解析30310分)小题,每小题一、选择题(共分,满分1940 )万,这个数用科学记数法表示正确的是(.今年我国参加高考的考生人数约为5667 10DC9.4100.94A941094 B10 ×...××.×—表示较大的数.【考点】科学记数法n1a10na10n的|×<为整数.确定的形式,其中≤|,【分析】科学记数法的表示形式为na时,小数点移动了多少位,当的绝对值与小数点移动的位数相同.值时,要看把原数变成10n1n 是负数.是正数;当原数的绝对值小于原数绝对值大于时,时,6 109.4940,×【解答】解:万,这个数用科学记数法表示正确的是C .故选:n10a的形式,其此题考查了科学记数法的表示方法.科学记数法的表示形式为×【点评】1a10nan 的值.,的值以及中为整数,表示时关键要正确确定≤|<|2①②③④⑤平行四边形中,既是轴对称等边三角形;菱形;.在图形:矩形;线段;)图形又是中心对称图形的个数是(A2B3C4D5....中心对称图形;轴对称图形.【考点】根据轴对称图形与中心对称图形的概念判断即可.【分析】①线段既是轴对称图形又是中心对称图形,解:【解答】②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,3 个.所以既是轴对称图形又是中心对称图形的个数是B .故选;...【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,180度后两部分重中心对称图形的关键是要寻找对称中心,旋转图形两部分折叠后可重合;合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么)既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(D C A B....简单几何体的三视图.【考点】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【分析】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可【解答】以堵住圆形空洞,B.故选:从上边看得到的从正面看得到的图形是主视图,【点评】本题考查了简单组合体的三视图,图形是俯视图.y=kx24k0y=)>的图象大致是(时,反比例函数和一次函数 +.当DA B C....反比例函数的图象;一次函数的图象.【考点】2y=kxy=k0经过一二三经过一三象限,一次函数【分析】根据>+,判断出反比例函数象限,结合选项所给图象判断即可.k0,>【解答】解:∵2y=kxy=经过一二三象限.经过一三象限,一次函数∴反比例函数+;...C .故选k0判【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过>断出函数所经过的象限.5①②③挖去一个三角形小孔,则展、图.把一张正方形纸片如图对折两次后,再按如图)开后图形是(DBA C....剪纸问题.【考点】分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开【分析】结合空间思维,的形状.在直角三角形中间的位当正方形纸片两次沿对角线对折成为一直角三角形时,【解答】解:且三角形关于对角线对称,三角置上剪三角形,则直角顶点处完好,即原正方形中间无损,CABC.形的边平行于正方形的边.再结合点位置可得答案为C.故选错误的主要原因是空间观念以及【点评】本题主要考查了学生的立体思维能力即操作能力.转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.AO6处)门前有一条东西走向的公路,经测得有一水塔(图中点.如图,小雅家(图中点AB60500 °)在距她家北偏东处)那么水塔所在的位置到公路的距离方向的米处,是(;...500 DB 250 AC 250米...米.米米-方向角问题.解直角三角形的应用【考点】AB=AOB=30AORTAOB°,由此即可解决问题.【分析】在中,由∠△可知=30OA=500AOB=9060°°°,﹣,【解答】解:由题意∠ABOB,∵⊥ABO=90°,∴∠AB=AO=250米.∴A.故选30度角所对的直角边等于斜边的【点评】本题考查解直角三角形,方向角,直角三角形中属于中考利用直角三角形性质解决问题,一半等知识,解题的关键是搞清楚方向角的定义,常考题型.x7y=).函数自变量的取值范围是(Dx Cx BxxA>....≤≥函数自变量的取值范围.【考点】12x102x0﹣≥﹣由分式有意义的性质可得【分析】由二次根式的被开方数大于等于,可得0x的取值范围.,即可求出自变量≠解:【解答】12x00①,可得≥﹣由二次根式的被开方数大于等于12x0②,由分式有意义的性质可得﹣≠;...x ①②,可知>由D .故选①当表达式的分母不含有自变量时,自本题考查了自变量的取值范围,熟练掌握【点评】y=2x13x②当表达式的分母中含有自变量时,自变量取值中的变量取全体实数.例如.+y=x2x1③当函数的表达式是偶次根式时,自变量的取值范围要使分母不为零.例如﹣+.④对于实际问题中的函数关系式,自变量的取值除必须使表达必须使被开方数不小于零.式有意义外,还要保证实际问题有意义.830cm1cm2cm就可成为一个正,若这个长方形的长减少.一个长方形的周长为,宽增加xcm ),可列方程为(方形,设长方形的长为Ax1=30x2 Bx1=15x2 Cx1=30x2 Dx1=15x2 +(+﹣.)﹣﹣.﹣﹣().+﹣(﹣()﹣.)+由实际问题抽象出一元一次方程.【考点】【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.xcm30cm ,,长方形的周长为【解答】解:∵长方形的长为15xcm ,∴长方形的宽为()﹣1cm2cm 就可成为一个正方形,∵这个长方形的长减少,宽增加x1=15x2 ,﹣∴+﹣D .故选本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.【点评】a91)+ )的结果是(.化简﹣(CD A B.﹣..﹣.分式的加减法.【考点】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【分析】=﹣【解答】解:原式;...=,A.故选:本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.【点评】AC=4DEBDACACBDOCE10ABCD,则、,相交于点的对角线∥,,若.如图,矩形∥OCED)四边形的周长为(1210 DB8 C4 A....矩形的性质;菱形的判定与性质.【考点】OD=OCABCD,再利用两对【分析】由四边形为矩形,得到对角线互相平分且相等,得到DECO为平行四边形,利用邻边相等的平行四边边平行的四边形为平行四边形得到四边形OCDECOAC的长,即可确定出其周长.形为菱形得到四边形的长求出为菱形,根据ABCD为矩形,【解答】解:∵四边形AC=BDOA=OCOB=OD,,∴,且OA=OB=OC=OD=2,∴DEACCEBD,∥,∵∥DECO为平行四边形,∴四边形OD=OC,∵DECO为菱形,∴四边形OD=DE=EC=OC=2,∴222=8OCED2,++则四边形+的周长为B故选熟练掌握判定与性质是解本题的以及菱形的判定与性质,此题考查了矩形的性质,【点评】关键.30310分)分,满分二、填空题(共小题,每小题201611..﹣的相反数的倒数是;...倒数;相反数.【考点】2016.