含酚羟基间苯二甲酰基硫脲钳形受体的合成及阴离子识别研究

合集下载

缩氨基硫脲受体的合成及阴离子识别规律研究

缩氨基硫脲受体的合成及阴离子识别规律研究

wi no ss c sF , ‘ B ’ I, O0‘ HS ’H2 04a d NO 一nDMS w r n et ae yUV- ss e toc p . la t a in u ha ‘CI, r,‘CH3 h C , O4 , n 3i P O eeiv si tdb Vi p cr so y A cer g
DM SO h k d—ye . by t e na e e s The r s t h we ha h wo r c ptr a te e e tv t o , 3 e uls s o d t tte t e e o h d a betr s lc ii frF一 CH s y CO0一a nd H2 PO4’ b a , uth d
XU e— i MA Z a ig ,AN G a g , E W ixa。 h nyn F u n D NG Ln - a Z A G Y ur n WE a.a igj n , H N o — ig , I i o u u T b

( . ol eo h m s ya d C e ia E gn e n , in a g N r a U i ri , i yn 1 0 0 C ia 1 C l g f e i r n h m c l n ie r g X a y n om l n es y X a a g7 2 0 , hn ; e C t i v t n
n vd n i d n t l , r , 一 HS 4 , n o e i e tb n i g w h C 。 B 。 I , O ‘ a d NO3 . h e u t h w d t a eb n ig a i t ft e t e e tr h n e e u i ‘ T e r s l s o e h t h i d n b l y o h wor c p o c a g d r g - s t i s ldy w t a i CH3 OO— n P 一 F r t e s me a in,h s o it n c n t ns f l w d t e te d:e e tr B1<r c p o 2 T e h C a d H2 O4 . o h a no t e a s ca i o s t o l e h r n r c p o o a o e e tr B . h UV— sd t d c td t a : t ih o t o lx w s fr e e w e e e t r n h h e n o s Th x e i n sn Vi aa i i ae h t 1 1 s c i mer c mp e a o n a o y m d b t e n r c p os a d t e t r e a in . e e p r me tu ig

硫脲类阴离子受体的设计与阴离子识别的开题报告

硫脲类阴离子受体的设计与阴离子识别的开题报告

硫脲类阴离子受体的设计与阴离子识别的开题报告一、研究背景及意义阴离子是一种带有负电荷的离子,在生物体内发挥着重要的生理作用。

如ATP、DNA、RNA等生物大分子均含有阴离子。

因此,设计合适的阴离子受体对于认识生命过程,研究药物分析,以及环境监测等方面有着非常重要的意义。

硫脲类阴离子受体是阴离子识别领域中一种重要的结构。

其结构特点主要体现在硫氧键的组成,通过硫氧键与阴离子作用,形成稳定的配合物。

因此,研究硫脲类阴离子受体的设计与阴离子识别,可以为研究阴离子识别原理,探讨生物大分子中阴离子的配位方式提供帮助。

同时,利用硫脲类阴离子受体设计新型分子探针或者分子识别材料,可以在生态环境监测、生物分析以及生物成像等方面展示广泛的应用前景。

二、国内外研究现状硫脲类阴离子受体的设计与阴离子识别研究,是当前阴离子识别领域研究的热点之一。

目前,国内外学者对硫脲类阴离子受体的设计、合成以及阴离子识别机理都有着深入的研究。

国内研究方面,郭岩等人设计了一种硫脲类对硼酸的选择性吸附材料,并且进行了相关性能研究。

潘璟琦等人设计了新型硫脲类阴离子受体,能够对芳香型阴离子进行选择性识别。

刘兵等人设计了两种含有硫脲基团的荧光分子,通过螯合二价硫酸根离子,能够实现对污水的敏感检测。

国外方面,M. R. C. Mona等人设计了一种基于硫脲类分子的选择性离子液体,能够针对ClO4-、HSO4-等离子体系实现选择性识别。

M. M. Hosseini等人设计了一种硫脲类阴离子受体,通过硫酸根离子与硫脲配位作用,实现对硫酸根离子的亲和性增强。

三、研究内容本文将设计一种硫脲类阴离子受体,并且考察其对于不同阴离子的识别性能。

目前已有很多文献报道了利用硫脲类阴离子受体对于酸性阴离子,如硫酸根离子、硝酸根离子等的选择性吸附性能,但是对于碳酸根离子等中性或者碱性阴离子识别的报道比较少,因此,本研究将从中性或者碱性阴离子的识别展开,尝试设计一种在水溶液中对碳酸根离子和氢氧根离子具有较高选择性的硫脲类阴离子受体。

N-酰胺基硫脲类受体分子的设计合成和阴离子识别的开题报告

N-酰胺基硫脲类受体分子的设计合成和阴离子识别的开题报告

N-酰胺基硫脲类受体分子的设计合成和阴离子识别的开题报告引言金属离子和有机分子在生命过程中起着重要的作用。

因此,在生物系统中对金属离子和有机分子的选择性识别,与生命科学相关的应用领域具有重要的意义。

在过去的几十年中,许多学者研究了不同类型的金属离子和有机分子的识别分子,例如荧光探针,荧光酶传感器和化学传感器等。

然而,仍然需要发展具有更高选择性和灵敏度的新型识别分子。

鉴于N-酰胺基硫脲类化合物在阴离子识别中的良好性能,本研究将设计和合成一系列新的N-酰胺基硫脲类化合物,并评估其作为阴离子识别分子的潜力。

此外,我们还将探索这些化合物与不同阴离子的相互作用,并研究它们在实验条件下的识别机制。

目的本研究旨在设计和合成基于N-酰胺基硫脲类化合物的新型阴离子识别分子。

我们的目的是开发具有高选择性和灵敏度的化合物,并探索它们与不同阴离子的相互作用和识别机制。

方法和实验设计和合成N-酰胺基硫脲类化合物我们将根据文献报道的方法合成N-酰基硫脲分子。

然后,通过N-酰基硫脲分子的反应,构建出N-酰胺基硫脲类化合物。

这些化合物将被设计为可通过静电力,氢键和π-π相互作用与阴离子结合。

评估化合物的阴离子识别性能我们将对所合成的化合物进行一系列评估实验,以评估它们的阴离子识别性能。

这些实验包括UV-Vis和荧光光谱法,以及核磁共振和质谱等技术,以确定化合物与不同阴离子之间的相互作用。

探索阴离子与化合物的相互作用机制我们将进行分子模拟和分子动力学模拟来探索阴离子与化合物的相互作用机制。

此外,我们将使用电子密度分析来研究阴离子与化合物之间的相互作用,以了解它们之间的电子转移和共价反应的潜力。

预期结果预计我们将能够合成一系列具有潜在阴离子识别能力的N-酰胺基硫脲类化合物。

通过评估不同阴离子与这些化合物之间的相互作用,我们将能够确定这些化合物的选择性和灵敏度。

此外,通过分子模拟和分子动力学模拟,我们将确定化合物与阴离子之间的相互作用机制,并为其在实验中的应用提供理论基础。

一类缩双芳氨基硫脲受体的合成及阴离子识别

一类缩双芳氨基硫脲受体的合成及阴离子识别
徐维 霞。 张有 明 魏太保
兰州 7 0 7 ) 30 0
(咸 阳师范学 院化学 系 咸 阳 7 20 100; 西北师 范大学化学化工学 院, 甘肃省高分子材料重点实验室 摘
要 设计 合成了 2种新 型缩 双芳 氨基硫 脲受 体分子 ( S ) 利用 紫外 . 见吸 收光谱 考察 了其 与 F一 S ,, , 可 、
液, 室温搅拌 , 搅拌 2m n i左右有淡黄色沉淀出现 , 继续反应 2h至反应完全 。 产物用二甲基甲酰胺重结 晶。 反应路线如 Shm 。 ce e1
20 .11 0 71 -2收稿 ,0 8 -0修 回 20  ̄12 咸阳师范学院科研 专项基金(6 S K 5 ) 0 X Y 2 8 资助项 目
间以氢键作用方式相结合 。 关键词 缩双芳氨基硫脲 , 成 , 合 阴离子识别 , 氢键作用 文-4 10 -5 8 20 )21 00 4 中图分类 号 : 6 13 0 2 .
分子识别是主体对客体选择性结合并产生某种特定功能的过程 , 是组装高级结构的必要途径和研 究组 装体 功能 的基 础 _ 。由于 阴离 子在 生命过 程 和环 境 中具 有 重 要作 用 , 发 新 型 的 阴离 子 受体 已成 1 ] 开
核磁 共 振仪 (日本 )x4型数字 显示 显微 熔点 测定 仪 , 度计 未校 正 。 ;. 温
1 2 受体 分 子 的合成 与表征 .
将 . 氨 基硫脲 A 及 A 各 0O o溶 于适 量 乙醇 , 芳 , . 1m l 然后 各加 入 00 5m l .0 o 间苯 二 甲醛 的 乙醇溶
通讯联系人 : 张有明 , , 男 教授 , 士生导师 ; - a : a gw u 2 . o 研究方 向: 博 Em i z nn n @16 cm; lh 超分子化学

