初中数学竞赛辅导讲义及习题解答 第29讲 由正难则反切入 (2)
初中数学竞赛辅导讲义及习题解答 第29讲 由正难则反切入
第二十九讲 由正难则反切入人们习惯的思维方式是正向思维,即从条件手,进行正面的推导和论证,使问题得到解决.但有些数学问题,若直接从正面求解,则思维较易受阻,而“正难则反,顺难则逆,直难则曲”是突破思维障碍的重要策略.数学中存在着大量的正难则反的切入点.数学中的定义、公式、法则和等价关系都是双向的,具有可逆性;对数学方法而言,特殊与一般、具体与抽象、分析与综合、归纳与演绎,其思考方向也是可逆的;作为解题策略,当正向思考困难时可逆向思考,直接证明受阻时可间接证明,探索可能性失败时转向考察不可能性.由正难则反切入的具体途径有:1. 定义、公式、法则的逆用; 2.常量与变量的换位; 3.反客为主; 4.反证法等. 【例题求解】【例1】 已知x 满足222322=--+x x x x ,那么x x 22+的值为 .思路点拨 视x x 22+为整体,避免解高次方程求x 的值.【例2】 已知实数a 、b 、c 满足b a ≠,且0)()(2002)(2002=-+-+-a c c b b a 求2)())((b a a c b c ---的值.思路点拨 显然求a 、b 、c 的值或寻求a 、b 、c 的关系是困难的,令x =2000,则2002=2x ,原等式就可变形为关于x 的一元二次方程,运用根与系数关系求解.注:(1)人们总习惯于用凝固的眼光看待常量与变量,认为它们泾渭分明,更换不得,实际上将常量设为变量,或将变量暂时看作常量,都会给人以有益的启示.(2)人的思维活动既有“求同”和“定势”的方面,又有“求异”和“变通”的方面.求同与求异,定势与变通是人的思维个性的两极,充分利用知识和方法的双向性,是培养思维能力的重要途径.正难则反在具体的解题中,还表现为下列各种形式: (1)不通分母通分子; (2)不求局部求整体;(3)不先开方先平方; (4)不用直接挖隐含;(5)不算相等算不等; (6)不求动态求静态等.【例3】 设a 、b 、c 为非零实数,且022=++c bx ax ,022=++a cx bx ,022=++b ax cx ,试问:a 、b 、c 满足什么条件时,三个二次方程中至少有一个方程有不等的实数根. 思路点拨 如从正面考虑,条件“三个方程中至少有一个方程有不等的实数根”所涉及的情况比较复杂,但从其反面考虑情况却十分简单,只有一种可能,即三个方程都没有实数根,然后从全体实数中排除三个方程都无实数根的a 、b 、c 的取值即可.注:受思维定势的消极影响,人们在解决有几个变量的问题时,总抓住主元不放,使有些问题的解决较为复杂,此时若变换主元,反客为主,问题常常能获得简解.【例4】 已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.思路点拨 结论是以疑问形式出现的,不妨先假定是肯定的,然后推理.若推出矛盾,则说明结论是否定的;若推不出矛盾,则可考虑去证明结论是肯定的.【例5】 能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够,请说明理由.思路点拨 先假设存在正整数1n ,2n ,3n ,4n 满足22000m n n j i =+ (i ,j =1,2,3,4,m 为正整数).运用完全平方数性质、奇偶性分析、分类讨论综合推理,若推出矛盾,则原假设不成立.注:反证法是从待证命题的结论的反面出发,进行推理,通过导出矛盾来判断待证命题成立的方法,其证明的基本步骤是:否定待证命题的结论、推理导出矛盾、肯定原命题的结论. 宜用反证法的三题特征是: (1)结论涉及无限; (2)结论涉及唯一性;(3)结论为否定形式;(4)结论涉及“至多,至少”; (5)结论以疑问形式出现等.学力训练1.由小到大排列各分数:116,1710,1912,2315,3320,9160是 . 2.分解因式2232)1(a ax x a x +--+= .3.解关于x 的方程:0433*******=+++--a ax x ax x x (a ≥81-)得x = .4.100999910013223121121++++++Λ的结果是 . 5.若关于x 的三个方程,0324422=++++m m mx x , 0)12(22=+++m x m x ,012)1(2=-++-m mx x m 中至少有一个方程有实根,则m 的取值范围是 .6.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动4次后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?7.求这样的正整数a ,使得方程074)12(22=-+-+a x a ax 至少有一个整数解.8.某班参加运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的3名运动员,他们运动服号码之和不小于32,请说明理由. 9.如正整数a 和b 之和是n ,则n 可变为ab ,问能不能用这种方法数次,将22变成2001?10.证明:如果整系数二次方程02=++c bx ax a (0≠a )有有理根,那么a ,b ,c 中至少有一个是偶数.11.在ΔABC 中是否存在一点P ,使得过P 点的任意一直线都将该ΔABC 分成等面积的两部分?为什么?12.求证:形如4n+3的整数是(n 为整数)不能化为两个整数的平方和.13.13位小运动员,他们着装的运动服号码分别是1~13号.问:这13名运动员能否站成一个圆圈,使得任意相邻的两名运动员号码数之差的绝对值都不小于3,且不大于5?如果能,试举一例;如果不能,请说明理由.14.有12位同学围成一圈,其中有些同学手中持有鲜花,鲜花总数为13束,他们进行分花游戏,每次分花按如下规则进行:其中一位手中至少持有两束鲜花的同学拿出两束鲜花分给与其相邻的左右两位同学,每人一束.试证:在持续进行这种分花游戏的过程中,一定会出现至少有7位同学手中持有鲜花的情况.参考答案。
初中数学竞赛辅导资料.doc
初中数学竞赛辅导资料初中数学竞赛辅导资料初一上目录1数的整除(一) 2倍数约数 3质数合数4 零的特性5a n的个位数6数学符号 7用字母表示数 8 抽屉原则初一下目录9一元一次方程解的讨论10二元一次方程的整数解11二元一次方程组解的讨论12用交集解题13用枚举法解题14经验归纳法15乘法公式16整数的一种分类初二上目录17 奇数偶数18 式的整除19因式分解20 恒等式证明21 比较大小22 分式23递推公式24 连续正整数25 十进制的记数法26 选择题解法(一)27识图28三角形边角性质初中数学竞赛辅导资料初二下目录29概念的定义30概念的分类31勾股定理32中位线33同一法34 反证法35两种对称36三点共线37不等关系38、垂直平行39线段、角相等40线段、角和差倍分41线段的比、积、幂42形如1/a+1/b=1/c问题的证明43面积法44数的整除(二)初三上目录45一元二次方程46完全平方式(数)47配方法48非负数49对称式50 基本对称式51待定系数52换元法53 条件等式54整数解55未知数多于方程的个数56列表法57逆推法58观察法59“或者”“并且”60解三角形初三下目录61函数的图象62绝对值63动态几何的定值64最大最小值65图象法66辅助圆67参数法证平几68选择题(二)69数的整除(三) 70正整数简单性质的复习美文欣赏1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。
秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。
秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。
清风落叶舞秋韵,枝头硕果醉秋容。
秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。
2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。
聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生!3、春天来了,我要把心灵放回萦绕柔肠的远方。
初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
【例5】已知实数 、 、 、 互不相等,且 ,试求 的值.思路点拨:运用连等式,通过迭代把 、 、 用 的代数式表示,由解方程求得 的值.
注:一元二次方程常见的变形形式有:
(1)把方程 ( )直接作零值多项式代换;
(2)把方程 ( )变形为 ,代换后降次;
11、已知 、 是有理数,方程 有一个根是 ,则 的值为.
12、已知 是方程 的一个正根.则代数式 的值为.
