机械设计基础第七章凸轮机构
高职《机械设计基础》凸轮机构作业含答案
姓名:学号:班级:凸轮机构一、选择题1.凸轮轮廓曲线没有凹槽,要求机构传力很大,效率要高,从动杆应选()。
A. 尖顶式B. 滚子式C. 平底式2. 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为()关系。
A.偏置比对心大 B.对心比偏置大C.一样大 D.不一定3.使用()的凸轮机构,凸轮的理论轮廓曲线与实际轮廓曲线是不相等的。
A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆4.下述几种运动规律中,()既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。
A.等速运动规律 B.摆线运动规律(正弦加速度运动规律)C.等加速等减速运动规律 D.简谐运动规律(余弦加速度运动规律)5.对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用()措施来解决。
A.增大基圆半径 B.改用滚子推杆C.改变凸轮转向 D.改为偏置直动尖顶推杆6.为保证滚子从动杆凸轮机构从动杆的运动规律不“失真”,滚子半径应()。
A. 小于凸轮理论轮廓曲线外凸部份的最小曲率半径B. 小于凸轮实际轮廓曲线外凸部份的最小曲率半径C. 大于凸轮理论轮廓曲线外凸部份的最小曲率半径7.若使凸轮轮廓曲线在任何位置都不变尖,也不变成叉形,则滚子半径必须()理论轮廓外凸部分的最小曲率半径。
A. 大于B. 小于C. 等于8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。
A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆9.与其他机构相比,凸轮机构最大的优点是()。
A.可实现各种预期的运动规律 B.便于润滑C.制造方便,易获得较高的精度 D.从动件的行程可较大10.()可使从动杆得到较大的行程。
A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构11.()盘形凸轮机构的压力角恒等于常数。
A.摆动尖顶推杆 B.直动滚子推杆C.摆动平底推杆 D.摆动滚子推杆12.()的摩擦阻力较小,传力能力大。
2024版机械设计基础课件凸轮机构H(精品)
01凸轮机构概述Chapter凸轮机构定义与分类凸轮机构定义凸轮机构分类凸轮机构工作原理凸轮机构工作过程在凸轮机构工作过程中,从动件的位移、速度和加速度等运动参数会随着凸轮的转动而发生变化。
自动机械内燃机纺织机械印刷机械02凸轮机构基本构件与术语Chapter凸轮定义凸轮是一个具有曲线轮廓或凹槽的构件,通常作等速回转运动或往复直线运动。
作用在凸轮机构中,凸轮通过与从动件的接触,将连续的旋转运动或往复直线运动转换为从动件的间歇或连续的往复直线运动。
类型根据形状和运动方式的不同,凸轮可分为盘形凸轮、圆柱凸轮、移动凸轮等。
定义作用类型030201从动件机架定义作用类型近休止角在回程结束后,从动件停留在靠近凸轮的某一位置时,凸轮所转过的角度称为近休止角。
从动件在凸轮的驱动下返回起始位置的过程称为回程。
远休止角在推程结束后,从动件停留在远离凸轮的某一位置时,凸轮所转过的角度称为远休止角。