高选择性比色识别碘离子的氨基硫脲类阴离子受体

高选择性比色识别碘离子的氨基硫脲类阴离子受体

中国科学 B 辑:化学 2009年 第39卷 第4期: 357 ~ 364 357《中国科学》杂志社SCIENCE IN CHINA PRESS高选择性比色识别碘离子的氨基硫脲类阴离子 受体林奇, 魏太保, 李艳, 秦霄萍, 张有明*西北师范大学化学化工学院 甘肃省高分子材料重点实验室, 兰州 730070 * 通讯作者, E-mail: zhangnwnu@ 收稿日期:2009-02-23; 接受日期:2009-02-27摘要 设计合成了一系列基于氨基硫脲的阴离子受体(M1~M4). 此类受体以氨基硫脲基团为识别位点, 以硝基苯基为信号报告基团, 其中受体M1和M3可在乙腈溶液中高选择性的比色识别碘离子. 在受体M1或M3的乙腈溶液中加入I –时, 溶液的颜色由浅红色变成无色, 而加入其他离子如F –, Cl –, Br –, AcO –, HSO 4–, H 2PO 4–, ClO 4–等阴离子时, 受体溶液不会褪色. 通过紫外滴定和核磁滴定等方法研究了受体选择性比色识别碘离子的机理. 结果表明, 受体通过其氨基硫脲基团上的三个NH 质子与碘离子形成的三重氢键选择性的结合碘离子. 在此过程中, 受体构型发生转变, 从而导致了颜色变化, 产生了比色识别的效果. 此类阴离子受体具有合成方法简便, 产率高, 识别效果好等优点.关键词阴离子受体 碘离子 比色识别 氨基硫脲碘是人体必需的一种微量元素, 它对人的大脑功能、细胞发育、神经活性、新陈代谢和甲状腺功能等有着重要的影响. 缺碘或碘摄入过量会导致诸如甲状腺肿大、甲状腺功能减退和甲状腺机能亢进等疾病[1~3]. 碘离子在药物合成等化学领域有着广泛的应用[4,5]. 因此, 碘离子的分析检测是一项非常重要的工作. 常用的碘离子的检测方法有气质联用、毛细管电泳、原子吸收光谱等[2,6]. 这些方法需要比较昂贵的仪器和比较复杂的操作. 近年来, 用合成受体比色检测阴离子的方法受到了人们的关注[7~15]. 该方法通过利用人工受体与阴离子相互作用时产生的颜色变化定性的检测阴离子, 通过相应的测定还可以定量的检测阴离子的含量. 这种方法具有操作简便, 所需仪器简单等优点. 目前, 人们已经开发出了大量的阴离子比色受体, 其中, 很多受体能选择性比色识别碱性较强的氟离子[10,13]、醋酸根离子[14,15]和亲核性很强的氰根等阴离子[16]. 而碘离子由于其很弱的碱性和球形结构等特点, 一般的阴离子受体很难和碘离子结合从而选择性的比色识别碘离子. 目前报道的能选择性识别碘离子的合成受体很少, 而且这些受体的结构都比较复杂[6,17,18]. 设计合成结构简单, 易于合成且对指定阴离子有选择性比色识别能力的阴离子受体是主客体阴离子识别研究的一个热点[7]. 通常, 阴离子受体由识别位点和信号报告基团组成, 其中识别位点一般由脲/硫脲基团、胺基/酰胺基、胍基等含有NH 氢键供体的结构单元提供, 信号报告基团通常是发色团[8]. 本课题组在前面的工作中设计合成了一系列基于硫脲、酚羟基、酰腙等识别位点的阴离子受体[12,19~25], 它们能选择性的比色识别氟离子、醋酸根、磷酸二氢根和硫酸氢根等阴离子, 但是也没有得林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体358到可选择性比色识别碘离子的受体. 本文中, 我们设计合成了一系列基于氨基硫脲的阴离子受体, 这些受体的设计主要考虑了三个方面: (1) 采用氨基硫脲基团作为识别位点, 比常见的硫脲基团多一个NH, 也就多了一个氢键供体, 有利于更好的结合客体. (2) 采用硝基苯基作为信号报告基团, 可使受体具备比色识别能力, 且结构简单. (3) 设计的受体合成方法简单, 便于应用. 这些受体中, M1和M3能在乙腈溶液中选择性的比色识别碘离子, 而且M1对碘离子的络合稳定常数K s 高达8.06×105. 另外, 硫脲衍生物是一种常见的阴离子受体, 通常情况下可选择性的识别醋酸根等Y 型阴离子或氟离子等碱性较强的阴离子[26,27]. 根据我们掌握的情况, 尚未见用硫脲类受体选择性比色识别碘离子的报道. 因此, 本文报道的这类基于氨基硫脲的受体是对硫脲类阴离子受体的一个新的拓展.1 实验部分1.1 仪器与试剂1H NMR 使用Mercury-400BB 型核磁共振仪测定,TMS 为内标. 元素分析使用Flash EA 1112型元素分析仪测定; IR 使用Digilab FTS-3000 FT-IR 型红外光 谱仪(KBr 压片)测定; 熔点使用X-4数字显示显微熔点测定仪(温度计未校正)测定; 紫外光谱使用岛津UV-2550紫外-可见吸收光谱仪(1 cm 石英液池)测定.四丁基铵盐购自Aldrich 公司, 均为分析纯, 直接使用. 其他试剂均为市售分析纯.1.2 受体1-硝基苯基-4-取代酰基氨基硫脲(M1-M4)的合成受体M1~M4的合成路线见式1. 将10 mmol 的氯甲酸乙酯溶解到20 mL 乙酸乙酯中, 加入12 mmol 硫氰酸钾, 0.1 mL N ,N ,N ′,N ′-四甲基乙二胺(TMEDA)为催化剂, 在室温搅拌反应5 h. 过滤, 除去无机盐, 得到中间体乙氧羰基异硫氰酸酯的溶液. 在此溶液中加入9.5 mmol 4-硝基苯肼. 室温搅拌反应5 h, 生成沉淀. 减压蒸除大部分溶剂, 室温下静置3 h, 将析出的沉淀过滤, 用无水乙醇重结晶, 得到产物M1的结晶. 受体M2的合成方法与M1类似. 将10 mmol 苯甲酰氯溶解到20 mL 二氯甲烷中, 加入12 mmol 硫氰酸铵, 0.1 mL 聚乙二醇-400(PEG-400)为催化剂, 室温搅拌反应5 h. 过滤, 除去无机盐, 得到中间体苯甲酰基异硫氰酸酯的溶液. 在此溶液中加入9.5 mmol 4-硝基苯肼, 室温搅拌反应5 h, 生成沉淀.式1 M1~M4的合成路线中国科学 B 辑: 化学 2009年 第39卷 第4期359减压蒸除大部分溶剂, 室温下静置 3 h, 将析出的沉淀过滤, 用无水乙腈重结晶, 得到产物M3的结晶. 受体M4的合成方法与M3类似.M1: 产率: 89.7%; m.p. 168~170℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.32 (s, 1H, NH), 11.24 (s, 1H, NH), 9.46 (s, 1H, NH), 8.08 (d, J = 9.2, 2H, ArH), 6.79 (q, J = 7.2, 2H, ArH), 4.20 (q, J = 7.2, 2H, CH 2), 1.27 (t, 3H, CH 3); IR (KBr, cm −1) v : 3437(mb, N-H), 3284(s, N-H), 3165(m, N-H), 1705 (s, C=O), 1600 (s, C=C), 1515 (s, C=C), 1208(s, C=S); 元素分析理论值C 10H 12N 4O 4S: C, 42.25; H, 4.25; N, 19.71; 实测值: C, 42.31; H, 4.16; N, 19.87.M2: 产率: 96.5%; m.p. 208~210℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.49 (s, 2H, NH), 10.44 (s, 1H, NH), 8.88 (s, 1H, ArH), 8.37~8.33 (m, 1H, ArH), 7.22~7.19 (m, 1H, ArH), 4.22 (q, J = 7.2, 2H, CH 2), 1.27 (t, 3H, CH 3); IR (KBr, cm −1) v : 3444(mb, N-H), 3309(m, N-H), 3188(s, N-H), 1736 (s, C=O), 1618 (s, C=C), 1596 (s, C=C), 1555 (s, C=C), 1510 (s, C=C), 1216(s, C=S); 元素分析理论值C 10H 11N 5O 6S: C, 36.47; H, 3.37; N, 21.27; 实测值: C, 36.51; H, 3.65; N, 21.54.M3: 产率: 95.7%; m.p. 199~201℃; 1H NMR (DMSO-d 6, 400 MHz) δ 12.02 (s, 2H, NH), 9.77 (s, 1H, NH), 8.11~6.93 (m, 9H, ArH); IR (KBr, cm −1) v : 3444(mb, N-H), 3310(m, N-H), 3235(m, N-H), 1678 (s, C=O), 1601 (s, C=C), 1525 (s, C=C), 1474 (s, C=C), 1276(s, C=S); 元素分析理论值C 14H 12N 4O 3S: C, 53.16; H, 3.82; N, 17.71; 实测值: C, 53.37; H, 3.65; N, 17.59.M4: 产率: 85.4%; m.p. 216~219℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.82 (s, 2H, NH), 10.61 (s, 1H, NH), 8.90 (s, 1H, ArH), 8.40~7.31 (m, 7H, ArH); IR (KBr, cm −1) v : 3367(m, N-H), 3265(m, N-H), 3139(m, N-H), 1682 (s, C=O), 1618 (s, C=C), 1596 (s, C=C), 1490 (s, C=C), 1275(s, C=S); 元素分析理论值C 14H 11N 5O 5S: C, 46.54; H, 3.07; N, 19.38; 实测值: C, 46.83; H, 3.28; N, 19.27.2 结果和讨论2.1 受体的合成受体M1~M4通过异硫氰酸酯与硝基取代的苯肼的亲核加成反应制备. 其中中间体异硫氰酸酯的合成是关键步骤. 本文涉及乙氧羰基异硫氰酸酯和苯甲酰基异硫氰酸酯两种中间体. 其中乙氧羰基异硫氰酸酯通过氯甲酸乙酯与硫氰酸钾的反应制备. 由于氯甲酸乙酯中的氯甲酸基(可看作酰氯基)的活性较低, 很难与硫氰酸钾反应, 因此, 本文采用了N ,N ,N ′,N ′-四甲基乙二胺(TMEDA)做催化剂, 该催化剂可提高氯甲酸基团中酰氯的活性[28]. 在该催化剂的作用下, 高产率的合成了乙氧羰基异硫氰酸酯及目标产物M1和M2. 苯甲酰基异硫氰酸酯通过苯甲酰氯和硫氰酸铵的反应制备, 该反应在二氯甲烷中为固液两相反应, 因此采用了聚乙二醇-400(PEG-400)为相转移催化剂, 高产率的合成了中间体苯甲酰基异硫氰酸酯及目标产物M3和M4. 值得一提的是, 这些反应都在室温下进行, 且中间体异硫氰酸酯不需分离, 直接和硝基苯肼反应生成产物, 所以这些受体的合成简便易行, 且产率很高.2.2 受体的阴离子识别性能2.2.1 受体的阴离子比色识别性能研究分别移取 1.00 mL 受体M1~M4的乙腈溶液(2×10−4 mol·L −1)于一系列10 mL 比色管中. 分别加入F –, Cl –, Br –, I –, CH 3COO –, HSO 4–, H 2PO 4–和ClO 4–的四丁基铵盐的乙腈溶液(0.01 mol·L −1)1.00 mL, 用乙腈稀释至刻度, 此时受体浓度为2×10−5 mol·L −1, 阴离子浓度为受体浓度的50倍, 混合均匀后放置片刻, 观查各个受体对阴离子的响应. 如图1所示, 当在受体M1或M3的乙腈溶液中分别加入上述阴离子溶液时, I −的加入使受体颜色由浅橙黄色褪色至无色; F –, CH 3COO –, HSO 4–和H 2PO 4–的加入使受体溶液的颜色略微加深; 加入Cl –, Br –和ClO 4–时, 受体颜色基本不变. 因此, 受体M1和M3在乙腈溶液中对碘离子有选择性比色识别能力, 受体M2和M4的乙腈溶液对上述阴离子无明显响应.图1 受体M1的乙腈溶液(2×10−5 mol ⋅L −1)中加入各种阴离子(50 eqv)时的颜色变化从左到右:M1, M1+F −, M1+Cl −, M1+Br −, M1+I −, M1+AcO −, M1+HSO 4−, M1+H 2PO 4−, M1+ClO 4−林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体360图2 受体M1-M4(a-d)在乙腈溶液中(2×10−5 mol·L−1)与各种阴离子(50 eqv)相互作用时的UV-vis光谱图2.2.2受体与阴离子作用的紫外-可见(UV-vis)光谱分别测上述受体的乙腈溶液和受体与不同阴离子的混合溶液的UV-vis光谱, 如图2(a)所示, 在UV-vis光谱中, 受体M1在475 nm处有最大吸收峰, 当受体M1中分别加入F–, Cl–, Br–, I–, CH3COO–, HSO4–, H2PO4–和ClO4–的四丁基铵盐溶液时, 只有碘离子的加入使受体在475 nm处的吸收峰显著降低而350 nm处出现新的中等强度吸收峰, 其他阴离子对受体的吸收峰无明显影响. M3(图2(c))对阴离子有和M1类似的识别能力. 同样的条件下, 上述阴离子的加入对受体M2(图2(b))和M4(图2(d))的UV-vis光谱无显著影响. 因此, 受体M1和M3对碘离子有选择性识别能力, 而受体M2和M4对阴离子无识别能力. 2.2.3受体的紫外滴定为了进一步考察受体对碘离子的结合能力, 我们做了受体M1和M3与碘离子作用的Job曲线(见图3(a)). 结果表明, 受体M1和M3分别与碘离子形成1︰1的络合物. 我们通过紫外滴定法测定了受体M1和M3分别结合碘离子的络合常数(K s), 根据最小二乘法非线性曲线拟合(见图3(b))[29], M1络合碘离子的K s为8.06×105, M3络合碘离子的K s为9.49×103. 由此可见, 虽然M1~M4都为结构相似的氨基硫脲衍生物, 但是它们对阴离子的识别能力有显著的不同: 受体M1和M3可选择性比色识别碘离子, 而受体M2和M4则不能; 另外, 受体M1对碘离子的结合能力显著的强于受体M3. 这些现象只能通过受体与阴离子相互作用的识别机理解释.中国科学 B 辑: 化学 2009年 第39卷 第4期361图3(a) 受体M1与碘离子作用的Job 曲线; (b) 碘离子对受体M1的紫外滴定, 在475 nm 处的曲线拟合2.3 识别机理为了研究受体与阴离子相互作用的识别机理, 我们做了阴离子对受体的核磁滴定. 以M3为例, 配制0.5 mL 2.5 mmol·L −1的M3的CD 3CN 溶液, 置于核磁管中, 首先做M3的氢谱, 然后向其中用微量进样器滴加四丁基碘化铵的CD 3CN 溶液, 采用累积进样法, 使客体阴离子浓度从主体的0.5倍逐次滴加到15倍, 每滴加一次充分摇匀后做一次氢谱. 结果如图4所示, 在受体M3的1H NMR 中, 由于M3分子中氨基硫脲基团的NH b 质子与酰基上的氧原子形成了如图5所示的六员环状的N-H b ···O 分子内氢键, N-H b 质子发生了很强的低场位移[30,31], 它与NH c质子出峰位置重叠, 出现在了12.02 ppm 处; 而NH a出现在9.77 ppm 处. 随着碘离子的加入, NH a 质子和NH c 质子产生了低场位移, 当碘离子浓度达到受体浓度的15倍时, NH a 质子和NH c 质子的出峰位置分别位移到了9.85和12.03 ppm. 这说明碘离子分别与NH a 质子和NH c 质子形成了如图5所示的N-H a ···I –和N-H c ···I –分子间氢键. 另外, 随着碘离子的加入, 12.02 ppm 处的质子峰的峰面积逐渐减小, 与此同时, 在9.06 ppm 处又出现了一个新的质子峰. 这说明当碘离子分别与NH a 和NH c 形成N-H a ···I –和N-H c ···I –分子间氢键后, 在这两个氢键的诱导下, 受体分子发生了图5所示的构型转化, 受体分子内的N-H b ···O 分子内氢键断裂, 导致N-H b质子向高场位移, 在9.06 ppm 处形成了新峰, 同时其在12.02 ppm 处的出峰消失, 导致12.02 ppm 处的峰面积减小. 这种构型转化导致受体分子的六员环状的分子内氢键断裂、分子的共轭效应减小、C=O 键的极性增强, 这导致受体的UV-vis 光谱发生蓝移, 475 nm 处的吸收峰显著降低而在350出现较强的新吸收峰, 从而使受体溶液褪色, 产生了比色识别的效果. 受体M2和M4的NH b 也形成了如图5所示的N-H b ···O 分子内氢键. 同时, 它们的NH a 的质子的出峰位置分别在10.44和10.61 ppm 处, 这与M1和M3的NH a 的出峰位置(9.46和9.77)相比发生了显著的低场偏移. 这说明M2和M4的NH a 与苯环邻硝基上的氧原子形成了如图5所示的N-H a ···O 分子内氢键. 这样, 碘离子无法和NH a 形成氢键, 从而导致受体M2和M4不能和碘离子通过形成分子间氢键而结合, 因此受体M2和M4不能识别碘离子. 