【分析】先求出﹣,再求得它的倒数为的相反数是2016.,的相反数是【解答】解:﹣的倒数是2016.故答案为:主要考查相反数,倒数的概念及性质.【点评】00;的相反数是相反数的定义:只有符号不同的两个数互为相反数,1,我们就称这两个数互为倒数.倒数的定义:若两个数的乘积是D412BCA个完全相同的小球,随机摸取一个小球然,.在一个不透明的口袋中,装有,,.后放回,再随机摸取一个小球,两次摸到同一个小球的概率是列表法与树状图法;概率公式.【考点】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【分析】解:画树状图如下:【解答】==P(两次摸到同一个小球)∴故答案为:n种可能,本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有【点评】=AAPA m.的概率种结果,那么事件)而且这些事件的可能性相同,其中事件出现(15C=AFC=15EFAB13CDA=30°°°..如图,∥∥,若∠,∠,则∠平行线的性质.【考点】;...AFEAFE=30CFE=A=°﹣∠【分析】根据平行线的性质得到∠,由角的和差得到∠∠∠AFC=15°,根据平行线的性质即可得到结论.ABCD,解:∵∥【解答】AFE=30A=°,∴∠∠AFC=15CFE=AFE°,∠﹣∠∴∠EFCD,∥∵CFE=15C=°,∴∠∠15°.故答案为:熟记平行线的性质是解题的同位角相等.【点评】本题考查了平行线的性质:两直线平行,关键.3﹣3+2141=4tan45°..计算:()﹣|﹣ +|实数的运算;负整数指数幂;特殊角的三角函数值.【考点】二次根式的直接利用绝对值的性质和特殊角的三角函数值、【分析】负整数指数幂的性质、性质分别化简求出答案.141=8﹣×﹣【解答】解:原式+1 =42﹣+2=3.+2 3+.故答案为:此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.【点评】2341215y=3x个单位长度,平移后)向右平移+.将抛物线个单位长度,再向下平移(﹣2 51y=3x.)抛物线的解析式是﹣(﹣二次函数图象与几何变换.【考点】”“的原则进行解答即可.左加右减、上加下减【分析】根据22 52xy=3412y=3x;(﹣))+【解答】解:﹣向右平移个单位所得抛物线解析式为:+(2 x51y=33.﹣)个单位为:(﹣再向下平移2 15xy=3.)(故答案为:﹣﹣;. ..熟知函数图象平移的法则是解答此题的【点评】本题考查的是二次函数的图象与几何变换,关键.OM=6cmCDMABOABO16CD=20cm,是⊙,垂足为,的弦,.如图,⊙,若的直径⊥cmAB16.则的长为垂径定理.【考点】AMOMAB=2AMOAOA,根据勾股定理求出,已知连接,根据垂径定理求出、【分析】即可.OA,解:连接【解答】OCD=20cm,的直径∵⊙OA=10cm,∴=8cmAM=RtOAM,在中,由勾股定理得:△AB=2AM=16cm.∴由垂径定理得:16.故答案为:本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.【点评】DABBC2AC1790°,为直径作半圆,交弦于点圆心角为如图,.在半径为,以的扇形内,CD1π.连接,则图中阴影部分的面积是﹣;...扇形面积的计算.【考点】ABCDBCCDB=90ABC°,垂直平分为直径,则∠,在等腰直角三角形【分析】已知中,ADCACBCD=DBD的面积,的面积与△为半圆的中点,阴影部分的面积可以看做是扇形之差.=2ACBAB=Rt,中,△【解答】解:在BC是半圆的直径,∵CDB=90°,∴∠CD=BD=CDABRtACB,垂直平分在等腰中,△,D为半圆的中点,∴22 =S=21=SSππ.﹣﹣××(﹣)ADC△ACB扇形阴影部分1π.﹣故答案为掌握面积公式是解题的关【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,键.DDCB18ABCDABC=3060C°°的,将△后,点绕点.如图,在四边形顺时针旋转中,∠BEBD=AB=3A ACEBC=45),则(提示:可连接对应点恰好与点重合,得到△,若,旋转的性质.【考点】AEBD的长即可,由题意可得到三角形的长,根据旋转的性质,只要求出【分析】要求ABEAE的长,本题得以解决.的形状,从而可以求得BE,如右图所示,【解答】解:连接BC=4ACECDCB60AB=3ABC=30°°,,顺时针旋转∵△绕点得到△,,∠;...CB=CEAE=BDBCE=60°,,∴∠,BCE是等边三角形,∴△CBE=60BE=BC=4°,,∴∠60=90ABE=ABCCBE=30°°°,∠++∴∠∠AE=,∴AE=BD,又∵BD=5,∴5.故答案为:本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.【点评】21153610191…叫做三角数,它有一定的规律性.若把第,,,.古希腊数学家把数,,,aanaaaaaaa……,个三角数记为一个三角数记为+,第二个三角数记为,,+第,计算+,21324213n5 160000a=1.610a×.由此推算或+ 400399规律型:数字的变化类.【考点】aaaaaa的值,然后总结规律,根据规律可以得出结论.,+++,【分析】首先计算422133…;;;【解答】解:∵;∴.∴5 101.6160000.故答案为:×或aaaaaa的值可以发现规律为,本题考查的是规律发现,根据计算【点评】++,+432321,发现规律是解决本题的关键.ABD=45ABCDBD20EDAB=ACCDB=90°°,∠,∠在四边形.相交于点,如图,中,对角线、∠AE=AB=2DCA=30ABD °的垂线)∠,作(提示:可过点,则;...30 度角的直角三角形;等腰直角三角形.【考点】勾股定理;含AAFBDBDFABD为等腰直角三角形,利用三线合,交【分析】过,由三角形作于点⊥AFAF的长,在直角三为中线,利用直角三角形斜边上的中线等于斜边的一半求出一得到AEF30AE 的长即可.中,利用度角所对的直角边等于斜边的一半求出角形AAFBDBDF ,作,交解:过⊥于点【解答】AD=ABDAB=90 °,,∠∵AFBD 边上的中线,为∴BDAF=,∴AB=AD=,∵BD==2 ∴根据勾股定理得:,AF=,∴DCA=30AEFRtEAF=°,中,∠∠在△AEEF=,∴AE=2xEF=x,设,则有22 x3=4x,根据勾股定理得:+ x=1,解得:AE=2.则2 故答案为:30度直角三角形的性质,以及等腰三角形的性质,熟练【点评】此题考查了勾股定理,含掌握勾股定理是解本题的关键.;...608分)三、解答题(共小题,满分120021”“大赛,.为了传承优秀传统文化,我市组织了一次初三年级汉字听写名学生参加的50100分),名学生的成绩(满分为了更好地了解本次大赛的成绩分布情况,随机抽取了整理得到如下的统计图表:成绩504947484243444536463738394041(分)415911128683123675人数频率成绩分组频数38 x350.03 3 <≤41 38x0.12 a <≤44 x410.20 20 <≤47 44x0.35 35 <≤5047xb30≤≤请根据所提供的信息解答下列问题:144.5分;)样本的中位数是(0.30b=2a=12;)频率统计表中,(3)请补全频数分布直方图;(414分的学生有多少人?