基圆以凸轮的转动中心为圆心,以凸轮的最小向径为半径所作的推程相关术语解析03凸轮机构设计基础Chapter凸轮轮廓曲线设计等速运动规律01等加速等减速运动规律02余弦加速度运动规律03从动件运动规律设计滚子从动件尖底从动件通过滚子与凸轮轮廓线接触,减小磨损,适用于中速中载场合。
平底从动件压力角与自锁现象分析压力角自锁现象设计实例及案例分析设计实例以某型号内燃机配气机构为例,详细介绍凸轮机构的设计过程、注意事项及优化方法。
案例分析针对实际工程中的凸轮机构设计问题,进行深入分析并给出解决方案。
例如,如何处理凸轮磨损、减小噪音和振动等问题。
04凸轮机构性能评价与优化Chapter1 2 3运动学性能动力学性能精度保持性01020304优化设计变量优化算法求解建立优化模型仿真验证优化设计实例及案例分析实例一实例二案例分析05凸轮机构在机械系统中的应用Chapter内燃机配气系统中的应用凸轮轴驱动气门开闭在内燃机中,凸轮轴通过驱动气门挺杆,使气门按一定规律开启和关闭,实现气缸的换气过程。
机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计
授课教案No任务3.1 凸轮机构的认识一、复习10分钟复习上次课学习内容二、教师导课与课程学习:(1)学习提示,教师介绍本任务的学习内容。
15分钟本项目以直动从动件的盘形凸轮机构为例,在从动件等速运动、等加速等减速运动、余弦加速度运动(简谐运动)规律条件下,分析了凸轮机构中存在的柔性冲击与刚性冲击。
教师介绍本任务的学习内容:凸轮机构的分类;常用术语;从动件的运动规律;凸轮机构的结构形式;常用材料及热处理(2)分小组学习: 40分钟3.1.1常用设备中的凸轮机构1. 凸轮机构的组成如图所示的凸轮机构是由凸轮、从动件和机架等三个基本构件组成的机构。
2.凸轮机构应用实例自动钻床进给机构、冲床凸轮机构等。
3.1.2凸轮机构的分类凸轮机构的类型很多,按凸轮和从动件的形状及其运动形式的不同,凸轮机构的分类方法有以下几种:1.按凸轮形状分类(1)盘形凸轮(2)移动凸轮。
(3)圆柱凸轮2.按从动件形式分类(1)尖顶从动件(2)滚子从动件(3)平底从动件从动件的结构形式3.按从动件的运动形式分类学生发言汇报、记录学习笔记学生发言汇报并记录学习笔记阅读教材和PPT、分组讨论、撰写发言提纲、学生发言汇报,课,记录学习笔记No(1)直动从动件直动从动件指相对于机架作直线往复移动的从动件,如图3.1.1中所示。
直动从动件又分为对心直动从动件和偏置直动从动件。
(2)摆动从动件:绕某一固定转动中心摆动的从动件。
4.按凸轮与从动件的锁合方式分类 (1)力锁合利用从动件的重力、弹簧力或其他外力使从动件与凸轮轮廓保持接触,(2)形锁合利用从动件和凸轮特殊的几何形状来维持接触,例如圆柱凸轮机构是利用滚子与凸轮凹槽两侧面的配合来实现形锁合。
3.1.3凸轮机构的常用术语如下:1.凸轮基圆与基圆半径b r2.凸轮的转角δ凸轮相对于某一位置转过的角度,称为凸轮转角δ。
具体包括推程运动角0δ、远停程运动角S δ回程运动角0′δ和近停程运动角Sδ'。
机械设计基础_07凸轮机构
2.偏置尖顶移动从动件盘形凸轮轮廓曲线的绘制
图7-15 偏置尖顶移动从动件盘形凸轮轮廓曲线的绘制
机械设计基础
Machine Design Foundation 凸轮轮廓曲线的设计