另外, 受体图4 受体M3在CD 3CN 中的1H NMR 滴定图林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体362图5 受体与碘离子作用的可能机理M1结合碘离子的能力比M3强, 可能是由于M3中氨基硫脲上连接的苯环的空间位阻大于M1所连接的乙氧基, 这样, M1比M3更容易和碘离子结合, 所以M1结合碘离子的能力比M3强.从上述识别过程的探讨可知, 受体M1或M3选择性识别碘离子的先决条件是M1或M3的NH a和NH b先跟碘离子同时形成双重氢键. 这样, 才能使M1或M3的分子构型发生转变从而形成更牢固的三重分子间氢键. 同时, 由于分子构型变化导致了受体颜色的变化, 从而实现了对碘离子的比色识别[32]. 然而, M1或M3的NH a和NH b同时和一个氢键受体原子(或单原子阴离子)形成二重氢键的条件是氢键受体原子的半径必须足够大, 这样该氢键受体原子才能同时与NH a和NH b形成稳定的二重氢键. 否则, 若氢键受体原子的半径较小, 则该原子只能和NH a或NH b 中的一个质子形成单一的氢键, 这样, 就不会导致受体构型的变化, 从而不能产生比色识别的效果. 从构型上看, NH a和NH b这两个质子的距离比较大, 在常见的原子和单原子阴离子中, 碘离子的半径最大, 它的半径大小正好能满足与NH a和NH b形成上述二重氢键的条件. 因此, 受体M1或M3能选择性的识别碘离子. 另外, 普通的硫脲类受体很难识别碘离子[26,27], 可能因为硫脲的那两个NH质子距离较近, 和碘离子不匹配. 另外, 碘离子半径大, 电负性小, 若只和硫脲形成单重氢键, 则结合能力太弱. 所以, 普通硫脲只能识别醋酸根, 氟离子等碱性强的阴离子.2.4受体的识别效果和特点从上述识别机理可知, 受体M1或M3对碘离子的选择性识别是建立在受体构型与碘离子相匹配的基础之上的. 一般情况下, 要使受体与碘离子这种球形阴离子相匹配, 受体需要采用较复杂的环状或碗状或钳形构型. 比如Otto等报道的能结合碘离子的受体是一种环状的多肽[33]; Jang等报道的能选择性识别碘离子的荧光受体是一种基于苯并咪唑的三足碗状构型的受体[18]; Kang等报道的能选择性识别碘离子的荧光受体是一种基于咪唑阳离子的钳形受体[34]. 这些受体结构复杂, 比较难于合成. 而本文报道的受体M1和M3是一种结构简单的氨基硫脲, 这些化合物很容易合成. 虽然M1和M3的结构很简单, 但是它们对碘离子的选择性比色识别效果都很好, 而且结合能力也很强.3结论设计合成了能在乙腈溶液中选择性比色识别碘离子的氨基硫脲类受体M1和M3. 这两个受体对碘离子的选择性识别是建立在碘离子的半径与受体分子构型相匹配的基础上的. 受体分子通过其氨基硫脲基团上的三个NH质子与碘离子形成的三重氢键中国科学 B 辑: 化学 2009年 第39卷 第4期363选择性的结合碘离子; 在此过程中, 受体构型发生转变, 受体分子的共轭效应减小, 从而导致了受体溶液颜色变化, 产生了比色识别的效果. 总之, 我们设计合成并筛选出的受体M1和M3是一种易于合成制备, 且对碘离子选择性好, 结合能力强的受体, 具有较好的应用前景.致谢 本工作得到国家自然科学基金(批准号:20671077)资助, 特此致谢.参考文献1 滕卫平, 滕晓春. 碘与甲状腺疾病的研究进展. 中国实用内科杂志, 2006, 26(20): 1569—15732 Xie Z, Zhao J. Reverse flow injection spectrophotometric determination of iodate and iodide in table salt. Talanta, 2004, 63: 339—343 3 王琨. 碘缺乏与碘过量对甲状腺功能的影响及其调控机制的研究. 博士学位论文. 天津: 天津医科大学, 2007. 1—154 王健, 吴昊, 黄承志. 碘对金纳米棒的融合作用及其在四环素类抗菌素分析测定中的应用. 中国科学B 辑: 化学, 2008, 38(10): 929—9375 王宏社, 苗建英, 赵立芳. 碘作为催化剂在有机合成中的应用. 有机化学, 2005, 25(06): 615—6186 Singh A K, Mehtab S. Polymeric membrane sensors based on Cd(Ⅱ) Schiff base complexes for selective iodide determination in en-vironmental and medicinal samples. Talanta, 2008, 74: 806—8147 Caltagirone C, Gale P A. Anion receptor chemistry: highlights from 2007. Chem Soc Rev, 2009, 38(2): 520—5638 Martínez-Màñez R, Sacenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev, 2003, 103(11): 4419—44769Chen C-Y, Lin T-P, Chen C-K, Lin S-C, Tseng M-C, Wen Y-S, Sun S-S. New chromogenic and fluorescent probes for anion detection: formation of a [2+2] supramolecular complex on addition of fluoride with positive homotropic cooperativity. J Org Chem, 2008, 73(3): 900—911 10 Han F, Bao Y, Yang Z, Fyles T M, Zhao J, Peng X, Fan J. Wu Y, Sun S. Simple bisthiocarbonohydrazones as sensitive, selective, col-orimetric, and switch-on fluorescent chemosensors for fluoride anions. Chem Eur J, 2007, 13: 2880—289211 Maeda H, Haketa Y, Nakanishi T. Aryl-substituted C 3-bridged oligopyrroles as anion receptors for formation of supramolecular or-ganogels. J Am Chem Soc, 2007, 129(44): 13661—1367412 魏太保, 王军, 张有明. 偶氮水杨醛Schiff 碱在含水介质中对HSO 4−离子的识别. 中国科学B 辑: 化学, 2008, 38(10): 929—93713 Yoo J, Kim M-S, Hong S-J, Sessler J L, Lee C-H. Selective sensing of anions with calyx [4] pyrroles strapped with chromogenic dipyr-rolylquinoxalines. J Org Chem, 2009, 74 (3): 1065—106914 Yu X, Lin H, Cai Z, Lin H. Color responses of novel receptors for AcO − and a test paper for AcO − in pure aqueous solution. Tetra-hedron Lett, 2007, 48: 8615—861815 Shao J, Lin H, Yu M, Cai Z, Lin H. Study on acetate ion recognition and sensing in aqueous media using a novel and simple colori-metric sensor and its analytical application. Talanta, 2008, 75: 551—55516 Ekmekci Z, Yilmaz M D, Akkaya E U. A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org Lett, 2008, 10 (3): 461—46417 Rastegarzadeh S, Pourreza N, Saeedi I. An optical redox chemical sensor for determination of iodide. Talanta, 2009, 77: 1032—1036 18 Singh N, Jang D O. Benzimidazole-based tripodal receptor: Highly selective fluorescent chemosensor for iodide in aqueous solution. Org Lett, 2007, 9(10): 1991—199419 Zhang Y-M, Qin J-D, Lin Q, Wei T-B. Convenient synthesis and anion recognition properties of N -flurobenzoyl-N ′-phenylthioureas in water-containing media. J Fluorine Chem, 2006, 127: 1222—122720 Wei W, Zhang Y-M, Wei T-B. Synthesis and anion recognition of novel molecular tweezer receptor based on carbonyl thiosemicarba-zide for fluoride ions. Chin J Chem, 2008, 26(10): 1935—193821 Zhang Y-M, Wang D-Dn, Lin Q, Wei T-B. Synthesis and anion recognition properties of thiosemicarbazone based on molecular tweezers. Phosph, Sulfr Silicon Related Elem, 2008, 183: 44—5522Zhou Y-Q, Wei T-B, Zhang Y-M. Synthesis of thiosemicarbazone derivatives of benzo-15-crown-5 and their anion recognition prop-林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体364erties. Phosph, Sulfr Silicon Related Elem, 2008, 183: 1478—148823 张有明, 任海鲜, 魏太保. 间苯二甲醛缩双芳氨基硫脲的合成及阴离子识别研究. 高等学校化学学报, 2006, 27(11):2079—208324 魏太保, 王军, 张有明. 人工合成受体的阴离子识别研究(Ⅳ) 含有酚羟基化合物的设计合成及阴离子识别研究. 无机化学学报, 2006,22(12): 2212—221625 张有明, 徐维霞, 周艳青, 姚虹, 魏太保. 缩氨基硫脲衍生物受体的合成及阴离子识别研究. 化学学报, 2006, 64(1): 79—8426 吴芳英, 温珍昌, 江云宝. 硫脲类阴离子受体的研究进展. 化学进展, 2004, 16(5):776—78427 Liu W-X, Jiang Y-B, Intramolecular hydrogen bonding and anion binding of N-benzamido-N′-benzoylthioureas. J Org Chem, 2008,73: 1124—112728 Wei T B, Lin Q, Zhang Y-M, Wang H. Efficient and novel synthesis of N-aryl N′-ethoxycarbonylthiourea and arene-bisethoxycar-bonylthiourea derivatives catalyzed by TMEDA. Synth Commun, 2004, 34(12), 2205—221329 Valeur B, Pouget J, Bouson J, Kaschke M, Ernsting N P, Tuning of photoinduced energy transfer in a bichromophoric coumarin su-permolecule by cation binding. J Phys Chem, 1992, 96: 6545—654930 林奇, 魏太保, 姚虹, 张有明. N-乙氧羰基-N′-取代芳基硫脲晶体中的弱相互作用及超分子结构研究.化学学报, 2007, 65(02):159—16431 王积涛, 袁耀锋. 酰基硫脲分子内氢键与取代基效应的定量关系. 高等学校化学学报, 1995, 16(8): 1233—123632 Kovbasyuk L, Krämer R. Allosteric supramolecular receptors and catalysts. Chem Rev, 2004, 104:3161—318733 Rodriguez-Docampo Z, Pascu S I, Kubik S, Otto S. Noncovalent interactions within a synthetic receptor can reinforce guest binding.J Am Chem Soc, 2006, 128(34): 11206—1121034 Kim H, Kang J. Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetra-hedron Lett, 2005, 46: 5443—5445Highly selective colorimetric iodide receptors based onthiosemicarbazidesLIN Qi, WEI TaiBao, LI Yan, QIN XiaoPing, ZHANG YouMing*College of Chemistry and Chemical Engineering, Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, ChinaAbstract: A series of simple and highly selective colorimetric iodide receptors (M1—M4) bearing thiosemicarba-zide moiety as recognition site and nitro moiety as signal group were synthesized. In CH3CN solutions, sensors M1 and M3 showed colorimetric single selectivity for I–. When I– was added to their solutions, dramatic color changes from pink to colorlessness were observed. Yet other anions such as F–, Cl–, Br–, AcO–, HSO4–, H2PO4–and ClO4–couldn’t cause any distinct color change. The recognition mechanism of the receptor toward various anions was evaluated in CH3CN solution by UV-vis and 1H NMR. The receptors selectively recognize iodide through the three hydrogen bonds formed by the NH groups of the thiosemicarbazide moiety. When these hydrogen bonds formed, the conformation of the receptor changed, which led to the color changes of receptor. These kinds of receptors not only easy to synthesized but have high selectivity and affinity for iodide.Keywords: anion receptor, iodide anion, colorimetric recognition, thiosemicarbazides。

