第2节 随机事件
随机事件说课稿3篇大全
随机事件说课稿3篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!随机事件说课稿3篇随机事件说课稿1教学目标1、让学生理解必然事件、不可能事件、随机事件的概念。
1-2节 样本空间和随机事件
A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S
第二章 随机事件与概率
古典概率
1、古典概型(等可能性概型)
(1)试验结果只有有限个; (2)每个结果出现的可能性相同。 如抛一颗骰子,出现的结果为{1点,2点…,6点} 共有6个结果,每个结果出现的可能性都是1/6, 因此这个试验就是古典概型.
2、概率的古典定义 若互斥完备群由有限的n个基本事件构成, 而事件A包含m个基本事件,则事件A发生的概率为
(一)条件概率
已知事件A发生的条件下, 事件B发生的概率称为 A条件下B的条件概率,记作P(B|A)
【例13 】 设袋中有3个白球,2个红球,现从袋 中任意抽取两次,每次取一个,取后不放回,已 知第一次取到红球,求第二次也取到红球的概率
设A:第一次取到红球, B:第二次取到红球
P ( B | A) 1
2、对立事件加法 证: A A Φ, A A Ω
P ( A) 1 P ( A).
【例12】 20片药片中,有黄连素15片,穿心莲5片, 随机抽取3片, 求其中至少有1片穿心莲的概率。 解:设 Ai = {任取3片中有i片穿心莲},i=0,1,2,3
B={3片中至少有1片穿心莲} 3 0 C15C5 P( B) 1 P( A0 ) 1 3 1 0.3991 0.6009 C20 3、一般加法 A,B任意,P(A+B)=P(A)+P(B)-P(AB)
【例11】 20片药片中,有黄连素15片,穿心莲5 片, 随机抽取3片, 求其中至少有2片穿心莲的 概率。 解:设 Ai ={任取3片中有i片穿心莲},i=0,1,2,3
B={3片中至少有2片穿心莲} 则 B A2 A3 ,故 P ( B) P( A2 A3 ) P( A2 ) P( A3 ) 1 2 0 3 C15 C5 C15 C5 0.1404 3 3 C 20 C 20
数学第十一章
图 11-5
一、随机事件
学习提示
一、随机事件
由定义可知,对立事件必为互不相容;反之,互不相容 的两个事件未必为对立事件.
事件的运算与集合的运算类似,满足下面的规律: 设A,B,C为事件, 交换律:A∪B=B∪A; A∩B=B∩A. 结合律:A∪(B∪C)=(A∪B)∪C; A∩(B∩C)= (A∩ B)∩C. 分配律:A∪(B∩C)=(A∪B)∩(A∪C); A∩(B∪C)=(A∩B)∪(A∩C).
一、随机事件
【例1】
观察下列各种现象,哪些是确定性现象,哪些是随机 现象.
(1)三角形内角和等于180 ; (2)掷一颗骰子,出现的点数大于7; (3)某人射击一次,中靶; (4)从分别标有号数1,2,3,4,5的5张标签中任取一张, 得到4号签; (5)某电话机在一分钟内收到2次呼叫; (6)掷一枚硬币,出现正面.
图 11-3
一、随机事件
类似地,可列个事件A1,A2,A3,…的积可 ∩∞i=1Ai,n个事件A1,A2,A3,…,An
的积可记为∩ni=1Ai. 事件A发生而事件B不发生的事件,称为事
件A与事件B的差,记为A-B.事件A与B的差是由 属于A而不属于B的样本点所构成的事件.
一、随机事件
(3)事件的互不相容 (互斥).
图 11-1
一、随机事件
(2)事件的和、积差. 事件A与事件B中至少有一 个发生的事件,称为事件A与事件 B的和(或并),记为A∪B.事件A与 B的和是由A与B的样本点合并而 成的事件,如图11-2所示.
图 11-2
一、随机事件
事件A与事件B同时发生 的事件,称为事件A与事件B 的积(或交),记为A∩B,也可简 写为AB.事件A与B的积是由A 与B的公共的样本点所构成的 事件,如图11-3所示.
