工科数学分析第二章讲义
2020学年高中数学第2章推理与证明章末复习课讲义新人教B版选修2-2(2021-2022学年)
第2章推理与证明合情推理2.类比推理的特点及一般步骤【例1】观察式子:1+错误!<错误!,1+错误!+错误!<错误!未定义书签。
,1+错误!+错误!未定义书签。
+错误!〈错误!,……,由此可归纳出的式子为( )A.1+错误!+错误!未定义书签。
+…+错误!〈错误!未定义书签。
B.1+错误!未定义书签。
+错误!未定义书签。
+…+错误!<错误!未定义书签。
C.1+错误!未定义书签。
+错误!未定义书签。
+…+错误!未定义书签。
<错误!未定义书签。
ﻬD.1+错误!未定义书签。
+132+…+错误!〈错误!未定义书签。
(2)两点等分单位圆时,有相应正确关系为sinα+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sinα+sin错误!未定义书签。
+sin错误!=0,由此可以推知,四点等分单位圆时的相应正确关系为__________.[思路探究] (1)观察各式特点,找准相关点,归纳即得.(2)观察各角的正弦值之间的关系得出结论.[解析] (1)由各式特点,可得1+错误!未定义书签。
+错误!+…+错误!〈错误!.故选C.(2)用两点等分单位圆时,关系为sinα+sin(π+α)=0,两个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差为(π+α)-α=π,用三点等分单位圆时,关系为sinα+sin错误!未定义书签。
+sin错误!=0,此时三个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差与第三个角与第二个角的差相等,即有错误!未定义书签。
-错误!未定义书签。
=错误!-α=错误!。
依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为α,第二个角为错误!未定义书签。
+α=错误!未定义书签。
+α,第三个角为错误!未定义书签。
+α+错误!=π+α,第四个角为π+α+错误!未定义书签。
=\f(3π,2)+α,即其关系为sin α+sin错误!+sin(α+π)+sin错误!=0.[答案](1)C(2)sin α+sin错误!+sin(α+π)+sin错误!未定义书签。
2021-2022年高考数学大一轮复习精品讲义 第二章 函数、导数及其应用(含解析)
2021-2022年高考数学大一轮复习精品讲义第二章函数、导数及其应用(含解析)对应学生用书P12基础盘查一函数的有关概念(一)循纲忆知1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(二)小题查验1.判断正误(1)函数是建立在其定义域到值域的映射( )(2)函数y=f(x)的图象与直线x=a最多有2个交点( )(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数( )(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射( )答案:(1)√(2)×(3)√(4)×(5)×2.(人教A版教材复习题改编)函数f(x)=x-4|x|-5的定义域是________________.答案:[4,5)∪(5,+∞)3.已知函数y =f (n ),满足f (1)=2,且f (n +1)=3f (n ),n ∈N *,则f (4)=________.答案:54基础盘查二 分段函数(一)循纲忆知了解简单的分段函数,并能简单应用(函数分段不超过三段).(二)小题查验1.判断正误(1)函数f (x )=⎩⎨⎧ 1,x ≥0,-1,x <0,是分段函数( )(2)若f (x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,-x +1,x >1或x <-1( )答案:(1)√ (2)√ 2.分段函数的定义域等于各段函数的定义域的________,其值域等于各段函数的值域的________.答案:并集 并集3.已知函数f (x )=⎩⎨⎧ 4x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.答案:12对应学生用书P12[必备知识]1.函数的定义设A 、B 为两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ).2.函数的三要素[题组练透]1.下列四组函数中,表示同一函数的是( )A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列所给图象是函数图象的个数为( )A.1 B.2C.3 D.4解析:选B ①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象,故选B.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t -1,h(m)=2m-1均表示同一函数.考点二函数的定义域问题(常考常新型考点——多角探明)[多角探明]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域;(2)求抽象函数的定义域;(3)已知定义域确定参数问题.角度一:求给定函数解析式的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________. 解析:由⎩⎨⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎨⎧ 0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]2.(xx·安徽高考)函数y =ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________. 解析:要使函数有意义,需⎩⎨⎧ 1+1x >0,1-x 2≥0,即⎩⎨⎧ x +1x >0,x 2≤1,即⎩⎨⎧ x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案:(0,1] 角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 014],则函数g (x )=f x +1x -1的定义域是( )A .[0,2 013]B .[0,1)∪(1,2 013]C .(1,2 014]D .[-1,1)∪(1,2 013]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 014],可知1≤t ≤2 014.要使函数f (x +1)有意义,则有1≤x +1≤2 014,解得0≤x ≤2 013,故函数f (x +1)的定义域为[0,2 013].所以使函数g (x )有意义的条件是⎩⎨⎧ 0≤x ≤2 013,x -1≠0,解得0≤x <1或1<x ≤2013.故函数g (x )的定义域为[0,1)∪(1,2 013].故选B.4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2]解析:选C 因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].故选C.角度三:已知定义域确定参数问题5.(xx·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0][类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].考点三 求函数的解析式(重点保分型考点——师生共研)[必备知识](1)函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法求出的解析式,不注明定义域往往导致错误.[典题例析](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1, 又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎨⎧ 2a +b =b +1,a +b =1,解得a =b =12. 所以f (x )=12x 2+12x ,x ∈R . (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1, 将f ⎝ ⎛⎭⎪⎫1x =2f x x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中, 可求得f (x )=23x +13. [类题通法]求函数解析式常用的方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(4)消去法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[演练冲关]1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1,即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2,f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点四 分段函数(重点保分型考点——师生共研)[必备知识]若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[提醒] 分段函数虽然由几部分组成,但它表示的是一个函数.[典题例析]1.已知f (x )=⎩⎨⎧ log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.2.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-34[类题通法]分段函数“两种”题型的求解策略 (1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[演练冲关](xx·榆林二模)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-x -12, x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]对应B 本课时跟踪检测四一、选择题1.(xx·大同调研)设全集为R ,函数f (x )=ln 1+x1-x 的定义域为M ,则∁R M =( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]解析:选C 由f (x )=ln 1+x 1-x ,得到1+x1-x >0,即(x +1)(x -1)<0,解得-1<x <1,即M =(-1,1), ∵全集为R ,∴∁R M =(-∞,-1]∪[1,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x+ax ,x >1,若f (f (1))=4a ,则实数a 等于( ) A.12 B.43 C .2D .4解析:选C ∵f (1)=2,∴f (f (1))=f (2)=4+2a =4a ,解得a =2.故选C.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B (待定系数法)设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.4.