()请根据抽样统计结果,估计该次大赛中成绩不低于频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【考点】51501个数的平均数,本题得以解决;)根据题意可知中位数是第【分析】(个数和ab1002的值,本题得以解决;、)根据表格和随机抽取了名学生的成绩,可以求得(a23的值,可以将频数分布直方图补充完整;)根据(()中;...441 分的学生人数.)根据表格中的数据可以求得该次大赛中成绩不低于(1100 名学生的成绩,)∵随机抽取了【解答】解:(1233675815=5050959 ,+++,由表格可得,+++++++=44.5 ,∴中位数为:44.5;故答案为:a=1000.12=122,)由表格可得,×(b=30100=0.30,÷120.30;故答案为:,3)补全的频数分布直方图如右图所示,(4)由题意可得,(0.3012000.200.35=1020(人),+×()+ 411020人.即该次大赛中成绩不低于分的学生有本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是【点评】明确题意,找出所求问题需要的条件.2 2x22xx2m=0有两个不相等的实数根..关于的一元二次方程++ m1的取值范围;)求(222m=8xxx2x2x2m=0x的值.+,求的两个根,且是一元二次方程()若,++2112根与系数的关系;根的判别式.【考点】m1的一元一次不等式,解不(【分析】)根据方程根的个数结合根的判别式,可得出关于等式即可得出结论;;...2xx=2xx=2m?,再结合完全平方()根据方程的解析式结合根与系数的关系找出,+﹣211222=2xxxmx?的一元一次方程,﹣+,公式可得出代入数据即可得出关于关于2211mm=1 符合题意,此题得解.的值,经验值解方程即可求出﹣22x2m=0 1x有两个不相等的实数根,+【解答】解:(+)∵一元二次方程2412m=4=28m0 ,﹣﹣∴△×>×m.解得:<mm.的取值范围为<∴2 2m=0xx2x2x的两个根,是一元二次方程+,(+)∵21 =2m2xxxx=?,,∴﹣+212122 4m=82xx=4x=x?,+﹣﹣∴2121 m=1.﹣解得:0m=1=48m=12.当﹣﹣>时,△m1.∴的值为﹣解一元一次不等式以及解一元一次方程,【点评】本题考查了根的判别式、根与系数的关系、4m=8402418m.本题属于基;()结合题意得出﹣>﹣解题的关键是:()结合题意得出根据方程根的个数结合根的判别式得出不等式是关键.难度不大,解决该题型题目时,础题,380B23AA20B15元;.某商场计划购进件和、两种商品,若购进件需种商品种商品B1510280A 元.种商品件需种商品件和若购进AB1两种商品的进价分别是多少元?(、)求A2AB100900种商品多少)若购进、元,问最多能购进(两种商品共件,总费用不超过件?一元一次不等式的应用;二元一次方程组的应用.【考点】b1AaB元,根据题意列方程两种商品的进价是元,【分析】解()设两种商品的进价是组即可得到结论xxA2B100)件,根据题意了不等式即可得到结﹣()设购进种商品件,则购进种商品(论.BabA1元,【解答】商品的进价是)设解:(元,商品的进价是;...,根据题意得:,解得:4A16B元;商品的进价是商品的进价是答:元,xxB1002A)件,件,则购进种商品(种商品()设购进﹣900100x16x4,﹣(根据题意得:)≤+xx41为整数,≤解得:,∵41x,∴的最大整数解为A41件种商∴最多能购进正确的理解题意是解本题考查了二元一次方程组的应用,一元一次不等式的应用,【点评】题的关键.ABCBCF24EABCAE的外接圆相交是△相交于点.如图,点的内心,,与△的延长线与D于点ABD1BFD;∽△()求证:△DE=DB2.)求证:(相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【考点】CBDCAD=BAD=CAD1,∠∠,【分析】(再由圆周角定理得出∠)先根据内心的性质得出∠BAD=CBD,进而可得出结论;故可得出∠∠BADCBD=ABE=EABCCBEBE2可得出∠是△由∠的内心得出∠∠∠(连接).,根据点CBDABE=CBEBAD,进而可得出结论.∠∠∠++ ABCE1的内心,)证明:∵点【解答】(是△CADBAD=.∴∠∠CBDCAD=,∵∠∠CBDBAD=.∴∠∠;...BDF=ADB,∵∠∠BFDABD;∴△∽△2BE,()证明:连接EABC的内心,∵点是△ABE=CBE.∴∠∠CBD=BAD,又∵∠∠CBDBADABE=CBE.+∠+∠∠∴∠BEDCBD=DBEDBE=BADABE=BEDCBE,∠∵∠∠+∠∠∠,∠,即∠+ DE=DB.∴利用三角形内心的根据题意作出辅助线,【点评】本题考查的是相似三角形的判定与性质,性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.2 05xx.﹣>解一元二次不等式:220x=5y=x05xx=05x=0xx)和,则抛物线轴的交点坐标为(解:设,与﹣﹣,解得:,212xxy=x05x50,或的大致图象(如图所示),由图象可知:当,﹣).画出二次函数(<225x5x05xy0xx>时函数图象位于>轴上方,此时﹣>>,即,所以,一元二次不等式﹣50x0x.,或<>的解集为:通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1③①.(只填序号)和()上述解题过程中,渗透了下列数学思想中的③②①数形结合思想分类讨论思想转化思想2 505x0x2x.<的解集为<<()一元二次不等式﹣2 032xx3.﹣()用类似的方法解一元二次不等式:﹣>;...x 轴的交点.二次函数与不等式(组);二次函数的图象;抛物线与【考点】1 )根据题意容易得出结论;(【分析】25xx05xy020x,即可时函数图象位于<轴下方,此时(<)由图象可知:当﹣<,即<得出结果;222x3x2x3=03xy=x轴的交点坐标,画出二次函数﹣﹣,解方程得出抛物线(与)设﹣﹣22x3x1xy=x5x轴上方,的大致图象,由图象可知:当><﹣时函数图象位于﹣,,或﹣25=2x3x0 y0,即可得出结果.﹣,即此时﹣>>1 ③①;【解答】解:(和)上述解题过程中,渗透了下列数学思想中的③①;,故答案为:20x5x 轴下方,<时函数图象位于<()由图象可知:当25x0 xy0,﹣此时,即<<25x00xx5 ;<﹣∴一元二次不等式的解集为:<<0x5 .<<故答案为:22x3=03x ,()设﹣﹣x=3x=1 ,﹣解得:,2122x3x3y=x010 ).﹣)和(﹣﹣∴抛物线,与,轴的交点坐标为(22x3 y=x的大致图象(如图所示),﹣画出二次函数﹣x1x3x 轴上方,<﹣时函数图象位于由图象可知:当,或>22x300yx ,此时>﹣,即>﹣22x30x1x3 x.,或的解集为:﹣∴一元二次不等式﹣><﹣>;...x轴的交点坐抛物线与【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.0.526小时到达甲地,游玩一段时间.周末,小芳骑自行车从家出发到野外郊游,从家出发10201分钟后,妈妈驾车沿相同路线前往乙地,行驶小时后按原速前往乙地,小芳离家hxykm)的函数分钟时,恰好经过甲地,如图是她们距乙地的路程(()与小芳离家时间图象.Hkm/h20110.(,)小芳骑车的速度为),点坐标(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比(预计时间早几分钟到达乙地?一次函数的应用.【考点】1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的【分析】(速度;CDABCDAB2的解析式,再求出直∥的解析式,再根据直线(,求出直线)先求出直线DEFCDEF的坐标即可;的解析式,联立直线和直线线的解析式,求出交点y=0EFy=03CD时候的横坐标,()将,分别代入直线和直线的解析式,分别求出求出当再求出两横坐标的差值即可.;...110km0.5h,【解答】解:(,花费时间为)由函数图可以得出,小芳家距离甲地的路程为100.5=20km/h ),÷(故小芳骑车的速度为:20=H,,横坐标为:由题意可得出,点 +的纵坐标为。