概率论第十四章概率论初步重要知识点
第十四章 概率论初步第一节 事件与概率一、随机事件和样本空间在研究自然界和人类社会时,人们可观察到各种现象,按它是否带有随机性将它们划分为两类。
一类是在一定条件下必然会发生的现象,称这类现象为确定性现象。
例如苹果从树上掉下来总会落到地上,三角形的内角和一定为180º。
另一类现象是在一定条件可能出现也可能不出现的现象,称这类现象为随机现象。
例如掷一枚质地均匀的硬币时,它可能出现正面向上,也可能出现反面向上等。
对于随机现象的一次观察,可以看作是一次试验,如果某种试验满足以下条件:(1)试验可在相同条件下重复地进行;(2)每次试验的结果可能不止一个,并且能事先确定试验的所有可能的结果;(3)每次试验的结果事先不可预测,称这种试验为随机试验。
随机试验的每一个可能的结果,称为基本事件,它们的全体,称作样本空间,通 常用字母Ω表示。
样本空间的元素即基本事件,有时也称作样本点,常用ω表示。
例1、一次掷两颗骰子,观察每颗的点数解: Ω=}654321,|),{(、、、、、j i j i =其中()j i ,表示第一颗掷出i 点,第二颗掷出j 点,显然, Ω共有36个样本点。
例2、 一个盒子中有十个完全相同的球,分别标以号码1021、、、Λ从中任取一球, 解:令 {}i i 取出球的号码为=则}1021{、、、Λ=Ω称样本空间Ω的某一子集为一个随机事件,简称事件,通常用大写英文字母A 、B 、C ……表示。
如在例2中, A={}取出球的标号为奇数因为Ω是所有基本事件所组成,因而在任一次试验中,必然要出现Ω中的某一些基本事件ω,即Ω∈ω,也即在试验中,Ω必然会发生,又用Ω来代表一个必然事件。
相应地,空集φ可以看作是Ω的子集,在任意一次试验中,不可能有φω∈,即φ永远不可能发生,所以φ是不可能事件。
我们可用集合论的观点研究事件,事件之间的关系与运算如下:(1)包含 如果在一次试验中,事件A 发生必然导致事件B 发生,则称事件B 包含事件A ,记为B A ⊂由例2,{}5球的标号为=B ,则A B ⊂(2)等价 如果B A ⊂同时A B ⊂,则称事件A 与事件B 等价,记为A=B 。
概率论习题
第_章随机事件及其概率第一节随机事件第1题设A,B,C为三个随机事件,试用A,B,C的运算关系表示下列事件;⑴D= “A,B,C至少有一个发生”;(2) E= 发生,而B,C都不发生”;⑶F= “A,B,C中恰有一个发生”;(4) G= “A,B,C中恰有两个发生”;(5) H= “A,B,C中至少有两个不发生”;第2题设A={xl<x<5} ,B={x3<x<7},C={xx<]},都是/?={x|-oo<x<+oo冲的集合,试求下列各集合。
(AUB)riC第3题化简(ABUC)(AC)第4题证明:(AHB)-B=A-AB=AB=A-B第5题设A,B,C为3个随机事件,与A互斥的事件是(D)o(A) ABUAC(B) A(BUC)(C) ABC(D)AUMJC第6题对于任意2事件A和B,与AUB=B,不等价的是(D)。
(A)A U B,(B)P U A,(C)AP=0,(Q)BA=0第二节随机事件的概率第7题设随机事件A、B、C互不相容,且P(A)=0・2,P(B)=0・3,P(C)=0・4, 则円(AU®-C]等于()。
第8题对于随机事件A和B,有P(A-B) 等于(C).(A)P(A)-P(B); (B).P(A)-P(B)+P(AB) (C).P(A)-P(AB)(D).P(A)+P(B)+P(AB)第9题设A、B、C是三个随机事件, 且P(A)=0・3, P(B)=0.4, P(C)=0.6,P(AC)=P(BC)=P(AB)=0.25,P(ABC)=0.2,试求下列各事件的概率:(1)“三个事件中至少有一个发生”记为D1;(2)“三个事件中至少有两个发生”记为D2;第10题设A,B,C为三个事件,已知P(A)=0.3,P(B)=0. & P(C)=0.6, P(AB)=0・2, P(AC)=0, P(BC)=0.6,试求:(1) P(AU^) ;(2) P(AB) ;(C) P(AU5UQ第行题设A和B为随机事件,A和B 至少有一个发生的概率为1/4, A生且B不发生的概率为1/12,求P(B).第12题已知P(A)=P(B)=P(C)=1,P(AC)=P(BC)=^,P(AB)=O,求事件A,BC全不发生的概率。