函数f (x )=10+9x -x2lg x -1的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg x -1≠0,即⎩⎪⎨⎪⎧-1≤x ≤10,x >1,x ≠2,所以不等式组的解集为(1,2)∪(2,10].故选D.5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,c A ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c4=c2=30.② 联立①②解得c =60,A =16.6.创新题具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x=f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.二、填空题7.(xx·太原月考)已知y =f (2x)的定义域为[-1,1],则y =f (log 2x )的定义域是________.解析:∵函数f (2x)的定义域为[-1,1], ∴-1≤x ≤1,∴12≤2x≤2.∴在函数y =f (log 2x )中,12≤log 2x ≤2,∴2≤x ≤4.答案:[2,4]8.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 解析:由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 答案:329.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3],∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.(xx·岳阳模拟)已知奇函数f (x )=⎩⎪⎨⎪⎧3x+a ,x ≥0,g x ,x <0,则f (-2)的值为________.解析:因为函数f (x )为奇函数,所以f (0)=30+a =0,即a =-1.所以f (-2)=g (-2)=-f (2)=-(32-1)=-8.答案:-8 三、解答题11.(1)如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,求f (x )的解析式;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 解:(1)令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1,∴f (x )=1x -1(x ≠0且x ≠1).(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.第二节函数的单调性与最值对应学生用书P15基础盘查一 函数的单调性 (一)循纲忆知1.理解函数的单调性及其几何意义.2.会运用基本初等函数的图象分析函数的性质. (二)小题查验 1.判断正误(1)所有的函数在其定义域上都具有单调性( ) (2)函数f (x )为R 上的减函数,则f (-3)>f (3)( )(3)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”( )(4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)( )(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)( ) 答案:(1)× (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =x 2-2x (x ∈[2,4])的增区间为________. 答案:[2,4]3.若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则k 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫-∞,-12 基础盘查二 函数的最值 (一)循纲忆知1.理解函数最大值、最小值及其几何意义. 2.会运用函数图象理解和研究函数的最值. (二)小题查验 1.判断正误(1)所有的单调函数都有最值( ) (2)函数y =1x 在[1,3]上的最小值为13( )答案:(1)× (2)√2.(人教A 版教材例题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.答案:2对应学生用书P15考点一 函数单调性的判断(基础送分型考点——自主练透)[必备知识]1.定义法设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.导数法在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间上单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间上单调递减.[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 2.判断函数g (x )=-2xx -1在(1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2x 1-x 2x 1-1x 2-1,因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.[类题通法]对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利用导数判断.但是,对于抽象函数单调性的证明,只能采用定义法进行判断.考点二 求函数的单调区间(重点保分型考点——师生共研)[必备知识]单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.[典题例析]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log (x 2-3x +2)的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log u 在(0,+∞)上是单调减函数,∴y =log(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[类题通法]求函数的单调区间与确定单调性的方法一致(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[演练冲关]1.若将典例(1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f x ,f x ≤k ,k ,fx >k ,取函数f (x )=2-|x |.当k =12时,求函数f k (x )的单调递增区间.解:由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以f (x )=⎩⎪⎨⎪⎧2-x,x ≥1,12,-1<x <1,2x,x ≤-1.故f (x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用(常考常新型考点——多角探明)[必备知识]函数的最值(1)函数最大(小)值的几何意义:函数的最大值对应图象最高点的纵坐标;函数的最小值对应图象最低点的纵坐标.(2)利用函数单调性求最值的常用结论:如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最小值f (b ).[多角探明]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.函数单调性的应用,归纳起来常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值. 角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选 B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2解析:选B 由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,a -2×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,138 . [类题通法]函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. (4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.对应A 本课时跟踪检测五一、选择题1.(xx·北京高考)下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |解析:选B 因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e -x ,即y =⎝ ⎛⎭⎪⎫1ex ,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数.故选B.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(xx·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 解析:选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫1-12=f ⎝ ⎛⎭⎪⎫12,又13<12<23<1, ∴f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫23,即f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23.4.创新题定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.故选A.6.(xx·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负解析:选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0.由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C.二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是________.解析:由题意知f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1); 则⎪⎪⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 答案:(-1,0)∪(0,1)8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________________.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,使其在(3,+∞)上是增函数, 故4+k <0,得k <-4. 答案:(-∞,-4) 三、解答题 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1].12.