13、对于方程 ,如果方程实根的个数恰为3个,则m值等于()
A、1B、2 C、 D、2.5
14、自然数 满足 ,这样的 的个数是()
A、2 B、1 C、3 D、4
15、已知 、 都是负实数,且 ,那么 的值是()
20、如图,锐角△ABC中,PQRS是△ABC的内接矩形,且S△ABC= S矩形PQRS,其中 为不小于3的自然数.求证: 需为无理数.
参考答案
第二讲 判别式——二次方程根的检测器
为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等.我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:
利用判别式,判定方程实根的个数、根的特性;
运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;
通过判别式,证明与方程相关的代数问题;
借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题.
【例题求解】
【例1】 已知关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是.(广西中考题)
初中数学竞赛辅导资料_28_
c < a+b
推广到任意多边形 任意一边都小于其他各边的和 2. 角 它 角的关系是 角形 个内角和等于 180 o 任意一个外角等于和
相邻的两个内角和
o
推广到任意多边形 四边形内角和=2×180 六边形内角和=4×180 o 3. 边
五边形内角和=3×180 o n 边形内角和=(n 2) 180
1.5<a<5
答当 1.5<a<5 时 条线段 3a 1,4a+1,12 a 能 成一个 角形 例 2.如 A B C D AB=x AC=y, AD=z 若以 AB 和 CD 分别绕着点 B 和点 C 旋转 使点 A 和 D 合 成 角形 列 等式哪x+
z , 2
2 1 F E
例 5.△ABC 中 ∠A≤∠B≤∠C 2∠C=5∠A 求∠B 的取值范围 (1989 泉州市初二数学 基赛题)
81
解
根据题意 得
∠A ≤ ∠B ≤ ∠C 5 o 得∠C= (180 2∠C = 5∠A 7 o ∠A + ∠B + ∠C = 180 2 5 o o (180 ∠B)≤∠B≤ (180 ∠B) 7 7
y<
z 2
成 角形 必
已知 AB=x, BC=y x, 满足 列 等式
CD=z x 要使 AB BC CD
x + y − x > z − y x + z − y > y − x y − x + z − y > x
2 y > z 即 2 x + z > 2 y z > 2x
o
则∠A __
11.△ABC 中 AB AC ∠A 40 o
数学九年级下华东师大版29.2反证法讲学稿
29.2反证法讲学稿内容:反证法课型:新授第1课时姓名________【学习目标】知识与能力:通过实例,体会反证法的含义情感、态度、价值观:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性.【学习重难点】【学习过程】一.学前准备:1.自学课本80页到81页,写下疑惑摘要:2. 求证:在一个三角形中,至少有一个内角小于或等于60°二、自学、合作探究1、用具体例子让学生体会反证法的思路思考:在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证;a2+b2≠c2.假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.2、由上述的例子归纳反证法的步骤2.从这个假设出发,经过逻辑推理,推出与公理、巳证的定理、定义或已知条件矛盾;三、例题讲解例1.求证两条直线相交只有一个交点.例二.试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.四、学习体会五、自我测试1.求证:在一个三角形中,如果两个角不等,那么他们所对的边也不等.2.求证:一个五边形不可能有4个内角为锐角.六、板书设计七、自我提高1.“a<b”的反面应是()A.a≠b B.a>b C.a=b D.a=b或a>b2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交4.用反证法证明“若│a│<2,则a<4”时,应假设__________.5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5.6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点.证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________.7.完成下列证明.如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角.证明:假设结论不成立,则∠B是______或______.当∠B是____时,则_________,这与________矛盾;当∠B是____时,则_________,这与________矛盾.综上所述,假设不成立.∴∠B一定是锐角.8.用反证法证明“三角形中至少有一个内角不小于60°”,•应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60° C.有一个内角大于60° D.每一个内角都大于60°10. 已知:如图,设点A、B、C在同一条直线l上.求证:经过A、B、C三点不能作一个圆.11. 三角形内角中至多有一个内角是钝角.12. 求证:圆内两条不是直径的弦不能互相平分.13.求证:一个三角形中不能有两个直角.八、学(教)后感。
九年级数学下册 第29章几何的回顾29.2反证法课件 华东师大版
答:平行且相等.理由如下:
如图,连结AC,BD.∵PQ为△ABC的中位线, ∴PQ _A12__C_._同理MN A_12 _C_._∴_ MN PQ . 2.由①知MN PQ,∴四边形PQMN为平行四边形.
3.AC和BD相等吗?为什么? 答:AC和BD相等, 在△AEC和△DEB中, ∵∠AED=∠CEB=60°, ∴∠AED+∠DEC=∠CEB+∠DEC, 即∠AEC=∠DEB.又∵AE=DE,EC=EB, ∴△AEC≌△DEB,∴AC=BD.
(C)菱形
(D)正方形
【解析】选A.根据“顺次连结任意一个四边形的四边中点所得
的四边形是平行四边形”可知选A.
4.(2011·宜昌中考)如图,在梯形
ABCD中,AB∥CD,AD=BC,点E,F,G,H
分别是AB,BC,CD,DA的中点,则下列
结论一定正确的是( )
(A)∠HGF=∠GHE
(B)∠GHE=∠HEF
1.证明命题“任何偶数都是4的倍数”是假命题可举反例的数字
为( )
(A)3
(B)4
(C)8
(D)6
【解析】选D.因为 3不是偶数,不符合条件,故错误;4是偶数,
且能被4整除,故错误;8是偶数,且是4的2倍,故错误;6是偶数,
4.MN和PN相等吗?为什么?
答:MN和PN相等,由①知M1 N= AC,同理可证1 PN= BD,
2
2
由③知AC=BD,∴MN=PN.
5.结论:由②④可知四边形PQMN为菱形.