黑龙江绥化市中考数学试卷版及答案

黑龙江绥化市中考数学试卷版及答案

绥化市初中学业考试 数 学 试 卷一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 解析: 答案:B 点评:2. 下列图形中不是轴对称图形的是( ) 解析: 答案:C 点评:3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( ) 解析: 答案:A 点评:4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 解析: 答案:D 点评:5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱A .15B .30C .50D .20 解析: 答案:B 点评:6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0 解析: 答案:C点评:7.直角梯形ABCD中,AD∥BC,∠ABC=90o,∠C=60o,AD=DC=22,则BC的长为()A. 3 B.4 2 C.3 2 D.2 3解析:答案:C点评:8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=13,则线段AC的长是()A.3 B.4 C.5 D.6解析:答案:B点评:9.现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种 B.4种 C.5种 D.6种解析:答案:B点评:10.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()A.1个 B.2个 C.3个 D.4个解析:答案:D点评:二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米.解析:答案:1.01×105点评:12.函数y=x-1x+2中,自变量x的取值范围是_______________.解析:答案:x≥1点评:13.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:_______________,使得△ADF≌△CBE.解析:答案:AF=CE或AE=CF或DF∥BE或∠ABE=∠CDF等点评:14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_______________个.解析:答案:2点评:15.抛物线y=x2-4x+m2与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_______________.解析:答案:(3,0)点评:16.代数式3x2-4x-5的值为7,则x2-43x-5的值为_______________.解析:答案:-1点评:17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.解析:答案:4或5(答对一值得1分,多答不得分)点评:18.Rt△ABC中,∠BAC=90o,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段B D的长为_______________.解析:答案:4或25或10(答对一值得1分,多答不得分)点评:19.已知关于x的分式方程a+2x+1=1的解是非正数,则a的取值范围是_______________.解析:答案:a≤-1且a≠-2点评:20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.解析:答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )点评:三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a)÷ 1-a 2a 2+a,然后给a 选择一个你喜欢的数代入求值. 解析:答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a×a (a +1) (1-a ) (a +1)……………………2分 =(1-a ) …………………………………………1分点评:(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示.(1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90o ,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B 旋转到B 2的路径长.解析: 答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分点评:23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解析: 答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5b =800 5 k +b =550a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △PAB =12 ×4×3=6 …………………………………………………1分点评:24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解析: 答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x ≤4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 点评:25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式. 解析:答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分设直线AB 的解析式为:y =kx +b ∵B (0,800),C (5,550)∴ ∴k =-50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分(3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分设直线AB 的解析式为: y =k 1x +b 1 ∴k 1=350 b 1=-3200 1分∴直线AD 的解析式为:y AD =350x -3200 ……………………………………1分 点评:26.(本小题满分8分) .已知在Rt △ABC 中,∠ABC =90o ,∠A =30o ,点P 在AC 上,且∠MPN =90o .