一种双腙受体的合成及阴离子识别性能研究

一种双腙受体的合成及阴离子识别性能研究

Ke y wo r d s : b i s h y d r a z o n e; s y n he t s i s ; a n i o n ec r o g n i t i o n
随着超分子化学 2 0多年的快速发展 , 对阴离子 识 别受 体的研究 随之 不断深 入 …。 由于 阴离子 在环 境、 生物、 医药、 催化都发挥着重要作用 。因此设 计并合 成出新型 比色 阴离子受体就尤为重要 。
第2 5卷第 9期
2 0 1 3年 9月
化 学 研 究 与 应 用
C h e mi c a l Re s e a r c h a n d Ap p l i c a t i o n
Vo 1 . 2 5, No . 9 S e p ., 2 0 1 3
文 章编 号 : 1 0 0 4 - 1 6 5 6 ( 2 0 1 3 ) 0 9 — 1 2 7 5 - 0 4
பைடு நூலகம்
LI U Ya n — h o n g, LI U Ge’
( C o l l e g e o f C h e m i s t r y a n d C h e m i c l a E n s i n e e i f n g , C h i f e n g U n i v e r s i t y , C h i f e n g 0 2 4 0 0 0, C h i n a ) A b s t r a c t : A b i s h y d r a z o n e ni a o n s e n s o r 1( 5 - m e t h y l — b i s s l a i c y l a l d e h y d e - 2 , 4 - n i t r o p h e n y l h y d r a z o n e ) , w a s d e s i g n e d nd a s y n t h e -

新型希夫碱型钳形人工受体的微波合成及其对中性分子的识别性能

新型希夫碱型钳形人工受体的微波合成及其对中性分子的识别性能
c ld fr 3 H2 N4 2 C 8 4, H .0 , N ac o C 4 6 0 : 7 .1 5 1
1 . 2;fu d C 7 . 0,H 5 0 07 on 8 1 . 9,N 0 7 。 1 . 5
( )对苯二 甲酰氯( ) 1 1 的合成
3: b 黄色晶体 , 产率 9 % , . .3 1 m P25℃ 一 3 26
s i h we a a一3 x ii d g o e ont n o e ta lc ls ut s o d t t s h 3 h e hbt o d rc g io n n u lmoeu e . e i r Ke wo d y r s:at ca rc po ;snh ss r f i e e tr y t ei;mirw v r dain;moe ua e on t n po et i l i co a ei a it r o lc lrrc g io rp r i y
( a一3 ,Shm ) 其 结 构 经 M ,I , 3 h ce e 1 , H N R R E I S和元素分析表征。并初步考察 了 3 3 S. M a一 h 对中性分子( 邻苯二胺 , 间苯二胺 , 对苯二胺和二 苯甲酮 ) 的识别性 能。结果表 明,a一 h对其具 3 3 有 良 的识别性能 好
收稿 日期: 020 - 21- 0 56
基金项 目: 国家外专局资助项 目(01 7 ; 21- ) 中央高校基本科研业务费专项优 秀团队及重大孵化项 目(1 Z T1 ) 3 1N Y I 5 - 0 作者简 介: 张嫦 (90 , , 16 一)女 汉族 , 四川广汉人 9 教授 , 主要从事有机合成 的研究 。 通信联 系人 : 赵志刚 , 教授 , 士生导师 , -a :z 32@y o.o .n 硕 Em i z 6 19 a ocr c l g h n

磺酰脲受体的合成及阴离子识别性能

磺酰脲受体的合成及阴离子识别性能
华 南 理 工 大 学 学 报 (自 然 科 学 版)
第4 1 卷 第 3期 2 0 1 3年 3月
J o u r na l o f So u t h Chi na Uni ve r s i t y o f Te c h n o l o g y
Vo 1 . 41 N O. 3 Ma r c h 201 3
仪( K B r 压片) , E l 本岛津公司生产 ; V a r i o E L I I I 元 素 分析 仪 , 德国 E l e m e n t a r 公 司生产 . 4 一 硝基 苯 异 氰 酸 酯 、 磺酰胺 、 四 正 丁 基 硫 酸 氢 铵、 四正丁 基 醋 酸 铵 和 四 正 丁 基 硝 酸 铵 , 均 为 分 析
离子后 受体 溶液颜 色的 变化 , 实现 了 阴 离子 的裸 眼检 测 , 其 中引入 F 一 变 为棕 黄 色, 引入 C H c o ;变为淡黄 色, 引入其 他 阴离子 ( 如N O ;、 B r 一 、 C 1 一 、 HS Q- ) 受体 溶 液颜 色则无 明显
的 变化 . 通 过 紫外 一可见 分光 光度 滴定 法确 定 了受体 与一 价 阴 离子 的结合 能 力 , 计 算 结果
( 1 . 华南理工 大学 化 学与化工学院 , 广东 广州 5 1 0 6 4 0 ; 2 . 南方医科大学 药学 院 , 广东 广州 5 :合成 了一 种新 型 的磺 酰脲 阴 离子 受体 双一 ( 4 一 硝基 苯基 ) 磺 酰脲 , 通过 观察 引入 阴
表 明, 磺酰脲基对 F 一 和C H c o ; 有较高的亲和力; J o b s 工作曲线表 明受体 与 F 一 形成摩 尔
比为 1 : 2的 配合 物 . 最后 通过 测 定 甲醇对 受体 分 子 和 F 配合 物 的 紫外吸 收 光谱 的影 响 ,

基于酚羟基和腙基的受体化合物及其制备和应用[发明专利]

基于酚羟基和腙基的受体化合物及其制备和应用[发明专利]

专利名称:基于酚羟基和腙基的受体化合物及其制备和应用专利类型:发明专利
发明人:张有明,秦霄萍,林奇,魏太保
申请号:CN200910117639.7
申请日:20091202
公开号:CN101723851A
公开日:
20100609
专利内容由知识产权出版社提供
摘要:设计合成了一系列基于酚羟基和腙基的阴离子受体分子。

利用紫外-可见吸收光谱及H NMR考察了其与F、Cl、Br、I、CHCOO、HPO等阴离子的作用。

结果表明,该类受体分子在DMSO溶液中能较好地比色识别F、CHCOO、HPO,其中受体C在含水介质中
(DMSO/HO,7∶3,V/V)能选择性比色识别CHCOO。

H NMR滴定实验研究了受体分子与阴离子之间的作用,结果表明受体分子与阴离子之间以氢键作用方式相结合。

申请人:西北师范大学
地址:730070 甘肃省兰州市安宁区安宁东路967号
国籍:CN
代理机构:兰州中科华西专利代理有限公司
代理人:张英荷
更多信息请下载全文后查看。

芝麻酚酰胺类衍生物的合成及抑菌活性

芝麻酚酰胺类衍生物的合成及抑菌活性

麻油香气的主要成分 和品质的稳定剂 . 具有很强 的 抗 氧化及 抑菌 活性 同时它 还是 重要 的药 物合 成 中
间体 . 用 于合成 除 虫菊脂 类农 药 的增 效剂 . 典型 产 品 如 胡椒 基 丁 醚 f 增 效 醚1, 还 可 用 于 生物 碱 和 香料 的
安捷伦 4 0 0 M H z 核磁共振波谱仪f 美 国安捷伦 公司1 ; Y R T 一 3熔点测定仪( 天津市新天光分析仪器 技术 有 限公 司) ; D H S 0 0 0 B l I 型 电热恒 温 培养箱 f 天 津市 泰斯 特仪 器 有 限公 司1 : S F — C J 一 1 A洁 净 工作 台 f 上海三发科学仪器有限公司1 ; Z F 一 2型三用紫外分 析仪 f 上海安 亭 电子仪 器厂1 : F F I R 一 6 5 0傅立 叶变换
2 . 1 化合物的结构表征 2 . 1 . 1理 化性 质 目标化合物的理化性质见表 1 .
化合物 产 率/ % 4 a , 4 a 2 4 a 3 4 a 4 4 b 1 4 b 2 4 b 3 4 b 4 4 c 1 7 4 . 8 7 3 . 6 7 5 . 3 7 6 . 2 7 4 . 1 7 4 . 6 7 2 . 3 7 5 . 6 7 4 . 2 熔点/  ̄ C 7 4 . 5 —7 5 . 9 6 9 . 9 —7 0 . 9 1 3 5 . O 一1 3 6 . 1 1 3 1 . 9 ~1 3 3 . 5 1 1 3 . 1 ~1 1 4 . 8 1 1 4 . 2 —1 1 5 . 9 1 2 3 . 3 —1 2 4 . 9 1 0 5 . 9 ~1 0 7 . 6 7 2 . 8 ~7 3 . 4 物态( 室温) 土黄色 土黄色 土黄色 土黄色 土黄 色 土黄色 土黄色 土黄色 土黄色

含酚羟基Schiff碱化合物的阴离子识别研究

含酚羟基Schiff碱化合物的阴离子识别研究
基铵盐溶液时, 主体 化合物的紫外吸收光谱的变
化。当不加阴离子时, 主体化合物 1、2、3的最大 吸收波长分别为: 355、333、310 nm。当加入 F2离 子时, 主体化合物的最大吸收峰均随 F2离子浓度
的增大而减小, 并且出现了一个新的吸收峰, 分别 在: 432、365、375 nm, 在此过程中可以明显地观察
图 2 受体分子 2与 F2的 Job曲线 F ig12 Job plot of 2 and F2 at a tota l concentration
of 2 @1025 m ol# L21
表 1 受体分子与 F2离子的配位常数及相关系数
Tab le 1 A ssoc iation contants and coore la tion
NMR ( DMSO2d6, 400, HMz) D: 12103 ( s, 1H, OH ),
11176( s, 1H, OH ), 11119 ( s, 1H, NH ), 8168 ( s,
1H, CH ), 61பைடு நூலகம்227190(m, 8H, ArH )。
3: 白 色 固 体, 产 率: 8413% ; m1p1 > 300e ;
第 20卷第 7期 2008年 7月
化 学研究与应用 Chem ica lR esea rch and App lication
Vo.l 20, No. 7 July, 2008
文章编号: 100421656( 2008) 0820858204
含酚羟基 Sch iff碱化合物的阴离子识别研究
魏太保, 王 军, 郭潇迪, 张有明*
识别位点的研究相对较少。作为研究超分子化合 物的合成、识别性能等工作的一部分 [ 7] , 我们设计

硫脲类化合物研究概述

硫脲类化合物研究概述
剂 。此 外 ,硫脲 类 化合物 在 除草剂 、植物 生长 调节 剂方面 的研究 也 比较 多,并取 得 了较好 的效果 。
2)应 用 于 医 药领 域 。硫 脲 类 化合 物 在 医 药 领 域也 表 现 出广 泛 的 生 物 活 性 ,如抗 结核 、抗 肿瘤 、抗
第3 期
翟智卫 硫 脲类 化合物研 究概述
必 要对 硫 脲 类化 合 物 以往 的研 究 状 况做 概 括介 绍 , 以方便 以后 的研 究 工 作者 快 速 了解 其 发展 进程 。下 面 就 从几 个方 面来 概述 硫脲 类 化合 物 的发 展情 况 。
1 硫脲类化合物 的分 类
之 所 以称 为硫 脲 类 化 合物 是 因为 其具 有硫 脲 的基 本结 构( 图1 示 1 如 所 。根 据 与其 基 本 结构相 连 基 团 的 不 同 ,可 以将硫 脲 类 化合 物 分 为 :硫脲 、酰基 硫脲 、氨基 硫脲 、缩 氨 基 硫脲 等 4 。其 中,硫 脲 、酰基 硫 类
第2 卷 第3 1 期 2I年9 0 1 月
洛阳理工学院学报( 然科学版) 自
J u n l f u y n n t u e f S in e n e h o0 y Na u a S in e d t n o r a o o a gI si t c c d T c n 1g ( t r I ce c i o ) L t o e a E i
催化 、橡 胶 防老 化 等领 域 。
1)应 用于农 药领 域 。硫 脲 类化 合 物 具有广 泛 的 生物活 性 ,如 杀 虫 、除草 、 杀菌 、植 物 生长 调节 等 , 从2 世纪6 年代 以来就 受到 了人 们 的高度 关注 。硫脲 类化 合物 托布 津和 甲基托 布津 早 在2 世 纪6 年代就 已 O 0 0 0