【规律总结】 用对角线判断中点四边形
1.如果原四边形的对角线既不相等也不垂直,则其中点四边形为 平行四边形; 2.如果原四边形对角线互相垂直,则其中点四边形为矩形,如菱 形的中点四边形是矩形;
全国初中数学竞赛辅导(初二分册) - 副本
初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。
(2021年整理)八年级数学竞赛辅导讲义
(完整)八年级数学竞赛辅导讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)八年级数学竞赛辅导讲义)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)八年级数学竞赛辅导讲义的全部内容。
全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。
竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。
1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛"摸索了很多经验。
当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。
会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛”承办单位,从此,“全国初中数学联赛”也形成了制度。
“全国初中数学联赛"原来不分一试、二试。
为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。
全国初中数学竞赛辅导(初2)第29讲 生活中的数学_1_
第二十九讲 生活中的数学进 远——镜子中的世界在日常生活中,人们 了 察自 的服装仪表是否整洁漂亮,常常要照镜子.如果镜面是很平的,那么在镜子中,人或物体 是完全一样的.而且 们都有 样的 验 当人走近镜面,人在镜中的 走 镜面 当人 离镜面,人在镜中的 离镜面.如果你留心的话,就 以发现 人和 镜面的距离保持相等进图2-155远, 种现象 作面对称.如果 们 取一个侧面,那么镜面就 用一条直线来表示,人和人在镜中的 用一个平面图形来表示, 样,人、 镜就 了轴对称, 直线对称进图2-155远.如果实物是△ABC,那么它在镜中的 就 了图形△A B C .直线l表示镜, 时称l △ABC和△A B C 的对称轴进图2-156远.图中,A A ,B B ,C C 是对称点.以对称点 端点所连结的线段AA ,BB ,CC 被对称轴l垂直平分,因 ,如果以直线l 折痕,把△ABC 翻折过来,它必 △A B C 重合,所以 轴对称的两个图形必全等.例1设图形ABCDEF是半个蝴蝶形进图2-15只进a远远,试以直线l 对称轴,画 整个蝴蝶来.解 了画 整个蝴蝶, 需要画 图形ABCDEF 于直线l的轴对称图形就 以了.因 A点、F点在直线l ,所以它们的对称点分别和A,F是同一点, 样, 要画 B,C,D,E 于l的对称点就行了. ,先分别过B,C,D,E向l作垂线,设垂足分别 M,N,P,Q,然后在BM,CN,DP,EQ的延长线 取B ,C ,D 和E 点,使得B M台MB,C N台NC,D P台PD,E Q台QE,最后连结AB ,B C ,C D ,D E ,E F,于是就得到完整的蝴蝶形ABCDEFE D C B 了进图 2-15只进b远远.例2 设直线l1和直线l2平行,且l1和l2间的距离 a.如果线段AB 在l1的右侧,并设AB 于l1的对称图形是A B ,而A B 于l2的对称图形是A B 进图2-15叫远,那么,线段AB和A B 有什么 系?解 因 l1平行于l2,并且AA A 垂直于l1,当然 垂直于l2,同理BB B 垂直于l1和l2. 们知道 在平面内垂直于同一条直线的两条直线互相平行 ,所以AA A ∥BB B .另一方面,因 AP台PA ,A P 台P A ,所以AA A =2PP 台2a,同理BB B 台2a,所以AA A 台BB B .通过例2, 们 知,如果在平面 两条直线互相平行,有一个图形以 两条直线 对称轴,连 作了两次轴对称移动,那么相当于 个图形作了一次平行移动,平行移动的距离刚好是 两个对称轴间距离的2倍.如果 们反复利用例2的原理,就 以做 带形的花边图案.例如, 们把一张等宽的长纸条 图2-159那样折叠起来,并在 面用小刀刻 一个 角形的洞,然后再展开 张纸条,就会得到如图2-160那样的带形图案.如果 们把图2-160中的m2,m1,m0,m-1,m-2,m-3看 镜子,A0看作实物,那么A1,A2和A-1,A-2就是A0在镜子中的 了. 实,图中的A1是A0以m0 对称轴作对称移动的对称图形, 以把A1看作是A-1作一次平行移到所得到的图形.由 ,怎样看待A1和A2的 系以及A2和A0的 系呢?请同学们自 作 回答.有了 面的知识,同学们 仅 以自 设计一些带形花边图案, 以了解某些广告 画的花边图案的原理了. 面的图2-161和图2-162是两个带形图案,你能看 它们是怎样设计的吗?等看作平行的镜子,如果 们把前面图2-160中的m2,m1,m0,m-1,m-2A0看作一个人,如果 个人在镜子中m0和m-1之间反复映照,那么就会看到图2-163的情况.以想象,在镜子m0中的 A1,A2,A3,…,以及在镜子m1中的 A-1,A-2,A-3,…是无限多的. 以知道 A0在镜m0中的 是A1,A1在镜m-1中的 是A-2,A-2在镜m0中的 是A3,…如 等等.因 A0和A1,A1和A2是轴对称移动,所以A0到A2是平行移动.例3 设直线l1和直线l2相交,交点 O, 夹角 α.如果线段AB 于l1的轴对称图形是A B ,而A B 于l2的轴对称图形是AB .试问AB和A B 间有什么 系?进 图2-164远解 因 知AB 于l1的对称图形是A B ,A B 于l2的对称图形是A B ,所以AB台A B ,A B 台A B ,所以AB台A B ,由于∠AOP台∠A OP,∠A OP 台∠A OP ,所以∠AOA =2∠POP =2α.同理∠BOB 台2∠POP 台2α,所以∠AOA =∠BOB =2α.由 , 知 在平面 ,如果两条直线相交,一个图形以 两条直线 对称轴,连 作两次对称移动,那么相当于 个图形以 两条直线的交点 旋转中心,以 两条直线的交角的2倍 旋转角,作了一个旋转移动,在旋转移动 ,图形的大小 变.例4 同学们小时候常常玩万花筒,它是由 块等宽、等长的玻璃片围 的. 什么在万花筒中会 现美丽奇特的图案呢?试用前边的知识揭开万花筒的秘密.解 万花筒中所以能呈现千变万化、美丽而奇特的图案, 要是利用了图形的对称和旋转原理. 体说明,给 的图2-165 万花筒中的一个图案,它是用一个小圆、一个平行四边形和一段短线在万花筒中连 反射而 的图形.了清楚地说明 图形 的原理, 们取 图形中的一部分进图2-166远加以分析.△ABO以OB 对称轴作轴对称移动,就得到△CBO △CBO以OC 对称轴作轴对称移动,就得到△CDO. 过 样两个轴对称移动,实际 相当于△ABO以O 中心,以120° 旋转角,作了一个旋转移动. 样点A→点C,边AO→边CO,点B→点D,边AB→边CD,点O→点O,边BO→边DO.在 样旋转移动 ,△ABO中的平行四边形、小圆和曲线 跟着旋转了120°. 多次反复,就形 了图2-165的 丽景色.如果同学们有 趣, 以自 在纸 再现万花筒中的世界!练 二十九1.设l1和l2是两面平行相对的镜子,如果把一个小球放在l1和l2之间进图2-16只远,试问进1远小球A在镜l1中的 A 在什么位置?进2远小球A在镜l1中的 A 在镜l2中的 A 又在什么位置?分别画在图进3远小球A和 A 之间的距离 l1和l2之间的距离有什么 系?2.图2-16叫是万花筒中的一个图案, 中菱形FJK出变 菱形FDAC,如果看 过以F点 旋转中心、旋转角 x的旋转移动得到的,那么x 等于多少度?请从 面的四个答案中选 一个 确的答案来.进A远60°进B远120°进C远1叫0°进D远以 答案都 对.3.图2-169是游乐园中的大型旋转车的简图,游人坐在旋转车的车斗中,任凭旋转车 停地旋转,但总是头朝 ,绝 会掉 来.试问车斗所作的移动是什么移动?请在 面答案中选一个 确的答案.进A远旋转 进B远对称进C远平移 进D远以 答案都 对.4.图2-1只0表示一张长方形球 ,设P,Q 两个球,若 P球,使它碰CD边后,反弹 好 中Q球.试问P应碰撞CD边的哪一点?。
初中数学竞赛辅导资料及参考答案(初二下部分,共3份)-5
初二下部分参考答案(1)练习29(返回目录)4.③三边相等和两边相等的三角形统称等腰三角形6. ①a ≤0.5 ②3 ③4,1④1,7⑤6 ⑥±1⑦-7,-53 ⑨-1,2177+ ⑩ ⎩⎨⎧<-≥-312012x x 或⎩⎨⎧<--<-3)12(012x x ∴21<x<2;x ≥211或x ≤-29 7. (C )∵当x<0, -x =ax+1, x=11+-a <0, a>-1 当x>0时,x=ax+1, x=a -11>0, a<1 ∵方程有负根,∴a>-1条件成立,而方程没有正根,a<1,不能成立 即a>-1且a ≮1,它们的交集是a ≥1练习30(返回目录)2. ax=b 解的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=≠==≠有无数多个解无解且,0,00,0b b a a b x a 3. ②方程⎩⎨⎧非整式方程整式方程 ⑤四边形⎩⎨⎧非平行四边形平行四边形 4.①有理数⎪⎩⎪⎨⎧负有理数零正有理数 ②垂直是相交的一种5. ①-1,3 ②当x ≥2时,x-2>1-2x ……当x<2时-(x-2)>1-2x …6. ①⎩⎨⎧<≤-+-=-<-=)01(2)1(3x x x x x x ②⎪⎪⎩⎪⎪⎨⎧≠--=)1(11)1(21a a a a 7. 30,30,120;75,75,30。
8. -1,09.当m=1时,调3人;m=2, 调2人;m=3,调1人10. x<0或x>3,11. 把n 按奇数、偶数分类讨论,证明a 1a 2a 3… a n 中至少有2个偶数12. a,b 中若有一个是3的倍数,则ab 能被3整除;若除3有同余数则a-b 能被3整除;若除3余数分别为1和2,则a+b 能被3整除.13. a ≥1 (见练习29第7题)14. 按奇数、偶数分类讨论① 当n 为奇数时,设n=2k+1,k>2的整数,n=k+(k+1), k 和k+1互质; ② 当n 为偶数时,设n=4k 或4k+2, k>1的整数若n=4k=(2k+1)+(2k-1), 而2k+1和2k-1是互质的若n=4k+2=(2k-1)+(2k+3), 易知2k-1和2k+3也是互质的,如果它们有公因子d(d ≥2 ), 可设2k-1=md 2k+3=pd, (m,p 是正整数), 则(m-p )d=4,则4d ,这是不可能的。
初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形).doc
初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形) 【例1】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连结DC,以DC为边作等边△DCE,B、E 在CD的同侧,若AB=,则BE=.