九年级数学随机事件说课稿
九年级数学随机事件说课稿九年级数学随机事件说课稿(精选5篇)作为一名教师,常常要根据教学需要编写说课稿,认真拟定说课稿,那么大家知道正规的说课稿是怎么写的吗?以下是本店铺精心整理的九年级数学随机事件说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
九年级数学随机事件说课稿 1教学目标:1、知识与技能:通过分析正确认识必然事件、不可能事件、随机事件,并理解随机事件的概念。
2、过程与方法:能根据随机事件的特点辨别哪些事件是随机事件。
3、情感与态度:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。
在体验中去感受数学,喜欢数学。
教学重点、难点:重点:理解随机事件的概念并掌握随机事件发生可能性的变化规律。
难点:1、判断现实生活中哪些事件是随机事件。
2、探究随机事件可能性的变化规律。
教具准备:课件、口袋、小球、扑克牌、骰子教学过程:一、创设情境,引入新课在篮球比赛前,有这样一位新裁判员想以抽签方式决定两支球队的进攻方向,他准备了三根形状、大小相同的纸签。
上面分别写有1、0、0,在看不到纸签上的数字情况下,让其中一方队长从三根纸签中任意地抽取一根,抽到数字是1的纸签则拥有选择权,抽到数字是0的纸签则选择权给对方。
[师生行为]结合图片引发学生思考:如果你是队长会去抽吗?让学生凭借自己的经验谈谈想法,教师引导学生学完本节课内容后用严谨的数学知识可以解答。
[设计意图] 从篮球比赛中创设情境引出问题,让学生思考,激发学生求知欲望。
二、活动1、猜牌游戏1、展示四张红桃A,然后洗牌抽出一张,让学生猜这张是什么A?问可能是黑桃A吗?2、展示红桃A、黑桃A、方块A、梅花A各一张,然后洗牌抽出一张,猜是什么A?[设计意图] 通过师生互动游戏引导学生观察、思考并归纳出在一定条件下判断事件发生的结果有三种情况:可能、不可能、一定。
三、活动2、投掷一个质地均匀的正方体骰子,骰子六个面上分别刻有1到6的点数,每位学生掷10次并记录每次向上一面骰子的点数。
初中人教版随机事件教案
教案:随机事件教学目标:1. 了解必然事件、不可能事件、随机事件的概念,并能列举生活中的实例。
2. 体会随机事件发生的可能性有大有小。
教学内容:1. 必然事件、不可能事件、随机事件的概念及特点。
2. 生活中的实例分析。
教学过程:一、导入(5分钟)1. 教师通过展示图片或视频,引导学生观察和思考,提出问题:“生活中有哪些事件是必然发生的?有哪些事件是不可能发生的?又有哪些事件是随机发生的?”2. 学生思考并回答问题,教师总结并板书。
二、新课讲解(15分钟)1. 教师讲解必然事件、不可能事件、随机事件的概念和特点。
2. 教师通过举例,让学生更好地理解三种事件的概念。
三、实例分析(15分钟)1. 教师提出实例,让学生判断属于哪一种事件。
2. 学生回答问题,教师点评并总结。
四、课堂练习(10分钟)1. 教师给出练习题,让学生判断属于哪一种事件。
2. 学生独立完成练习题,教师批改并讲解。
五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结必然事件、不可能事件、随机事件的概念和特点。
2. 学生分享自己的学习心得。
六、课后作业(课后自主完成)1. 教师布置作业,让学生判断生活中的事件属于哪一种类型。
2. 学生独立完成作业,巩固所学知识。
教学反思:本节课通过导入、新课讲解、实例分析、课堂练习、课堂小结和课后作业等环节,让学生掌握了必然事件、不可能事件、随机事件的概念和特点。
在实例分析环节,学生能够将所学知识应用到实际生活中,提高了学生的实际应用能力。
在课堂练习环节,学生独立完成练习题,巩固了所学知识。
总体来说,本节课达到了预期的教学目标,学生对随机事件的认知有了明显的提高。
但在教学过程中,需要注意引导学生正确判断事件类型,避免混淆概念。
