【海淀一模】海淀区2018届高三第二学期期中练习理科数学(扫描版含答案)(2018.04)

合集下载

2018海淀区高中数学(理)一模试卷及答案

2018海淀区高中数学(理)一模试卷及答案

海淀区高三年级第二学期期中练习数学(理科)2018. 4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{0,},{12}A a B x x ==-<< | ,且A B ⊆,则a 可以是 (A)1- (B) 0 (C) 1 (D) 2(2)已知向量(1,2),(1,0)==-a b ,则+2=a b(A) (1,2)- (B) (1,4)- (C) (1,2) (D) (1,4) (3)执行如图所示的程序框图,输出的S 值为 (A) 2 (B) 6 (C) 8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为,M 且(,)P x y 为M 中任意一点,则y x -的最大值为(A) 1 (B) 2(C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a >,1b >”是“lg lg 0a b +>”的( )(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D) 既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是(A) 1 (B)65(C)43(D)32(7)下列函数()f x 中,其图象上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x = (C) ()e 1x f x =- (D) ()ln(1)f x x =+(8)已知点M 在圆221:(1)(1)1C x y -+-=上,点N 在圆222:(1)(1)1C x y +++=上,则下列说法错误的是(A )OM ON ⋅u u u u r u u u r的取值范围为[3--(B )||OM ON +u u u u r u u u r的取值范围为[0,(C )||OM ON -u u u u r u u u r的取值范围为2,2]+(D )若OM ON λ=u u u u r u u u r,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

2018海淀区高中数学(理)一模试卷及答案-(17974)

2018海淀区高中数学(理)一模试卷及答案-(17974)

海淀区高三年级第二学期期中练习数学(理科)2018. 4 本试卷共 4 页, 150 分。

考试时长 120 分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合 A {0, a}, B { x | 1 x 2} ,且 A B ,则 a 可以是(A)1(B) 0 (C) 1(D) 2(2)已知向量a (1,2),b ( 1,0) ,则 a+2b(A) ( 1,2) (B) ( 1,4) (C) (1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S值为(A) 2 (B) 6(C)8(D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M , 且 P(x, y) 为 M 中任意一点,则 y x 的最大值为(A) 1(B) 2(C)1(D) 2(5)已知 a , b 为正实数,则“ a 1 , b 1”是“ lg a lg b 0 ”的 ( )(A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件(D) 既不充分也不必要条件第1 页共 15 页(6)如图所示,一个棱长为 1 的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则 S 的值不可能是(A) 16 4 3(B) (C) (D)5 3 2(7)下列函数f ( x) 中,其图象上任意一点P( x, y) 的坐标都满足条件yx 的函数是(A) f (x) x3 (B) f ( x)x (C) f ( x)e x 1(D)f( x)ln( x 1)( 8)已知点 M 在圆 C1 :( x1)2( y1)2 1 上,点 N 在圆 C2 :( x 1)2( y 1)21上,则下列说法错误的是(A ) OM ON 的取值范围为[ 3 2 2,0](B) | OM ON | 的取值范围为[0,2 2](C) | OM ON |的取值范围为[2 2 2,2 2 2](D)若OM ON ,则实数的取值范围为[ 3 2 2, 3 2 2]第二部分(非选择题,共110分)二、填空题共 6 小题,每小题 5 分,共30 分。

【高三数学试题精选】2018海淀区高三数学理下学期期中试卷(有答案)

【高三数学试题精选】2018海淀区高三数学理下学期期中试卷(有答案)

2018海淀区高三数学理下学期期中试卷(有答案)
5 海淀区高三年级2018-2018 学年度第二学期期中练习
数学试卷(理科) 20184
本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上
作答无效.考试结束后,将本试卷和答题卡一并交回.
一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目
要求的一项.
1.函数的定义域为
A.[0,+) B.[1,+) c.(-,0] D.(-,1]
2.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为
A.-1
B.1
c.-i
D.i
3.若x,满足,则的最大值为
A. B.3
c. D.4
4.某三棱锥的三视图如图所示,则其体积为
A. B.
c. D.
5.已知数列的前n 项和为Sn,则“ 为常数列”是“ ”的
A.充分不必要条 B.必要不充分条
c.充分必要条 D.既不充分也不必要条
6.在极坐标系中,圆c1 与圆c2 相交于 A,B两点,则|AB|。

2018年高三最新 北京海淀区2018年高三年级第二学期期

2018年高三最新 北京海淀区2018年高三年级第二学期期

海淀区高三第二学期数学期中练习理科数学 18.4一、选择题: 1.计算21i i- 得( )(A )3i -+ (B )1i -+ (C )1i - (D )22i -+ 2.过点)2-的直线l 经过圆2220x y y +-=的圆心,则直线l 的倾斜角大小为( )(A )30︒ (B )60︒ (C )150︒ (D )120︒ 3.函数()()111x f x x x -=>+的反函数为( )(A )()1,0,1x y x x +=∈+∞- (B )()1,1,1xy x x +=∈+∞- (C )()1,0,11x y x x +=∈- (D )()1,0,11x y x x +=∈- 4.设m ,n 是两条不同的直线,α、β、γ是三个不同的平面。

给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ; ②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若α∥β,β∥γ,m ⊥α,,则m ⊥γ. 其中正确命题的序号是:( )(A ) ①和② (B )②和③ (C )③和④ (D )①和④5.从3名男生和3名女生中,选出3名分别担任语文、数学、英语的课代表,要求至少有1名女生,则选派方案共有 ( )(A )19种 (B ) 54种 (C )114种 (D )120种 6.{}{}211,,log 1,A x x x R B x x x R=-≥∈=>∈,则“x A ∈”是“x B ∈”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )既非充分也非必要条件7.定点N (1,0),动点A 、B 分别在图中抛物线24y x =及椭圆22143x y += 的实线部分上运动,且AB ∥x 轴,则△NAB 的周长l 取值范围是( )(A )(2,23) (B )(10,43) (C )(51,416) (D )(2,4)8.已知函数221()(,0)af x x ax b x R x x x=++++∈≠且.若实数a b 、使 得()0f x =有实根,则22a b +的最小值为 ( ) (A)45 (B )34(C ) 1 (D )2二、填空题:9.已知,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为 .10.四面体ABCD 中,E 是AD 中点,F 是BC 中点,11,2AB DC EF ===,则直线AB 与DC 所成的角大小为11.已知平面向量a ()cos ,sin ,αα=b ()cos ,sin ββ= (αβ∈、R ) .当,26ππαβ==时,a· b 的值为 ; 若 a =λb ,则实数λ的值为 .12.12nx x ⎛⎫- ⎪⎝⎭的展开式的二项式系数之和为64,则展开式中常数项为 .13.已知定义在正实数集上的连续函数()212(01)11(1)x f x x x x ax ⎧+<<⎪=--⎨⎪+≥⎩,则实数a 的值为 .14.某资料室在计算机使用中,如右表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的. 此表中,主对角线上数列1,2,5,10,17,…的通项公式为 ;编码100共出现 次.三、解答题:15.(本小题12分)已知函数()()22sin cos 2cos 2f x x x x =++-.(I )求函数()f x 的最小正周期; (II ) 当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值,最小值.16.(本小题13分)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品.(I)求这箱产品被用户拒绝接收的概率;(II)记ξ表示抽检的产品件数,求ξ的概率分布列.17.(本小题14分)四棱锥P-ABCD中,PA⊥底面ABCD,AB // CD, AD =CD=1,120 BAD∠=︒,PA=90ACB∠=︒.(I)求证: BC⊥平面PAC;(Ⅱ)求二面角D PC A--的大小;(Ⅲ)求点B到平面PCD的距离.APD CB18.(本小题14分)已知函数21()()axf x x x e a=--(0a >且).(Ⅰ) 当2a =时,求函数()f x 的单调区间; (Ⅱ) 若不等式3()0f x a+≥对x R ∈恒成立,求a 的取值范围.19.(本小题13分)如图,在直角坐标系中,O 为坐标原点,直线AB ⊥x 轴与点C , ||4OC =,3CD DO =,动点M 到直线AB 的距离是它到点D 的距离的2倍。

2018年北京市海淀区高考数学一模试卷(理科)

2018年北京市海淀区高考数学一模试卷(理科)