【例2】8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,求∠ACB的度数.【例4】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h.求证:(1);(2);(3)以、、为边的三角形,是直角三角形.
【例5】一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由.
【例6】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF 的值为.
【例7】如图,在△ABC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:
GF∥AC.
【例8】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.。
初中数学竞赛辅导讲义及习题解答 第28讲 避免漏解的奥秘
第二十八讲 避免漏解的奥秘“会而不对,对而不全”,这是许多同学在解题时无法避免而又屡犯不止的错误,提高解题周密性,避免漏解的奥秘在于:掌握分类讨论法,学会分类讨论.分类讨论就是按照一定的标准,把研究对象分成几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法,其实质是化整为零、各个击破的转化策略.解题时何时需要进行分类?一般来说,当问题包含的因素发生变化,问题结果也相应发生变化,我们就需要对这一关键因素分类讨论,怎样进行正确分类?分类的基本要求是不重复、不遗漏,每次分类必须保持同一的分类标准,多级讨论,逐级进行.【例题求解】【例1】 四条线段的长分别为9,5,x ,1(其中x 为正实数),用它们拼成两个直角三角形,且AB 与CD 是其中的两条线段(如图),则x 可取值的个数为 .思路点拨 AB 是四条线段中最长的,故AB=9或AB=x ,又CD 长不定,所以应就AB 、CD 的取值作全面讨论.注:初中数学常见的分类方法有:(1)按定义、性质、法则、公式分类;(2)对参数分类;(3)按图形位置分类;(4)按图形特征分类;(5)按余数分类.注:参数是较为常见的分类对象,因为参数的不同取值,可能导致不同的运算结果,或者必须使用不同的方法去解决,这一分类方法在方程、不等式、函数中有广泛的应用.【例2】 方程1)1(32=-++x x x 的所有整数解的个数是( )A .2B .3C .4D .5思路点拨 这是一个特殊的幂指数方程问题,根据幂指数的意义,可将原问题分成三个并列的简单问题求解:(1)非零实数的零次幂等于1;(2)1的任何次幂等于1;(3)1-的偶次幂等于1.【例3】 试确定一切有理数r ,使得关于x 的方程023)2(2=-+++r x r rx 有根且只有整数根.思路点拨 根据方程定义,r 是否为零影响方程的次数,这是质的不同,解法也不同,所以,应对r=0及r ≠0两种情况分类求解.【例4】 已知一三角形纸片ABC ,面积为25,BC 边的长为10,∠B 和∠C 都为锐角,M 为AB 边上的一动点(M 与点A 、B 不重合).过点M 作MN ∥BC ,交AC 于点N .设MN=x .(1)用x 表示△AMN 的面积S △AMN ;(2)用△AMN 沿MN 折叠,使△AMN 紧贴四边形BCNM(边AM 、AN 落在四边形BCNM 所在的平面内),设点A 落在平面BCNM 内的点为A ′,△A ′MN 与四边形BCNM 重叠部分的面积为y .①试求出y 关于x 的函数关系式,并写出自变量x 的取值范围;②当x 为何值时重叠部分的面积y 最大,最大为多少?思路点拨 折叠△AMN ,A 点位置不确定,可能在△ABC 内或在BC 边上或在△ABC 外,故需按以上三种情况分别求出y 关于x 的函数关系式,进而求出y 的最大值.注:有关平面几何问题,经常按图形相互之间的位置进行分类,因为图形存在不同的位置关系,其解答结果可能不同,也可能需要使用不同的方法解决,初中平面几何按位置关系分类,最终一般都归结为点、直线和圆之间的位置关系.【例5】 已知⊙O l 与⊙O 2外切,⊙O l 的半径R=2,设⊙O 2的半径是r .(1)如果⊙O l 与⊙O 2的圆心距d=4,求r 的值;(2)如果⊙O l 、⊙O 2的公切线中有两条互相垂直,并且r ≤R ,求r 的值.思路点拨 题中没有给出图形,题设中外切两圆的公切线中有两条互相垂直,情况不惟一,故应分类讨论.注:中考压轴题分类讨论有以下常见情形:(1)由点的不确定定引起的分类讨论;(2)由图形全等或相似的对应关系的不确定性引起的分类讨论;(3)由图形运动导致图形之间位置发生变化引起的分类讨论.学力训练1.已知m 为实数,如果函数62)4(2----=m mx x m y 的图象与x 轴只有一个交点,那么m 的取值为 .2.若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1111--+--b a a b 的值为 . 3.若半径为5和4的两个圆相交,且公共弦长为6,则它们的圆心距等于 .4.已知⊙O 和不在⊙O 上的一点P ,过P 直线交⊙O 于A 、B 点,若PA ·PB=4,OP=5,则⊙O 的半径为 .5.和抛物线11082+-=x x y 只有一个公共点(-1,-1)的直线解析式为( )A .76--=x yB .1-=xC .76--=x y 或1-=xD .1-=y6.若线段AB 两端点到直线l 的距离分别为4和8,则AB 的中点到直线l 的距离是( )A .2B .4C .6D .2或67.点A(-4,0),B(2,0)是xoy 坐标平面上两定点,C 是221+-=x y 的图象上的动点,则满足上述条件的直角△ABC 可以画出( )A .1个B .2个C . 3个D .4个8.如图,在直角梯形ABCD 中,AB=7,AD=2,BC=3,如果边AB 上的点P 使得以P 、A 、D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似,那么这样的P 点有( )A .1个B . 2个C .3个D .4个9.已知关于x 的方程022)13(22=+++-k k x k x .(1)求证:无论k 是取何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长6=a ,另两边长为b 、c 恰好是这个方程的两个根,求此三角形的周长.10.已知:如图,抛物线C 1经过A ,B ,C 三点,顶点为D ,且与x 轴的另一个交点为E .(1)求抛物线C 1的解析式;(2)求四边形ABCD 的面积;(3)△AOB 与△BDE 是否相似,如果相似,请予以证明;如果不相似,请说明理由;(4)设抛物线C 1的对称轴与x 轴交于点F ,另一条抛物线C 2经过点E (抛物线C 2与抛物线C 1不重合),且顶点为M (a ,b ),对称轴与x 轴相交于点G ,且以M ,G ,E 为顶点的三角形与以D ,E ,F 为顶点的三角形全等,求a ,b 的值(只需写出结果,不必写出解答过程)11.以O 为圆心的两个同心圆的半径分别为9cm 和5cm ,⊙O ′与这两个圆都相切,则⊙O ′的半径是 .12.在△ABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角B 的大小为 .13.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是 .14.已知点A(0,6),B(3,0),C(2,0),M(0,m),其中m<6,以M 为圆心,MC 为半径作圆,那么当m= 时,⊙M 与直线AB 相切.15.关于x 的方程01)1(2=+--x k kx 有有理根,求整数是的值.16.华鑫超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元的部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元与554元,现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?17.如图,已知:△ABC 中,AB=5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;(3)试问:在AB 上是否存在点M ,使得△PQM 为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ 的长.18.已知关于x 的方程0)1(2=+++-p x q p x (q ≥0)的两个实数根为α,β且α≤β.(1)试用含有α,β的代数式表示p 和q ;(2)求证:α≤1≤β(3)若以α,β为坐标的点M(α,β)在△ABC 的三条边上运动,且△ABC 顶点的坐标分别为A(1,2),B(21,1),C(1,1),问是否存在点M 使p +q =45,若存在,求出点M 的坐标;若不存在,请说明理由.19.某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图甲的一条折线表示;西红柿的种植成本与上市时间的关系用图乙表示的抛物线段表示.(1)写出图甲表示的市场售价与时间的函数关系)(t f P =;写出图乙表示的种植成本与时间的函数关系式)(t g Q =.(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)参考答案。