在课后作业的布置上,可以适当增加一些开放性题目,让学生更好地运用所学知识。
概率作业集(经管完整版)2012.9
第一节 随机事件一、用集合的形式表示下列随机试验的样本空间与随机事件A1.在平整的桌面上随机抛骰子,观察出现的点数,设事件A 表示“骰子的点数是奇数”,则样本空间=Ω{ },A ={ }。
2.观察某呼叫台一个昼夜接到的呼叫次数,设事件A 表示“一个昼夜接到的呼叫次数小于2次”,则样 本空间=Ω{ },A ={ }。
3.对目标进行射击,击中后便停止射击,观察射击的次数,事件A 表示“射击次数不超过3次”,则样 本空间=Ω{ },A ={ }。
二、设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A ,B ,C 都发生: (2)A ,B ,C 都不发生: (3)A 发生,B 与C 不发生:(4)A ,B ,C 中至少有一个事件发生: (5)A ,B ,C 中至少有两个事件发生: (6)A ,B ,C 中恰有一个事件发生:三、若事件A ,B ,C 满足等式C B C A =,问B A =是否成立?若成立,请证明;若不成立,请举反例说明。
第二节 随机事件的概率(1)一、选择题(1)设A 与B 是两个对立事件,且0)(,0)(≠≠B P A P ,则下列正确的是( )。
(A )1)()(=+B P A P (B )1)(=AB P (C )()()()P AB P A P B = (D ))()(B P A P = (2)设A , B 为两个互不相容的随机事件,则下列正确的是( )。
(A )A 与B 互不相容 (B ))(1)(B P A P -= (C )()()()P AB P A P B = (D )()()()P AB P A P B =+(3)设A 、B 是任意两事件,则=-)(B A P ( )。
(A ))()(B P A P - (B ))()()(B A P B P A P +-(C ))()(AB P A P - (D ))()()(AB P B P A P -+二、已知8.0)(=B A P ,5.0)(=A P ,6.0)(=B P ,求)(AB P ,)(B A P ,)(B A P 。
第一章 随机事件及概率讲解
(2)事件的相等:若 A B 且 B A , 则称A与B相等,记为A=B。
包含关系的性质: (a) A ; (b)A A (c)若A B且B C,则A C (d )若A B且B A,则A B
(3) n个元素的全排列数为 Anr n(n 1) 3 21 n!
c. 组合
(1)从n个元素中取出r个元素而不考虑其顺序,称为组 合,其总数为
C
r n
n r
Anr r!
n(n 1) (n r 1) r!
n! r!(n r)!
(2)若r1 r2 rk n,把n个不同的元素分成k个部分,
事件的交(积) :事件A与B都发生,称
为A与B的积(交)事件,记为 A B
。
推广:
事件 A1, A2,, An 同时发生:
n
A1 A2 An Ai i 1
事件 A1, A2, 同时发生:
A1 A2 Ai i 1
5、差事件:事件A发生但B不发生 称为A与B之差,记为A-B
例2.9:某城市共发行A,B,C三种报纸,调 查表明居民家庭中订购C报的占30%,同 时订购A,B两报的占10%,同时订购A,C及 B,C两报的各占8%,5%,三报都订的占 3%.今在该城中任找一户,问该户(1)只订 A、B两报;(2)只订C报的概率各为多少?
第一章 概率论的基本概 念
1 理解随机事件的概念,了解样本空间的 概念,掌握事件之间的关系和运算。
2 理解概率的定义,掌握概率的基本性质, 并能应用这些性质进行概率计算。
高考数学大一轮复习专题12概率与统计课件理
①互斥事件研究的是两个(或多个) 事件之间的关系;②所研究的事件 是在一次试验中涉及的
8
9
10
600分基础 考点&考法
考点70 古典概型与几何概型
考法3 求古典概型的概率
考法4 几何概型的概率计算
11
考点70 古典概型与几何概型
(1)任何两个基本事件是互斥的; 1.基本事件的特点 (2)任何事件(除不可能事件)都 可以表示成基本事件的和.