脲类受体对阴离子的结合、识别和分离

脲类受体对阴离子的结合、识别和分离

要 的作用 , 阴离子化学逐渐成为超分子化学的一个重要分支. 近年来 , 大量 阴离子受体被报道 , 中 其 多含有脲 、 酰胺 、 吲哚和吡咯等能提供 氢键 给予体 的功能基 团.由于脲基 团作 为氢键 给予体 , 可与
N , O 一 s 及 P ; 等含氧阴离子的 Y型结 0 C ;,0一 O一 合位点形成双重氢键(c m ) 从而使该类受体 S ee , h 1
值 ,能可逆 地 实现 从脲 基 团结 合 C O 转化 为 1 一 6片段 “ 获” 阳离 子 , HC O 8冠一 捕 铵 此过 程 中构象 发生 转
变.
— 员 兰 兰 N 莩 H ]
N I





sofr c pt s4 a he r t e e e or nd 5
c H C O > 0 > O- H 0 N ; 该受体与 F 的结合可使脲基 团脱质子 , O 一 H P 4 N 2> S 4> O . - 一 脱质子的受体溶
液可从 空 气 中夺取 C 晶形 成 [ uN]3・ C , ,实现对 C 的 吸收 . O结 B [ H O ] O
择性 , 体 8 受 c和 8 d与 H,o 的结合 过 程 中发生 了脱 质子 反应 , p; 转变 为 H O 一 P .
G n l gs 等 研究了含酰胺基 团的单脲受体 9 ~ c 变构效应” 与 c ,0 ) , O u n us n a o a 9 的“ . H c 【 H P 4及
荧光传感器是通过主体荧光光谱 的变化指示 主. 客体 问作用 的传感器.G nl gs una s n等 u o 叫报道了
引起 光致 电子 转移 ( E ) 发 的荧 光猝 灭 ,而 c 一 PT引 1 的加 入 可使荧 光增 强 .

含脲苯并咪唑锄类离子液体的合成及阴离子识别性能

含脲苯并咪唑锄类离子液体的合成及阴离子识别性能
D S . ,6 3 2 ,4 . 0,4 . 8 2 2 ,1 4 0 M O d ) :3 . 3 2 7 7 7 ,5 . 8 1. 6,14 1 ,16 9 ,1 14 ,1 1 7 ,13 4 , 1 . 3 2 . 7 3 . 4 3 . 8 4 . 0
19 0 , 7 .4 E I S m z c2 】 ; 5 .7 111 ; S— , / , 1 7 计算值 : 9 . , M H N 2 1 1 实验值 : 9 .. 2 11 12 2 化合 物 2的合 成 在 氮气保 护 下 , .. 在配 有 回流冷 凝管 和搅 拌器 的 10m 0 L两 口烧瓶 中加入 苯 并
完 ,回流 7 , 2h 冷却 至 室温 ,于一 8℃冷 冻 ,析 出 白色 固体 ,过滤 , 乙醚 洗涤 3次 后真 空 干燥 ,即得 1 用 到化 合物 1的氯盐 ( ・ 1 . 2g 产 率 6 % . 1 C )11 , 9 将 1 ・ 109 , m 1和 四氟 硼 酸银 (.4g 33m 1溶 于 3 L去离 子水 中 , C(. 8g 3m o) 06 , . mo) 0m 于室温 下避 光搅 拌 6h ,过 滤 ,除 去 白色 A C 沉 淀 ,将 滤 液 减 压 旋 蒸 后 加 入 3 L丙 酮 ,过 滤 ( 去 过 量 的 g1 0m 除 A B ,滤液减 压 旋蒸 , 空干 燥得 到 目标化 合物 1 10 , . o) 收率 9 % .m.P 1 g F) 真 (.3g 27mm ] , 1 .18~19 1

.....
....
...
.....
..

.....
... . .
... .
...

.... ..