2018年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合A={0, a},B={x|−1<x<2},且A⊆B,则a可以是()A.−1B.0C.1D.22. 已知向量a→=(l, 2),b→=(−1, 0),则a→+2b→=()A.(−1, 2)B.(−1, 4)C.(1, 2)D.(1, 4)3. 执行如图所示的程序框图,输出的S值为()A.2B.6C.8D.104. 如图,网格纸上小正方形的边长为1,若四边形ABCD及其内部的点组成的集合记为M,P(x, y)为M中任意一点,则y−x的最大值为()A.1B.2C.−1D.−25. 已知a,b为正实数,则“a>1,b>1”是“lga+lgb>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S,则S的值不可能是()A.1B.65C.43D.327. 下列函数f(x)中,其图象上任意一点P(x, y)的坐标都满足条件y ≤|x|的函数是( )A.f(x)=x 3B.f(x)=√xC.f(x)=e x −1D.f(x)=ln(x +1)8. 已知点M 在圆C 1:(x −1)2+(y −1)2=1上,点N 在圆C 2:(x +1)2+(y +1)2=1上,则下列说法错误的是( )A.OM →∗ON →的取值范围为[−3−2√2,0brackB.|OM →+ON →|取值范围为[0,2√2brackC.|OM →−ON →|的取值范围为[2√2−2,2√2+2brackD.若OM →=λON →,则实数λ的取值范围为[−3−2√2,−3+2√2brack二、填空题共6小题,每小题5分,共30分.复数2i 1+i =________.已知点(2, 0)是双曲线C:x 2a 2−y 2=1的一个顶点,则C 的离心率为________.直线 {x =2t y =t (t 为参数)与曲线{x =2+cosθy =sinθ(θ为参数)的公共点个数为________.在△ABC 中,若c =2,a =√3,∠A =π6,则sinC =________,co s2C =________.一次数学会议中,有五位教师来自A ,B ,C 三所学校,其中A 学校有2位,B 学校有2位,C 学校有1位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则共有________种不同的站队方法.设函数f(x)={x,x ≥a x 3−3x,x <a. ①若f(x)有两个零点,则实数a 的取值范围是________;②若a ≤−2,则满足f(x)+f(x −1)>−3的x 的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知f(x)=2√3sinxcosx +2cos 2x −1.(I)求f(π6)的值;(Ⅱ)求f(x)的单调递增区间.流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利J=−些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于40%时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度殖和传播的概率;(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为X,求X的分布列;(Ⅲ)若a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,求M的最大值和最小值.(只需写出结论)已知三棱锥P−ABC(如图1)的平面展开图(如图2)中,四边形ABCD为边长为√2的正方形,△ABE和△BCF均为正三角形,在三棱锥P−ABC中:(I)证明:平面PAC⊥平面ABC;(Ⅱ)求二面角A−PC−B的余弦值;(Ⅲ)若点M在棱PC上,满足CMCP=λ,λ∈[13,23],点N在棱BP上,且BM⊥AN,求BNBP的取值范围.已知函数f(x)=lnxx+a.(I)当a=0时,求函数f(x)的单调递增区间;(Ⅱ)当a>0时,若函数f(x)的最大值为1e2,求a的值.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,且点T(2, 1)在椭圆C上,设与OT平行的直线l与椭圆C相交于P,Q两点,直线TP,TQ分别与x轴正半轴交于M,N两点.(I)求椭圆C的标准方程;(Ⅱ)判断|OM|+|ON|的值是否为定值,并证明你的结论.设A=(a i,j)n×n={a1,1a1,2⋯a1,na2,1a2,2⋯a2,n⋮⋮⋱⋮a n,1a n,2⋯a n,n}是由1,2,3,…,n2组成的n行n列的数表(每个数恰好出现一次),n≥2且n∈N∗.若存在1≤i≤n,1≤j≤n,使得a i,j既是第i行中的最大值,也是第j列中的最小值,则称数表A为一个“N−数表”a i,j为数表A的一个“N−值”,对任意给定的n,所有“N−数表”构成的集合记作Ωn.判断下列数表是否是“N−(2)数表”.若是,写出它的一个“N−(3)值”;A={123456789},B={147825693};(Ⅱ)求证:若数表A是“N−数表”,则A的“N−值”是唯一的;(Ⅲ)在Ω19中随机选取一个数表A,记A的“N−值”为X,求X的数学期望E(X).参考答案与试题解析2018年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】集合的包含关系判断及应用【解析】由集合A={0, a},B={x|−1<x<2},且A⊆B,得到−1<a<2,由此能求出结果.【解答】∵集合A={0, a},B={x|−1<x<2},且A⊆B,∴−1<a<2,∴a可以是1.2.【答案】A【考点】平面向量数量积的性质及其运算律【解析】根据题意,由向量的坐标计算公式直接计算即可得答案.【解答】根据题意,向量a→=(l, 2),b→=(−1, 0),则2b→=(−2, 0)则a→+2b→=(−1, 2);3.【答案】D【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】当k=0时,满足继续循环的条件,则S=0,k=1;当k=1时,满足继续循环的条件,则S=2,k=2;当k=2时,满足继续循环的条件,则S=10,k=3;当k=3时,不满足继续循环的条件,故输出的S=10,4.【答案】B【考点】简单线性规划【解析】根据题意写出A、B、C、D点的坐标,设z=y−x,平移目标函数z,找最优解,求出z的最大值.【解答】根据题意知,A(−2, −1),B(2, −1),C(4, 2),D(0, 2);设z=y−x;平移目标函数z=y−x,当目标函数过点D时,y−x取得最大值为2−0=(2)5.【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】根据对数的运算法则以及充分条件和必要条件的定义进行判断即可.【解答】由lga+lgb>0得lgab>0,即ab>1,当a>1,b>1时,ab>1成立,当a=4,b=1,满足ab>1,但b>1不成立,2则“a>1,b>1”是“lga+lgb>0”的充分不必要条件,6.【答案】D【考点】平行投影及平行投影作图法【解析】由题意求得正方体在竖直墙面上投影面积的最小值和最大值即可.【解答】由题意知,棱长为1的正方体在竖直墙面上的投影面积S的最小值为正方形,且边长为1,其面积为1;最大值为矩形,且相邻的两边长为1和√2,其面积为1×√2=√2;∴S的取值范围是[1, √2];又√2<3,2∴不可能的是选项D.7.【答案】D【考点】函数的求值【解析】函数f(x)图象上任意一点P(x, y)的坐标都满足条件y≤|x|的函数的图象位于下图中的①或②的区域,由此能求出结果.函数f(x)图象上任意一点P(x, y)的坐标都满足条件y ≤|x|的函数的图象位于下图中的①或②的区域,在A 中,f(x)=x 3的图象位于③,④的部分区域,故A 错误;在B 中,f(x)=√x 的图象位于②③的部分区域,故B 错误;在C 中,f(x)=e x −1的图象位于①②③④的部分区域,故C 错误;在D 中,f(x)=ln(x +1)的图象位于②的区域,故D 正确.8.【答案】B【考点】圆与圆的位置关系及其判定【解析】根据两圆的对称关系和OM ,ON 的范围进行判断.【解答】∵ M 在圆C 1上,点N 在圆C 2上,∴ ∠MON ≥90∘,∴ OM →∗ON →≤0,又OM ≤√2+1,ON ≤√2+1,∴ 当OM =√2+1,ON =√2+1时,OM →∗ON →取得最小值(√2+1)2cosπ=−3−2√2,故A 正确; 设M(1+cosα, 1+sinα),N(−1+cosβ, −1+sinβ),则OM →+ON →=(cosα+cosβ, sinα+sinβ),∴ |OM →+ON →|2=2cosαcosβ+2sinαsinβ+2=2cos(α−β)+2,∴ 0≤|OM →+ON →|≤2,故B 错误;∵ 两圆外离,半径均为1,|C 1C 2|=2√2,∴ 2√2−2≤|MN|≤2√2+2,即2√2−2≤|OM →−ON →|≤2√2+2,故C 正确; ∵ √2−1≤|OM|≤√2+1,√2−1≤|ON|≤√2+1,∴ 当OM →=λON →时,√2−1√2+1≤−λ≤√2+1√2−1,解得−3−2√2≤λ≤−3+2√2,故D 正确. 二、填空题共6小题,每小题5分,共30分.【答案】1+i【考点】复数的运算【解析】利用复数的除法运算法则即可得出.【解答】2i 1+i =2i(1−i)(1+i)(1−i)=i +1.√52【考点】双曲线的特性【解析】根据题意,由双曲线的顶点坐标可得a 的值,结合b 的值计算可得c 的值,由双曲线的离心率公式计算可得答案.