1.频率与概率
2.互斥事件 与对立事件 3.互斥事件 与对立事件 的概率公式
考法1 频率估计概率
事件 A发生的频率 f n A nA n
随着试验次数的增多,它在A 的概率附近摆动幅度越来越小
概率是频率的稳定值
在试验次数足够的情况下
利用频率估计概率
6
考法2 求互斥事件、对立事件的概率
1.求简单的互斥事件、对立事件的概率
分析该事件是互斥还是对立,然后代入相应的概率公式
2.求复杂的互斥事件的概率的方法
直接法 将所求事件分解为彼此互斥的事件的和 利用公式分别计算这些事件的概率 运用互斥事件的概率求和公式计算概率 间接法 判断是否适合用间接法 计算对立事件的概率 运用公式P(A)=1-P(A)求解 把一个复杂事件分解为若干 个互斥或相互独立的既不重 复又不遗漏的简单事件是解 决问题的关键. 7
考法1 求离散型随机变量的分布列
一般步骤
【说明】求概率和分布列时,要注意离散型 随机变量分布列性质的应用,具体如下:
(1)利用“分布列中所有事件的概率和为1”
求某个事件的概率、求参数的值; (2)利用分布列求某些个事件的和的概率.
29
考法2 超几何分布的求解
概率论整理
第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。
说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。
例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。
概率论
1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。
一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。
我们把这一类型现象称之为确定性现象或必然现象。
如在一个大气压下,水在100度时会沸腾等。
一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。
这一类型的现象我们称之为偶然性现象或随机现象。
如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。
二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。
基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。
则样本点有6个。
若记,16i i i ω=≤≤,i ω即为样本点。
样本空间为123456{,,,,,}ωωωωωωΩ=。
记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。
B 为一个复合事件。
三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。
第四章 概率与概率分布
第三节 随机变量及其分布
一、 随机变量 (一) 随机变量的定义
表示随机现象观测结果的变量称为随机变量。随 机变量可用X、Y、Z……表示。 (二)随机变量的类型 1、离散型随机变量
只能取有限个或可列个孤立值的随机变量称为离 散型随机变量。 2、连续型随机变量
取值连续充满某一区间的随机变量称为连续型随 机变量。
二 、随机变量的概率分布
(一)离散型随机变量的概率分布 掌握一个离散型随机变量的概率分布规
律,必须掌握两点: 1、随机变量X所取的可能值是什么? 2、随机变量X取每一个可能值的概为多少?
p( X x1) p1, p( X x2 ) p2 , p( X xn ) pn
离散型随机变量的分布规律可用分布列 的形式来表示。
Y yi
P(Y yi ) Pi
0 0.14
1 0.22
2 0.64
离散型随机变量的概率分布具有下面两 个重要性质:
1、随机变量取任何值时,其概率都是非负 的。即 P1≥0, ≥P02 ,…… ≥0P。n 2、随机变量取遍所有可能值时,相应的概 率之和等于1,即
n
pi 1
i 1
P(-0.52<u<1.34) = P(–∞<u<1.34)- P(–∞<u<-0.52) =0.9099 - 0.3015 =0.6084
2、已知u的取值落入某一区间的概率 , 求u值。 [例13]已知P(u<x)=0.0869,求x P(u<x)=0.0869 查标准正态分布表(1) P(–∞<u<-1.36)=0.0869 即P(u<-1.36)=0.0869 X=-1.36
第二节 随机事件的概率
概率1-1随机事件
在每次试验中必有 一个样本点出现且仅 有一个样本点出现 .
概率论
若试验是将一枚硬币抛掷两次,观察正面出现 的次数: 则样本空间 S 0,1, 2 由以上两个例子可见,样本空间的元素是由试验的 目的所确定的. 如果试验是测试某灯泡的寿命: 则样本点是一非负数,由于不能确知寿命的上界, 所以可以认为任一非负实数都是一个可能结果, 故 样本空间
事件叫做事件 A 与事件 B 的和或并,记作
A B或 A + B .