1)选取适当的长度比例尺μl(mm/mm),以凸轮 回转中心O为圆心,以偏心距e为半径作出辅助圆。同 理,以rb为半径作出基圆。 2)过辅助圆上B0点作该辅助圆的切线,该切线即为 从动件导路中心线的位置线。该位置线与基圆相交于 A0点,点A0即是从动件的初始位置,如图7-15(a)。 3)连接O A0。从O A0开始,沿(-ω)方向在基圆 上依次量取凸轮各转角δ0、δs、δ’0、δ’s,再将 推程角δ0、回程角δ’0分成与位移线图相同的等份, 得到A1、A2、A3、…等各点。
机械设计基础
Machine Design Foundation
教学目标
教学内容
重点难点
小结作业
第七章 凸轮机构
机械设计基础
Machine Design Foundation
教学目标
教学目标:
1.熟悉凸轮机构的类型和应用;
2.掌握凸轮机构从动件的常见运动特征曲线;
3.具有绘制简单凸轮机构的能力。
机械设计基础
(a)
(b)
(c)
(d)
(e)
(f)
图7-4 从动件类型
机械设计基础
Machine Design Foundation 凸轮机构的类型及应用
3.按从动件的运动方式分类 (1)移动从动件。从动件相对于导路作直线移动。若 导路中心线恰好通过凸轮回转中心,则称为对心移动从动 件,如图7-5(a);若导路中心线与回转中心有一个偏心 距e,则称为偏置移动从动件,如图7-5(b)。 (2)摆动从动件。从动件相对于机架作摆动,如图74(d)、(e)、(f)。 4.按凸轮与从动件保持接触的方式分类 (1)力锁合。依靠重力、弹簧力或其他外力使从动件 与凸轮保持接触称为力锁合。图7-1所示内燃机配气机构 是靠弹簧力使从动件与凸轮保持接触的。 (2)形锁合。依靠一定几何形状使从动件与凸轮保持 接触称为形锁合,如图7-6所示。
机械设计基础 凸轮机构
凸轮机构
19
1)按前述方法求得尖顶从动件的 B0、B1、B2、
...... 各点; 2)过 B0、B1、B2、B3、...... 各点作平底的 各个位置; 3)作这些平底的包络线即为对心直动 平底从动件盘形凸轮的实际轮廓曲线。 注意:这种凸轮不能设计成 有内凹部分的;
平板移动凸轮: rb —→ ∞
圆柱回转凸轮: 可以看成是绕在圆柱体上的移动凸轮。
工业设计机械基础
2)按从动件端部的形状分: 尖顶从动件: 平底从动件: 滚子从动件:
凸轮机构
4
3)按从动件的运动方式分: 直动从动件:
摆动从动件:
4)按凸轮与从动件的封闭方式分: 力闭合(封闭): 形闭合(封闭):
工业设计机械基础
凸轮机构
16
5)确定从动件与凸轮在不同转角处接触点的位置;
过 B’1、B’2、B’3、......各点沿导路方向分别截取线段 B’1B1 = 11’、 B’2B2 = 22’、 B’3B3 = 33’、...... ,所以 B0、 B1、B2、B3、...... 各点就是反
转后尖顶从动件尖端与凸轮接触点的一系列位置。
t 2 t 1 s2 h sin t1 t1 2 h v2 t1 2 t 1 cos t1 2 h 2 t a 2 2 sin 加速度 —→ 正弦 t1 t1
由图知,在从动件行程的始、末位置加速
度均无突变,且为零。 —→ 凸轮机构将不产生任何冲击。 ∴ 摆线运动规律适用于高速凸轮传动。
应保证平底总与
凸轮相切而不相交。
工业设计机械基础
四、摆动从动件盘形凸轮廓线的设计
凸轮机构
机械设计基础——凸轮机构
适用场合:中速、轻载。
A
B
t
S
t
a
t t
c).简谐运动规律(余弦加速度运动规律)
简谐运动:当一点在圆周上等速
运动时,它在直径上 的投影的运动.