【解答】根据题意,点(2, 0)是双曲线C:x 2a −y 2=1的一个顶点, 则a =2,双曲线的方程为x 2a 2−y 2=1,则b =1,则c =√a 2+b 2=√5,则双曲线的离心率e =c a =√52; 【答案】2【考点】参数方程与普通方程的互化【解析】直线消去参数t ,得x −2y =0,曲线消去参数,得(x −2)2+y 2=1,联立{x −2y =0(x −2)2+y 2=1,能求出交点个数. 【解答】直线 {x =2t y =t(t 为参数)消去参数t ,得x −2y =0, 曲线{x =2+cosθy =sinθ(θ为参数)消去参数,得(x −2)2+y 2=1, 联立{x −2y =0(x −2)2+y 2=1 ,得{x =2y =1 或{x =65y =35 . ∴ 直线 {x =2t y =t (t 为参数)与曲线{x =2+cosθy =sinθ(θ为参数)的公共点个数为2. 【答案】 √3, 【考点】三角形求面积【解析】直接利用正弦定理的三角函数关系式的恒等变换求出结果.【解答】△ABC 中,若c =2,a =√3,∠A =π6,利用正弦定理:a sinA =c sinC ,则:sinC =√33, 所以:cos2C =1−2sin 2C =1−23=13.【答案】48【考点】排列、组合及简单计数问题【解析】先安排A 学校和C 学校的三位老师,有A 22中排法,再把B 学校的两位老师插空排到A 学校和C 学校的三位老师的空位中,并对B 学校的两位老师进行排序,有A 42A22=24种排法,最后根据乘法运算,由此能求出结果.【解答】有五位教师来自A ,B ,C 三所学校,其中A 学校有2位,B 学校有2位,C 学校有1位. 现在五位教师排成一排照相,要求来自同一所学校的教师不相邻,先安排A 学校和C 学校的三位老师,有A 22中排法,再把B 学校的两位老师插空排到A 学校和C 学校的三位老师的空位中,并对B 学校的两位老师进行排序,有A 42A22=24种排法,由乘法原理得不同的排列方法有:A 22∗A 42A22=48种,【答案】(−√3, √3],(−1, +∞)【考点】分段函数的应用【解析】①讨论a =0,a >0,a <0,结合零点定义,解方程即可得到所求范围; ②若a ≤−2,讨论x <a ,x ≥a ,若x −1≥a ;a −1≤x −1<a ,结合分段函数解析式,以及函数的单调性和不等式的解法,即可得到所求范围.【解答】①若a =0,则f(x)={x,x ≥0x 3−3x,x <0, 由f(x)=0,可得x =0,x =−√3,符合题意;若a <0,x =0符合题意;若x =−√3符合题意,则a >−√3,即为−√3<a <0;若a >0,则x =0和x =−√3符合题意,可得a ≤√3,综上可得,a 的范围是(−√3, √3];②若x <a ≤−2,则x −1<a −1≤−3,f(x)的导数为3x 2−3>0,可得f(x)<f(−2)=−2,f(x −1)<−27+9=−18,即有f(x)+f(x −1)<−30,不符题意;则x ≥a ,若x −1≥a ,f(x)+f(x −1)>−3,即为x +x −1>−3,解得x >−1;若a −1≤x −1<a ,f(x)+f(x −1)>−3,即为x +(x −1)3−3(x −1)>−3,化为x 3−3x 2+x +5>0,由于a ≤−2,且a ≤x <a +1,可得g(x)=x 3−3x 2+x +5的导数g′(x)=3x 2−6x +1>0,即g(x)在[a, a +1)递增,g(a)取得最小值,且为a 3−3a 2+a +5,且a3−3a2+a+5,而在a≤−2时,a3−3a2+a+5递增,且为负值,不符题意.综上可得a的范围是(−1, +∞).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】(Ⅰ)直接将x=π6带入,可得:f(π6)=2√3sinπ6cosπ6+2cos2π6−1=2√3×12×√32+2×(√32)2−1=2.(Ⅱ)由f(x)=√3sin2x+cos2x=2sin(2x+π6)因为函数y=sinx的单调递增区间为[2kπ−π2,2kπ+π2brack(k∈Z),令2kπ−π2≤2x+π6≤2kπ+π2(k∈Z),解得kπ−π3≤x≤kπ+π6(k∈Z),故f(x)的单调递增区间为[kπ−π3,kπ+π6brack(k∈Z).【考点】三角函数中的恒等变换应用【解析】(I)直接将x=π6带入计算即可.(Ⅱ)利用二倍角和辅助角公司化简,即可求f(x)的单调递增区间.【解答】(Ⅰ)直接将x=π6带入,可得:f(π6)=2√3sinπ6cosπ6+2cos2π6−1=2√3×12×√32+2×(√32)2−1=2.(Ⅱ)由f(x)=√3sin2x+cos2x=2sin(2x+π6)因为函数y=sinx的单调递增区间为[2kπ−π2,2kπ+π2brack(k∈Z),令2kπ−π2≤2x+π6≤2kπ+π2(k∈Z),解得kπ−π3≤x≤kπ+π6(k∈Z),故f(x)的单调递增区间为[kπ−π3,kπ+π6brack(k∈Z).【答案】(本题满分1(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,则Ω={A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12}共12个基本事件,A={A2, A6, A8, A9, A10, A11}共6个基本事件,所以,该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率P(A)=612=12.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X所有可能的取值为0,1,2.P(X=0)=C42C62=615=25,P(X=1)=C21C41C62=815,P(X=2)=C22C62=115随机变量X的分布列为:(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,则M的最大值为58%,最小值为54%.【考点】离散型随机变量及其分布列【解析】(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,利用列举法能求出该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,X所有可能的取值为0,1,2.分别求出相应的概率,由此能求出随机变量X的分布列.(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,由此能求出M的最大值,最小值.【解答】(本题满分1(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,则Ω={A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12}共12个基本事件,A={A2, A6, A8, A9, A10, A11}共6个基本事件,所以,该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率P(A)=612=12.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X所有可能的取值为0,1,2.P(X=0)=C42C62=615=25,P(X=1)=C21C41C62=815,P(X=2)=C22C62=115随机变量X的分布列为:(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,则M的最大值为58%,最小值为54%.【答案】(本题满分1证明:(Ⅰ)证法一:设AC的中点为O,连接BO,PO.由题意PA=PB=PC=√2,PO=1,AO=BO=CO=1因为在△PAC中,PA=PC,O为AC的中点所以PO⊥AC,因为在△POB中,PO=1,OB=1,PB=√2所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法二:设AC的中点为O,连接BO,PO.因为在△PAC中,PA=PC,O为AC的中点,所以PO⊥AC,因为PA=PB=PC,PO=PO=PO,AO=BO=CO所以△POA≅△POB≅△POC所以∠POA=∠POB=∠POC=90∘所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法三:设AC的中点为O,连接PO,因为在△PAC中,PA=PC,所以PO⊥AC设AB的中点Q,连接PQ,OQ及OB.因为在△OAB中,OA=OB,Q为AB的中点所以OQ⊥AB.因为在△PAB中,PA=PB,Q为AB的中点所以PQ⊥AB.因为PQ∩OQ=Q,PQ,OQ⊂平面OPQ所以AB⊥平面OPQ因为OP⊂平面OPQ所以OP⊥AB因为AB∩AC=A,AB,AC⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC(2)由PO⊥平面ABC,OB⊥AC,如图建立空间直角坐标系,则O(0, 0, 0),C(1, 0, 0),B(0, 1, 0),A(−1, 0, 0),P(0, 0, 1) 由OB ⊥平面APC ,故平面APC 的法向量为OB →=(0,1,0) 由BC →=(1,−1,0),PC →=(1,0,−1) 设平面PBC 的法向量为n →=(x,y,z),则 由{n ⋅BC →=0n ⋅PC →=0得:{x −y =0x −z =0 令x =1,得y =1,z =1,即n →=(1,1,1)cos <n →,OB →>=n →⋅OB →|n →|⋅|OB →|=√3⋅1=√33由二面角A −PC −B 是锐二面角, 所以二面角A −PC −B 的余弦值为√33(Ⅲ)设BN →=μBP →,0≤μ≤1,BM →=BC →+CM →=BC →+λCP →=(1,−1,0)+λ(−1,0,1)=(1−λ,−1,λ),AN →=AB →+BN →=AB →+μBP →=(1,1,0)+μ(0,−1,1)=(1,1−μ,μ), 令BM →⋅AN →=0得(1−λ)⋅1+(−1)⋅(1−μ)+λ⋅μ=0即μ=λ1+λ=1−11+λ,μ是关于λ的单调递增函数, 当λ∈[13,23]时,μ∈[14,25], 所以BNBP ∈[14,25].