当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证t △PME ∽t △PNF ,得出PN =3PM .(不需证明)当PC =2PA ,点M 、N 分别在线段AB 、BC 或其延长线上,如图2、图3这两种情况时,请写出线段PN 、PM 之间的数量关系,并任选取一给予证明. 解析:答案:解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F∴四边形BFPE 是矩形 ∴∠EPF =90o , ∵∠EPM +∠MPF =∠FPN +∠MPF =90o可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分∴PF PE =PNPM…………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30o ,∠C =60o ∴PF =32 PC ,PE =12PA ……………………………………………1分 ∴PN PM =PF PE =3PC PA……………………………………………1分 ∵PC =2PA ∴PNPM= 6 即:PN =6PM ………………1分10000 若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 点评:27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A 、B 两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解析: 答案:解:(1种纪念品需要a 元,购进一件B 种纪念品需要b 元 0 1分………1分 50元,购进一件B 种纪念品需要100元 ………………1分(2x 个,购进B 种纪念品y 个………………………………2分 1分∵y 为正整数 ∴共有6种进货方案…………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) (2)分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元………………………………1分点评:28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.解析:答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b......................................................2分 ∴k =1 b =6 ...............................................................1分 ∴直线AM 的解析式为:y =x +6 .............................................1分 (2)P 1(-18,-12),P 2(6,12) (2)分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分点评:。

2016年绥化市中考数学试卷(带答案)

2016年绥化市中考数学试卷(带答案)

2016年绥化市中考数学试卷(带答案)黑龙江省绥化市2016年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×1072.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.53.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A.B.C.D.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是______.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是______.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是______分;(2)频率统计表中a=______,b=______;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的______和______.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为______.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为______km/h,H点坐标______.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?27.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN 交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.28.(10分)(2016•绥化)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.2016年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万,这个数用科学记数法表示正确的是9.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3个.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k>0判断出函数所经过的象限.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米【考点】解直角三角形的应用-方向角问题.【分析】在RT△AOB中,由∠AOB=30°可知AB=AO,由此即可解决问题.【解答】解:由题意∠AOB=90°﹣60°=30°,OA=500,∵AB⊥OB,∴∠ABO=90°,∴AB=AO=250米.故选A.【点评】本题考查解直角三角形,方向角,直角三角形中30度角所对的直角边等于斜边的一半等知识,解题的关键是搞清楚方向角的定义,利用直角三角形性质解决问题,属于中考常考题型.7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>【考点】函数自变量的取值范围.【分析】由二次根式的被开方数大于等于0可得2x﹣1≥0,由分式有意义的性质可得2x﹣1≠0,即可求出自变量x的取值范围.【解答】解:由二次根式的被开方数大于等于0可得2x﹣1≥0①,由分式有意义的性质可得2x﹣1≠0②,由①②可知x>,故选D.【点评】本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 【考点】由实际问题抽象出一元一次方程.【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【解答】解:∵长方形的长为xcm,长方形的周长为30cm,∴长方形的宽为(15﹣x)cm,∵这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,∴x﹣1=15﹣x+2,故选D.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣【考点】分式的加减法.