全国理数第29课 一元二次不等式及其解法
23
四组题讲透
2 2
,
0
数学 低段
第29课 第(8)题
P153
24
数学 低段
第29课 方法便笺
P153
25
数学 低段
第29课 方法便笺
P153
26
四组题讲透
数学 低段
第29课 第(9)题
P153
27
数学 低段
第29课 小积累 P154
28
数学 低段
第29课 小积累 P154
63
课后提分练
x | a x 3a
数学 低段
第29课 第5题 P55
64
课后提分练
3 4
,
数学 低段
第29课 第6题 P55
65
课后提分练 4, 0
数学 低段
第29课 第7题 P55
66
课后提分练
3 2
数学 低段
第29课 第8题 P55
67
课后提分练
1, 2 1
数学 低段
数学 低段
第29课 一元二次不等式及其解法
普查讲29 一张图学透
一元二次不等式及其解法
四组题讲透
第(1)题 第(2)题 第(3)题 第(4)题 目录 第(5)题 第(6)题 第(7)题 第(8)题 第(9)题 第(10)题 第(11)题 第(12)题 第(13)题
1
第29课 一元二次不等式及其解法
第29课 第2题 P155
41
随堂普查练数学 低段B来自第29课 第2题 P155
42
随堂普查练
数学 低段
B
第29课 第2题 P155
43
随堂普查练
0,
初中数学竞赛辅导讲义全
初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
八年级(下)数学竞赛班辅导讲义.docx
八年级(下)数学竞赛班辅导资料(1)原班级:姓名:等腰三角形的性质( 1)【一】等腰三角形有哪些性?(1)等腰三角形两底角 ____________;(2)等腰三角形具有“三合一”的性;“三”指_____________________________________.(3)称性:等腰三角形是 ______ 称形 .A 【二】例精例 1(1)等腰三角形两个内角的度数之比1:2 ,个等腰三角形底角的度数_______________;45 或 72( 2)等腰△ ABC的三 a、 b、 c 均整数,且足 a bc b ca 24 ,的三角形共有 ___________个 . 3个例 2如,若AB=AC,BG=BH,AK=KG,∠ BAC的度数 ________________.BCHK36G例 3(2012?淮安)理解如 1,△ ABC中,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分A1B2折叠,剪掉重复部分;⋯;将余下部分沿∠B n A n C 的平分A n B n+1折叠,点B n与点 C 重合,无折叠多少次,只要最后一次恰好重合,∠BAC是△ ABC的好角.小展示了确定∠BAC是△ ABC的好角的两种情形.情形一:如2,沿等腰三角形ABC角∠ BAC的平分 AB1折叠,点 B 与点 C 重合;情形二:如3,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠ B1A1C的平分A1B2折叠,此点B1与点 C重合.探究(1)△ ABC中,∠ B=2∠ C,两次折叠,∠BAC是不是△ ABC的好角? ________(填“是”或“不是”).(2)小三次折叠了∠ BAC是△ ABC的好角,探究∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系.根据以上内容猜想:若 n 次折叠∠ BAC是△ ABC的好角,∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系_____________________ .(3)小找到一个三角形,三个角分 15°、 60°、 105°, 60°和 105°的两个角都是此三角形的好角.你完成,如果一个三角形的最小角是 4°,求出三角形另外两个角的度数,使三角形的三个角均是此三角形的好角.分析:( 1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠ C;( 2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠ C+∠ A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠ B- 2C=180°①,根据三角形 ABC的内角和定理知∠BAC+∠ B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠ C;(3)利用( 2)的结论知∠ B=n∠ C,∠ BAC是△ ABC的好角,∠ C=n∠ A,∠ ABC是△ ABC的好角,∠ A=n∠ B,∠ BCA是△ ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、 172; 8、 168; 16、160; 44、 132;88°、 88°.解答:解:(1)△ ABC中,∠ B=2∠ C,经过两次折叠,∠BAC是△ ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠ BAC的平分线AB1折叠,∴∠ B=∠ AA1B1;又∵将余下部分沿∠B1A1C 的平分线 A1B2折叠,此时点B1与点 C 重合,∴∠ A1B1C=∠ C;∵∠ AA1B1=∠ C+∠ A1B1C(外角定理),∴∠ B=2∠ C,∠ BAC是△ ABC的好角.故答案是:是;( 2)∠ B=3∠ C;如图所示,在△ ABC中,沿∠ BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线 A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C 的平分线 A2B3折叠,点 B2与点 C 重合,则∠ BAC是△ ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠ C=∠ A2B2C,∠ A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠ C+∠A2B2C=2∠ C;∵根据四边形的外角定理知,∠BAC+∠ B+∠ AA1B1- ∠A1 B1C=∠ BAC+2∠ B-2 ∠C=180°,根据三角形 ABC的内角和定理知,∠ BAC+∠ B+∠C=180°,∴∠ B=3∠ C;由小丽展示的情形一知,当∠B=∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形二知,当∠B=2∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形三知,当∠B=3∠ C 时,∠ BAC是△ ABC的好角;故若经过 n 次折叠∠ BAC是△ ABC的好角,则∠ B 与∠ C(不妨设∠ B>∠ C)之间的等量关系为∠B=n∠ C;( 3)由( 2)知设∠ A=4°,∵∠ C 是好角,∴∠ B=4n°;∵∠ A 是好角,∴∠ C=m∠B=4mn°,其中m、 n 为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.【三】练一练1.等腰三角形一腰上的高与另一腰的角36 ,等腰三角形的底角的度数___________.63 或272.如, AA、 BB 分是EAB、 DBC 的平分,若 AA BB AB,BAC 的度数_____.EA C B'B DA 'E, 且 AE=1BD.求:3.如,在△ ABC中,AC=BC,ACB 90,D 是 AC上一点,AE BD 交的延于BD是ABC的角平分 .2AED4. 某数学趣小开展了一次活,程如下:C B ∠ BAC=θ(0 °<θ< 90° ) .把小棒依次放在两射之,并使小棒两端分落在射AB, AC上.活一:如甲所示,从点A1开始,依次向右放小棒,使小棒与小棒在端点互相垂直,A1A2第 1 根小棒.数学思考:(1)小棒能无限下去?