【考点】二面角的平面角及求法【解析】(Ⅰ)法一:设AC的中点为O,连接BO,PO.推导出PO⊥AC,PO⊥OB,从而PO⊥平面ABC,由此能证明平面PAC⊥平面ABC.法二:设AC的中点为O,连接BO,PO.推导出PO⊥AC,△POA≅△POB≅△POC,∠POA=∠POB=∠POC=90∘,进而PO⊥OB,由此能证明PO⊥平面ABC,从而平面PAC⊥平面ABC.法三:设AC的中点为O,连接PO,推导出PO⊥AC,设AB的中点Q,连接PQ,OQ及OB.推导出OQ⊥AB.PQ⊥AB.从而AB⊥平面OPQ,进而OP⊥AB,由此能证明PO⊥平面ABC,从而平面PAC⊥平面ABC.(Ⅱ)由PO⊥平面ABC,OB⊥AC,建立空间直角坐标系,利用向量法能求出二面角A−PC−B的余弦值.(Ⅲ)设BN→=μBP→,0≤μ≤1,利用向量法能求出BN的取值范围.BP【解答】(本题满分1证明:(Ⅰ)证法一:设AC的中点为O,连接BO,PO.由题意PA=PB=PC=√2,PO=1,AO=BO=CO=1因为在△PAC中,PA=PC,O为AC的中点所以PO⊥AC,因为在△POB中,PO=1,OB=1,PB=√2所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法二:设AC的中点为O,连接BO,PO.因为在△PAC中,PA=PC,O为AC的中点,所以PO⊥AC,因为PA=PB=PC,PO=PO=PO,AO=BO=CO所以△POA≅△POB≅△POC所以∠POA=∠POB=∠POC=90∘所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法三:设AC的中点为O,连接PO,因为在△PAC中,PA=PC,所以PO⊥AC设AB的中点Q,连接PQ,OQ及OB.因为 在△OAB 中,OA =OB ,Q 为AB 的中点 所以 OQ ⊥AB .因为 在△PAB 中,PA =PB ,Q 为AB 的中点 所以 PQ ⊥AB .因为 PQ ∩OQ =Q ,PQ ,OQ ⊂平面OPQ 所以 AB ⊥平面OPQ 因为 OP ⊂平面OPQ 所以 OP ⊥AB因为 AB ∩AC =A ,AB ,AC ⊂平面ABC 所以 PO ⊥平面ABC 因为 PO ⊂平面PAC所以 平面PAC ⊥平面ABC(2)由PO ⊥平面ABC ,OB ⊥AC ,如图建立空间直角坐标系,则 O(0, 0, 0),C(1, 0, 0),B(0, 1, 0),A(−1, 0, 0),P(0, 0, 1) 由OB ⊥平面APC ,故平面APC 的法向量为OB →=(0,1,0) 由BC →=(1,−1,0),PC →=(1,0,−1) 设平面PBC 的法向量为n →=(x,y,z),则 由{n ⋅BC →=0n ⋅PC →=0得:{x −y =0x −z =0 令x =1,得y =1,z =1,即n →=(1,1,1)cos <n →,OB →>=n →⋅OB →|n →|⋅|OB →|=3⋅1=√33由二面角A −PC −B 是锐二面角,所以二面角A −PC −B 的余弦值为√33(Ⅲ)设BN →=μBP →,0≤μ≤1,BM →=BC →+CM →=BC →+λCP →=(1,−1,0)+λ(−1,0,1)=(1−λ,−1,λ),AN →=AB →+BN →=AB →+μBP →=(1,1,0)+μ(0,−1,1)=(1,1−μ,μ), 令BM →⋅AN →=0得(1−λ)⋅1+(−1)⋅(1−μ)+λ⋅μ=0 即μ=λ1+λ=1−11+λ,μ是关于λ的单调递增函数,当λ∈[13,23]时,μ∈[14,25], 所以BNBP ∈[14,25].【答案】(1)当a =0时,f(x)=lnx x,故f ′(x)=1x⋅x−lnx x 2=1−lnx x 2,令f ′(x)>0,得0<x <e ; 故f(x)的单调递增区间为(0, e) (2)方法1:f ′(x)=x+ax−lnx (x+a)2=1+a x−lnx (x+a)2令g(x)=1+ax −lnx 则g ′(x)=−ax −1x =−x+a x <0由g(e)=ae >0,g(e a+1)=1+ae a+1−(1+a)=a ⋅(1e a+1−1)<0 故存在x 0∈(e,e a+1),g(x 0)=0故当x ∈(0, x 0)时,g(x)>0;当x ∈(x 0, +∞)时,g(x)<0故f(x 0)=1e 2故{1+ax 0−lnx 0=0lnx 0x 0+a =1e 2,解得{x 0=e 2a =e 2故a的值为e2.(2)方法2:f(x)的最大值为1e2的充要条件为:对任意的x∈(0, +∞),lnxx+a ≤1e2且存在x0∈(0, +∞),使得lnx0x0+a=1e2,等价于对任意的x∈(0, +∞),a≥e2lnx−x且存在x0∈(0, +∞),使得a≥e2lnx0−x0,等价于g(x)=e2lnx−x的最大值为a.∵g′(x)=e2x−1,令g′(x)=0,得x=e2.x,g′(x),g(x)的变化如下:故g(x)的最大值为g(e2)=e2lne2−e2=e2,即a=e2.【考点】利用导数研究函数的单调性利用导数研究函数的最值【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)法一:求出函数的导数,令g(x)=1+ax−lnx,求出存在x0∈(e,e a+1),使得g(x0)=0,得到关于a,x0的方程组,解出即可;法二:分离参数a,问题等价于对任意的x∈(0, +∞),a≥e2lnx−x且存在x0∈(0, +∞),使得a≥e2lnx0−x0,等价于g(x)=e2lnx−x的最大值为a,求出g(x)的最大值,从而求出a的范围即可.【解答】(1)当a=0时,f(x)=lnxx,故f′(x)=1x⋅x−lnxx2=1−lnxx2,令f′(x)>0,得0<x<e;故f(x)的单调递增区间为(0, e)(2)方法1:f′(x)=x+ax−lnx(x+a)2=1+ax−lnx(x+a)2令g(x)=1+ax−lnx则g′(x)=−ax2−1x=−x+ax2<0由g(e)=ae >0,g(e a+1)=1+ae−(1+a)=a⋅(1e−1)<0故存在x0∈(e,e a+1),g(x0)=0故当x∈(0, x0)时,g(x)>0;当x∈(x0, +∞)时,g(x)<0故f(x 0)=1e 2故{1+ax 0−lnx 0=0lnx 0x 0+a=1e2,解得{x 0=e 2a =e 2 故a 的值为e 2.(2)方法2:f(x)的最大值为1e 2的充要条件为: 对任意的x ∈(0, +∞),lnx x+a≤1e且存在x 0∈(0, +∞),使得lnx 0x 0+a=1e 2, 等价于对任意的x ∈(0, +∞),a ≥e 2lnx −x 且存在 x 0∈(0, +∞),使得a ≥e 2lnx 0−x 0,等价于g(x)=e 2lnx −x 的最大值为a . ∵ g ′(x)=e 2x−1,令g ′(x)=0,得x =e 2. x ,g′(x),g(x)的变化如下:故g(x)的最大值为g(e 2)=e 2lne 2−e 2=e 2,即a =e 2.【答案】(Ⅰ)由题意{ 4a 2+1b 2=1a 2−b 2=c 2e =c a =√32 ,解得:a =2√2,b =√2,c =√6 故椭圆C 的标准方程为x 28+y 22=1;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,则P 点或Q 点的坐标为(2, −1), 直线l 的方程为y +1=12(x −2),即y =12x −2.联立方程{x 28+y 22=1y =12x −2 ,得x 2−4x +4=0, 此时,直线l 与椭圆C 相切,不合题意. 故直线TP 和TQ 的斜率存在. 设P(x 1, y 1),Q(x 2, y 2),则直线TP:y −1=y 1−1x 1−2(x −2),直线TQ:y −1=y 2−1x 2−2(x −2)故|OM|=2−x 1−2y1−1,|ON|=2−x 2−2y 2−1 由直线OT:y =12x ,设直线PQ:y =12x +t(t ≠0) 联立方程,{x 28+y 22=1y =12x +t ⇒x 2+2tx +2t 2−4=0 当△>0时,x 1+x 2=−2t ,x 1∗x 2=2t 2−4, |OM|+|ON|=4−(x 1−2y 1−1+x 2−2y 2−1)=4−(x 1−212x 1+t−1+x 2−212x 2+t−1)=4−x 1x 2+(t−2)(x 1+x 2)−4(t−1)14x 1x 2+12(t−1)(x 1+x 2)+(t−1)2=4−2t 2−4+(t−2)(−2t)−4(t−1)14(2t 2−4)+12(t−1)∗(−2t)+(t−1)2=4.【考点】 椭圆的定义 【解析】(Ⅰ)根据题意,由椭圆的几何性质分析可得{ 4a 2+1b 2=1a 2−b 2=c 2e =c a =√32 ,解可得a 、b 的值,将a 、b的值代入椭圆方程,即可得答案;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,联立直线与椭圆的方程分析可得直线l 与椭圆C 相切,不合题意,则直线TP 和TQ 的斜率存在,进而设P(x 1, y 1),Q(x 2, y 2),由此表示直线TP 或TQ 的方程,联立直线与椭圆的方程,由根与系数的关系表示|OM|+|ON|的值,即可得答案. 【解答】(Ⅰ)由题意{4a 2+1b 2=1a 2−b 2=c 2e =c a =√32,解得:a =2√2,b =√2,c =√6 故椭圆C 的标准方程为x 28+y 22=1;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,则P 点或Q 点的坐标为(2, −1), 直线l 的方程为y +1=12(x −2),即y =12x −2. 