【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是2016.【考点】倒数;相反数.【分析】先求出﹣的相反数是,再求得它的倒数为2016.【解答】解:﹣的相反数是,的倒数是2016.故答案为:2016.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=15°.【考点】平行线的性质.【分析】根据平行线的性质得到∠A=∠AFE=30°,由角的和差得到∠CFE=∠AFE﹣∠AFC=15°,根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠A=∠AFE=30°,∴∠CFE=∠AFE﹣∠AFC=15°,∵CD∥EF,∴∠C=∠CFE=15°,故答案为:15°.【点评】本题考查了平行线的性质:两直线平行,同位角相等.熟记平行线的性质是解题的关键.14.计算:()﹣3﹣4tan45°+|1﹣|=3+2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=8﹣4×1+﹣1=4+2﹣1=3+2.故答案为:3+2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是y=3(x﹣5)2﹣1.【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:y=3(x﹣4)2+2向右平移1个单位所得抛物线解析式为:y=3(x﹣5)2+2;再向下平移3个单位为:y=3(x﹣5)2﹣1.故答案为:y=3(x﹣5)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16cm.【考点】垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM 即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π﹣1.【考点】扇形面积的计算.【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【解答】解:在Rt △ACB 中,AB==2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =π×22﹣×()2=π﹣1. 故答案为π﹣1.【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.18.如图,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=3,BC=4,则BD= 5 (提示:可连接BE )【考点】旋转的性质.【分析】要求BD 的长,根据旋转的性质,只要求出AE 的长即可,由题意可得到三角形ABE 的形状,从而可以求得AE 的长,本题得以解决.【解答】解:连接BE ,如右图所示,∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.【考点】规律型:数字的变化类.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.【解答】解:∵;;;…∴;∴.故答案为:1.6×105或160000.【点评】本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是44.5分;(2)频率统计表中a=12,b=0.30;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据题意可知中位数是第50个数和51个数的平均数,本题得以解决;(2)根据表格和随机抽取了100名学生的成绩,可以求得a、b的值,本题得以解决;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得该次大赛中成绩不低于41分的学生人数.【解答】解:(1)∵随机抽取了100名学生的成绩,由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,∴中位数为:=44.5,故答案为:44.5;(2)由表格可得,a=100×0.12=12,b=30÷100=0.30,故答案为:12,0.30;(3)补全的频数分布直方图如右图所示,(4)由题意可得,1200×(0.20+0.35+0.30)=1020(人),即该次大赛中成绩不低于41分的学生有1020人.【点评】本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1•x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1•x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.【解答】解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:m<.∴m的取值范围为m<.(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∴x12+x22=﹣2x1•x2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m的值为﹣1.【点评】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】解(1)设A两种商品的进价是a元,B两种商品的进价是b元,根据题意列方程组即可得到结论(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意了不等式即可得到结论.【解答】解:(1)设A商品的进价是a元,B商品的进价是b元,根据题意得:,解得:,答:A商品的进价是16元,B商品的进价是4元;(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意得:16x+4(100﹣x)≤900,解得:x≤41,∵x为整数,∴x的最大整数解为41,∴最多能购进A种商41件【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确的理解题意是解题的关键.24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.【考点】相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【分析】(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.【解答】(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD.∵∠BDF=∠ADB,∴△BFD∽△ABD;(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,利用三角形内心的性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的①和③.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为0<x<5.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.【考点】二次函数与不等式(组);二次函数的图象;抛物线与x轴的交点.