运动特性:这种运动 规律的加速度在起点和终 点时有有限数值的突变, 故也有柔性冲击。
适用场合:中速、中载。
d).正弦加速度运动规律
——摆线运动规律
凸轮和滚子的工作表面要求:硬度高 耐磨 有足够接触强度
经常受冲击的:凸轮芯部有较强的韧性 凸轮材料:40Cr钢(表面淬火,HRC40~45) 20Cr、20CrMnTi(表面淬火,HRC56~62) 滚子材料:①20Cr钢(渗碳淬火,HRC56~62) ②用滚子轴承作为滚子
5.2 常用从动件运动规律
r0↑, α↓, 凸轮机构传力性能越好, 但机构不紧凑。
∴可通过增大基圆半径r0来获得较小的压力角α 。 根据结构条件→基圆半径r0
凸轮轴:r0略 r轴 单独凸轮:r0 ( 1.6 2)r轴
5.4.3 滚子半径的确定
设:滚子半径为rT ,理论廓线的曲率半径为ρ,
实际廓线的曲率半径为ρ’。
已知:基圆半径为r0, ω逆时针,推杆的运动规律如图所示。 设计:对心直动尖顶从动件盘形凸轮机构的凸轮廓线。
2.对心直动滚子从动件盘形凸轮机构
已知: 基圆半径为r0,滚子半径rT, ω逆时针。 推杆的运动规律如图所示。 设计:对心直动滚子从动件盘形凸轮机构的凸轮廓线。
3.对心直动平底从动件盘形凸轮机构
◆使凸轮机构具有良好的动力特性;
◆使所设计的凸轮便于加工。 2.根据工作条件确定从动件运动规律 (1)对无一定运动要求,只需对从动件工作行程有要求。
2014考研西安交通大学《802机械设计基础》习题解析 (3)
和移动凸轮。
3.凸轮机构的压力角是指 从动件 的运动方向和 凸轮轮廓接 触点法线 方向之间所夹的锐角。
4. 凸轮机构压力角的大小影响从动杆的正常工作。( √ ) 5.在设计平底直动从动件盘形凸轮机构时,从动件平底的长度 可以任意选取(×)
6.在设计滚子从动件盘形凸轮机构时,滚子的半径可以任意
选取。 7.凸轮机构压力角的大小对机构运动无影响。 (×) (×)
s ~ 图。
解:
7-12 、
→
按图7-32所示位移曲线,设计尖端移动从动件盘形凸轮
的廓线。并分析最大压力角发生在何处(提示:从压力角公式 来分析)。
解:由压力角计算公式:
v2 tan ( rb s )
图7-32
v2、rb、均为常数 s =0 = max 即 =0o、 =300o,此 两位置压力角 最大
根据工作要求选择主体运动规律,然后用其它运动规律组合;
保证各段运动规律在衔接点上的运动参数是连续的; 在运动始点和终点处,运动参数要满足边界条件。
7-4 什么是凸轮的理论廓线和实际廓线?
解:理论廓线: 对尖端从动件而言,理论廓线为尖端点在凸轮平面上描出 的轨迹; 对滚子从动件而言,理论廓线为滚子中心在凸轮平面上 描出的轨迹; 对平底从动件而言,理论廓线为平底上的一点在凸轮平面上 描出的轨迹。 实际廓线:与从动件工作面直接接触的凸轮轮廓。 对尖端从动件,实际廓线与理论廓线是一致的; 对滚子从动件,实际廓线是以理论廓线上各点绕圆心所作 一系列滚子圆的包络线,它是理论廓线的等距曲线;
解:1.刚性冲击:从动件在起始和终止点速度有突变,使瞬时加速 度趋于无穷大,从而产生无限值惯性力,并由此对凸轮产生冲击;
柔性冲击:从动件在起点、中点和终点,因加速度有有限值
机械设计基础之凸轮机构
印刷机传纸机构是利用凸轮机构来实现纸张的传递和定位的机构,它保证了印 刷机的高效稳定运行。
详细描述
在印刷机传纸机构中,凸轮的转动带动曲柄滑块机构的运动,从而实现纸张的 传递。通过合理设计凸轮的形状和尺寸,可以保证纸张传递的准确性和稳定性 ,提高印刷质量和效率。
谢谢聆听
B
C
紧固
使用合适的紧固件和润滑剂将凸轮与其他零 件连接并固定。
调整
对装配好的凸轮机构进行调整,确保其正常 运转和达到预期的性能。
D
凸轮机构的精度检测
径向跳动检测