联立方程{x 28+y 22=1y =12x −2 ,得x 2−4x +4=0, 此时,直线l 与椭圆C 相切,不合题意.故直线TP 和TQ 的斜率存在. 设P(x 1, y 1),Q(x 2, y 2),则直线TP:y −1=y 1−1x 1−2(x −2),直线TQ:y −1=y 2−1x 2−2(x −2)故|OM|=2−x 1−2y1−1,|ON|=2−x 2−2y 2−1 由直线OT:y =12x ,设直线PQ:y =12x +t(t ≠0) 联立方程,{x 28+y 22=1y =12x +t⇒x 2+2tx +2t 2−4=0 当△>0时,x 1+x 2=−2t ,x 1∗x 2=2t 2−4, |OM|+|ON|=4−(x 1−2y 1−1+x 2−2y 2−1)=4−(x 1−212x 1+t−1+x 2−212x 2+t−1)=4−x 1x 2+(t−2)(x 1+x 2)−4(t−1)14x 1x 2+12(t−1)(x 1+x 2)+(t−1)2=4−2t 2−4+(t−2)(−2t)−4(t−1)14(2t 2−4)+12(t−1)∗(−2t)+(t−1)2=4.【答案】 (本题满分1(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.证明:(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,①若i =i ′,则a i,j =max{a i,1, a i,2, ..., a i,n }=max{a i ′,1, a i ′,2, ..., a i ′,n }=a i ′,j ′;②若j =j ′,则a i,j =min{a 1,j , a 2,j , ..., a n,j }=min{a 1,j′, a 2,j ′, ..., a n,j ′}=a i ′,j ′; ③若i ≠i ′,j ≠j ′,则一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ; 矛盾.即若数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)解法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19. 定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19) 由题意,得:①数表B 是由1,2,3,…,361组成的19行19列的数表 ②数表B 的第j 行的元素,即为数表A 的第j 列的元素 ③数表B 的第i 列的元素,即为数表A 的第i 行的元素④若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值 则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362,即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19)由题意得:①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表B 中,b j,i 是第i 列中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值特别地,对由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19 ①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值即对任意的A ∈Ω19,其“N −值”为a i,j (其中1≤i ≤19,1≤j ≤19), 则C ∈Ω19,且其“N −值”为c j,i =362−b j,i =362−a i,j .记C =T(A),则T(C)=A ,即数表A 与数表C =T(A)的“N −值”之和为362, 故可按照上述方式对Ω19中的数表两两配对,使得每对数表的“N −值”之和为362, 故X 的数学期望E(X)=181.解法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .则n 362−k =192×C 361−k 18×C k−118×[(182)!brack =n k ,则E(X)=∑∗k=19343nk k ∑k=19343nk =∑∗k=19343n362−k k∑k=19343nk =∑∗k=19343nk (362−k)∑k=19343nk ,故2E(X)=∑∗k=19343nk k∑k=19343nk +∑∗k=19343nk (362−k)∑k=19343nk =362,E(X)=181. 【考点】离散型随机变量的期望与方差【解析】(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,若i =i ′,则a i,j =a i ′,j ′;若j =j ′,则a i,j =a i ′,j ′;若i ≠i ′,j ≠j ′,一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j ′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ;矛盾.由此能证明数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19.定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19),则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362,即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19),则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值,由此能求出X 的数学期望E(X). 法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .由此能求出E(X).【解答】(本题满分1(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.证明:(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,①若i =i ′,则a i,j =max{a i,1, a i,2, ..., a i,n }=max{a i ′,1, a i ′,2, ..., a i ′,n }=a i ′,j ′;②若j =j ′,则a i,j =min{a 1,j , a 2,j , ..., a n,j }=min{a 1,j′, a 2,j ′, ..., a n,j ′}=a i ′,j ′;③若i ≠i ′,j ≠j ′,则一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j ′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ; 矛盾.即若数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)解法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19. 定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19)由题意,得:①数表B 是由1,2,3,…,361组成的19行19列的数表②数表B 的第j 行的元素,即为数表A 的第j 列的元素③数表B 的第i 列的元素,即为数表A 的第i 行的元素④若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362, 即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19)由题意得:①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表B 中,b j,i 是第i 列中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值特别地,对由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19 ①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值即对任意的A ∈Ω19,其“N −值”为a i,j (其中1≤i ≤19,1≤j ≤19), 则C ∈Ω19,且其“N −值”为c j,i =362−b j,i =362−a i,j .记C =T(A),则T(C)=A ,即数表A 与数表C =T(A)的“N −值”之和为362, 故可按照上述方式对Ω19中的数表两两配对,使得每对数表的“N −值”之和为362, 故X 的数学期望E(X)=181.解法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .则n 362−k =192×C 361−k 18×C k−118×[(182)!brack =n k ,则E(X)=∑∗k=19343nk k ∑k=19343nk =∑∗k=19343n362−k k∑k=19343nk =∑∗k=19343nk (362−k)∑k=19343nk ,故2E(X)=∑∗k=19343nk k∑k=19343nk +∑∗k=19343nk (362−k)∑k=19343nk =362,E(X)=181.。