硫脲类化合物合成方法研究进展

硫脲类化合物合成方法研究进展

2010年第30卷有机化学V ol. 30, 2010第2期, 173~180 Chinese Journal of Organic Chemistry No. 2, 173~180* E-mail: mjzhangtju@Received February 16, 2009; revised May 10, 2009; accepted July 7, 2009.国家自然科学基金(No. 20802049)资助项目.174有机化学V ol. 30, 2010硫代光气与伯胺缩合制备关键活性中间体异硫氰酸酯后再与胺迅速发生加成反应, 生成相应的硫脲类化合物, 如果是与仲胺反应得到的稳定中间体不是异硫氰酸酯而是二取代氨基硫代甲酰氯, 然后与胺类化合物发生取代反应, 得到目标产物. 例如: 2001年Dalluhn研究组[26]以硫代光气和二甲胺为原料在催化剂三乙胺存在下获得稳定中间体二甲氨基硫代甲酰氯(1), 然后用溶于碱性溶液中的双芳磺酰胺2作为亲核试剂与1发生亲核取代反应, 高收率地得到磺酰仲氮负离子取代Cl的产物双芳磺酰硫脲3 (Scheme 1).Scheme 1但硫代光气是一种剧毒的挥发性液体, 其生产、贮运和使用都不安全、不方便, 且反应中放出HCl气体, 对环境的危害较大. 因此, 一系列使用非硫代光气合成中间体异硫氰酸酯的绿色方法成为人们研究的重点, 其中主要包括从苯环上连接各种强吸电子基的芳(磺酰)伯胺制备相应的异硫氰酸酯的方法[27].非硫代光气法对于从芳(磺酰)胺制备芳(磺酰)异硫氰酸酯已很普遍, 但对于从杯芳胺合成杯芳异硫氰酸酯却未见文献报道. 所以, 尽管硫代光气有巨毒, 基于它极强的反应活性, 仍用于中间体杯芳异硫氰酸酯 4 (Scheme 2)的制备, 4再与胺类化合物发生加成反应获得杯芳硫脲5[28]. .2 以异硫氰酸酯和胺为原料的合成Neville等[29]以四异硫氰酸硅酯和胺为原料首次合成N-单-和N,N-二取代硫脲, 产率高达97%~100%. Neville法是用四氯化硅与硫氰酸铵制备四异硫氰酸硅酯, 再和胺作用后水解, 反应底物适用面宽, 产率高, 避免了硫代光气的使用, 该反应不足之处是使用的溶剂种类较多, 且四异硫氰酸硅酯毒性较大也不易制备.与四异硫氰酸硅酯相比, 异硫氰酸烷基或芳基酯与胺的反应活性以及由它们制备的产品用途远远超过毒性, 所以通过它们合成具有特殊用途且其它反应不易合成的硫脲类化合物, 具有一定的实践意义. 例如: 1994Scheme 2年, Scheerder研究组[30]用异硫氰酸苯酯与四氨基杯芳烃在氯仿溶剂中于室温条件下缩合, 合成可以选择性络合氯离子的中性配位体6 (Eq. 1). 2002年, 杨发福等[31]用过量异硫氰酸苯酯与1,3-二氨基杯[4]-四丁醚于室温条件无溶剂直接缩合, 生成可以选择性络合24H PO-离子的杯[4]-双硫脲.运用异硫氰酸酯法除了制备杯芳硫脲之外, 还可制备芳磺酰硫脲[32]及环硫脲(1-芳磺酰四氢咪唑-2-硫酮). 例如: 最近, Faidallah小组[33]用对取代吡唑苯磺酰胺与异硫氰酸酯为原料在无水碳酸钾存在下于丙酮中回流, 合成了具有降血糖等生物活性的磺酰硫脲类化合物, 关于磺酰环硫脲合成方法研究始于1980年, McFarland 等[34]用对甲苯磺酰异硫氰酸酯与氨基乙醇为底物, 以浓硫酸为催化剂在甲醇中发生分子内关环反应合成芳磺酰环硫脲结构. 之后, 很少有文献用其它反应报道此类结构. 直至2007年, Cutting研究组[35]用磺酰亚胺7与异硫氰酸酯取代的杂环酰亚胺8在手性配体催化下发生No. 2丁从文等:硫脲类化合物合成方法研究进展175对映选择性Mannich 反应合成了手性芳磺酰环硫脲9 (Eq. 2).以异硫氰酸酯和胺为起始原料合成硫脲类化合物的反应普遍在有毒且有挥发性的有机溶剂中进行, 很少于绿色溶剂里发生. 2007年, Xiao 研究组[36]将肉桂酰异硫氰酸酯、取代苯胺与离子液体四氟硼酸1-丁基-3-甲基咪唑盐([Bmim][BF 4])于室温下混合搅拌可合成一系列肉桂酰基硫脲, 产率高达98.3% (Eq. 3). 该方法的优点在于反应时间短(2~12 min), 易于操作, 后处理简单, 环境友好, 离子液体经简单处理后可循环使用至少九次.由于异氰酸酯不稳定, 不便于储存, 而且异硫氰酸酯的制备大都需要较长的反应时间, 生产也极不安全, 因此, 探索快速高效以及环境友好的合成方法具有一定的理论意义和实践价值.3 以硫氰酸盐、酰氯和胺为原料的合成以硫氰酸盐、酰氯和胺为原料可以在原位生成异硫氰酸酯, 不需分离直接和胺反应, 克服了传统的用过量光气与伯胺反应, 将过量的光气除去后得到异硫腈酸酯, 再与另一种伯胺反应合成不对称硫脲, 同时, 由于异硫腈酸酯有毒且相对较活泼, 该方法能够将两步反应连续进行.3.1 三组分直接回流的合成Sridevi 等[37]首次用硫氰酸铵、芳基甲酰氯与2-胺 基-苯并咪唑在无水丙酮中直接回流制备N -苯甲酰基- N I -(苯并咪唑-2-基)硫脲, 同时获得有价值的副产品N -(苯并咪唑-2-基)苯甲酰胺, 从而为绿色化学开辟了一条绿色通道. 2007年, 史达清研究组[38]用硫氰酸钾、取代苯甲酰氯与对硝基苯胺在无水丙酮中回流, 首次合成阴离子受体芳酰基硫脲. 此类方法存在的弊端在于, 回流时间长, 使用无水溶剂, 产率也不高.3.2 相转移催化剂参与下的合成Reeves 等[39]用硫氰酸钾水溶液与酰氯的苯溶液在室温下搅拌, 以四丁基溴化铵(TBAB)为相转移催化剂, 采用液-液相转移催化法, 制备酰基异硫氰酸酯后再与苯胺加热首次合成了N -酰基-N'-苯基-硫脲(Scheme 3).该反应缩短了反应时间, 产率高达82%, 底物酰氯适用面较宽, 但Reeves 法经过了异硫氰酸酯的分离纯化步骤, 并且使用的硫氰酸盐大大过量, 造成了原料不必要的浪费.Scheme 3采用操作更为简便的固-液相转移催化法, 以廉价无毒、来源丰富、稳定性高的聚乙烯醇-400 (PEG-400)为相转移催化剂, 进行固-液相转移催化法合成, 也是近年来研究较多的绿色合成方法之一[40]. 例如1992年,魏太保等[41]以5-芳基-2-呋喃甲酰氯与硫氰酸铵反应, 即得相应的酰基异硫氰酸酯, 可以不经分离直接与芳胺加成, 生成了5-芳基-2-呋喃甲酰基硫脲(Eq. 4). 2001年, Li 研究组[42]以5-(4-氯苯基)-2-呋喃甲酰氯、硫氰酸铵和芳基甲酰肼为原料, 在PEG-400催化下, 于室温条件下合成了1-芳基甲酰基-5-(4-氯苯基)-2-呋喃甲酰基-氨基硫脲.3.3 微波与相转移催化剂参与下的合成微波作为一种高频电磁波, 它能促进许多化学反应的进行, 具有反应速度快、效率高、节约能源、实现原子经济性合成和生态友好绿色合成等优点[43], 有不少文献已将微波应用于硫脲衍生物的合成中. 例如2003年, 李正等[44]利用微波辐射(MWI)技术快速高产率地合成含苯并呋喃甲酰基的氨基硫脲(Scheme 4), 该方法涉及到苯并呋喃甲酰氯、硫氰酸铵和芳甲酰肼等三组分在PEG-400的催化下于氯仿和DMF 溶剂中一锅法缩合,176有 机 化 学 V ol. 30, 2010其中介电常数较大的DMF 溶剂可有效改善微波吸收效率, 利于缩短反应时间和提高产率.Scheme 43.4 超声波与相转移催化剂参与下的合成与常规方法比较, 超声辐射法具有简便易控、能耗低、改善反应条件、加快反应速度、提高反应产率以及使一些用传统方法难以进行的化学反应得以实现的优点, 因此近年来引起化学工作者广泛关注[45]. 例如2006年, 薛思佳等[46]将超声辐射和相转移催化结合起来, 以PEG-400为固-液相转移催化剂, 以乙腈为溶剂, 在超声辐射(USI)下顺利得到酰基硫脲(Scheme 5), 反应中间体酰基异硫氰酸酯也无需隔离, 反应温度由90 ℃降低至60 ℃, 反应总收率由49%提高至70%, 反应时间缩短为3 h.Scheme 52008年, 孙燕荣等[47]报道了类似的工作, 并且和常规加热法进行了比较, 结果表明常规加热法合成目标产物需回流3 h 左右, 而采用超声波辐射法, 只需在60 ℃下超声波辐射约20 min, 反应时间仅是常规方法的11%, 产率比常规方法提高了7%~19%左右. 总之, 超声波辐射法是一个反应时间短、条件温和、产率高、副反应少并且应用面较宽的好方法. 3.5 水介质中相转移催化剂参与下的合成以上合成方法都需经中间体异硫氰酸酯的制备步骤, 并且整个合成需要在相对昂贵、有毒的有机溶剂中进行, 对环境存在着不可避免的污染.随着人们对人类生存环境的日益重视, 越来越多的化学家将合成研究的重点放在对环境无污染的绿色合成上, 绿色合成要求合成中采用无毒的溶剂、试剂或催化剂, 尤其对反应溶剂的选择更是绿色合成研究的重点, 其中水被认为是最理想的绿色溶剂. 例如2006年, 王喜存等[48]在氯化三乙基苄基铵(TEBA)存在下, 于水介质中一步合成N -芳基- N '-(2-苯并呋喃甲酰基)硫脲(11)和1-芳甲酰基-4-(2-苯并呋喃甲酰基)氨基硫脲(12) (Scheme 6), 产率高达72%~87%. 与以上相转移催化方法相比, 本法将多步反应合并为一步, 并且在反应过程中不使用有机溶剂, 避免了资源浪费和环境污染, 具有操作简单、反应条件温和和环境友好等特点. 用水作为有机合成反应的溶剂, 体现了绿色化学中溶剂绿色化的要求, 开辟了合成硫脲类化合物的绿色途径.Scheme 63.6 微波参与下无溶剂无催化剂的合成自从Gedye 等[49]报道了微波作为反应热源可促进有机反应以来, 微波技术的应用即成为有机反应研究的热点之一, 因此, 具有速度快、产率高、操作简单、环境友好等优点的微波促进下的无溶剂非均相有机反 应[50]被成功应用于硫脲衍生物的合成.例如, 2005年, Wang 等[51]在无溶剂和无催化剂条件下, 利用微波间歇加热合成1,4-二取代氨基硫脲衍生物13 (Scheme 7). 反应只需5 min, 产率高达82%~88%, 与以上直接回流和相转移催化方法比较, 该方法避免了有机溶剂的使用和原料的浪费, 为酰氨基硫脲类化合物的合成提供了一条绿色通道.Scheme 74 以二硫化碳和胺为原料的合成4.1 直接加热合成Allen 等[52]报道了用二硫化碳和乙二胺为原料直接No. 2丁从文等:硫脲类化合物合成方法研究进展177加热到一定温度合成环状硫脲(四氢咪唑-2-硫酮)的方法(Eq. 5). 该方法的优点在于产率高, 反应时间短, 避免使用催化剂. 具备这些优点的原因可能是五元环硫脲结构具有很大的稳定性, 一旦生成便以固体形式从反应混合液中很快析出.4.2 催化剂参与下的合成Allen 报道的上述方法除了存在反应体系中有H 2S 气体放出, 污染环境的缺点之外, 在同样的反应条件下, 对于合成其它非环硫脲类化合物还存在回流时间较长、产率很低的问题, 因此人们在催化剂方面作了许多研究, 以使全过程更加简洁高效、环境友好.1999年, Ballabeni 研究组[53]以二硫化碳和伯胺为底物, Zn-Al HT (500)作为催化剂, 在高压釜中进行反应, 首次无溶剂合成了1,3-二取代对称硫脲14 (Eq. 6), 当底物胺是乙二胺和邻苯二胺时, 可得到相应的杂环硫酮产物, 产率高达100%. Ballabeni 催化法操作简单, 反应条件温和, 反应时间较短(2 h), 产率很高(最高达到100%), 催化剂Zn-Al HT (500)可以循环使用, 应用范围广泛, 因此它是一种高效合成对称硫脲、环状硫脲特别是具有光活性硫脲类化合物的绿色方法. 但该反应仍存在一些不足: 底物胺适用面狭窄, 只适合一些活性较强的芳香族伯胺和脂肪族伯胺; 反应中使用的催化剂不易得到, 制备时涉及到高温回流、加热时间过长、需要小心控制等问题.近年来, 基于双氧水作为催化剂的低毒性、低污染、高活性、价廉易得以及对环境友好等优点[64], 倍受化学工作者普遍关注. 例如: 1997年, Li 研究组[54]采用双氧水作为催化剂脱去硫化氢改进了合成路线中关键中间体异硫氰酸酯的制备方法之后, 2000年, Sasaki 等[55]以取代间苄二胺 15 和二硫化碳为原料, 氢氧化钠和双氧水作为催化剂, 用四氢呋喃水溶液作为溶剂, 在氯仿高度稀释条件下得到大环双硫脲16 (Scheme 8), 它可以作为阴离子受体强烈选择性络合24H PO -和Ac -阴离子, 其络合阴离子的能力强于相应的非环状硫脲. 4.3 微波参与下的合成2004年, Sandin 等[56]以2-取代丙二胺17和二硫化Scheme 8碳为原料, 乙醇为溶剂和催化剂, 通过微波辐射方式, 在200 s 内完成了5-取代六氢嘧啶-2-硫酮(18)的合成(Eq. 7). 但是Sandin 微波辐射法, 存在着H 2S 气体从反应中放出污染环境的问题. 此外, 乙醇在该反应中作为溶剂和催化剂在微波辐射下可导致许多副产品生成, 特别是一硫代氨基甲酸乙酯, 相比之下, 廉价易得的无机碱 NaOH 或KOH 溶液作为催化剂的选择较为理想.5 以硫代羰基转移试剂与胺为原料的合成以硫代光气或异硫氰酸酯和伯胺、仲胺为原料合成对称和非对称硫脲已成为人们广泛采用的方法, 然而此类方法涉及到原料的巨毒性, 此外, 用硫代光气或二硫化碳为原料进行反应, 不可避免地放出HCl 或H 2S 气体污染环境. 一系列替代它们的诸如二硫氰三苯膦[57] (TPPT)、三硫代碳酸盐[58]、二硫代或单硫代秋兰姆[59]、苯胺基硫代羰基1,2,4-三唑[60]、活化的二硫代胺基甲酸盐[61]等硫代羰基转移试剂已经吸引了不少研究者目光.以上硫代羰基转移试剂法尽管避免了巨毒的硫代光气或异硫氰酸酯, 也解决了HCl 或H 2S 气体放出污染环境的问题, 从而给反应提供了安全性和环境友好性, 但它们遭受实际条件的限制, 涉及到苛刻的反应条件、无水溶剂的使用、繁琐的多步骤操作、不易得到的起始原料、反应缺乏普遍适用性、总体收率也很低.2000年, Mohanta 研究组[62]以1-(甲基二硫代羰基)咪唑(19)或其N -甲基盐20为硫代羰基转移试剂, 在回流的乙醇溶剂中与胺发生取代反应合成了对称硫脲 21 (Eq. 8)和非对称硫脲22 (Scheme 9), 当反应以乙二胺或178有 机 化 学 V ol. 30, 2010邻苯二胺和19或20为底物在乙醇中加热时, 可得到四氢咪唑-2-硫酮和苯并咪唑-2-硫酮, 产率高达96%.Scheme 9值得一提的是, 硫代羰基转移试剂19或20与仲胺 (N -甲基苯胺、吗啉)按1∶2物质的量比在乙醇中回流时, 没有获得相应的四取代对称硫脲21, 结果生成了意外产物二硫代胺基甲酸甲酯. 然而, 对于非对称硫脲22的合成方法, 底物不管是氨气还是伯胺和仲胺, 都具有一定的普遍适用性.另外, 此类硫代羰基转移试剂的结构类似于硫代光气, 是个高效、安全的硫代羰基转移试剂, 反应条件温和, 操作简单, 反应在无毒的乙醇溶剂中进行, 试剂种类少, 产率高, 这无疑是硫脲类化合物合成研究中的绿色化新进程.6 以取代硫脲与胺为原料的合成以上讨论了胺作为亲核试剂与硫代羰基转移试剂发生亲核取代反应合成N -取代硫脲, 胺作为亲核试剂还可以与N -取代硫脲发生亲核取代反应合成新型硫脲类化合物.1999年, Xian 课题组[63]以一系列烷基伯胺或仲胺作为亲核试剂与N -亚硝基-1,3-二甲基硫脲于室温下在乙腈中发生亲核取代反应, 以95%以上的高产率合成了一系列N -取代硫脲23 (Eq. 9). 与化合物23传统制备方 法[64]相比, 该方法不仅产率高,而且很容易进行.烷基伯胺或仲胺作为亲核试剂, 除了易与亚硝基硫脲发生亲核取代生成N -取代硫脲外, 还易与1,3-二芳基对称硫脲发生亲核取代生成N -取代硫脲, 例如, 1993年, Ramadas 等[65]用1,3-二苯基硫脲在少量三乙胺催化下, 于乙腈中回流, 被伯胺或仲胺亲核取代, 生成非对称硫脲24 (Eq. 10). 与传统的非对称硫脲[66]的制备方法相比较, Ramadas 法反应时间较短(1.5~3 h), 产率较高(70%~92%).作为亲核试剂的烷基伯胺或仲胺是手性胺时, 取代产物将是手性硫脲. 例如, 2008年, 王进家等[67]用手性胺取代1,3-二芳基对称硫脲, 成功地获得了手性硫脲 25 (Eq. 11). 此方法避免了传统方法[10]异硫氰酸酯的使用, 且具有反应简便、产率较高、后处理简单等优点.7 结语和展望硫脲类化合物在各行各业具有广泛的应用, 因此近年来一直都有关于此类化合物合成新方法的文献报道, 从中不难看出, 如何寻找温和高效的催化剂和合成路线将是今后的探索目标, 利用微波加热和超声辐射技术缩短反应时间和优化条件值得尝试. 此外对于磺酰(环)硫脲的新合成方法以及硫脲类化合物的不对称合成研究均较少, 本文课题组正朝这方面开展更加深入的研究, 以经无机碱KOH 水溶液处理的磺酰胺和胺、二硫化碳为原料, 在室温下, 磺酰铵盐(RSO 2NHK)作为亲核试剂在水中与胺和二硫化碳的加合物发生亲核取代反应合成磺酰硫脲(Eq. 12), 底物是N -单磺酰二胺与二硫化碳时, 可发生分子内关环反应生成磺酰环硫脲(Eq. 13). 