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节函数的奇偶性及周期性对应学生用书P17基础盘查一 函数的奇偶性(一)循纲忆知1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. (二)小题查验 1.判断正误(1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0( ) (2)偶函数图象不一定过原点,奇函数的图象一定过原点( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数( ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件( ) 答案:(1)√ (2)× (3)√ (4)√2.(人教A 版教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.答案:x (1-x )3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:13基础盘查二 函数的周期性 (一)循纲忆知了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. (二)小题查验 1.判断正误(1)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期( )(2)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数( )答案:(1)√ (2)√2.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-1对应学生用书P18考点一 函数奇偶性的判断(基础送分型考点——自主练透)[必备知识]函数的奇偶性的定义如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )[或f (-x )=-f (x )],那么函数f (x )就叫做偶函数(奇函数).[提醒] 定义域关于原点对称是函数具有奇偶性的一个必要条件.[题组练透]判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +3-3=4-x2x,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[类题通法]判定函数奇偶性的常用方法及思路1.定义法:2.图象法:3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.考点二函数的周期性(题点多变型考点——全面发掘)[必备知识]1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[一题多变][典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解] (1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[题点发散1] 本例条件若改为:设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2.试计算f(0)+f(1)+f(2)+…+f(2 015)的值.解:因为f(x+2)=f(x),所以周期T=2.又f(0)=0,f(1)=1,所以f(0)=f(2)=f(4)=…=f(2 014)=0,f(1)=f(3)=f(5)=…=f(2 015)=1,所以f(0)+f(1)+f(2)+…+f(2 015)=1 008.[题点发散2] 若本例中条件变为“f(x+2)=-1f x”,求函数f(x)的最小正周期.解:∵对任意x∈R,都有f(x+2)=-1f x,∴f(x+4)=f(x+2+2)=-1f x+2=-1-1f x=f(x),∴f(x)是以4为周期的周期函数.[题点发散3] 在本例条件下,求f(x)(x∈[2,4])的解析式.解:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8. 故x∈[2,4]时,f(x)=x2-6x+8.[类题通法] 1.判断函数周期性的两个方法(1)定义法.(2)图象法.2.周期性三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f x,则T=2a;(3)若f(x+a)=-1f x,则T=2a.(a>0)[提醒] 应用函数的周期性时,应保证自变量在给定的区间内.考点三函数性质的综合应用(常考常新型考点——多角探明)[多角探明]高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题角度有:(1)单调性与奇偶性结合;(2)周期性与奇偶性结合;(3)单调性、奇偶性与周期性结合.角度一:单调性与奇偶性结合1.(xx·洛阳统考)下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x解:选C 函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 解得-2<m <1.②综合①②可知,-1≤m <1. 即实数m 的取值范围是[-1,1). 角度二:周期性与奇偶性结合3.(xx·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0) C .(-1,0)D .(-1,2)解:选A ∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A.角度三:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解:选D ∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, ∴f (x )在区间[-2,2]上是增函数,∴f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[类题通法]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.对应B 本课时跟踪检测六一、选择题1.(xx·河南信阳二模)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:选 C 易知函数的定义域为{}x |x ≠k π,k ∈Z ,关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数.2.(xx·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(xx·唐山统考)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ).则当x <0时,f (x )=( )A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x )D .-x 3+ln(1-x )解析:选C 当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],∴f (x )=x 3-ln(1-x ).4.(xx·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )。
工科数学分析2课件-数项级数
工科数学分析(2)写在前➢停课不停学, 停课不停教;•虽没有传统课堂面对面的教与学•但有录课视频在网络平台随时学习➢祸兮福所倚, 福兮祸所伏;➢上课所需✓有网、PC或手机、下载app(学生)✓电子教材、课件、录课视频(老师)➢课程要求:时间、完整观看、完成作业、每周至少一次在线互动(检查+答疑)•存在问题:网络?观看成效?提交作业?1. 数项级数2. 函数列与函数项级数3. Fourier级数4. 多元函数的极限与连续目录5. 多元函数的微分学6. 多元函数的积分学➢数项级数研究内容:数项级数的敛散性判别法1112n++++12n a a a ++++221112n ++++无穷多个数相加有限个数相加第十一章数项级数第一节数项级数的基本概念与性质一、问题的提出二、数项级数的概念三、数项级数的基本性质重点:数项级数收敛的概念、性质难点:性质的应用一、问题的提出引例1. 计算圆的面积AR正六边形的面积正十二边形的面积1a2 1a a+正形的面积n23⨯na a a +++ 21na a a A +++≈ 21即()12lim n n A a a a →∞=+++即任何有限项求和都达不到预期的值, 必须进行无穷项求和.12n a a a =++++割之弥细, 所失弥少. 割之又割, 以至于不可割, 则与圆合体而无所失.引例2. 芝诺悖论——阿基里斯(Achilles)悖论内容:若乌龟在前, 则Achilles永远追不上乌龟!10 m1 m0.1m为什么v 2=10m/sv 1=1m/st 1=1st 2=0.1st 3=0.01s1. 路程上看:++++01.01.0110=10.11110 m1 m0.1m为什么v 2=10m/sv 1=1m/st 1=1st 2=0.1st 3=0.01s2. 时间上看:+++01.01.01=1.111引例3.)1664(年莱布尼茨.71513114π +−+−=,103103103103333.032 +++++=n ,23846 89793 26535 14159.3π =,1091051011041013π5432 ++++++=问题1:不加辨别地认定无穷多个数相加就是一个确定的数?+−+−=1111s (11)(11)000.s =−+−+=++=1(11)(11)100 1.s =−−−−−=−−−=s s −=−+−−=1)111(1 法一:法二:法三:.21=⇒s 问题2:有限个数相加的运算性质能简单地推广到无穷多个数的加法吗?(11)(11)0s =++−++=法四:错错错错1=definednn a ∞=∑12n a a a ++++结论:在没有给出无穷多个数相加的收敛性之前,不能随意结合(即加括号)、交换等.1nn kk s a ==∑研究问题的数学工具:数列极限理论()12lim n n a a a →∞=+++lim nn s →∞=第十一章数项级数第一节数项级数的基本概念与性质一、问题的提出二、数项级数的概念三、数项级数的基本性质重点:数项级数收敛的概念、性质难点:性质的应用二、数项级数的概念1. 数项级数的定义或简称(无穷)级数一般项(或通项)级数的第n 个部分和121nn n aa a a ∞==++++∑121nn n kk s a a a a ==+++=∑级数的部分和数列{}n s2. 级数的收敛与发散若,lim s s n n =∞→ 则称级数1nn a ∞=∑收敛, 且收敛到和,s 记作 121n n n s a a a a ∞==++++=∑否则, 称级数1nn a∞=∑发散.1nn a∞=∑收敛(发散)⇔n n s ∞→lim 存在(不存在){}()n s ⇔数列收敛发散例1 讨论等比级数(几何级数)+++++=∑∞=nn naq aq aq a aq20)0(≠a的敛散性.解1,q ≠如果时211n n ns a aq aq aqa aq q−=++++−=−3. 典型例题1, q <当时0lim =∞→nn q qa s n n −=∴∞→1lim 1,q >当时∞=∞→nn q lim ∞=∴∞→n n s lim 级数收敛级数发散1,q =如果时1,,n q s na ==→∞当时1,q a a a a =−−+−+当时级数变为级数发散级数发散为什么?