北京市海淀区2018届高三第二次模拟考试理科数学试题

北京市海淀区2018届高三第二次模拟考试理科数学试题
点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合 或不属于集合 的元素的集合.
2.C
【解析】分析:先求出复数z,再代入选项进行判断,即得正确答案。
详解:由题得复数z=1-i ,
所以z+1=2-i ,不是实数,所以选项A错误,也不是纯虚数,所以选项B错误.的最大值.
19.已知函数
(Ⅰ)求 的极值;
(Ⅱ)当 时,设 ,求证:曲线 存在两条斜率为 且不重合的切线.
20.如果数列 满足“对任意正整数 ,都存在正整数 ,使得 ”,则称数列 具有“性质 ”.已知数列 是无穷项的等差数列,公差为
(Ⅰ)若 ,公差 ,判断数列 是否具有“性质 ”,并说明理由;
所以z+i=1,是实数,所以选项C正确,z+i是纯虚数错误,所以选项D错误.
故选C.
点睛:本题主要考查复数的几何意义和复数的分类等基础知识,属于基础题.
3.D
【解析】分析:取 ,利用排除法,逐一排除即可的结果.
详解:因为 时, , , ,
所以可排除选项 ,故选D.
点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.
14.如图,棱长为2的正方体 中, 是棱 的中点,点 在侧面 内,若 垂直于 ,则 的面积的最小值为__________.
三、解答题

2018年高三最新 北京市海淀区高三年级第二学期期中练

2018年高三最新 北京市海淀区高三年级第二学期期中练

北京市海淀区高三年级第二学期期中练习数学试题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第II 卷2至4页,共150分。

考试时长120分钟。

考生务必将答案写在答题卡及答题纸上,在试卷上作答无效。

考试结束,将本试卷、答题卡、答题纸一并交回。

第I 卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中。

选出符合题目要求的一项.1.在复平面内,复数z=(1-i)(i 是虚数单位)对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.在同一坐标系中画出函数log ,,x a y x y a y x a ===+的图像,可能正确的是3.在四边形ABCD 中,,AB DC =且0AC AD =,则四边形ABCD 是A .矩形B .菱形C .直角梯形D .等腰梯形4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,。

若以圆点O 为极点,x 轴半轴为极轴建立坐标系,则点P 的极坐标可以是A .(1,)3π-B .4(2,)3π C .(2,)3π-D .4(2,)3π-5.一个体积为 棱柱的左视图的面积为A .B .8C .D .126.已知等差数列1,,a b ,等比数列3,2,5a b ++,则该 等差数列的公差为 A .3或3- B .3或1- C .3 D .3-7.已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .1C .2D .128.已知数列1212:,,...,(...,3)n n A a a a a a a a n ≤<<<≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,现给出以下四个命题: ①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则10a =;④若数列123,,a a a 123(0)a a a ≤<<具有性质P ,则1322a a a += 其中真命题有A .4个B .3个C .2个D .1个第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分 9.某校为了解高三同学寒假期间学习情况,抽查了 100名学生,统计他们每天平均学习时间,绘成 频率分布直方图(如图)。