A A+B B A+B
A+A= A
概率论
A+B
• 如在掷骰子试验中, 观察掷出的点数 . • A表示点数大于3; • B表示出现偶数点. • 则A+B表示出现2 点、4点、5点或6 点。
A
B
概率论
推广
、 An 中至少有一个发 类似地 , 称事件 A1、 A2、
、 An 的和事件 . 记之为 生的事件为事件 A1、 A2、
A1 A2 An , 或 A1 +A2 + +An n
简记为 Ai . 或
i 1
n
A
i 1
i
中至少有一个发生的事件为 称事件 A1、 A2、
事件 A1、 A2、 的和事件 . 记之为 A1 A2 ,
E3:掷两粒色子,观察出现的点数之和。
概率论
E 4 : 记录电话交换台一分钟 内接到的呼唤次数 . E 5 : 在一批灯泡中任意抽取一支,测试它的寿命.
E6:测试灯泡的寿命是否超过3000小时。
上述试验具有下列共同的特点:
概率论
(1) 试验可以在相同的条件下重复进行——可重复 性; (2) 每次试验的可能结果不止一个, 并且能事先明确 试验的所有可能的结果——可观察性; (3) 进行一次试验之前不能确定哪一个结果会出 现——随机性. 定义:对随机现象进行的观察与试验统称为随机 试验.简称试验,通常用E表示随机试验.
概率论第一章第二节
A、B 互斥
A、B 对立
SA
B
AB
互斥
A B A S
A B S且AB 对立
21
事件的运算规律
交换律 A B B A, AB BA 结合律 A (B C ) (A B) C
A(BC ) (AB)C 分配律 A (B C ) (A B) (A C )
A(B C ) (AB) (AC )
例如,只包含两个样本点的样本空间
S {0, 1},
它既可以作为抛掷硬币出现正面或出现反面的模 型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型.
5
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品的 总件数.
S
思考:何时 A B ?何时 A B A?
18
5. 互不相容(互斥) 若AB ,称事件A与B互不相容.
A S
B
即A与B不能同时发生.
AB “骰子出现1点”互斥
“骰子出现2点”
基本事件是两两互不相容的.
19
6. 逆事件(对立事件)
若 A B S且 AB ,则称 A与B互为逆事件,或对立 事件.
14
三、事件的关系与运算
设试验E, 样本空间S,
A, B, Ak (k 1, 2, )是S的子集.
BA
1. 包含
S
A B
A发生必导致B发生. A B
实例“长度不合格” 必然导致 “产品不合格”,
特别地:A B
A B且B A.
设A为任一事件,有
(1) A S, (2) A A,
(3) A B 又 B C A C.
《随机事件》教案
新疆石河子市第八中学九年级数学?2511 随机事件?教案教材分析本节课提出了必然事件,不可能事件,随机事件的概念,并用枚举、实验、小组讨论等方法,逐步形成对随机事件的特点及定义的理性认识,是一节“概率〞的起始课。
学生学会怎样用观察的方法去认识身边随机现象。
在新课程理念的指导下,注重对学生的动手能力,合作交流能力和对学生探究问题的习惯和意识的培养。
本节课掌握得如何,直接关系“概率〞整个知识体系的“坚实〞性。
教学目标知识技能①理解必然事件、不可能事件、随机事件的概念。
②会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件。
数学思考①经历体验、操作、观察、归纳、总结的过程,开展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力。
②从事件的实际情形出发,会简单分析事件发生的可能性。
解决问题能根据随机事件的特点,区分哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作。
情感态度感受数学与现实生活的联系,在独立思考的根底上,积极参与对数学问题的讨论,获得成功的体验。
教学难点随机事件的特点,判断现实生活中哪些事件是随机事件。
知识重点随机事件概念的形成教具准备多媒体、课件、纸盒和小球〔开拓学生视野,激发学生学习兴趣〕教学过程〔师生活动〕设计理念欣赏〔结合动画欣赏〕播放一段天气预报,“天有不测风云〞,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的。