综上01,1,n n q aq q ∞=⎧<⎪⎨≥⎪⎩∑当时收敛当时发散..1)1(2q S q q S −=+++= 注1. 在引例2中,.1 21<=v v q 二者之比记为Achilles 追赶乌龟的过程中跑过的路程为快者必能追上慢者!注2. 应用实例: 分形几何中的Koch 雪花给定一个正三角形, 将每条边三等分, 然后以中间三分之一段为边向外作小正三角形, 在每条新得到的边上重复类似的操作.求Koch 雪花的周长与面积(设正三角形的边长为1)43,311==A P 面积周长初始状态第一次操作11212913,34A A A P P ⋅⋅+==第二次操作1223123)91(43,)34(A A A P P ⋅⋅⋅+==,2,1)34(11==−n P P n n 2111134()9n n n n A A A −−−⎧⎫⎡⎤=+⎨⎬⎢⎥⎣⎦⎩⎭1121211)91(43)91(43913A A A A n n −−⋅⋅++⋅⋅+⋅+=,3,2=n 周长为面积为22111414141()()()3393939n A −⎧⎫⎡⎤=+++++⎨⎬⎢⎥⎣⎦⎩⎭第次分叉:n于是雪花的面积有∞=∞→n n P lim 11132331(1).45519A A ⎛⎫ ⎪=+=+= ⎪ ⎪−⎝⎭结论:Koch 雪花的面积有限.22111414141()()()3393939n A −⎧⎫⎡⎤++++++⎨⎬⎢⎥⎣⎦⎩⎭但周长无限.例2 判别无穷级数++⋅−++⋅+⋅)12()12(1531311n n 的收敛性. 解1111335(21)(21)n s n n =+++⋅⋅−⋅+)121121(21)5131(21)311(21+−−++−+−=n n ),1211(21+−=n )1211(21lim lim +−=∴∞→∞→n s n n n ,21=.21,和为级数收敛∴例3 判别无穷级数)11(ln 1n n +∑∞=的收敛性. 解341ln 2ln ln ln 23 ln 2(ln 3ln 2)(ln 4ln 3)(ln(1)ln )n n s n n n +∴=++++=+−+−+++−ln(1)()n n =+→∞→∞.级数发散∴1ln ln(1)ln ,n n a n n n+==+−第十一章数项级数第一节数项级数的基本概念与性质一、问题的提出二、数项级数的概念三、数项级数的基本性质重点:数项级数收敛的概念、性质难点:性质的应用证明1,lim 0.n n n n a a ∞→∞==∑若收敛则定理1(级数收敛的必要条件)011(1), sin .n n n n n ∞∞==−∑∑例如发散1lim , ,n n n n n s s a s s −→∞==−设存在lim 0.n n a s s →∞=−=故等价叙述为:1lim 0, .n n n n a a ∞→∞=≠∑若则发散三、数项级数的基本性质注(1) 提供了判别级数发散的一种方法(2) 定理的逆命题为真吗?+++++n131211例如调和级数lim 0,n n a →∞=即便有1.1n n ∞=∑但级数发散这是因为121111111111(1)()()(23456789101111 )()1621222m m m m s ++=++++++++++++++++++8项4项2项2项项m2,21加括号后的每项均大于121.2m m s ++>→∞定理2()111,,.n n n n n n n a b λa μb ∞∞∞===+∑∑∑设都收敛则也收敛()111.n n n n n n n λa μb λa μb ∞∞∞===+=+∑∑∑且证明11,{},{}n n n n n n a b s σ∞∞==∑∑设的部分和数列分别为()1{}n n n n n a b s λμλμσ∞=++∑则的部分和数列为lim()lim lim n n n nn n n s s λμσλμσ→∞→∞→∞∴+=+特别的 设级数1nn a ∞=∑与1nn b ∞=∑分别收敛于和s 与,σ则级数1()nn n ab ∞=±∑收敛,且和为 σ±s , 即111()n n nn n n n a b ab ∞∞∞===±=±∑∑∑逐项相加(相减)性1212()()n n a a a b b b ++++±++++1122()()()n n a b a b a b =±+±++±+两个级数都收敛的条件下!11(1)1[],.23nn n n ∞+=−+∑判断的敛散性若收敛则求其和例4解111(1)11[()]222nnn n n ∞∞+==−=⋅−∑∑,收敛.311收敛同理∑∞=n n 11111111134[()],,11226321()123nnn n ∞∞==−⋅−==−==−−−∑∑又.312161]312)1([11=+−=+−∑∞=+n n n n 故1“.,”,n n a ∞=∑加括号后组成的新级数也收 敛且若收敛和不变则定理3(收敛级数有结合律)设原来级数的部分和数列记为证明设加括号的新级数为11211211()() ()k k n n n n n n a a a a a a a a −+++++++++++++++{}n s11,n s σ=lim lim lim ,.k k n n k k n s s s σ→∞→∞→∞===收敛22,n s σ=,,,k k n s σ=11211211()() ()k k n n n n n n a a a a a a a a −+++++++++++++++{},k σ其部分和数列记为满足{}{},k n s σ故是的一个子列从而由子列极限一致性知+−+−)11()11(例如+−+−1111收敛,发散.扩展2如果加括号后所成的级数发散,则原级数发散.扩展1反之呢?不一定!(定理3的逆否命题)定理4如果括号中各项符号相同, 且加括号后收敛,则原级数必收敛, 且和不变.证明新级数的部分和数列:原级数的部分和数列:11211211()() ()k k n n n n n n a a a a a a a a −+++++++++++++++12,,,,,k σσσ12,,,,,n s s s lim ,k k σσ→∞=1σ↓112121,,,,,,,,n n n s s s s s +1,k n k s σσ−≤≤或者1k n k s σσ−≤≤11,k k n n n −+≤<要么此时成立利用夹逼性可知, n s 收敛.,{}{},k k n k n s s σσ=且从而是的一个子列111,,,,,,,k k k n n n n s s s s −−+2σ↓1k σ−↓kσ↓,,k k n n k n n s s σ===故要么从而1.n pkk n a ε+=+<∑恒有证明{}1lim n nnn n a s s ∞→∞=⇔⇔∑收敛存在是基本列**0,,,,N N n N p N ε⇔∀>∃∈>∈当时对一切.n p n s s ε+−<1nn a ∞=∑收敛**0,,,,N N n N p Nε⇔∀>∃∈>∀∈使时1.n p k k n a ε+=+<∑即定理5 (柯西收敛准则)定理6 添加、去掉、改变级数的有限项, 不改变级数的收敛性..112收敛性级数利用柯西审敛原理证明∑∞=n n例5211111(1)n pn pn pk k n k n k n a k k k +++=+=+=+=<−∑∑∑证1210,[]10,,0,||.n n n p N n N p a a a εεε+++∴∀>∃=+>>∀>+++<使得当时都有成立111111,1n pk n k k n n p n +=+⎛⎫=−=−< ⎪−+⎝⎭∑证111122n n n =+++++,212=>n n .级数发散∴.131211发散证明调和级数 +++++n例622111n nk k n k n a k=+=+=∑∑定理7证明都有对一切时当,*,,*,0N p N n N N ∈>∈∃>∀ε 若1n n a ∞=∑收敛, 则1n n a ∞=∑收敛. 设1nn a∞=∑收敛, 则由柯西收敛定理可知1.n pk k n a ε+=+<∑11.n pn pkk k n k n aa ε++=+=+∴≤<∑∑再由柯西收敛定理可知1nn a∞=∑收敛.绝对值的三角不等式四、小结1.由定义,若s s n →,则级数收敛;2.按基本性质.数项级数的基本概念基本判别法,,0,.n n a →∞→例如当则级数发散思考题.lim ,ln 131211存在证明设n n n x n nx ∞→−++++= 收敛存在的充要条件是提示:∑∞=−∞→−11)(lim n n n n n x x x教程上作业:习题9.1.1 1(1, 3), 2习题9.1.2 1(2), 2(2), 4, 6, 8(1, 3)黄本上作业:习题11.1 1(偶数), 2 (偶数), 4, 5第3节一般项级数的收敛性一、绝对收敛与条件收敛二、交错级数及其审敛法三、Dirichlet和Abel判别法重点:非正项级数的判敛法难点:条件收敛第3节一般项级数的收敛性一、绝对收敛与条件收敛二、交错级数及其审敛法三、Dirichlet和Abel判别法1. 柯西收敛准则一、绝对收敛与条件收敛定义1正项和负项任意出现的级数称为一般项级数.1.n pkk n a ε+=+<∑恒有1nn a ∞=∑收敛**0,,,,N N n N p Nε⇔∀>∃∈>∀∈使时例1{},0,n n a a >设数列单调递减且证明120,0,,.2n n N n N a a εε+∀>∃>>++<当时有2120, 22().n n n n a na a a ε+>∴≤++<2lim 20.n n na →∞∴=21220(21)20, ()n n n n a na a n +≤+≤+→→∞lim 0.n n na →∞∴=1,lim 0.n n n n a na ∞→∞==∑证明:若级数收敛则。
高等数学第2章(28页)
< 1) .
五个常用的麦克劳林展式
(1) ex = 1 + x + x2 + + xn + eθ x xn+1 (0 < θ < 1)
2!
n! (n + 1)!
(2) sin x = x − x3 + x5 − 3! 5!
+ (−1)m−1
x2m−1
sin[θ x + (2m + 1) π ]
+
2 x2m+1
3.了解高阶导数的概念,会求某些简单函数的 n 阶导数. 4.会求分段函数的导数. 5.会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数. 6.理解并会用罗尔定理、拉格朗日中值定理,了解并会用柯西中值定理. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握 函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近 线,会描绘函数的图形. 9.掌握用洛必达法则求未定式极限的方法. 10.了解曲率和曲率半径的概念,会计算曲率和曲率半径.
(2m −1)!
(2m + 1)!
(0 < θ < 1)
(3) cos x = 1 − x2 + x4 − 2! 4!
+ (−1)m
x2m
cos[θ x + (2m + 2) π ]
+
2 x2m+2
(2m)!
(2m + 2)!
(0 < θ < 1)
高等数学学习指导讲义
41
(4) ln(1 + x) = x − x2 + x3 − x4 + 234
数学分析讲义
y ax
( a 0, a 1)
y ex
1
y ax
( a 0, a 1)
数学分析讲义
§1.3 复合函数与反函数
3、对数函数
y log a x
(a 0, a 1)
y ln x
y log a x
(1,0)
(a 1)
y log 1 x
a
一、函数概念
例1.真空中自由落体,物体下落的时间 t 与下落的距离 s 互相联系着. 如果物体距地面的高度为 h ,
t [0,
2h ] g
都对应一个距离 s . 已知 t 与 s 之间的对应关系是
1 2 s gt 2
其中g是重力加速度,是常数.