与以上报道的方法相比, 我们提出的方法全部在水相中进行, 且反应中所用的二硫化碳、KOH 价格均不高, 条件温和, 步骤简单, 具有潜在的应用前景.No. 2 丁从文等:硫脲类化合物合成方法研究进展179References1 Xue, S.-J.; Duan, L.-P.; Ke, S.-Y.; Zhu, J.-M. Chin. J.Struct. Chem. 2004, 23, 441 (in Chinese).(薛思佳, 段李平, 柯少勇, 朱剑明, 结构化学, 2004, 23,441. )2 Bessard, Y.; Crettaz, R. Tetrahedron2000, 56, 4739.3 Sriram, D.; Yogeeswari, P.; Madhu, K. Bioorg. Med. Chem.Lett. 2006, 16, 876.4 Faidallah, H. M.; Al-Saadi, M. S.; Rostom, S. A. F.; Fahmy,H. T. Y. Med. Chem. Res. 2007, 16, 300.5 Venkatachalam, T. K.; Mao, C.; Uckum, F. M. Bioorg.Med. Chem. 2004, 12, 4275.6 Jurasek, A.; Safar, P.; Zvalk, V. Chem. Pap. 1987, 41, 693.7 (a) Wazeer, M. I. M.; Isab, A. A.; Fettouhi, M. Polyhedron2007, 26, 1725.(b) Fettouhi, M.; Wazeer, M. I. M.; Isab, A. A. J. Coord.Chem.2007, 60, 369.8 Linton, B. R.; Goodman, M. S.; Hamilton, A. D. Chem. Eur.J. 2000, 6, 2449.9 Hayashita, T.; Onodera, T.; Kato, R.; Nishizawa, S.;Teramae, N. Chem. Commun. 2000, 755.10 (a) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y.Org. Lett. 2004, 6, 625.(b) Jiang, L.; Zheng, H. T.; Liu, T. Y.; Yue, L.; Chen, Y. C.Tetrahedron2007, 63, 5123.11 Makhsumov, A. G.; Safaev, A. S.; Abidova, S. V. KatalPererab. Uglevodordn. Syrya1968, 2, 101 [Chem. Abstr.1969, 71, 101668v].12 Alder, A. EP307361, 1989[Chem. Abstr. 1989, 111,173788b].13 De Deyn, P.; Mareseau, B.; Quneshi, I. A.; Mori, A. Gua-nidino Compounds in Biology and Medicine, Vol. 2, John Libbey & Co. Limited, London, 1997.14 Wang, X. C.; Song, A. Y.; Zhu, J. H.; Yang, Z.; Zhang, Z.Synth. Commun. 2007, 37, 1627.15 Griffin, T. S.; Woods, T. S.; Klayman, D. L. In Advances inHeterocyclic Chemistry, Vol. 18, Eds.: Katritzky, A. R.;Boulton, A. J., 1975, p. 99 and references therein.16 Takeuchi, N.; Kasama, T.; Ikeda, R.; Shimizu, K.; Hatake-yama, K. Chem. Pharm. Bull. 1984, 32, 2249.17 Nishizawa, S.; Cui, Y. Y.; Minagawa, M.; Morita, K.; Kato,Y.; Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc.,Perkin Trans. 22002, 866. 18 Kato, R.; Cui, Y. Y.; Nishizawa, S.; Yokobori, T.; Teramae,N. Tetrahedron Lett. 2004, 45, 4273.19 Li, J. Z.; Zhang, Z. F.; Fan, E. K. Tetrahedron Lett.2004,45, 1267.20 Sun, X.-H.; Tao, Y.; Liu, Y.-F.; Jia, Y.-Q.; Chen, B.; Yang,J.-W. Chin. J. Org. Chem. 2008, 28, 155 (in Chinese).(孙晓红, 陶燕, 刘源发, 贾婴琦, 陈邦, 杨建武, 有机化学, 2008, 28, 155.)21 Wilcox, C. S.; Kim, E.; Romano, D.; Kuo, L. H.; Burt, A.L.; Curran, D. P. Tetrahedron 1995, 51, 621.22 (a) Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt,D. N. J. Org. Chem. 1994, 59, 7815.(b) Raposo, C.; Almaraz, M.; Martın, M.; Weinrich, V.;Mussons, M. L.; Alcazar, V.; Caballero, M. C.; Moran, J. R.Chem. Lett. 1995, 759.23 Tobe, Y.; Sasaki, S.; Hirose, K.; Koichiro, N. TetrahedronLett. 1997, 38, 4791.24 Schroeder, D. C. Chem. Rev. 1955, 55, 18125 Beecham Group Ltd. BE 819436, 1975 [Chem. Abstr. 1977,87, 201318e].26 Dalluhn, J.; Proehl, H. H.; Moers, O. Z. Naturforsch., B2001, 56, 1188.27 (a) Du, X.-H.; Xu, X.-S.; Fu, Y.-F.; Lou, Y.-L.; Xu, Z.-Y.Agrochemicals2004, 43, 78 (in Chinese).(杜晓华, 许响生, 傅幼锋, 楼泳淋, 徐振元, 农药, 2004, 43, 78.)(b) Kou, J.-P.; Luo, X.-Y.; Qin, C.-Y., Gao, J.-J.; Li, J.-Z.Chem. Reag.2009, 31, 67 (in Chinese)(寇景平, 罗旭阳, 秦翠英, 高俊杰, 李继贞, 化学试剂, 2009, 31, 67.)28 Chrisstoffels, L. A. J.; Jong, F.; Reinhoudt, D. N.; Sivelli,S.; Gazzola, L.; Casnati, A.; Ungaro, R. J. Am. Chem. Soc.1999, 121, 10142.29 Neville, R. G.; McGee, J. J. Can. J. Chem.1963, 41, 2123.30 Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt, D.N. J. Org. Chem. 1994, 59, 7815.31 Yang, F.-F.; Yu, T.-X.; Yang, X.-J. Chin. J. Org. Chem.2002, 22, 1040 (in Chinese).(杨发福, 余天祥, 杨先金, 有机化学, 2002, 22, 1040.)32 Kurzer, F. Chem. Rev. 1952, 50, 1.33 Faidallah, H. M.; Albar, H. A.; Makki, M. S. I.; Sharshira,E. M. Phosphorus, Sulfur Silicon Relat. Elem.2002, 177,685.34 McFarland, J. W.; Kozel, T. H.; Stuhlmacher, K. R.; Cheva-lier, T. S. J. Heterocycl. Chem. 1980, 17, 273.35 Cutting, G. A.; Stainforth, N. E.; John, M. P.; Kociok-Kohn,G.; Willis, M. C. J. Am. Chem. Soc. 2007, 129, 10632.36 Xiao, M. L.; Chen, F. H.; Chen, Z. J.; Guo, B. S.; Lü, X. H.;Tang, W. M. Chin. Chem. Lett.2007, 18, 258.37 Sridevi, G.; Rao, J. P.; Reddy, K. K. Synth. Commun. 1989,19, 965.38 Shi, D.-Q.; Wang, H.-Y.; Yang, F., Li, X.-Y. Acta Chim.Sinica2007, 65, 1713 (in Chinese).(史达清, 王海营, 杨芳, 李小跃, 化学学报, 2007, 65,180有机化学V ol. 30, 20101713.)39 Reeves, W. P.; Simmons, J. A.; Rudis, J. A. Synth. Com-mun. 1981, 11, 781.40 Gil-Molto, J.; Karlstrom, S.; Najera, C. Tetrahedron2005,61, 12168.41 Wei, T.-B.; Chen, J.-C.; Wang, X.-C. Chem. J. Chin. Univ.1992, 9, 1217 (in Chinese).(魏太保, 陈继畴, 王秀春, 高等学校化学学报, 1992, 9, 1217.)42 Li, Z.; Wang, X. C.; Da, Y. X.; Chen, J. C. Synth. Commun.2001, 31, 1433.43 (a)Bose, A. K.; Manhas, M. S.; Ganguly, S. N.; Sharma, A.H.; Banik, B. K. Synthesis2002, 1578.(b) Ii, Z.; Wang, X. C. Synth. Commun. 2002, 32, 3087.44 Li, Z.; Li, Z.-J.; Wang, X.-C. Chin. J. Org. Chem. 2003, 23,822 (in Chinese).(李正, 权正军, 王喜存, 有机化学, 2003, 23, 822.)45 (a) Jia, Z.-X.; Li, Y.-R.; Liu, C.-J. Chin.J. Org. Chem.2005, 25, 1450 (in Chinese).(贾兆祥, 李燕萍, 刘晨江, 有机化学, 2005, 25, 1450.)(b) Zhang, X. L.; Li, Y. P.; Liu, C. J.; Wang, J. D. J. Mol.Catal. A: Chem. 2006, 253, 207.46 Xue, S.-J.; Guo, Y.-L.; Li, J.-Z. Chin. J. Appl.Chem. 2006,12, 1381 (in Chinese).(薛思佳, 郭彦玲, 李景智, 应用化学, 2006, 12, 1381.)47 Sun, Y.-R.; Li, Y.-P.; Liu, C.-J.; Wang, J.-D. Chin. J. Org.Chem. 2008, 28, 151 (in Chinese).(孙燕荣, 李燕萍, 刘晨江, 王吉德, 有机化学, 2008, 28, 151.)48 Wang, X.-C.; Zhang, Z.; Quan, Z.-J.; Wang, M.-G.; Wang,F.; Li, Z.; Yang, C.-Y. Chin. J. Org. Chem. 2006, 26, 967(in Chinese).(王喜存, 张彰, 权正军, 王满刚, 王芳, 李正, 杨春燕, 有机化学, 2006, 26, 967.)49 Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.;Laberge, L.; Rousell, R. Tetrahedron Lett. 1986, 27, 279.50 (a) Caddick, S. Tetrahedron1995, 51, 10403.(b) Galema, S. A. Chem. Soc. Rev. 1977, 26, 233. 51 Wang, X. C.; Quan, Z. J.; Li, Z. J.Chem. Res., Synop. 2005,71.52 Allen, C. F. H.; Edens, C. O.; VanAllan, J. Organic Synthe-ses, Vol. 3, Wiley, New York, 1955, p. 394.53 Ballabeni, M.; Ballini, R.; Bigi, F.; Maggi, R.; Parrini, M.;Predieri, G.; Sartori, G. J. Org. Chem. 1999, 64, 1029.54 Li, G.; Tajima, H.; Ohtani, T. J. Org. Chem. 1997, 62, 4539.55 Sasaki, S. I.; Mizuno, M.; Naemura, K.; Tobe, Y. J. Org.Chem. 2000, 65, 275.56 Sandin, H.; Swanstein, M. L.; Wellner, E. J. Org. Chem.2004, 69, 1571.57 (a) Tamura, Y.; Adachi, M.; Kawasaki, T.; Kita, Y. Tetra-hedron Lett. 1978, 1753.(b) Tamura, Y.; Kawasaki, T.; Tanio, M.; Kita, Y. Synthesis1979, 120.(c) Tamura, Y.; Kawasaki, T.; Adachi, M.; Kita, Y. Chem.Pharm. Bull. 1979, 27, 1636.58 Takikawa, Y.; Inoue, N.; Sato, R.; Yakizawa, S. Chem. Lett.1982, 641.59 Ramadas, K.; Srinivasan, N. Synth. Commun. 1995, 25,3381.60 Larsen, C.; Steliou, K.; Harpp, D. N. J. Org. Chem. 1978,43, 337.61 Sugimoto, H.; Makino, I.; Hirai, K. J. Org. Chem. 1988, 53,2263.62 Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H.Tetrahedron2000, 56, 629.63 Xian, M.; Zhu, X. Q.; Li, Q.; Cheng, J. P. Tetrahedron Lett.1999, 40, 1957.64 Okawata, T.; Nakayama, K.; Furukawa, M. Chem. Pharm.Bull. 1983, 31, 507.65 Ramadas, K.; Srinivasan, N.; Janarthanan, N. TetrahedronLett. 1993, 34, 6447.66 Chatterjee, A.; Das, B.; Chaudhury, A. N.; Kirtaniya, D. S.Indian J. Chem. 1980, 19B, 163.67 Wang, J.-J.; Shen, Z.-X.; Zhang, Y.-W. Chin. J. Org. Chem.2008, 28, 1222 (in Chinese).(王进家, 沈宗旋, 张雅文, 有机化学, 2008, 28, 1222.)(Y0902165 Zhao, X.)。