高考最新-海淀数学(理) 精品

高考最新-海淀数学(理) 精品

北京市海淀区2018年高三年级第二学期期中练习数学(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是 334R V π=p ,那么n 次独立重复试验中恰好发生k次的概率k n k k n n p P C k P --=)1()( 其中R 表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.复数iz +=11所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列函数中周期为2的是( )A .1cos 22-=x y πB .x x y ππ2cos 2sin +=C .)32tan(ππ+=x yD .x x y ππcos sin =3.若nx x )213(32-的展开式中含有常数项(非零),则正整数n 的可能值是 ( )A .3B .4C .5D .64.若双曲线)0(18222≠=-m my x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离 心率为( )A .2B .22C .4D .24 5.若命题B A x p ∈:,则┐p :( )A .B x A x ∉∈且 B .B x A x ∉∉或C .B x A x ∉∉且D .B A x ∈6.已知直线m ,n ,平面βα,,给出下列命题:①若βαβα⊥⊥⊥则,,m m ;②若βαβα//,//,//则m m ;③若βαβα⊥⊥则,//,m m ; ④若异面直线m ,n 互相垂直,则存在过m 的平面与n 垂直.其中正确的命题是 ( ) A .②③ B .①③ C .②④ D .③④ 7.若函数c bx x x f ++=2)(的图象的顶点在第四象限,则其导函数)(x f '的图象可能是( )A .B .C .D .8.已知直线b a by ax ,(01=-+不全为0)与圆5022=+y x 有公共点,且公共点的横、纵 坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. 9.已知随机变量ξ的分布列为那么ξ的数学期望=ξE ,设ηξη则,12+=的数学期望=ηE . 10.若棱长为3的正方体的各个顶点都在同一个球面上,则该球的表面积为. 11.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤+≤.0,2,y y x x y 那么目标函数y x z 3+=的最大值是 .12.在锐角三角形ABC 中,已知ABC ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .13.等差数列}{n a 的前3项的和为21,前6项的和为24,则其首项为 ,若数列}{n a的前n 项的和为S n ,则=∞→2limn S nn .14.函数)(x f 是奇函数,且在[-1,1]上单调递增,又]1,1[)(,1)1(--=-在则x f f 上的最大值为 ,又若12)(2+-≤at t x f 对所有的]1,1[]1,1[-∈-∈a x 及都成立, 则t 的取值范围是 .三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知α为锐角,且.0cos 2cos sin sin 22=--αααα (1)求αtan 的值; (2)求)3sin(πα-的值.16.(本小题满分13分)已知函数c bx x g ax x x f +=+=23)(2)(与的图象都过点P (2,0),且在点P 处 有相同的切线.(1)求实数a ,b ,c 的值;(2)设函数)(),()()(x F x g x f x F 求+=的单调区间,并指出函数)(x F 在该区间上的单调性.17.(本小题满分14分)已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且1,60AA AD DAB =︒=∠,F 为 棱BB 1的中点,M 为线段AC 1的中点. (1)求证:直线MF//平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小.18.(本小题满分14分)已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||+== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程.19.(本小题满分13分)某种电子玩具按下按钮后,会出现红球或绿球. 已知按钮第一次按下后,出现红球与绿球的概率都是.21从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球 的概率分别为31、32;若前次出现绿球,则下一次出现红球,绿球的概率分别为53、.52记第)1,(≥∈n N n n 次按下按钮后出现红的概率为P n . (1)求P 2的值;(2)当n n P P n N n 表示求用时1,2,-≥∈的表达式; (3)求P n 关于n 的表达式.20.(本小题满分13分)集合A 是由适合以下性质的函数)(x f 构成的;对于任意的υυ≠-∈u u 且),1,1(,,都有.||3|)()(|υυ-≤-u f u f(1)分别判断函数)1(log )(1)(2221+=+=x x f x x f 及是否在集合A 中?并说明理由;(2)设函数A x f bx ax x f ∈+=)(,)(2且,试求|2a +b |的取值范围;(3)在(2)的条件下,若6)2(=f ,且对于满足(2)的每个实数a ,存在最小的实数m ,使得当6|)(|,]2,[≤∈x f m x 时恒成立,试求用a 表示m 的表达式.数学参考答案二、填空题(每小题5分,共30分)注:一个小题若有两空,则前空答案正确得3分,后空答案正确得2分 9.;32,61-10.π9; 11.4 12.60°,2; 13.9,—1 14.1,).,2[}0{]2,(+∞⋃⋃--∞ 三、解答题15.本小题满分13分 解:(Ⅰ)已知α为锐角,所以.0cos ≠α又由,02tan tan 0cos 2cos sin sin222=--=--αααααα得……2分解得.1tan ,2tan -==αα或……4分 由α为锐角,得2tan =α.…………6分(Ⅱ),55cos ,2tan =∴=ααα为锐角且 ………8分 552s i n =α………10分 .101555cos 23sin 21)3sin(-=-=-ααπα故……13分16.本小题满分13分解:(Ⅰ)因为函数c bx x g ax x x f +=+=23)(2)(与的图象都过点P (2,0),所以,8.04,02223-=⎩⎨⎧=+=+⨯α得c b a …………2分.04=+c b .86)(,82)(23-='-=x x f x x x f 故……3分又当.16,4,1622,2)(.16)(,2-===⨯='='=c b b bx x g x f x 得所以又时……7分 所以,.164)(2-=x x g(Ⅱ)因为.886)(,16842)(223-+='--+=x x x F x x x x F 所以……8分由;322,0)(>-<>'x x x F 或得……10分 由.322,0)(<<-<'x x F 得……12分 所以,当;)(,),32(,)(,)2,(也是增函数时当是增函数时x F x x F x +∞∈--∞∈当.)(,)32,2(是减函数时x F x -∈……13分17.本小题满分14分解法一:(Ⅰ)延长C 1F 交CB 的延长线于点N ,连结AN.因为F 是BB 1的中点,所以F 为C 1N 的中点,B 为CN 的中点.…………2分 又M 是线段AC 1的中点,故MF//AN.……3分.,ABCD AN ABCD MF 平面平面又⊂⊄.//ABCD MF 平面∴…………5分(Ⅱ)证明:连BD ,由直四棱柱ABCD —A 1B 1C 1D 1可知:⊥A A 1平面ABCD,又∵BD ⊂平面ABCD ,.1BD A A ⊥∴四边形ABCD 为菱形,.BD AC ⊥∴ ,,,1111A ACC A A AC A A A AC 平面又⊂=⋂ .11A ACC BD 平面⊥∴………………7分在四边形DANB 中,DA ∥BN 且DA=BN ,所以四边形DANB 为平行四边形. 故NA ∥BD ,⊥∴NA 平面ACC 1A 1. 1AFC NA 平面又⊂平面平面⊥∴1AFC ACC 1A 1. ………………9分(Ⅲ)由(Ⅱ)知BD ⊥ACC 1A 1,又AC 1⊂ ACC 1A 1,∴BD ⊥AC 1,∵BD//NA ,∴AC 1⊥NA. 又由BD ⊥AC 可知NA ⊥AC ,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角.…………12分在Rt △C 1AC 中,31tan 11==CA C C AC C ,……………………13分 故∠C 1AC=30°.∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.………14分 (说明:求对一个角即给满分)解法二:设AC ⋂BD=O ,因为M 、O 分别为C 1A 、CA 的中点,所以,MO//C 1C ,又由直四棱柱知C 1C ⊥平面ABCD ,所以,MO ⊥平面ABCD.在棱形ABCD 中,BD ⊥AC ,所以,OB 、OC 、OM 两两垂直.故可以O 为原点, OB 、OC 、OM 所在直线分别为x 轴、y 轴、z 轴如图建立空间直角坐标系,若设|OB|=1,则B (1,0,0),B 1(1,0,2),A (0,3-,0), C (0,3,0),C 1(0,3,2).………………3分(I )由F 、M 分别为B 1B 、C 1A 的中点可知: F (1,0,1),M (0,0,1),所以=(1,0,0)=. 又与不共线,所以,MF ∥OB.⊄MF 平面ABCD ,OB ⊂平面ABCD , MF ∴∥平面ABCD.…………6分(III )=(1,0,0)为平面ACC 1A 1的法向量.设),,(z y x 为平面AFC 1的一个法向量,则,⊥⊥由)0,0,1(),1,3,1(==MF AF , 得:⎩⎨⎧==++.0,03x z y x令,1=y 得3-=z ,此时,)3,1,0(-.………………………………9分由于0)0,0,1()3,1,0(=⋅-=⋅,所以,平面AFC 1⊥平面ACC 1A 1.…………10分 (III ))1,0,0(=OM 为平面ABCD 的法向量,设平面AFC 1与平面ABCD 所成二面角的大小为θ,则.23|213|||||,||,cos ||cos |=⨯-=><=n OM OM θ………………13分 所以θ=30°或150°.即平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.…………14分 (说明:求对一个角即给满分) 18.本小题满分14分解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x +=),)0,4(= 则),6(00y x +=+,故)2,32()(2100y x AC AB AD +=+=…………2分 又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x ………4分 代入2)2(||2020=++=y x 得122=+y x ,即为所求点D 的轨迹方程.………7分(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②.因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a , 设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆故所求的椭圆方程为.14822=+y x ……………………14分 19.本小题满分13分解:(I )若按钮第一次、第二次按下后均出现红球,则其概率为613121=⨯;…………2分若按钮第一次、第二次按下后依次出现绿球、红球,则其概率为.1035321=⨯………4分故所求概率为.157103612=+=P ……………………5分 (II )第1-n 次按下按钮后出现红球的概率为2,(1≥∈-n N n P n ),则出现绿球的概率为11--n P .………………………………6分若第1-n 次、第n 次按下按钮后均出现红球,则其概率为311⨯-n P ;……7分 若第1-n 次、第n 次按下按钮后依次出现绿球、红球,则其概率为.53)1(1⨯--n P …8分所以,53154)1(5331111+-=-+=---n n n n P P P P (其中2,≥∈n N n ).…………10分 (III )由(II )得)199(1541991--=--n n P P (其中2,≥∈n N n ).………………11分 故}199{-n P 构成首项为381,公比为154-的等比数列,所以).1,(199)154(3811≥∈+-=-n N n P n n ……………………13分 20.本小题满分13分解:(I ).)(;)(21A x f A x f ∉∈……………………………………1分 证明:任取)1,1(,-∈υu ,且υ≠u ,则,|11||||||11||||11||)()(|2222222211υυυυυυυ+++-⨯+=+++-=+-+=-u u u u u u f u f因为.||||||,1||,1||22υυυυ+≤++<+<u u u u所以,1|11|||||22<+++-⨯+υυυu u u ,所以,||3|||)()(|11υυυ-<-<-u u f u f ,也即:A x f ∈)(1;………………3分对于)1(log )(22+=x x f ,只需取,21,2115--+-=+-=υu 则,1||<-υu而||34|)()(|11υυ->=-u f u f ,所以,.)(2A x f ∉………………5分(II )因为bx ax x f +=2)(属于集合A ,所以,任取υυ≠-∈u u 且),1,1(,,则|))((||)()(|||3b a au u f u f u ++-=-≥-υυυυ也即:.3||≤++b a au υ ①………………………………6分 设υ+=u t ,则上式化为:.3||≤+b at ② 因为),1,1(,-∈υu 所以.22<<-t①式对任意的),1,1(,-∈υu 恒成立,即②式对)2,2(-∈t 恒成立,可以证明.3|||2|≤+b a 所以,3|2|≤+b a ,即].3,3[2-∈+b a ………………8分 (III )由6)2(=f 可知:32=+b a .又由(II )可知:323≤-≤-b a ,所以,.230≤≤a i )当0=a 时,x x f 3)(=为单调递增函数,令.2.26)(-=-=-=m x x f 所以得…………………………9分ii )当0>a 时,,4)23()223()23()(222aa a a x a x a ax x f ---+=-+= 此时,0231223≤-=--aa a ,且当R x ∈时,)(x f 的最小值为.4)23()223(2aa a a f --=--若64)23(2-<--a a ,即232269≤≤-a 时,m 为方程6)(=x f 的较小根. 所以,.3am -= ……………………………………11分 若64)23(2-<--a a ,即22690-<<a 时,由于)(x f 在),223[+∞--a a 上单调递增,所以,m 为方程6)(-=x f 的较大根,所以,aa a a m 29364322+-+-=.综上可知:,3293643222⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-+--=a a a a a m 232269226900≤≤--<<=a a a .………………13分说明:其它正确解法按相应步骤给分。