数学分析讲义
§ 1.1 函数
例2.在气压为101.325 kPa 时,温度 T 与水的体积 V 互相联系着 . 实 测如下表:
数学分析讲义
§1.2 四类具有特殊性质的函数
一、有界函数
定义 设 函 数 f (x) 在 数 集 A 有 定 义 . 若 函 数 值 的 集 合
f ( A) f ( x) x A有上界(有下界、有界) ,则称函数 f (x)
在 A 有上界(有下界、有界) ,否则称函数 f (x) 在 A 无上界 (无下界、无界).
y
y f (x)
f ( x1 )
f ( x2 )
o
x
I
数学分析讲义
§1.2 四类具有特殊性质的函数
三、奇函数与偶函数
定义 函数 f x 定义在数集 A .若 x A ,有 x A ,且
f x f x
则称函数 f x 是奇函数
考研高数讲义新高等数学上册辅导讲义——第二章上课资料
第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。
记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。
右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。
【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。
大连理工大学《工科数学分析基础》第二章复习.docx
第二章复习X.l 各类导数的求法复合函数微分法 包=空更dx du dx=arcsin 3 兀-2丫 3x + 2 丿 12 (3兀+ 2尸d 3y _ d (d 2y\ _ dtydx 1) _ /^(r) dx It 隐函数微分法1对方程两边求导,要记住y 是兀的函数,则y 的函数是兀的复合函数。
2利用微分形式不变性,在方程两边求微分,然后解出芈dx例 3 设方程 xy 2+ e y= cos(x + y 2),求 y'解法一:y 2+ 2xyy + e yy = -sin(% + >,2)(1 + 2y/),‘3兀-2、<3x + 2 >,/\x) = arcsin x 2,求空dx A=()于是dy dx3=(arcsin 1)・ 3 =—龙 x=o 2参数方程微分法fdx dy d y - dt _ /(O d ~y _ x ,(0/(0 一 y\t)x (r) dx _/(/) dx 1dt[V(0]3,英屮f ⑴的三阶导数存在,且f”⑴H 0 ,求乞,ax dx~ dx解 dy 二血)二厂⑴+(T (/) -广⑴二£ dxx\t ) f\t ) d(dyd 2y d■■Idx~ dxdt\dx) _1dtdx‘ dxIdx 1]r (t )r 3(oy 2 +sin(x+ b) 〉2xy 4- e y + 2j ,sin(x+ y 2)解法二:d (xy 2+ e y) = d (cos(x + y~))y 2dx + 2xydy + e ydy = -sin(x + y 2)(clx^2ydy)[(2xy + e y+2ysin(x+ y 2)]dy = -[y 2+sin(x+ y 2)]dx,_y 2+sin (兀 + y 2)2xy + R + 2ysin(x+),)幕指函数的微分法 设 y = w(x)v(x) (w(x) > O,w(x) H1) => y = e v(x,,nM(J)y 二 /讪“(彳/(x)lnw(%) + y (x)也 |_心)」=u(x)v(x)v\x) In u(x) + 咻)""_ U(x)」例 4 设 y = x a' + a x+ x v ,求 y‘解尸/皿+口严+/呎Xy = e(,x ,n\a xln^zlnx + —) +”夕,nx (1 + In x)In a + /,n”(心心 i n% + 齐)X=x°x a x(In d In 兀 + —) + a e(1 + In x)x x• In a + x x°+</_, (alnx +1)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法:采用对数微分法(即先对式子的两边取口然对数,然后在等式的两端再对x 求导)解先将表达式写成分式指数幕的形式2 4 £y =(兀 一 2尸(兀 + 3)^(3 - 2 兀$ )*1 + x 2 )刁(5 一 3x 3)'5 In y 二 2 ln(x-2) + | ln(x + 3) + 彳 ln(3-2x 2)-|ln(l + x 2)-| ln(5 一 3x 3)上式两边对x 求导,得2L = _2_ + _? -------- -- --------- - -- +—y x-23(兀 + 3) 3(3-2x 2)3(1+ 〒)5-3x 3(X + 3)2(3-2X 2)4(1 + X 2)(5-3X 3)2 (兀+ 3)2(3-2 兀2 )4例5设尸(“后EU-2)2s2216x 2x 3x 2 + — — +兀一 2 3(x + 3) 3(3-2x 2) 3(1+ x 2) 5-3x 3_分段函数微分法:各区间内的导数求法与一般所讲的导数求法无界,要特別注意的是分界点处的导数一定要用导数的定义求°例如使用公式/©)=lim "兀)_/(和 及左右 XTXo X- X (} 导数来求是否可导。
讲解工科数学分析基础总目录资料教程
39 求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体
出现。每两步的时间间隔由讲课教师掌握,以便于教师的讲 解启发和学生的思考练习。
本课件研制了三年,在教学中使用了两年。期间得到天 津大学各级领导的大力支持,也得到了天津市教委的资助。 2000年本课件荣获“天津市CAI课件评审”一等奖。本课件先 后在我校、天津市和清华大学演示了几次,受到教师们热烈 欢迎和鼓励。承蒙高等教育电子音像出版社的同志们大力协 助,使本课件得以正式出版。作者在此一并表示感谢!
由于研制者水平有限,错误和不足之处难免,希望读者 不吝指教.
研制者
二零零一年十二月于天津大学
.
说明书
本课件是《高等数学》课程的图形演示库,主要为了辅 助教师在课上讲课(因此没有配音),解决高等数学教师黑 板画图难的问题,从而提高学生的空间想象能力。其中每个 图都一步步用动画演示,公式和计算也一步步出现。每两步 的时间间隔由讲课教师掌握,可以按鼠标左键,或键,或 者按空格键来控制,以便于教师的讲解启发和学生的思考。
形的面积.
22 曲边扇形的面积
23 旋轮线
24 旋轮线也叫摆线
25 旋轮线是最速降线
26 心形线
27 星形线
28 圆的渐伸线
29 笛卡儿叶形线
30 双纽线
31 阿基米德螺线
32 对数螺线
33 求曲 r3线 cθ及 or s1co θ分 s 别所围 共 成 部 的 面 分 图 积 的 形 .
34 求曲 r线 2si θ及 nr2coθs 分 2 别所围 公 成 共 的 部 图 分 形 的 的
CAI课件《高等数学图形演示系统》就是为解决这个问题 而制作的。本课件演示的图形形象逼真、有较强的立体感,对 于复杂的空间几何关系,能够明确、清晰地用立体形象表达 出来;同时,每一个图形的演示都力图包括它的基本思想和
高等数学 第二章函数讲解
电 子 教 案
(4)对数函数 对数函数 . (5)三角函数 (5)三角函数 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数 . ; ; ; = log x,(a > 0, a ≠1) y a ; ;
电 子 教 案
(6)反三角函数 三角函数 反正弦函数 反余弦函数 反正切函数 反余切函数 . ; ; ;
为奇函数. 为奇函数.
2. 周期性
电 子
, .若存在非零实数 ,使得 并且 , ,
设函数 对于任何 则称
教 案
都有 ,
为周期函数, 为周期. 为周期函数,称 为周期.
显然,对一个周期函数来说,若 为周期,则对 为周期, 显然,对一个周期函数来说, 也是该函数的周期. 于任何一个整数 , 也是该函数的周期. 在周期函数的所有正周期中如果存在最小正数, 在周期函数的所有正周期中如果存在最小正数, 则称它为该函数的最小正周期. 则称它为该函数的最小正周期.通常所说的周期函数 的周期是指它的最小正周期. 的周期是指它的最小正周期.
y = loga (sin x + 2x ) 是 由 y = u , u = loga v 和
v = sin x + 2x 复合而成的. 复合而成的.
2.2.3 初等函数
电 子 教 案
定义2 定义2 由基本初等函数经过有限次四则运算和有限次 复合步骤所构成的,并且能用一个数学式子表示的函数, 复合步骤所构成的,并且能用一个数学式子表示的函数, 叫初等函数.否则 不是初等函数. 否则, 叫初等函数 否则,不是初等函数
图2.1.1
O
y = sgn x
电 子 教 案
x
例题给出的函数称为符号函数, 例题给出的函数称为符号函数,记为 ,其定义域 值域为{ 1}, 为 ,值域为{-1,0,1},它的图像如图 2.1.1 所示. 所示.