检查凸轮的径向跳动是否符合要求,以确保 其运转平稳。
轴向窜动检测
检查凸轮的轴向窜动是否在允许范围内,以 确保其正常工作。
表面粗糙度检测
检查凸轮表面的粗糙度是否满足设计要求, 以确保良好的润滑和耐磨性。
运动学分析
通过分析凸轮机构在不同 工作阶段的运动特性,为 后续设计提供依据。
凸轮机构的压力角
定义
01
压力角是指与凸轮接触的推杆在运动方向上所受的力与该力的
作用线到回转中心的连线之间的夹角。
压力角的影响
02
压力角的大小直接影响到凸轮机构的传动效率和使用寿命,因
此设计中需要合理控制压力角的大小。
压力角的计算
机械设计基础之凸轮 机构
目录
• 凸轮机构概述 • 凸轮机构的基本理论 • 凸轮机构的设计 • 凸轮机构的制造与装配 • 凸轮机构的应用实例
01 凸轮机构概述
定义与特点
定义
凸轮机构是一种由凸轮、从动件和机 架三个基本构件组成的机构,通过凸 轮的轮廓曲线与从动件之间的相互作 用,实现预定的运动规律。
自动机的分度机构
总结词
机械设计基础第七章凸轮机构
C
s
h
o δ0 δ01 ω
B
t δ’0 δ02 δ
运动规律:推杆在推程或回程时,其位移S、速度V、
和加速度a 随时间t 的变化规律。
S=S(t)
V=V(t)
a=a(t)
形式:多项式、三角函数。 B’
A
D δ02
r0
δ0
δ’0 δ01
s 位移曲线
h
t o δ0 δ01 δ’0 δ02 δ ω
B
C
精选PPT
在起始和终止处理论上a为精有选PP限T 值,产生柔性冲击。
2.正弦加速度(摆线)运动规律
s
推程:
h
s=h[δ/δ0-sin(2πδ/δ0)/2π]
δ
v=hω[1-cos(2πδ/δ0)]/δ0 a=2πhω2 sin(2πδ/δ0)/δ02
v
δ0
回程:
δ
s=h[1-δ/δ0’ +sin(2πδ/δ0’)/2π]
缺点:高副,线接触,易磨损,传力不大。
应用:内燃机 、牙膏生产等自动线、补 鞋机、配钥匙机等。 分类:1)按凸轮形状分:盘形、 移动、
圆柱凸轮 ( 端面 ) 。 2)按推杆形状分:尖顶、 滚子、 特点: 平底从动件。 尖顶--构造简单、易磨损、用于仪表机构; 滚子――磨损小,应用广; 平底――受力好、润滑好精,选PP用T 于高速传动。
2)推杆运动规律; 3)合理确定结构尺寸;
4)设计轮廓曲线。
而根据工作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。
机械设计基础-凸轮机构设计
(2)取长度比例尺μl,在纵坐标轴上作出从动件的行程h。 (3)这些平行线与上述各对应的垂直线分别交于点1″、 2″、…、6″,将这些交点连成光 滑的曲线,即为余弦加速度运 动的位移线图。
凸轮机构设计
③ 等径凸轮:如图3-5(c)所示,从动件上装有两个滚子,其 中心线通过凸轮轴心,凸轮 与这两个滚子同时保持接触。这 种凸轮理论轮廓线上两异向半径之和恒等于两滚子的中心距 离,因此等径凸轮只能在180°范围内设计轮廓线,其余部分的 凸轮廓线需要按等径原则确定。
凸轮机构设计
④ 主回凸轮:如图3-5(d)所示,用两个固结在一起的盘形 凸轮分别与同一个从动件 上的两个滚子接触,形成结构封闭。 其中一个凸轮(主凸轮)驱使从动件向某一方向运动, 而另一 个凸轮(回凸轮)驱使从动件反向运动。主凸轮轮廓线可在 360°范围内按给定运动规 律设计,而回凸轮轮廓线必须根据 主凸轮轮廓线和从动件的位置确定。主回凸轮可用于高 精 度传动。
凸轮机构设计
二、 凸轮的分类 1.按凸轮的形状分类 (1)盘形凸轮。如图3-1所示,这种凸轮是绕固定轴转动并
且具有变化向径的盘形构 件,它是凸轮的基本形式。 (2)移动凸轮。这种凸轮外形通常呈平板状,如图3-2所示
的凸轮,可视作回转中心位于无穷远时的盘形凸轮,它相对于 机架作直线移动。