课题:随机事件激发学生的兴趣,让学生体会数学来源于生活,生活中处处有数学。
创设情境……观察实例〔8个生活中的〕哪些是必然发生的,哪些是不可能发生的?从日常生活的经验和常识入手,调动学生的积极性,让学生在感性上接受“必然事件〞、“不可能事件〞的概念。
让学生对必然现象,不可能现象有个深刻的理解:在一定条件下,事件发生的结果是可以确定的。
九年级上册数学《随机事件》教学设计
25.1.1 《随机事件》教学设计授课人:司徒梅桂授课时间:星期二第二节授课地点:九(1)班一、教材分析本章是在小学了解了随机现象发生的可能性基础上,进一步学习事件的概率。
生活中概率大量存在,与我们的生产生活密切相关。
本节主要是了解随机事件和有关概念,教科书中设置了三个问题,通过问题1抽签试验和问题2掷骰子试验,主要让学生感受到,在一定条件下重复进行试验时,有些事件是必然发生,有些事件是不可能发生的,有些事件是有可能发生也有可能不发生的,在这两个具体问题探讨的基础上,提出随机事件等有关概念,要求学生能够在具体的情境中判断一个事情是随机事件还是确定性事件。
问题3是一个摸球试验,主要探讨随机试验发生的可能性,以及随机事件发生可能性相对大小的定性描述,并要求通过试验验证判断。
通过问题3,让学生了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性大小很可能不同,并能够判断几个事件发生的可能性的相对大小。
通过这三个问题,为下一节概率的学习做好铺垫。
二、教学目标1、理解必然发生的事件、不可能发生的事件、随机事件的概念。
2、了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同。
3、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
4、感受数学与现实生活的联系,积极参与对数学问题的探讨,认识动手操作试验是验证得出结论的好方法。
5、能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识。
三、教学重点与难点重点:掌握随机事件的特点,会判断现实生活中的随机事件。
难点:判断现实生活中哪些事件是随机事件.四、教学方法动手试验交流归纳五、教学媒体工具多媒体、乒乓球、骰子、硬币六、教学过程(活动一)情境导入1、引入:教师:同学们,随意翻开数学课本,你知道左边的页码是奇数还是偶数?一定是这样的结果吗?不妨试一试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B 特别地: A B 称A与B互相对立: 若 A B 或称A是B的对立事件 记为:A B B Ω A B 也称B是A的对立事件 记为:A B A C A B 性质:C A C A C
例 . 设事件 A = “甲种产品畅销且乙种产品滞销” ,则 A 的对 立事件为( ③ ) ①甲产品滞销,乙种产品畅销; ③甲种产品滞销或乙种产品畅销. ②两种产品均畅销; ④甲种产品滞销;
④ 至少有一个不发生; A B C A B C
⑤
⑥ 都不发生; A B C
⑦ ⑧ 不都发生; A B C A B C 至少有两个出现; A B B C C A
A B C A B C A B C A B C
i 1 n
集合A−B ={ω|ω∈A且ω∉B},称为事件A与事件B的差事件 意义:“A 发生B 不发生”
(4)完备事件与对立事件:
若 Ai , 且A1 , A2 ,, An两两互斥 Ai
n
n
称A1 , A2 ,, An为一个完备事件组
性质: B A1 B A2 B An B
B
A
D⊂B,
(2)事件的交与积: 设随机试验的样本空间为Ω,A与B是其中两个任意事件: 集合A∩B ={ω|ω∈A且ω∈B}, 称为事件A 与事件B的积(交)事件,记为 AB 意义:事件A与B同时发生 若事件AB =Φ,称事件A与事件B是互斥或互不相容, 意义:A与B两个事件不可能同时发生. B A Ω 例 从一批产品中任意抽取4件;设 事件A表示恰好抽到一件次品,事件B表示至少抽到一件次品 事件C表示至多抽到一件次品,事件D表示至少抽到三件次品 则 BC=A, AD=Φ, BD=D
若集合B⊂A ,称事件B含于事件A ,或事件A包含事件B,