(完整版)高等数学工专讲义.doc
接下来我们就开始学习高等数学了,也许在学习的过程中我们会感到枯燥无味,但是我相信只要我们努力,我们一定能达到成功的彼岸。
常量与变量变量的定义我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名区间的满足的不等式区间的记号区间在数轴上的表示称闭区间a≤x≤b[a , b]开区间a< x< b(a,b)半开区间a<x≤b或 a≤x< b ( a, b] 或 [a , b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a ,+∞) :表示不小于 a 的实数的全体,也可记为:a≤x<+∞;(- ∞, b) :表示小于 b 的实数的全体,也可记为:- ∞< x< b;(- ∞, +∞) :表示全体实数,也可记为:- ∞< x<+∞注:其中 - ∞和 +∞,分别读作" 负无穷大 " 和 " 正无穷大 ", 它们不是数 , 仅仅是记号。
邻域设α与δ是两个实数,且δ> 0. 满足不等式│x - α│<δ的实数x的全体称为点α的δ邻域,点α 称为此邻域的中心,δ称为此邻域的半径。
函数函数的定义如果当变量x 在其变化范围内任意取定一个数值时,量y 按照一定的法则总有确定的数值与它对应,则称y 是 x 的函数。
变量 x 的变化范围叫做这个函数的定义域。
通常x 叫做自变量, y 叫做因变量。
注:为了表明y 是 x 的函数,我们用记号y=f(x)、y=F(x)等等来表示. 这里的字母"f" 、"F" 表示 y 与 x 之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
讲解数学2
第二章有理数本章整体解说本章共分3节 2.1用字母表示数 2.2 代数式 2.3 整式加减本章主要内容字母表示数,求代数式的值,整式的有关概念,与加、减运算.为了整式的运算.而介绍同类项、合并同类项的法则和去括号、添括号的法则.注重知识过程的呈现.为后续内容的学习做好了知识和方法上的准备.本章在引入代数式及其求值后,对所列出的代数式进行了分类,引出了单项式、多项式、整式的概念,通过探究现实情境中的问题(1)求两面墙上油漆的大小,得到了同类项的概念与合并同类项的方法,借助问题(2)用数的运算律归纳总结除去括号、添括号的法则.本章选取这个背景材料.从本质上突出了合并同类项与去(添)括号的根本目的.§2.1 用字母表示数课前热身知识点结构新知识全解知识点一:知识点一 :表示数的字母和数的关系用来表示数的字母,可以看作数,但又不同于一个确定的数。
例1:字母是否只能表示自然数呢?你还能说出用字母表示数的一些例子吗?解:(1) 长方形面积:s=a ×b (2) 路程公式:s=v ×t (3) 圆周率:Π(4) 加法运算律:a+b=b+a (a+b)+c=a+(b+c) (5) 米、千米、克、千克分别表示为:m 、km 、g 、kg变式练习1:下列语言叙述代数式“aa 1”所表示的数量关系中,错误的是( ) A a 与a 的倒数之和 Ba 1与a1的倒数之和 C 1除以a 得a D a 加上1除以a 变式练习2:一个两位数,十位数为a ,个位数比十位数小1,把十位数与个位数数字对调后,得到一个新的两位数,用代数式表示为___【易错警示】:a 不一定表示正数, -a 不一定表示负数。
变式练习3:汪老师在上地理课时,列举了一组音速(声音在空气中传播的速度)与气温的关系表:知识点二: 用字母表示简单的数量关系利用字母表示数量关系既简单又明确,用不同的字母表示不同的数量关系.例2:某校开展一次篮球比赛,初一年级有8个队参加,若实行单循环比赛的赛制,那么一共要进行多少场比赛。
2020学年高中数学第2章平面解析几何初步章末复习课讲义苏教版必修2(2021-2022学年)
第2章平面解析几何初步值为1,求这两条直线的方程.思路探究:考虑直线斜率是否存在,不存在时可直接求出,存在时设方程利用截距关系求k.[解](1)当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x轴上截距之差的绝对值为1,满足题意;(2)当直线的斜率存在时,设其斜率为k,则两条直线的方程分别为y=k(x+1),y=kx+2.令y=0,分别得x=-1,x=-\f(2,k).由题意得错误!=1,即k=1.则直线的方程为y=x+1,y=x+2,即x-y+1=0,x-y+2=0。
ﻬ综上可知,所求的直线方程为x=-1,x=0,或x-y+1=0,x-y+2=0。
1.直线方程的五种形式及其选取直线方程的五种形式各有优劣,在使用时要根据题目条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.2.两条直线的平行与垂直两条直线的平行与垂直是解析几何中两条直线最基本的位置关系,其判定如下:1.求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x-y-1=0平行的直线l的方程.[解]法一:由方程组错误!得错误!未定义书签。
∵直线l和直线3x-y-1=0平行,∴直线l的斜率k=3,∴根据点斜式有y-错误!=3错误!未定义书签。
.即所求直线方程为15x-5y+2=0。
法二:∵直线l过两直线2x-3y-3=0和x+y+2=0的交点,∴可设直线l的方程为:2x-3y-3+λ(x+y+2)=0,即(λ+2)x+(λ-3)y+2λ-3=0.∵直线l与直线3x-y-1=0平行,∴错误!未定义书签。
=错误!≠错误!未定义书签。
,解得λ=错误!.从而所求直线方程为15x-5y+2=0.ﻬ122+(y-5)2=4。
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2错误!未定义书签。
,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P 的坐标.思路探究:(1)设出方程,求出弦心距,由点到直线的距离公式求k。
工科数学分析课件 Chap2第3节 无穷小和无穷大
.
若对 A 0, 都N N*, 当n N时,
都有an A, 则称{an }趋向于 .
记作
lim
n
an
.
类似可定义
n
an
.
( an A)
例1 设an n2 3n 5, n 1,2,3,,
求证
lim
n
an
.
证明 an n2 3n 5 n2 3n 5n n(n 8)
§3 无穷小和无穷大
无穷小
定义3.1 如果收敛数列{an }的极限为0,那么这个数列
称为无穷小列, 简称无穷小.
定理3.1
1o{an }为无穷小的充要条件是{| an |}为无穷小; 2o 两个无穷小之和(或差)仍是无穷小;
3o 设{an }为无穷小,{cn }为有界数列, 那么{cnan }为无穷小;
无界不一定是无穷大,例如 1,0,2,0,3,0,, n,0,
2o
如
果
lim
n
an
(或 - , 或),
那么对{an } 的
任
何
子
列{ank
},
也
有
lim
k
ank
(或 - , 或) .
3o 无界数列中一定能选出一个无穷大子列.
4o
如果
lim
n
an
,
lim
n
bn
那么
lnim(an bn ) , lnim(anbn ) .