答:______. ( 填“能”或“不能” )(2)11223AA=A A =A A =1.① θ =______度;②若小棒A2n-1 A2n的度a n(n 正整数,如 A1A2=a1,A3A4=a2,⋯)求出此a2,a3的,并直接写出a n( 用含 n 的式子表示 ) .活二:如乙所示,从点A1开始,用等的小棒依次向右放,其中A1A2第 1 根小棒,且A1A2=AA1.数学思考:(3)若已放了 3 根小棒,θ1=______,θ2=______,θ3=______; ( 用含θ的式子表示 )(4)若只能放 4 根小棒,求θ的范.解:( 1)∵根据已知条件∠BAC=θ( 0°<θ< 90°)小棒两端能分落在两射上,(2)①∵ A1A2 =A2A3, A1A2⊥ A2A3,∴∠ A2A1A3=45°,∴∠ AA2A1+∠θ=45°,∵∠ AA2A1=∠ θ,∴∠ θ=22.5 °;②∵ AA=A A=AA=1,AA⊥AA∴AA=, AA=1+,112231223133又∵ A A ⊥A A ,A A ∥AA ,同理; A A ∥A A ,∴∠ A=∠AAA =∠AAA =∠AAA ,∴ AA=A A ,AA=A A 23341234345621436533455623433335235352356522+1)2∴ a =A A =AA=1+, a =AA+AA =a +A A ,∵ A A = a ,∴ a =A A =AA=a + a =(∴ a n=(+1) n-1;(3)∵ A1A2=AA1,∴∠ A1AA2=∠ AA2A1=θ,∴∠ A2A1A3=θ1=θ+θ,∴θ1=2θ同理可得:θ2 =3θ,θ3=4θ;(4)如图:∵A4A3=A4A5,∴∠ A4A3A5=∠ A4A5A3=4θ °,∵根据三角形内角和定理和等腰三角形的性质,当∠ A5A4B 是钝角或直角时,不能继续摆放小棒了,∴当∠ A4A3A5是锐角,∠ A5A4B=5θ是钝角或直角时,只能摆放 4 根小棒,∴ 5θ ≥ 90°, 4θ<90°,即,∴18°≤ θ< 22.5 °.( 1)能;(2)①∠θ =22.5 °;② a =(n-1;( 3) 2θ;3θ; 4θ;+1)n(4) 18°≤ θ< 22.5 °.本题主要考查了相似三角形的判定和性质,在解题时要注意根据题意找出规律并与相似三角形的性质相结合八年级(下)数学竞赛班辅导资料(2)原班级:姓名:等腰三角形的性质( 2)一、例题讲解:如图,已知内角度数的三个三角形,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形.C C90°84°24°A 24°A B B36°C104°72°52°BBA C二、练一练1.如图,点 O 是等边△ ABC 内一点.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连接 OD .已知∠ AOB=110 °.(1)求证:△ COD 是等边三角形;(2)当α=150°时,试判断△ AOD 的形状,并说明理由;(3)探究:当α为多少度时,△ AOD 是等腰三角形.解:( 1)证明:∵ CO=CD ,∠ OCD=60 °,∴△ COD 是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=150 °时,△ AOD 是直角三角形.( 5 分)∵△ BOC≌△ ADC ,∴∠ ADC= ∠BOC=150 °,又∵△ COD 是等边三角形,∴∠ODC=60 °,∴∠ ADO=90 °,即△ AOD 是直角三角形;( 7 分)(3)解:①要使 AO=AD ,需∠ AOD= ∠ ADO .∵∠ AOD=360 °﹣∠ AOB ﹣∠ COD ﹣α=360 °﹣ 110°﹣ 60°﹣α=190°﹣α,∠ ADO= α﹣ 60°,∴190°﹣α=α﹣ 60°,∴ α=125°;②要使 OA=OD ,需∠ OAD= ∠ ADO .∵∠ AOD=190 °﹣α,∠ ADO= α﹣ 60°,∴∠ OAD=180 °﹣(∠ AOD+ ∠ADO )=50 °,∴α﹣ 60°=50 °,∴ α=110°;③要使 OD=AD ,需∠ OAD= ∠ AOD .∵190°﹣α=50 °,∴α=140 °.综上所述:当α的度数为125°,或 110°,或 140°时,△ AOD 是等腰三角形.(12 分)点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2.( 2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成 3 张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图 1 是其中的一种方法:定义:如果两条线段将一个三角形分成 3 个等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)请你在图 2 中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成 3 对全等三角形,则视为同一种)( 2)△ ABC 中,∠B=30 °,AD 和 DE 是△ ABC 的三分线,点 D 在 BC 边上,点 E 在 AC 边上,且 AD=BD ,DE=CE ,设∠ C=x °,试画出示意图,并求出 x 所有可能的值;(3)如图 3,△ ABC 中, AC=2 , BC=3 ,∠ C=2 ∠B ,请画出△ ABC 的三分线,并求出三分线的长.考点:相似形综合题;图形的剪拼分析:( 1) 45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和 22.5°,再以 22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.( 2)用量角器,直尺标准作30°角,而后确定一边为BA ,一边为 BC,根据题意可以先固定BA 的长,而后可确定 D 点,再标准作图实验﹣﹣分别考虑 AD 为等腰三角形的腰或者底边,兼顾 AEC 在同一直线上,易得 2 种三角形 ABC .根据图形易得 x 的值.(3)因为∠ C=2∠ B ,作∠ C 的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图 4 图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:( 1)如图 2 作图,(2)如图 3 ①、②作△ ABC .①当 AD=AE 时,∵2x+x=30+30 ,∴ x=20 .②当 AD=DE 时,∵30+30+2x+x=180 ,∴ x=40 .( 3)如图 4, CD、 AE 就是所求的三分线.设∠ B=a,则∠ DCB= ∠ DCA= ∠ EAC=a ,∠ ADE= ∠ AED=2a ,此时△ AEC ∽△ BDC ,△ ACD ∽△ ABC ,设 AE=AD=x ,BD=CD=y ,∵△ AEC ∽△ BDC ,∴ x: y=2: 3,∵△ ACD ∽△ ABC ,∴ 2:x= ( x+y ): 2,x : y 2 :3,即三分线长分别是和.所以联立得方程组,解得2 : x( x y) :2点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.八年级(下)数学竞赛班辅导资料(3)原班级:姓名:等腰三角形的判定( 1)一、知识要点1.等腰三角形的判定方法:(1)两 _____相等的三角形是等腰三角形.简称__________________ ;( 2)两 _____相等的三角形是等腰三角形.简称______________________ .2.解题技巧:构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用方法有:( 1)“角平分线+平行线”构造等腰三角形;(2)“角平分线+垂线”构造等腰三角形;( 3)用“垂直平分线”构造等腰三角形;(4)用“三角形中角的 2 倍关系”构造等腰三角形.3.等腰三角形中长作的辅助线:(1)底边上的高;(2)底边上的中线;(3)顶角的平分线.二、例题精讲例 1 在△ ABC中 AB=AC ,∠ BAC=80°, O为△ ABC内一点,且∠ OBC=10°,∠ OCA=20° .求∠ BAO的度数.A70°OB C例 2 如图,在△ ABC中, AB=7, AC=11,点 M是 BC的中点, AD是∠ BAC的平分线, MF∥ AD,求 FC的长 .A9FB D M C三、练一练1.如图,已知 Rt △ ABC中,∠ C=90°,∠ BAC=30°,在直线 BC或 AC上取一点 P,使得△ PAB是等腰三角形,则符合条件的P 点有()C AA.2个B.4个C.6个D.8个2. 