凸轮机构设计
凸轮机构设计
(6)远休止:从动件离转轴O 最远处静止不动。凸轮转过 角度Φs 称为远休止角。
(7)回程运动:从动件在弹簧力或重力作用下回到初始位 置,位移由Smax→0,凸轮转 过角度Φ'称为回程运动角。
凸轮机构的工作原理及作用
凸轮机构的工作原理及作用
凸轮机构是一种由凸轮、从动件和机架组成的高副机构,主要用于转换运动形式。
其工作原理主要基于凸轮的旋转或直线运动来驱动从动件进行预定的运动。
凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。
凸轮机构常用于将主动构件的连续运动转变为从动构件的往复运动。
只要恰当的设计凸轮廓线,便可使从动构件实现各种复杂的运动要求。
例如,凸轮轴是发动机配气机构的重要组成部分,负责驱动气门按时开启和关闭,有些凸轮轴还具有驱动分电器转动的功能。
此外,凸轮机构也广泛应用于各种机械、仪器和操纵控制装置中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7-1 凸轮机构的应用和类型 §7-2 从动件的常用运动规律 §7-3 凸轮机轮廓曲线的设计 §7-4 凸轮设计应注意的几个问题
§7-1 凸轮机构的应用和分类
结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。
作用:将连续回转 => 从动件直线移动或摆动。
优点:可精确实现任意运动规律,简单紧凑。 实例
在起始和终止处理论上a为有限值,产生柔性冲击。
2.正弦加速度(摆线)运动规律 s
推程:
h
s=h[δ/δ0-sin(2πδ/δ0)/2π]
v=hω[1-cos(2πδ/δ0)]/δ0 a=2πhω2 sin(2πδ/δ0)/δ02
δ
δ0 v
回程:
δ
s=h[1-δ/δ0’ +sin(2πδ/δ0’)/2π]
v 2hω/δ0
h/2 6δ
δ a 4hω2/δ02
δ
柔性冲击
3.五次多项式运动规律 位移方程:
s=10h(δ/δ0)3 - 15h (无δ冲/δ击0,)5 适用于高速凸轮。
(δ/δ0)4+6h
v
s
h a
δ δ0
二、三角函数运动规律
5 6s
1.余弦加速度(简谐)运动规律 4
3
h
推程:
2
δ
s=h[1-cos(πδ/δ0)]/2
-ω 1
a
v=hω[cos(2πδ/δ0’)-1]/δ0’
δ
a=-2πhω2 sin(2πδ/δ0’)/δ’02
无冲击
三、改进型运动规律
s
将几种运动规律组合,以改善
h
运动特性。
δ o
δ0 v
o
δ
a +∞ δ
o
-∞
正弦改进等速
§7-3 凸轮轮廓曲线的设计
图解法设计凸轮的轮廓
1.凸轮廓线设计方法的基本原理 2.用作图法设计凸轮廓线
1
1 2 34 5 6
δ0
v =πhωsin(πδ/δ0)δ/2δ0 v Vmax=1.57hω/2δ0
a =π2hω2 cos(πδ/δ0)/2δ02
δ
回程:
s=h[1+cos(πδ/δ0’)]/2
a
v=-πhωsin(πδ/δ0’)δ/2δ0’
δ
a=-π2hω2 cos(πδ/δ0’)/2δ’02
缺点:高副,线接触,易磨损,传力不大。
应用:内燃机 、牙膏生产等自动线、补 鞋机、配钥匙机等。 分类:1)按凸轮形状分:盘形、 移动、
圆柱凸轮 ( 端面 ) 。 2)按推杆形状分:尖顶、 滚子、 特点: 平底从动件。 尖顶--构造简单、易磨损、用于仪表机构; 滚子――磨损小,应用广; 平底――受力好、润滑好,用于高速传动。
B’
一、推杆的常用运动规律 名词术语:
基圆、基圆半径、 推程、 推程运动角、远休止角、 回程、回 程 运 动 角 、 近休止角、 行程。一个循环
A D δ02 rmin
δ0 δ’0