Pl (n) Qm (n)
al nl al1nl1 a0 bmnm bm1nm1 b0
无穷大量看高阶
al
lim
n
an
lim
n
al nl bm nm
高等数学(上册) 第二章教案讲解
第二章、一元函数微分学及其应用教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。
4、 会求分段函数的导数。
5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、 隐函数和由参数方程确定的函数的导数。
教学难点:1、复合函数的求导法则;2、分段函数的导数;3、反函数的导数4、隐函数和由参数方程确定的导数。
所需学时:24学时(包括:22学时讲授与2学时习题)第一节:导数的概念及其基本求导公式1、引入(切线与割线)在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。
例:设一质点沿x 轴运动时,其位置x 是时间t 的函数,y=f (x ),求质点在t 0的瞬时速度?我们知道时间从t 0有增量△t 时,质点的位置有增量,这就是质点在时间段△t 的位移。
因此,在此段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t 0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t 0时的瞬时速度。
我们认为当时间段△t 无限地接近于0时,此平均速度会无限地接近于质点t 0时的瞬时速度,为此就产生了导数的定义,如下: 2、导数的定义定义:设函数y=f (x )在点x 0的某一邻域内有定义,当自变量x 在x 0处有增量△x(x+△x 也在该邻域内)时,相应地函数有增量,若△y 与△x 之比当△x→0时极限存在,则称这个极限值为y=f (x )在x 0处的导数。
讲解高等数学第二章
第二章、一元函数微分学(45分左右)第一节、导数与微分一、导数的概念(知道导数的符号如何表示即可) 1、导数的表示符号(1)函数()f x 在点0x 处的导数记作:'0()f x ,0'x x y =,x x dy dx= 或()x x df x dx=(2)函数()f x 在区间(a,b )内的导数记作:'()f x ,'y ,dy dx 或 ()df x dx二、求导公式(重点,是解题的关键,必须记住!)(1)'()0c = (C 为常数) (2)'1()x xααα-=(3)'()ln x xa a a = ,'()x x e e = (4)'1(log )ln a x x a =,'1(ln )x x= (5)'(sin )cos x x = (6)'(cos )sin x x =- (7)'221(tan )sec cos x x x == (8)'221(cot )csc sin x x x=-=- (9)'(arcsin )x =(10)'(arccos )x =(11)'21(arctan )1x x =+ (12)'21(arccot )1x x=-+、()3x’=23x2、1'212x -= 3、 'sin 6π⎛⎫⎪⎝⎭=04、 '(2)2ln 2x x=⋅ 5、()'lg 20= 6、()'lg x =()'10log x =1ln10x ⋅三、导数的四则运算(必考题型,选择、填空、解答题均有可能出现)1、运算公式(设U ,V 是关于X 的函数,求解时把已知题目中的函数代入公式中的U 和V即可,代入后用导数公式求解.)(1)'''()u v u v ±=± (2)'''()u v u v uv ∙=+(3)''()Cu Cu =(C 为常数) (4)'''2()u u v uv v v-=423cos y x x e =+-,求'y .解:'y =()()()'''423cos xx e +-=343sin 0xx --=343sin x x - (因为2e 是常数)2()ln f x x x =,求'()f e .解:'()f x =()()''22ln ln x x x x +=212ln x x x x⋅+⋅=2ln x x x ⋅+ 所以'()f e =2ln 23e e e e e e ⋅+=+=2()1x f x x=+,求'(1)f . 解:'()f x =()()()()''2222111x xx x x +-++=()()222121x x x x +-⋅+=()22211xx -+所以'(1)f =()2221111-+=0四、复合函数的求导法则(必考题型,选择、填空、解答题均有可能出现) 1、方 法 一:2sin y x =的导数.(1)首先判断该复合函数是由哪几个简单函数复合而成的. 如2sin y x =由sin y u =和2u x =这两个简单函数复合而成 (2)用导数公式求出每个简单函数的导数. 即dy du =cos u ,du dx=2x (3)每个简单函数导数的乘积即为复合函数的导数;注意中间变量要用原变量x 替代回去. 所以dy dy dudx du dx=∙=2x cos u =2x 2cos x2、方 法 二(直接求导法):如果对导数公式很熟悉,对复合函数的过程十分清楚,可以不必写出中间变量而直接对复合函数从外往里求导2')x =22'cos ()x x ∙=2x 2cos xy ='y . (用方法一求解) 解:该函数是由y =21u x =-复合而成,且dydu=1212u-,dudx=2x-.所以dy dy dudx du dx=∙2x-=1sinxy e=,求'y. (用方法二求解)解:'y='1sinxe⎛⎫⎪⎝⎭=1sinxe'1(sin)x=1sinxe1cosx⋅'1x⎛⎫⋅ ⎪⎝⎭=21x-⋅1sinxe1cosx⋅注意:同学们在解题是要结合自己的基础以及对公式的熟练程度选择其中的一种求解方法.五、导数的几何意义(可能会考到选择、填空)1、导数的几何意义:()y f x=在点x处的导数'()f x就是曲线在点x处切线的斜率,即k切=='()f x2、切线方程的求法:用点斜式(即已知点和斜率)去求切线方程设函数()y f x=,则该函数在点()00,x y处的切线方程为:()()'000y y f x x x-=-2xy e-=在点(0,1)M处的切线方程.解:因为'y=()'2x e-=2x e-()'2x⋅-=22xe--………先求导即k切='xy==22xxe-=-=2-………再求切线斜率,即把x代入导数中所以切线方程为:()120y x-=--,即21y x=-+. ………用点斜式求出切线方程六、高阶导数(每年考一题,一般考求二阶或三阶导数)1、定义:如果函数()y f x=的导数'()f x在点x处可导,就称'()f x的导数为函数()y f x=的二阶导数,记作:''y,''()f x,22d ydx或22()d f xdx我们把二阶和二阶以上的导数称为高阶导数.2、求法:(1)二阶导数就是对一阶导数再求一次导(2)三阶导数就是对一阶导数求两次导,对二阶导求一次导(3)同理得四阶、五阶……导数的求法5sin y x =,求33d ydx.解:因为dydx=5cos x ,且22d y dx =5sin x -,所以33d y dx =-5cos x2xy e =,求0''x y=.解:'y =2xe ()'2x ⋅=22x e ,所以''y =2⋅2x e ()'2x ⋅=42x e即0''x y ==4七、微分(每年考一题,考选择、填空或者解答题) 1、微分的求法:(1)求出函数()y f x =的导数'()f x .(2)再乘以dx 即可.即'()dy f x dx =. (因为我们习惯用dx 表示x ∆)2ln y x =,求dy 和1x dy =.解:因为'y =()'2ln x =()'221x x ⋅=212x x ⋅=2x所以dy =2xdx ,即1x dy ==2dx (dx 是微分的一个标志,故切勿将1x =代入dx 中)4cos y x x =⋅,求dy . 解:因为'y =()()''44cos cos xx x x +=344cos sin x x x x -所以dy =()344cos sin x x x x dx -第二节、洛必达法则(考的话考解答题,考的可能性为百分之50左右) 1、洛必达法则介绍:在一定条件下通过分子、分母分别求导,再求极限来确定未定式的值的方法称为洛必达法则公式:''()()limlim (()()f x f x Ag x g x ==∞或) 2、使用洛必达法则应当注意的地方:(1) 只能对00或∞∞才能使用洛必达法则,如果是∞±∞未定式一定要先通分化成00或∞∞才能使用洛必达法则.(2) 在使用洛必达法则时,是对未定式的分子、分母分别同时求导,再求极限. (3) 在应用一次洛必达法则后,仍然是0/0或∞/∞,则可继续使用洛必达法则,如此继续下去直到求出极限为止。
数学分析第二章知识点总结(通用3篇)
数学分析第二章知识点总结(通用3篇)数学分析第二章知识点总结篇11.无理数⑴无理数:无限不循环小数⑵两个无理数的和还是无理数2.平方根⑴算术平方根、平方根一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。
⑵开平方:求一个数的平方根的运算叫开平方被开方数3.立方根⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a 的立方根.⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.⑶开立方、被开方数4.公园有多宽求根式、估算根式、根据面积求边长5.实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律) 运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。
6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。
我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。
7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。
对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。
对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。