如图,△ ABC中, AD平分∠ BAC,AB+BD=AC,求B : C 的值. 2:1A B CB D C2. 如图,在△ ABC 中,BAC BCA44 ,M为△ABC内一点,使得MCA 30 , MAC 16 .求BMC 的度数.(北京市竞赛题)150°BMA C八年级(下)数学竞赛班辅导资料(4)原班级:姓名:等腰三角形的判定( 2)一、例题精讲两个全等的含 30°, 60°角的三角板 ADE 和三角板 ABC 如图所示放置, E, A ,C 三点在一条直线上,连接 BD ,取 BD 的中点 M ,连接 ME , MC .试判断△ EMC 的形状,并说明理由.解:△ EMC 是等腰直角三角形.理由如下:连接MA .∵∠ EAD=30 °,∠ BAC=60 °,∴∠ DAB=90 °,∵△ EDA ≌△ CAB ,∴ DA=AB , ED=AC ,∴△ DAB 是等腰直角三角形.又∵M 为 BD 的中点,∴∠MDA= ∠ MBA=45 °, AM ⊥ BD (三线合一),1AM=BD=MD ,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM= ∠ MAC=105 °,2在△ MDE 和△ CAM 中, ED=AC ,∠ MDE= ∠ CAM ,MD=AM ,∴△ MDE ≌△ MAC .∴∠ DME= ∠ AMC ,ME=MC ,又∵∠ DMA=90 °,∴∠ EMC= ∠ EMA+ ∠ AMC= ∠ EMA+ ∠ DME= ∠DMA=90 °.∴△ MEC 是等腰直角三角形.二、练一练1.如图 (1), Rt△ABC 中,∠ ACB=-90 °, CD ⊥AB ,垂足为 D. AF 平分∠ CAB ,交 CD 于点 E,交 CB 于点F(1)求证: CE=CF.(2)将图( 1)中的△ AD E 沿 AB 向右平移到△ A’D ’E’的位置,使点 E’落在 BC 边上,其它条件不变,如图( 2)所示.试猜想: BE'与 CF 有怎样的数量关系 ?请证明你的结论.( 1)证明:略( 2)解:相等证明:如图,过点 E 作 EG⊥ AC 于 G.又∵AF 平分∠ CAB , ED⊥ AB ,∴ ED=EG .由平移的性质可知:D’E’=DE ,∴ D’E’=GE .∵∠ ACB=90 °.∴∠ ACD+ ∠DCB=90 °[来源:Z|xx|]∵CD⊥AB 于 D.∴∠ B+ ∠ DCB=90 °.∴ ∠ ACD= ∠ B在 Rt△ CEG 与 Rt△ BE’D’中,∵∠ GCE= ∠ B ,∠ CGE= ∠BD ’E’, CE=D ’E’∴△ C EG≌△BE ’D’∴ CE=BE ’由( 1)可知 CE=CF, (其它证法可参照给分 ).2.如图,已知△BAD 和△ BCE 均为等腰直角三角形,∠BAD= ∠ BCE=90 °,点 M 为 DE 的中点,过点E 与 AD 平行的直线交射线AM 于点 N.( 1)当 A , B, C 三点在同一直线上时(如图1),求证: M 为 AN 的中点;( 2)将图 1 中的△ BCE 绕点 B 旋转,当 A ,B , E 三点在同一直线上时(如图 2),求证:△ ACN 为等腰直角三角形;(3)将图 1 中△ BCE 绕点 B 旋转到图 3 位置时,( 2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.DMA B图 3C(1 )证明:如图1,∵EN∥ AD ,∴∠ MAD= ∠MNE ,∠ ADM= ∠NEM .∵点 M 为 DE 的中点,∴ DM=EM .在△ ADM 和△ NEM 中,∴.∴△ ADM ≌△ NEM .∴ AM=MN .∴ M 为 AN 的中点.( 2)证明:如图2,∵△ BAD 和△ BCE 均为等腰直角三角形,∴AB=AD , CB=CE ,∠ CBE= ∠ CEB=45 °.∵AD ∥ NE,∴∠ DAE+ ∠ NEA=180 °.∵∠ DAE=90 °,∴∠ NEA=90 °.∴∠ NEC=135 °.∵A , B, E 三点在同一直线上,∴∠ ABC=180 °﹣∠ CBE=135 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵ AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.∴△ ACN 为等腰直角三角形.( 3)△ ACN 仍为等腰直角三角形.证明:如图3,此时 A 、 B、 N 三点在同一条直线上.∵AD ∥ EN,∠ DAB=90 °,∴∠ ENA= ∠ DAN=90 °.∵∠ BCE=90 °,∴∠ CBN+ ∠ CEN=360 °﹣ 90°﹣ 90°=180 °.∵ A 、 B、 N 三点在同一条直线上,∴∠ABC+ ∠ CBN=180 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,N E∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.八年级(下)数学竞赛班辅导资料(5)原班级:姓名:等边三角形( 1)一、知识要点1.等边三角形的性质:( 1)三边相等,三角相等,每个角等于60°;( 2)每条边上的高线、中线、所对角的平分线互相重合.简称“” ;( 3)等边三角形内任意一点到三边距离和是一个定值,等于一边上的高.2.判定等边三角形的基本方法:( 1)从边入手,证明三边相等;(2)从角入手,证明三角相等或证明两个角都为60°;(3)从边角入手,有一个角为 60°的等腰三角形是等边三角形.二、例题精讲如图,△ ABC 中,∠ B=60 °,延长 BC 到 D,延长 BA 到 E,使 AE=BD ,连 CE、DE,若 CE=DE .求证:△ ABC 是等边三角形.EAB C D三、练一练1.如图,一个六边形的每个角都是120°,连续四边的长依次是 2.7, 3,5,2,则该六边形的周长是____. 20.72.如图, P 是等边△ ABC 内部一点,∠ APB 、∠ BPC 、∠ CPA的大小之比是 5:6:7,则以 PA、PB、PC 为边的三角形的三个角的大小之比(从小到大)是______________.2:3:4A5232.7PB C3.(2013?北京)在△ ABC 中, AB=AC ,∠ BAC= α( 0°<α<60°),将线段 BC 绕点 B 逆时针旋转 60°得到线段 BD.(1)如图 1,直接写出∠ ABD 的大小(用含α的式子表示);(2)如图 2,∠ BCE=150 °,∠ ABE=60 °,判断△ABE 的形状并加以证明;(3)在( 2)的条件下,连接 DE,若∠ DEC=45 °,求α的值.解:( 1)∵ AB=AC ,∠ A= α,∴∠ ABC= ∠ ACB=(180°﹣∠ A)=90°﹣α,∵∠ ABD= ∠ ABC ﹣∠ DBC ,∠ DBC=60 °,即∠ ABD=30 °﹣α;( 2)△ ABE 是等边三角形,证明:连接AD , CD ,ED,∵∠ ABE=60 °,∴∠ ABD=60 °﹣∠ DBE= ∠ EBC=30 °﹣α,且△BCD为等边三角形,在△ ABD 与△ ACD 中∴△ ABD≌△ ACD,∴∠ BAD=∠ CAD=∠ BAC=α,∵∠ BCE=150 °,∴∠ BEC=180 °﹣( 30°﹣α)﹣150°=α=∠ BAD,在△ABD 和△EBC 中∴△ ABD ≌△ EBC,∴ AB=BE ,∴△ ABE 是等边三角形;(3)∵∠ BCD=60 °,∠ BCE=150 °,∴∠ DCE=150 °﹣ 60°=90 °,∵∠ DEC=45 °,∴△ DEC 为等腰直角三角形,∴DC=CE=BC ,∵∠ BCE=150 °,∴∠ EBC=(180°﹣150°)=15°,∵∠ EBC=30 °﹣α=15°,∴ α=30°.4.【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60 °, EF 交等边三角形外角平分线 CF 所在的直线于点F,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点E时线段BC延长线上的任意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .解答:证明:如图一,在 B 上截取 AG ,使 AG=EC ,连接 EG,∵△ ABC 是等边三角形,∴AB=BC ,∠ B=∠ ACB=60 °.∵ AG=EC ,∴ BG=BE ,∴△ BEG 是等边三角形,∠BGE=60 °,∴∠ AGE=120 °.∵ FC 是外角的平分线,∠ECF=120 °=∠ AGE .∵∠ AEC 是△ ABE 的外角,∴∠AEC= ∠ B+ ∠GAE=60 °+∠GAE .