δ01
C
s h
o δ0
ω B
t
δ01 δ’0 δ02 δ
运动规律:推杆在推程或回程时,其位移S、速度V、 和加速度a 随时间t 的变化规律。
推程加速上升段边界条件:
起始点:δ=0, s=0, v=0
中间点:δ=δ0 /2,s=h/2
求得:C0=0, C1=0,C2=2h/δ02
加速段推程运动方程为:
s =2hδ2/δ02
v
=
a4h=ω4δhω/δ2/0δ2 02
推程减速上升段边界条件:
中间点:δ=δ0 /2,s=h/2 终止点:δ=δ0, s=h, v=0
S=S(t)
V=V(t)
a=a(t)
s 位移曲线
形式:多项式、三角函数。
D
B’
A
δ02
r0
h
o δ0
t
δ01 δ’0 δ02 δ
δ0
ω
δ’0 δ01
B
C
一、多项式运动规律
一般表达式:s=C0+ C1δ+ C2δ2+…+Cnδn (1)
求一阶导数得速度方程:
v = ds/=dtC1ω+ 2C2ωδ+…+nCnωδn-1
3).按推杆运动分:直动(对心、偏置)、 摆动
4).按保持接触方式分: 力封闭(重力、弹簧等)
几何形状封闭(凹槽、等宽、等径、主回凸轮)
刀架 o 2
1
内燃机气门机构
机床进给机构
凹 槽 凸 轮
等
宽
凸
W
轮
等
径 凸
r1 主
轮
回
r2
凸
r1+r2 =const
轮
优点:只需要设计适当的轮廓曲线,从动件便可获得 任意的运动规律,且结构简单、紧凑、设计方便。 缺点:线接触,容易磨损。
1.等速运动(一次多项式)运动规律 s
在推程起始点:δ=0, s=0
在推程终止点:δ=δ0,s=h 代入得:0, C1=h/δ0
推程运动方程:
δ0 v
s =hδ/δ0
v a
= =
h0ω/δ0
a
同理得回程运动方程:
s=h(1-δ/δ’ v=-
0
)
haω=/0δ’0
刚性冲击 +∞
h δ
δ
δ -∞
2. 等加等减速(二次多项式)运动规律 位移曲线为一抛物线。加、减速各占一半。
求二阶导数得加速度方程:
a =dv/dt =2 C2ω2+ 6C3ω2δ…+n(n-1)Cnω2δn-2 其中:δ-凸轮转角,dδ/dt=ω-凸轮角速度,
Ci-待定系数。
边界条件:
凸轮转过推程运动角δ0-从动件上升h 凸轮转过回程运动角δ’0-从动件下降h
s = C0+ C1δ+ C2δ2+…+Cnδn v = C1ω+ 2C2ωδ+…+nCnωδn-1 a = 2 C2ω2+ 6C3ω2δ…+n(n-1)Cnω2δn-2
应用实例:
3
线 2A 1
绕线机构
卷带轮
11 2 放 放音音键键
5
33
摩擦轮
4 4
录音机卷带机构
皮皮带带轮轮
2
3
1
送料机构
§7-2 推杆的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;
2)推杆运动规律; 3)合理确定结构尺寸;
4)设计轮廓曲线。
而根据工作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。
求得:C0=-h, C1=4h/δ0, C2=-2h/δ02
减速段推程运动方程为:
s =h-2h(δ-δ0)2/δ02 v =-4hω(δ-δ0)/δ02 a =-4hω2/δ02
重写加速段推程运动方程为:
s =2hδ2/δ02 v =4hωδ/δ02 a =4hω2/δ02
s
h/2
1 23 4 5 δ0
1)对心直动尖顶从动件盘形凸轮 2)偏置直动尖顶从动件盘形凸轮 3)滚子直动从动件盘形凸轮 4)对心直动平底从动件盘形凸轮 5)摆动尖顶从动件盘形凸轮机构
一、凸轮廓线设计方法的基本原理
反转原理:
给整个凸轮机构施以-ω时,不影响各构件之间
的相对运动,此时,凸轮将静止,而从动件尖顶复合
运动的轨迹即凸轮的轮廓曲线。