至于倒数法和平方法不是很常见,所以只需简单了解即可。
10.计算是数学的基础,也是我们解决问题的必要手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元函数微分学及其应用 (2)2.1 导数的概念 (2)2.1.1 变化率问题举例 ................................................. 2 2.1.4 导数的几何意义 ................................................. 5 2.1.5 函数可导性与连续性的关系 ....................................... 5 2.1.6 导数概念在其他学科中的应用举例 ................ 错误!未定义书签。
2.2 求导法则 . (7)2.2.1 函数的和、差、积、商的求法则 ................................... 7 2.2.2 复合函数的求导法则 ............................................. 8 2.2.3 反函数的求导法则 ............................................... 9 2.2.4 一些特殊的求导法则 ............................................ 10 2.3 高阶导数与相关变化率 (13)2.3.1 高阶导数 ...................................................... 13 2.3.2 相关变化率 .................................................... 16 2.4 函数的微分与函数的局部线性逼近 .. (17)2.4.1 微分的概念 .................................................... 17 2.4.2 微分公式与运算法则 ............................................ 18 2.4.3 微分的几何意义及简单应用 ..................................... 20 2.5 利用导数求极限——洛必达法则 . (22)2.5.100型未定式的极限 ............................................. 22 2.5.2 ∞∞型未定式的极限 (23)2.5.3 其他类型未定式的极限 .......................................... 23 习题课2 ............................................................ 25 2.6 微分中值定理 .. (29)2.6.1 罗尔定理 ...................................................... 29 2.6.2 拉格朗日中值定理 .............................................. 30 2.6.3 柯西中值定理 ................................................ 31 2.7 泰勒公式-用多项式逼近函数 (31)2.7.1 泰勒多项式与泰勒公式 .......................................... 31 2.7.2 常用函数的麦克劳林公式 ........................................ 32 2.8 利用导数研究函数的性态 . (35)2.8.1 函数的单调性 ................................................. 35 2.8.2 函数的极值及其求法 ............................................ 37 2.8.3 最大值最小值问题 .............................................. 38 2.8.4 函数的凸性与拐点 .............................................. 40 2.8.5 曲线的渐近线,函数作图 ........................................ 41 2.9 平面曲线的曲率 (44)第二章 一元函数微分学及其应用2.1 导数的概念 2.1.1 变化率问题举例例1 蓄水池放水的速度某蓄水池从某时刻开始放水,则到t 时刻总放水量Q 是时间t 的函数,即)(t Q Q =,如果时间由0t 变到t t ∆+0,)(t Q 相应的改变量为)()(00t Q t t Q Q -∆+=∆,则放水的速度可以认为是tQ∆∆ (1)当然这只是适用于放水的速度是匀速的情况。
如果放水的速度不是匀速的,则在放水的不同时间间隔内,式(1)的值会不同,使用该值反应放水的速度就不适合了。
那么如何来理解在不同时刻放水的速度,又如何求之。
首先取从时刻0t 到t 这样一个时间间隔,在这段时间内,蓄水池的放水总量从0Q)(0t Q =变化到)(t Q Q =。
这时由式(1)算得的比值0)()(t t t Q t Q t Q --=∆∆ (2)是蓄水池在上述时间内放水的平均速度。
如果时间间隔选得较短,这个比值式(2)在实践中也可用来说明在时刻0t 放水的速度。
但这毕竟不是在时刻0t 的精确值。
经验告诉我们,t ∆的绝对值越小,则所得的平均速度就越能合理地反映出0t 时刻的放水速度的实际情况,这就使我们自然想到利用极限作为工具,于是令0t t →,并设式(2)的极限为v ,即0)()(lim0t t t Q t Q v t t --=→这时将这个极限值v 称为蓄水池在0t 时刻的放水瞬时速度。
例2 切线问题切线与速度一样,也是引出导数概念的一个古老问题。
大约在公元前3世纪,就已经出现了切线的动态定义:切线是与曲线只有一个交点的直线。
但是这种静态定义在描述复杂曲线时,就不合适了,比如对于抛物线2x y =,在原点O 处两个坐标轴都符合上述定义,但实际上只有x 轴是该抛物线的切线。
设有曲线C 及C 上的一点M (图2-1),在点M 外另取一点N ,作割线MN 。
当点N 沿曲线C 趋于M 时,如果割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线。
这里极限位置的含义是:只要弦长||MN 趋于零,NMT ∠也趋于零。
图 2-1)(0x f '=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000 (4)也可记作000)(,|x x x x x x dx x df dx dy y ==='或。
2.1.3 用定义求导数举例按定义求导,可以按下面三步进行:(1) 求增量:)()(x f x x f y -∆+=∆;(2) 算比值:xx f x x f x y ∆-∆+=∆∆)()( (3) 取极限:xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 00例3 求函数c bx x f y +==)(的导数,c b ,为常数。
解 按照导数定义b x x b xc bx c x x b x y x f x x x =∆∆=∆+-+∆+=∆∆='→∆→∆→∆000lim )(])([limlim)(即.)(b c bx ='+特别地,当0=b 时,可得0)(='c ,即常数的导数等于零。
例4 求函数)0(>=x x y μ的导数,这里μ是任意实数。
解 先证μμ=-+→xx x 1)1(lim0, 设1)1(-+=μαx ,则,0→μ有0→α,且)1ln()1ln(x +=+μα,由此xx a a x x a a x x x x x )1ln(lim)1ln(lim )1ln()1ln(lim 1)1(lim 0000+⋅⋅+=+⋅⋅+=-+→→→→μμαμ μμ=⋅⋅=11101001)1(lim)(lim lim-→∆-→∆→∆=∆-∆+=∆-∆+=∆∆μμμμμμx xx x x x x xx x x y x x x 即1)(-='μμμx x 。
例5 求函数x x f sin )(=的导数。
解,cos 22sin )2cos(lim 2sin)2cos(21lim sin )sin(lim )()(lim)(0000x h h h x hh x h h x h x h x f h x f x f h h h h =⋅+=+⋅=-+=-+='→→→→ 即x x cos )(sin ='。
就是说正弦函数的导数是余弦函数,类似x x sin )(cos -=',余弦函数的导数是负的正弦函数。
例6 求函数)1,0()(≠>=a a a x f x的导数。
解 ha a h x f h x f x f xh x h h -=-+='+→→00lim )()(lim )(a a ha a x h h xln 1lim0=-=→ 特别地,xx e e =')(,即以e 为底的指数函数的导数就是它自己。
例7 求函数)1,0(log )(≠>=a a x x f a 的导数。
解h xh x h x f h x f x f a a h h log )(log lim )()(lim)(00-+=-+='→→xx h x xh h x x x h x h a h a h a h )1(log lim1)1(log 1lim log 1lim 000+=+⋅=+=→→→ ax ln 1= 即 ax x a ln 1)(log ='。
特别地,自然对数的导函数为xx 1)(ln ='。
例8 求函数||)(x x f =在0=x 处的导数。
解 hh h h h f h f h h h ||lim 0||lim )0()0(lim000→→→=-=-+当0<h 时,,1||-=hh 故1)(0-='-x f ,类似1)(0='+x f ,即||)(x x f =在0=x 不可导。
2.1.4 导数的几何意义例9 求等边双曲线x y 1=在点)1,21(处的切线的斜率,并写出在改点处的切线与法线方程。
解 根据导数的几何意义,所求切线的斜率为211='=x y k由于21)1(x x y -='=',于是412121-=-==x x k 。