∵∠ AEC= ∠ AEF+ ∠ FEC=60 °+∠ FEC,∴∠ GAE= ∠FEC.在△AGE 和△ECF 中,∴△ AGE ≌△ ECF( ASA ),∴ AE=EF ;八年级(下)数学竞赛班辅导资料(6)原班级:姓名:等边三角形( 2)1.背景:某外学小在一次学研中,得到如下两个命:①如 1,在正三角形 ABC中,M、N分是 AC、AB 上的点, BM与 CN相交于点 O,若∠ BON=60°, BM=CN.②如 2,在正方形 ABCD中, M、N 分是 CD、AD上的点, BM与 CN相交于点 O,若∠ BON=90°, BM=CN.然后运用比的思想提出了如下的命:③如 3,在正五形 ABCDE中, M、N 分是 CD、 DE上的点, BM与 CN相交于点 O,若∠ BON=108°,BM=CN.任要求:(1)你从①、②、③三个命中一个行明;(2)你完成下面的探索:①如 4,在正 n( n≥ 3)形 ABCDEF⋯中, M、N分是 CD、DE上的点, BM与 CN相交于点 O,当∠ BON 等于多少度,BM=CN成立?(不要求明)②如 5,在五形ABCDE中, M、 N 分是 DE、 AE上的点, BM与 CN相交于点 O,当∠ BON=108° ,BM=CN是否成立?若成立,予明;若不成立,明理由.解:( 1)命①明:在 1 中,∵∠ BON=60°,∴∠ CBM+∠ BCN=60°,∵∠ BCN+∠ACN=60°,∴∠ CBM=∠ ACN,又∵ BC=CA,∠ BCM=∠ CAN=60°,∴△ BCM≌△ CAN,∴ BM=CN,命②,明:在 2 中,∵∠ BON=90°,∴∠ CBM+∠ BCN=90°,∵∠ BCN+∠DCN=90°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=90°,∴△ BCM≌△ CDN,∴ BM=CN,命③ 明:在 3 中,∵∠ BON=108°,∴∠ CBM+∠BCN=108°,∵∠ BCN+∠DCN=108°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=108°,∴△ BCM≌△ CDN,∴ BM=CN;( 2)①当∠ BON=,BM=CN成立,② BM=CN成立,明:如5, BD、CE,在△ BCD和△ CDE中,∵ BC=CD,∠ BCD=∠ CDE=108°,CD=DE,∴△ BCD≌△ CDE,∴ BD=CE,∠ BDC=∠ CED,∠ DBC=∠ ECD,∵∠ OBC+∠ OCB=108°,∠ OCB+∠ OCD=108°,∴∠ MBC=∠ NCD,又∵∠ DBC=∠ ECD=36°,∴∠ DBM=∠ ECN,∴△ BDM≌△ ECN。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十九讲 由正难则反切入
人们习惯的思维方式是正向思维,即从条件手,进行正面的推导和论证,使问题得到解决.但有些数学问题,若直接从正面求解,则思维较易受阻,而“正难则反,顺难则逆,直难则曲”是突破思维障碍的重要策略.
数学中存在着大量的正难则反的切入点.数学中的定义、公式、法则和等价关系都是双向的,具有可逆性;对数学方法而言,特殊与一般、具体与抽象、分析与综合、归纳与演绎,其思考方向也是可逆的;作为解题策略,当正向思考困难时可逆向思考,直接证明受阻时可间接证明,探索可能性失败时转向考察不可能性.由正难则反切入的具体途径有:
1. 定义、公式、法则的逆用; 2.常量与变量的换位; 3.反客为主; 4.反证法等. 【例题求解】 【例1】 已知x 满足
2223
22
=--+x x x
x ,那么x x 22+的值为 .
思路点拨 视x x 22+为整体,避免解高次方程求x 的值.
【例2】 已知实数a 、b 、c 满足b a ≠,
且0)()(2002)(2002=-+-+-a c c b b a 求2
)())((b a a c b c ---的值.
思路点拨 显然求a 、b 、c 的值或寻求a 、b 、c 的关系是困难的,
令x =2000,则2002=2x ,原等式就可变形为关于x 的一元二次方程,运用根与系数关系求解.
注:(1)人们总习惯于用凝固的眼光看待常量与变量,认为它们泾渭分明,更换不得,实际上将常量设为变量,或将变量暂时看作常量,都会给人以有益的启示.
(2)人的思维活动既有“求同”和“定势”的方面,又有“求异”和“变通”的方面.求同与求异,定势与变通是人的思维个性的两极,充分利用知识和方法的双向性,是培养思维能力的重要途径.
正难则反在具体的解题中,还表现为下列各种形式: (1)不通分母通分子; (2)不求局部求整体;
(3)不先开方先平方; (4)不用直接挖隐含; (5)不算相等算不等; (6)不求动态求静态等.
【例3】 设a 、b 、c 为非零实数,且022=++c bx ax ,022=++a cx bx ,022=++b ax cx ,试问:a 、b 、c 满足什么条件时,三个二次方程中至少有一个方程有不等的实数根. 思路点拨 如从正面考虑,条件“三个方程中至少有一个方程有不等的实数根”所涉及的情况比较复杂,但从其反面考虑情况却十分简单,只有一种可能,即三个方程都没有实数根,然后从全体实数中排除三个方程都无实数根的a 、b 、c 的取值即可.
注:受思维定势的消极影响,人们在解决有几个变量的问题时,总抓住主元不放,使有些问题的解决较为复杂,此时若变换主元,反客为主,问题常常能获得简解.
【例4】 已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.
思路点拨 结论是以疑问形式出现的,不妨先假定是肯定的,然后推理.若推出矛盾,则说明结论是否定的;若推不出矛盾,则可考虑去证明结论是肯定的.
【例5】 能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够,请说明理由.
思路点拨 先假设存在正整数1n ,2n ,3n ,4n 满足22000m n n j i =+ (i ,j =1,2,3,4,m 为正整数).运用完全平方数性质、奇偶性分析、分类讨论综合推理,若推出矛盾,则原假设不成立.
注:反证法是从待证命题的结论的反面出发,进行推理,通过导出矛盾来判断待证命题成立的方法,其证明的基本步骤是:否定待证命题的结论、推理导出矛盾、肯定原命题的结论. 宜用反证法的三题特征是: (1)结论涉及无限; (2)结论涉及唯一性; (3)结论为否定形式;
(4)结论涉及“至多,至少”; (5)结论以疑问形式出现等.
学力训练
1.由小到大排列各分数:
116,1710,1912,2315,3320,91
60是 . 2.分解因式2232)1(a ax x a x +--+= .
3.解关于x 的方程:0433*******=+++--a ax x ax x x (a ≥8
1
-)得x = .
4.
100
99991001
3
22312
1121++
+++
+ 的结果是 .
5.若关于x 的三个方程,0324422=++++m m mx x , 0)12(22=+++m x m x ,012)1(2=-++-m mx x m 中至少有一个方程有实根,则m 的取值范围是 .
6.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动4次后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?
7.求这样的正整数a ,使得方程074)12(22=-+-+a x a ax 至少有一个整数解.
8.某班参加运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的3名运动员,他们运动服号码之和不小于32,请说明理由. 9.如正整数a 和b 之和是n ,则n 可变为ab ,问能不能用这种方法数次,将22变成2001?
10.证明:如果整系数二次方程02=++c bx ax a (0≠a )有有理根,那么a ,b ,c 中至少有一个是偶数.
11.在ΔABC 中是否存在一点P ,使得过P 点的任意一直线都将该ΔABC 分成等面积的两部分?为什么?
12.求证:形如4n+3的整数是(n 为整数)不能化为两个整数的平方和.
13.13位小运动员,他们着装的运动服号码分别是1~13号.问:这13名运动员能否站成一个圆圈,使得任意相邻的两名运动员号码数之差的绝对值都不小于3,且不大于5?如果能,试举一例;如果不能,请说明理由.
14.有12位同学围成一圈,其中有些同学手中持有鲜花,鲜花总数为13束,他们进行分花游戏,每次分花按如下规则进行:其中一位手中至少持有两束鲜花的同学拿出两束鲜花分给与其相邻的左右两位同学,每人一束.试证:在持续进行这种分花游戏的过程中,一定会出现至少有7位同学手中持有鲜花的情况.
参考答案。