意义:事件B发生一定引起事件A也发生. 若集合 A=B ,称事件A与事件B 相等, 例 从一批产品中任意抽取4件;设 事件A表示恰好抽到一件次品,事件B表示至少抽到一件次品 事件C表示至多抽到一件次品,事件D表示至少抽到三件次品 则 A⊂B,
CD=Φ,即事件C 与D互斥
(2)事件的交与积:
推广n个事件的积事件记为:
A
AC
A1 A2 An Ai
i 1
n
A B
意义:这n个事件同时发生 注意:n个事件两两互斥
C B C B
A· B· C
A1 A2 An A1 A2 A3 A1 A2 A3两两互斥
第一章 随机事件及其概率
§1 §2 §3 §4 §5 §6 §7 §8 §9 §10 随机现象样本点与样本空间 随机事件 概率的统计定义 概率的古典定义 概率加法定理 条件概率 ·概率乘法定理 全概率公式· 贝叶斯公式 随机事件独立性 独立试验序列性 概率的公理化体系
1. 随机事件概念 2. 随机事件的运算 3. 随机事件运算性质
Ai B
i 1 n
i 1
i 1
A1 A2
B
Ω
An
例 甲、乙、丙三个厂生产一批产品;设 事件A1表示甲厂生产的产品,事件A2表示已厂生产的产品 事件A3表示丙厂生产的产品,事件B表示这批产品的次品 则 Ai (i=1,2,3)是一个完本事件组
B=BA1+BA2+BA3
(4)完备事件与对立事件:
A∪D=A+D=“抽到1件、3件、4件次品”
(3)事件的并与和、差: 推广n个事件的并事件:
A1 A2 An Ai
i 1 n
意义:这n个事件至少一个发生
若n个事件两两互斥,则n个事件的并事件称为和事件
A1 A2 An A1 A2 An Ai
3. 随机事件的运算性质
吸收律
A
A A
A A A A ( A B) A
A ( A B) A
重余律
幂等律 差化积 交换律 结合律 分配律
A A
A A A
A B AB A ( AB)
A A A
A B B A
1. 随机事件概念:
随机试验中部分样本点的集合称为随机事件,记为A,B, · · ·
所有样本点的集合称为必然事件;即必然事件=Ω
不包含任何样本点的集合称为不可能事件,即空集Φ. 由一个样本点组成的集合称为基本事件,即单元素集. 由多于一个样本点组成的集合称为复合事件. 事件A中包含的样本点的个数通常记为n(A). 例1 设随机试验为投掷一粒色子. A={5点}, B={偶数点} , C={不大于4点}等都为随机事件. Ω={1至6点}是必然事件 Φ={不出现1至6点} 其中A是基本事件,B和C都是复合事件
( A B) C A ( B C )
A ( BC ) ( A B)( A C )
A B B A
( A B) C A ( B C )
( A B)C ( AC ) ( BC )
反演律(德摩根)
A B A B
AB A B
(3)事件的并与和、差: 设随机试验的样本空间为Ω,A与B是其中两个任意事件: 集合A∪B ={ω|ω∈A或ω∈B},
称为事件A与事件B的并事件,记为A∪B
意义:事件A、B至少有一个发生 若事件AB =Φ,A∪B称为事件A与B的和事件,记为A+B 例 从一批产品中任意抽取4件;设 事件A表示恰好抽到一件次品,事件B表示至少抽到一件次品 事件C表示至多抽到一件次品,事件D表示至少抽到三件次品 则 C∪D= “抽到0件、1件、3件、4件次品”
注意1:今后随机事件通常用集合的方法来描述. 比如用集合的关系和运算性质研究随机事件. 再如用表示集合的Venn图表示随机事件. 注意2:若在一次随机试验中事件A中的某个样本点发生了, 就称事件A发生了,
显然:每次试验,必然事件必发生,不可能事件必不发生.
2. 随机事件的运算:
(1)随机事件的包含与相等: 设随机试验的样本空间为Ω,A与B是其中两个任意事件.
小结:
记号 概率论 集合论
Ωቤተ መጻሕፍቲ ባይዱ
φ
样本空间, 必然事件
不可能事件 样本点
空间
空集 元素
AB AB=φ
AB AB AB ΩA
A
A发生必然导致B发生 A与B互不相容(互斥) A与B至少有一发生 A与B同时发生 A发生且B不发生 A的对立事件
A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集 A的余集
练习: 试用A、B、C 表示下列事件: ① ② ③ 仅 A 发生; A B C 恰有一个发生; A B C A B C A B C 至少有一个发生; A B C A B C 至多有一个发生; A B C A B C A B C A B C