【分析】(1)根据题意容易得出结论;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;(3)设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.【解答】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.(3)设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为10km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【考点】一次函数的应用.【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出求出当y=0时候的横坐标,再求出两横坐标的差值即可.【解答】解:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为: +=,故点H的坐标为(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km;(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省绥化市2016年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×1072.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.53.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米 C.米D.500米7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是______.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是______.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______.14.计算:()﹣3﹣4tan45°+|1﹣|=______.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是______.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为______cm.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是______.18.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=______(提示:可连接BE)19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=______.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是______分;(2)频率统计表中a=______,b=______;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的______和______.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为______.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为______km/h,H点坐标______.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?27.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN 交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.28.(10分)(2016•绥化)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.2016年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万,这个数用科学记数法表示正确的是9.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3个.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k>0判断出函数所经过的象限.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米 C.米D.500米【考点】解直角三角形的应用-方向角问题.【分析】在RT△AOB中,由∠AOB=30°可知AB=AO,由此即可解决问题.【解答】解:由题意∠AOB=90°﹣60°=30°,OA=500,∵AB⊥OB,∴∠ABO=90°,∴AB=AO=250米.故选A.【点评】本题考查解直角三角形,方向角,直角三角形中30度角所对的直角边等于斜边的一半等知识,解题的关键是搞清楚方向角的定义,利用直角三角形性质解决问题,属于中考常考题型.7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>【考点】函数自变量的取值范围.【分析】由二次根式的被开方数大于等于0可得2x﹣1≥0,由分式有意义的性质可得2x﹣1≠0,即可求出自变量x的取值范围.【解答】解:由二次根式的被开方数大于等于0可得2x﹣1≥0①,由分式有意义的性质可得2x﹣1≠0②,由①②可知x>,故选D.【点评】本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 【考点】由实际问题抽象出一元一次方程.【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【解答】解:∵长方形的长为xcm,长方形的周长为30cm,∴长方形的宽为(15﹣x)cm,∵这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,∴x﹣1=15﹣x+2,故选D.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣【考点】分式的加减法.【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是2016.【考点】倒数;相反数.【分析】先求出﹣的相反数是,再求得它的倒数为2016.【解答】解:﹣的相反数是,的倒数是2016.故答案为:2016.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=15°.【考点】平行线的性质.【分析】根据平行线的性质得到∠A=∠AFE=30°,由角的和差得到∠CFE=∠AFE﹣∠AFC=15°,根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠A=∠AFE=30°,∴∠CFE=∠AFE﹣∠AFC=15°,∵CD∥EF,∴∠C=∠CFE=15°,故答案为:15°.【点评】本题考查了平行线的性质:两直线平行,同位角相等.熟记平行线的性质是解题的关键.14.