新型脱氧胆酸钳形阴离子受体的设计合成及其对阴离子的识别性能研究

新型脱氧胆酸钳形阴离子受体的设计合成及其对阴离子的识别性能研究

基金项 目: 四川省应用基础研究项 目(4 Y 2 - 0 - 8 oJO9 03 0 ) 联 系人简介 : 赵志剐( 9 3) 男 , 16 . , 博士 , 教授 , 方向 : 研究 有机合成 和生物有机化学 。E a : z 3 2 @y o.o ・n m i z 6 19 a o tm c l g h
点 测定 仪 , 温度 计未 经校 正 ; 旋光 仪 : Z2 WZ -B型 自 动 旋光 仪 。 所 用试 剂 均 为 化 学 纯 或 分 析 纯 , 水 二 氯 甲 无 烷 由二 氯 甲烷 加 C H a 回 流 数 天 后 , 应 前 新 蒸 反
合物之一。它主要通过氢键与阴离子相互作用而 使 用 。 达 到识别 的 目的。文 献报 道 了多 种含 这 种 识别 基 12 中 间体 的 合成 . 团 的阴离 子 人 工 受 体 。为 了 达 到 具 有 强 的 识 12 1 中 间体 3 引 . . .1 o 二 羟 基-12 一 烷 酸 甲 2r 一 5- 胆 3 4 别作用和优 良的识别选择性 , 人工受体 中的脲基 酯() 2 的合成 通常是连接在刚性 的骨架上 的。胆 甾因其具有刚 在 2 0mL圆底烧瓶 中加入 50g 00 3mo) 5 . ( .1 1 性 的 凹面结 构 及 固有 的 不 对 称 性 , 构 筑 分 子 钳 脱 氧胆 酸 ( ) 10mL元 水 甲醇 。在 冰 浴 冷 却 下 是 1 ,0 人工受体 的理想结构单元 。本文利用脱 氧胆酸为 缓 慢滴加 3m L新蒸的乙酰氯 , 心震荡 , 小 然后静 置过夜。加入冰水至浑浊, 静置 3 i, 0mn 使其充分 隔离基 , 首次设计合成 了两种新 的钳形阴离子人 工 受体 5 a与 5 ( Shm )并 利用 紫外 光谱考 结晶, h 见 ce e1 , 然后加入大量水 , 使其充分沉淀析出 , 抽滤 , 察 了其对 阴离 子 的 识别 性 能 。结 果 表 明 , 类 受 干燥 , 这 柱层 析 后 ( 固定 相 用 硅 胶 H, 脱 剂 体 积 之 洗 体 对 阴离 子具 有优 良的选择性 识别 性 能 。 比为 : H I:C 3 O H : H3 H = 7 :0 1 , C C3 H C C 3 C O 02 :) 产 品经 乙 醚 一 油醚重 结 晶 , 白色 晶体 4 8g 产 石 得 . , 率 9 % , . . 4~ 6c , ] + 4 7 c . 7 3 m P 7 7 = [ 4 . ( 4 , I 0 1 实验 部 分

离子识别受体的合成及应用研究

离子识别受体的合成及应用研究

离子识别受体的合成及应用研究摘要:本文主要通过实验分析对于三种缩氨基硫脲衍生物受体分子的合成情况,以及阴离子作用识别等进行分析论述,并对于离子识别受体在实际中的研究应用情况进行分析论述,以提高离子识别受体的合成技术方法水平,扩大离子识别受体在实际中的推广应用,促进现代生物科学技术的研究发展。

关键词:离子识别受体缩氨基硫脲合成阴离子识别应用研究阴离子在生物体中的存在现象比较广泛,并且在生物医学以及环境科学、催化领域的研究发展中具有重要作用和意义。

因此,在实际的生物科学技术领域以及化学研究领域中,对于离子识别受体的合成设计实现,尤其受到关注和重视。

本文主要结合离子识别受体在实际中的合成应用与研究情况,通过实验操作对于三种缩氨基硫脲衍生物受体分子的合成进行分析论述。

一、离子识别受体的合成应用与研究概述在化学研究领域中,主客体之间分离子之间的相互作用以及识别关系,是当前研究分析与关注的重点内容之一。

在化学研究领域中,分子的相互识别关系就是指分子间的主体在对于客体的选择性组合作用下形成某种特定功能作用的过程,分子识别是进行更高级分子结构合成与研究应用的重要基础部分。

阴离子是生物代谢过程中重要作用离子,对于生物体的代谢完成实现有着重要的作用,并且在临床医学以及环境监测、生物代谢研究领域有着重要的潜在应用价值,进行具有阴离子识别功能作用的受体合成分析研究,也是当前科学研究领域中需要进行分析研究的重点内容之一。

尤其是近年来,随着生物科学以及其它研究技术的不断发展进步,在进行阴离子受体化合物的合成以及应用研究中,库仑作用、阴离子偶极作用、氢键作用等作用方式,都在阴离子受体化合物的合成设计与应用研究中有应用实现。

此外,阴离子受体合成在阴离子传感器以及膜传输载体、模拟酶催化合成等领域中也实现越来越广泛的应用。

在实际的阴离子受体合成应用中,脲以及硫脲、酰胺等基因分子,对于阴离子受体具有较强的氢键键合作用,在阴离子受体合成设计中具有相对比较广泛的合成应用实现。

含酚羟基Schiff碱化合物的阴离子识别研究

含酚羟基Schiff碱化合物的阴离子识别研究


S h me l sr c ur i h t c e t u t e o os
A i n一4 3紫外 一可 见吸收 光谱仪 ( m 石 gl t 5 e 8 1c 英 比色池 )P - 0 H 型元 素分 析 仪 ;TR型 ;E2 0C N 4 FI 红外 光 谱 仪 ( B 压 片 ) M ru ls 0 vr n Kr ; ec r pu - 0,ai T 4 a 型核 磁共振 仪 , M T S为 内标 。X4数字 显示 显微 熔 - 点仪( 温度计 未 校正 ) 。
89 5
2: 黄 色 晶体 , 率 :6 7 ; . .9 — 8c 淡 产 8 . % m P 2 72 。 9
( i 2 52 0C); I (KB ,c 1 6 7 o t R r m。):v 7 2 (一 34 O .4 0(~C H) 3 5 ONH 一) 1 1 , 6 6(一CH =N 一); H ‘ N MR( MS d 4 0, D O— .0 HMz )8: 2 0 s 1 OH) 1 . 3( . H, . 1 . 6( , OH), 1 1 s 1 NH) 8 6 s 17 s 1 H, l . 9( , H. , . 8( , 1 CH) 6 9 —. 0 m .H, H) H, . . 27 9 ( 8 Ar 。
1 红 棕 色 针 状 晶 体 , 率 : 84 ; P 10 : 产 7 . % m. . 9 —
1 1 (i 9 1 16 17 ) I c ) : 7 2(一 o C t 8 —8 ℃ ; R( m 3 4
0 , 6 0(一C =N 一) MR( M O d , H) 1 3 H ;H N D S —6 4 0, M ) : 3 7 s 1 O , . 3( , H, 0 H z 1. 8( , H, H) 9 7 s l O ,. 9 S l C ,. 67 6 ( 8 A H) H) 8 9 ( ,H, H) 6 8 -. 3 m,H, r 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[ 摘 要] 利用简便 的方法合成 3 种新型的含硫脲及酚羟基的阴离子分子钳受体 , 利用紫外一 可见吸收光谱考察 了其对 F , l ,r ,一 C 3 O 一 H O 一 H P 4 和 N 3 8种 阴离子 一 c 一 B 一 I , H C 0 , S 4 , 2O 一 O—
的识 别作 用。 当加 入 F一 C 。 O , O 一 , , H C O一 H P 时 溶液 颜 色 由淡黄 色 变成橙 黄 色, 分子 吸 收光
2 1 年 3月 01
陕西理工学 院学报 ( 自然科 学版 )
Junl f h ax U vm  ̄o eh o g N trl c n eE io ) ora o ani m e i f cnl y( aua Si c dt n S T o e i
Sp.0 1 e t2 1 V 12 No 1 0. 7 .
四丁基卤化铵( 南京天尊泽众化学有限公司) 。四丁基醋酸铵及其它四丁基铵盐 由质量分数 2 % 5 的四丁基氢氧化铵水溶液和相应的酸 中和而成 , 产物在 PO 干燥器内干燥 。所用阴离子均为其四丁基 铵盐。溶剂均为二甲基亚砜( 分析纯) 。其余均为分析纯试剂。 12 受体 L , 和 L 的合成 、 . 3 表征与结构
体, 并通过紫外一 可见吸收光谱 的研究提出了受体分子与阴离子之间可能的结合模式。
1 实 验 部 分
11 仪器 与试 剂 .
A in 85 get 4 3紫外- l 一 可见吸收光谱仪( m石英 比色池) P - 0 H 1c ;E2 0C N型元素分析仪 ; 4 红外用 D西. i1 a T - 0 bF S 00型红外光谱仪( B 压片) X4数字显示显微熔点仪( 3 Kr ;- 温度计未校正 ) 。

作者简介 : 庞海霞 (96 )女 , 17一 , 陕西省宝鸡 市人 , 陕西理工学 院助教 , , 研究 方向为 阴离子识别 硕士 主要
陕西理工学 院学报 ( 自然科学版 )
第 2 卷 7
o=
c: 。
:。
sd =

CS , =
№ 2 N
s《 =

- s

客体 间形成 1 1的络 合 物 。 :
[ 关

词 ] 酰基硫 脲 ; 合成 ; 阴 离子识 别
[ 中图分类号] 0 3 . 634
[ 文献标识码 ] A
近年来 , 拓展的各种 阴离子受体的新模型中, 分子钳不仅在结构上具有天然受体 的空腔 , 易于将穴 内功能基汇聚于受体与底物结合 的活性部位上 , 有效实现主. 客体形状、 大小匹配和官能团互补 , 而且可 根据需要设计成不同大小 、 同种类的官能化受体 , 不 对多类客体显示 良好 的识别性 能n ] .。众所周知在 3 许多氢键受体中, 硫脲类化合物 已成为中性阴离子受体发展的焦点 . , 5 而分子钳类的硫脲受体 比线形 】 单硫脲受体具有更强的络合能力 。另外羟基作为电中性阴离子受体 的研究 日益受到人们 的重视[ 】 6, I 7
谱 也发 生显 著 变化 , 而加 入其 它 阴 离子 则 无 明显 变化 ,从 而 实现 对 这 3种 阴 离子 的选择 性 识

别。结 果显 示含 酚羟 基 间苯二 甲酰基硫 脲 钳形 受体 除含 有 4个 酸 性较 强的硫 脲 NH 质子 , — 还 多 了两个 易于和 阴 离子形 成 氢键 的 酚羟基 , 因而使 得 其 与 阴 离子 的 络 合 能 力 大 大增 强。且 主
( C= O) 19 12 ( ,5 9,5 4 C= C) 1 6 ( , 2 5 C= S 。 )
L: 2白色 晶体 , 率 :2 3 ;IP 20~2 2 , ( ) = 5 .8 (0 3 % ), ( 产 9 . % I. .2 T 2℃ C 0 3 % 5 .2 H) = 3 0 % .7 ( .0 ) W ( 3 1% , N) =1. 2 % ( 6 0 % ) I ( B )v 47( — H) 6 5 C= O) 16 ,19 60 1. 9 ;R K r :32 N ,16 ( ,59 45
将 0 3t l . o 间苯二甲酸置于 5 0m o 0 L圆底烧瓶中, 加入过量 S C2加入少许 D F 在 8 ℃左右加热 O1 , M , O
回流直至不产生 H 1 C 气体 , 蒸馏出过量的 S C: O 1回收 , 将烧瓶 中剩余物用石油醚重结 晶, 烘干得 中间体
收稿日期: 1 1 0 2 1 - O 1 基金项 目: 陕西理工学院科研基金资助项 目(L K 1- ) SG Y 0 5 。 0
第 2 卷第 3 7 期
[ 文章编号]6 3 24 (0 1 0 07 0 17 — 9 4 2 1 )3— 07— 5
含 酚 羟 基 问苯 二 甲酰 基 硫 脲 钳 形 受体 的合成及 阴离子识别研 究
庞海 霞 张有 明2 魏 太保2 , ,
(. 1 陕西理 工学院 化学与环境工程学院 , 陕西 汉 中 7 3 0 ; 2 0 1 2 .西北师范大学 化学化工 学院 甘肃省高分子材料重点实验室 , 甘肃 兰州 7 o7 ) 3 o 0
大量的文献研究表 明。酸性较强的酚羟基作为 良好 的氢键供体可识别形状各异 的阴离子 , 已经应用于 各种类型的阴离子识别受体的设计与合成之中。因此作为我们研究硫脲及超分子化合物的合成、 识别 性能等工作的一部分 ¨, 我们利用简便的方法合成 了 3种新 型的含硫脲及 酚羟基 的阴离子分子钳受



图 1 受体 L ,2 L 和 的 结 构 示 意 图
L: 1 淡黄色晶体 , 产率 :95 ;n P25— 0 % ; 8 .% I .0 27 元素分析 : ( ) =4 .8 4 .5 . c 74 %(74 %), ( H)

29 .0% ( . 8 ) ( 2 8% , N) = 1 . 0% ( 4 9 % ) I ( B )v 3 3 ( — H) 3 3 ( — H) 6 0 51 1 . 3 ;R K r :7 5 O ,2 8 N ,18
相关文档
最新文档