计算:()﹣3﹣4tan45°+|1﹣|=3+2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=8﹣4×1+﹣1=4+2﹣1=3+2.故答案为:3+2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是y=3(x﹣5)2﹣1.【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:y=3(x﹣4)2+2向右平移1个单位所得抛物线解析式为:y=3(x﹣5)2+2;再向下平移3个单位为:y=3(x﹣5)2﹣1.故答案为:y=3(x﹣5)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16cm.【考点】垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM 即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π﹣1.【考点】扇形面积的计算. 【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【解答】解:在Rt △ACB 中,AB==2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =π×22﹣×()2=π﹣1. 故答案为π﹣1.【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.18.如图,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=3,BC=4,则BD= 5 (提示:可连接BE )【考点】旋转的性质.【分析】要求BD 的长,根据旋转的性质,只要求出AE 的长即可,由题意可得到三角形ABE 的形状,从而可以求得AE 的长,本题得以解决.【解答】解:连接BE ,如右图所示,∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.【考点】规律型:数字的变化类.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.【解答】解:∵;;;…∴;∴.故答案为:1.6×105或160000.【点评】本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是44.5分;(2)频率统计表中a=12,b=0.30;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据题意可知中位数是第50个数和51个数的平均数,本题得以解决;(2)根据表格和随机抽取了100名学生的成绩,可以求得a、b的值,本题得以解决;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得该次大赛中成绩不低于41分的学生人数.【解答】解:(1)∵随机抽取了100名学生的成绩,由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,∴中位数为:=44.5,故答案为:44.5;(2)由表格可得,a=100×0.12=12,b=30÷100=0.30,故答案为:12,0.30;(3)补全的频数分布直方图如右图所示,(4)由题意可得,1200×(0.20+0.35+0.30)=1020(人),即该次大赛中成绩不低于41分的学生有1020人.【点评】本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1•x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1•x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.【解答】解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:m<.∴m的取值范围为m<.(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∴x12+x22=﹣2x1•x2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m的值为﹣1.【点评】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】解(1)设A两种商品的进价是a元,B两种商品的进价是b元,根据题意列方程组即可得到结论(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意了不等式即可得到结论.【解答】解:(1)设A商品的进价是a元,B商品的进价是b元,根据题意得:,解得:,答:A商品的进价是16元,B商品的进价是4元;(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意得:16x+4(100﹣x)≤900,解得:x≤41,∵x为整数,∴x的最大整数解为41,∴最多能购进A种商41件【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确的理解题意是解题的关键.24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.【考点】相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【分析】(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.【解答】(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD.∵∠BDF=∠ADB,∴△BFD∽△ABD;(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,利用三角形内心的性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的①和③.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为0<x<5.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.【考点】二次函数与不等式(组);二次函数的图象;抛物线与x轴的交点.【分析】(1)根据题意容易得出结论;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;(3)设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.【解答】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.(3)设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为10km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【考点】一次函数的应用.【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出求出当y=0时候的横坐标,再求出两横坐标的差值即可.。

相关文档
最新文档