最新-北京市海淀区2018届高三第二学期期中练习理科数

最新-北京市海淀区2018届高三第二学期期中练习理科数

海淀区高三年级2018-2018 学年度第二学期期中练习数学试卷(理科) 2018.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项. 1.函数()f x =A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1] 2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 ABC.3 D.35.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1 BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t == ,若a b,则t = _______.10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b-=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得 |()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα= ;(Ⅱ)若,,62AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2018 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x-1,1()ln x g x x -=(Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。

最新-北京市海淀区2018届高三第二学期期中练习理科数

最新-北京市海淀区2018届高三第二学期期中练习理科数

海淀区高三年级2018-2018 学年度第二学期期中练习数学试卷(理科) 2018.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项. 1.函数()f x =A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 ABC.3 D.35.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1 BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b-=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得 |()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα= ;(Ⅱ)若,,62AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2018 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x-1,1()ln x g x x -=(Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。

2018年4月高三理科数学期中练习一模参考答案及评分标

2018年4月高三理科数学期中练习一模参考答案及评分标

海淀区高三年级第二学期期中练习数学(理)参考答案与评分标准 2018.4一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

二、填空题共6小题,每小题5分,共30分。

三、解答题共6小题,共80分。

解答题应写出解答步骤。

15. (本题满分13分)(Ⅰ)2()cos2cos 16666f ππππ=+-21212=⨯-⎝⎭2= ···················································································· 3分(Ⅱ)()2cos2f x x x +2sin(2)6x π=+因为函数sin y x =的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ),令222262k x k πππππ-≤+≤+(k ∈Z ),解得 36k x k ππππ-≤≤+(k ∈Z ),故()f x 的单调递增区间为[,]36k k ππππ-+(k ∈Z ) ···························· 13分16. (本题满分13分)(Ⅰ)设事件A :从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播. 用i A 表示事件抽取的月份为第i 月,则123456789101112{,,,,,,,,,,,}A A A A A A A A A A A A Ω=共12个基本事件, 26891011{,,,,,}A A A A A A A =共6个基本事件,所以,61()122P A ==. ···································································· 4分 (Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X 所有可能的取值为0,1,2.242662(0)155C P X C ====,1124268(1)15C C P X C ===,22261(2)15C P X C ===随机变量X 的分布列为(Ⅲ)M 的最大值为58%,最小值为54%. ················································· 13分17.(本题满分14分) (Ⅰ)方法1:OPCA设AC 的中点为O ,连接BO ,PO . 由题意PA PBPC ===1PO =,1AO BO CO ===因为 在PAC ∆中,PA PC =,O 为AC 的中点 所以 PO AC ⊥,因为 在POB ∆中,1PO =,1OB =,PB =所以 PO OB ⊥因为 AC OB O = ,,AC OB ⊂平面ABC 所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分所以 平面PAC ⊥平面ABC 方法2:OPCA设AC 的中点为O ,连接BO ,PO .因为 在PAC ∆中,PA PC =,O 为AC 的中点 所以 PO AC ⊥,因为 PA PB PC ==,PO PO PO ==,AO BO CO ==所以 POA ∆≌POB ∆≌POC ∆ 所以 90POA POB POC ∠=∠=∠=︒ 所以 PO OB ⊥因为 AC OB O = ,,AC OB ⊂平面ABC 所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分 所以 平面PAC ⊥平面ABC 方法3:OPCA Q设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以 PO AC ⊥设AB 的中点Q , 连接PQ ,OQ 及OB . 因为 在OAB ∆中,OA OB =,Q 为AB 的中点 所以 OQ AB ⊥.因为 在PAB ∆中,PA PB =,Q 为AB 的中点 所以 PQ AB ⊥.因为 P Q O Q Q = ,,PQ OQ ⊂平面OPQ所以 AB ⊥平面OPQ因为 OP ⊂平面OPQ 所以 O P A B⊥ 因为 AB AC A = ,,AB AC ⊂平面ABC 所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分 所以 平面PAC ⊥平面ABC(Ⅱ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则(0,0,0)O ,(1,0,0)C ,(0,1,0)B ,(1,0,0)A -,(0,0,1)P由OB ⊥平面APC ,故平面APC 的法向量为(0,1,0)OB =由(1,1,0)BC =- ,(1,0,1)PC =-设平面PBC 的法向量为(,,)n x y z =,则由00BC PC ⎧⋅=⎨⋅=⎩ n n 得:0x y x z -=⎧⎨-=⎩ 令1x =,得1y =,1z =,即(1,1,1)n =cos ,||||n OB n OB n OB ⋅<>===⋅ 由二面角A PC B --是锐二面角, 所以二面角A PC B --的余弦值为3··········································· 9分 (Ⅲ)设BN BP μ=,01μ≤≤,则(1,1,0)(1,0,1)(1,1,)BM BC CM BC CP λλλλ=+=+=-+-=--(1,1,0)(0,1,1)(1,1,)AN AB BN AB BP μμμμ=+=+=+-=-令0BM AN ⋅=得(1)1(1)(1)0λμλμ-⋅+-⋅-+⋅=即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12[,]33λ∈时,12[,]45μ∈, 所以12[,]45BN BP ∈ ········································································ 14分18. (本题满分13分)(Ⅰ)当0a =时,ln ()xf x x=故221ln 1ln '()x xx x f x x x ⋅--==令'()0f x >,得0x <<e故()f x 的单调递增区间为(0,)e ························································ 4分(Ⅱ)方法1:22ln 1ln '()()()x a ax xx x f x x a x a +-+-==++ 令()1ln ag x x x=+- 则221'()0a x a g x x x x +=--=-< 由()0a g =>e e ,1111()1(1)(1)0a a a a g a a e e+++=+-+=⋅-<e 故存在10(,)a x +∈e e ,0()0g x =故当0(0,)x x ∈时,()0g x >;当0(,)x x ∈+∞时,()0g x <故02()f x =e 故000201ln 0ln 1ax x x x a ⎧+-=⎪⎪⎨⎪=⎪+⎩e ,解得202x a ⎧=⎪⎨=⎪⎩e e ··················································· 13分故a 的值为2e . (Ⅱ)方法2:()f x 的最大值为21e 的充要条件为对任意的(0,)x ∈+∞,2ln 1x x a ≤+e 且存在0(0,)x ∈+∞,使得020ln 1x x a =+e,等价于对任意的(0,)x ∈+∞,2ln a x x ≥-e 且存在 0(0,)x ∈+∞,使得200ln a x x ≥-e ,等价于2()ln g x x x =-e 的最大值为a .2'()1g x x=-e ,令'()0g x =,得2x =e .故的最大值为,即a =e . ··························· 13分(19)(本小题14分)(Ⅰ)由题意22222411a b a b c c e a ⎧+=⎪⎪⎪-=⎨⎪⎪==⎪⎩,解得:a =b =c =故椭圆C 的标准方程为22182x y += ····························································· 5分(Ⅱ)假设直线TP 或TQ 的斜率不存在,则P 点或Q 点的坐标为(2,-1),直线l 的方程为11(2)2y x +=-,即122y x =-.联立方程22182122x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩,得2440x x -+=, 此时,直线l 与椭圆C 相切,不合题意.故直线TP 和TQ 的斜率存在.方法1:设11(,)P x y ,22(,)Q x y ,则 直线111:1(2)2y TP y x x --=--, 直线221:1(2)2y TQ y x x --=-- 故112||21x OM y -=--,222||21x ON y -=--由直线1:2OT y x =,设直线1:2PQ y x t =+(0t ≠) 联立方程,2222182224012x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩ 当0∆>时,122x x t +=-,21224x x t ⋅=-||||OM ON +1212224()11x x y y --=-+-- 1212224()111122x x x t x t --=-++-+- 121221212(2)()4(1)411(1)()(1)42x x t x x t x x t x x t +-+--=-+-++- 22224(2)(2)4(1)411(24)(1)(2)(1)42t t t t t t t t -+----=--+-⋅-+- 4= ········································································ 14分 方法2:设11(,)P x y ,22(,)Q x y ,直线TP 和TQ 的斜率分别为1k 和2k由1:2OT y x =,设直线1:2PQ y x t =+(0t ≠) 联立方程,2222182224012x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩当0∆>时,122x x t +=-,21224x x t ⋅=-12k k +12121122y y x x --=+-- 121211112222x t x t x x +-+-=+--121212(2)()4(1)(2)(2)x x t x x t x x +-+--=--21224(2)(2)4(1)(2)(2)t t t t x x -+----=--0=故直线TP 和直线TQ 的斜率和为零 故TMN TNM ∠=∠ 故TM TN =故T 在线段MN 的中垂线上,即MN 的中点横坐标为2故||||4OM ON += ······································································ 14分20. (本题满分13分)(Ⅰ)A 是“N -数表 ”,其“N -值”为3,B 不是“N -数表”. ························ 3分 (Ⅱ)假设,i j a 和','i j a 均是数表A 的“N -值”, ① 若'i i =,则,,1,2,',1',2',','max{,,...,}max{,,...,}i j i i i n i i i n i j a a a a a a a a ===;② 若'j j =,则,1,2,,1,'2,','','min{,,...,}min{,,...,}i j j j n j j j n j i j a a a a a a a a === ; ③ 若'i i ≠,'j j ≠,则一方面,,1,2,,'1,'2,','','max{,,...,}min{,,...,}i j i i i n i j j j n j i j a a a a a a a a a =>>=,另一方面','',1',2',',1,2,,,max{,,...,}min{,,...,}i j i i i n i j j j n j i j a a a a a a a a a =>>=;矛盾. 即若数表A 是“N -数表”,则其“N -值”是唯一的. ······················· 8分 (Ⅲ)方法1:对任意的由1,2,3,…,361组成的19行19列的数表,1919()i j A a ⨯=.定义数表,1919()j i B b ⨯=如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即,,j i i j b a =(其中119i ≤≤,119j ≤≤)显然有:① 数表B 是由1,2,3,…,361组成的19行19列的数表 ② 数表B 的第j 行的元素,即为数表A 的第j 列的元素 ③ 数表B 的第i 列的元素,即为数表A 的第i 行的元素④ 若数表A 中,,i j a 是第i 行中的最大值,也是第j 列中的最小值 则数表B 中,,j i b 是第i 列中的最大值,也是第j 行中的最小值. 定义数表,1919()j i C c ⨯=如下,其与数表B 对应位置的元素的和为362,即,,362j i j i c b =-(其中119i ≤≤,119j ≤≤)显然有① 数表C 是由1,2,3,…,361组成的19行19列的数表 ② 若数表B 中,,j i b 是第i 列中的最大值,也是第j 列中的最小值 则数表C 中,,j i c 是第i 列中的最小值,也是第j 列中的最大值 特别地,对由1,2,3,…,361组成的19行19列的数表,1919()i j A a ⨯= ① 数表C 是由1,2,3,…,361组成的19行19列的数表 ② 若数表A 中,,i j a 是第i 行中的最大值,也是第j 列中的最小值 则数表C 中,,j i c 是第i 列中的最小值,也是第j 列中的最大值即对任意的19A ∈Ω,其“N -值”为,i j a (其中119i ≤≤,119j ≤≤),则19C ∈Ω,且其“N -值”为,,,362362j i j i i j c b a =-=-.记()C T A =,则()T C A =,即数表A 与数表()C T A =的“N -值”之和为362, 故可按照上述方式对19Ω中的数表两两配对,使得每对数表的 “N -值”之和为362, 故X 的数学期望()181E X =. ··························································· 13分 方法2:X 所有可能的取值为19,20,21,...,341,342,343.记19Ω中使得X k =的数表A 的个数记作k n ,19,20,21,...,341,342,343k =,则218182136119[(18)!]k k k n C C --=⨯⨯⨯.则218182362361119[(18)!]k k k k n C C n ---=⨯⨯⨯=,则343343343362191919343343343191919(362)()kkkk k k kkkk k k nk nk nk E X nnn-======⋅⋅⋅-===∑∑∑∑∑∑,故34334319193433431919(362)2()362k kk kk kk kn k n kE Xn n====⋅⋅-=+=∑∑∑∑,()181E X=. ··············· 13分。

【高三数学试题精选】2018年高三理科数学一模试题(海淀区)

【高三数学试题精选】2018年高三理科数学一模试题(海淀区)

2018年高三理科数学一模试题(海淀区)
5 c 2018年海淀区高三年级第二学期期中练习
数学(理科)
20184
本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上
作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题本大题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项
1集合,则
A B c D
2在极坐标系中, 曲线围成的图形面积为
A B CD
3某程序的框图如图所示,执行该程序,若输入的值为5,则输出的值为
A B c D
4不等式组表示面积为1的直角三角形区域,则的值为
A B c D
5 若向量满足,则的值为
A B c D
6 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有
A12种 B 15种 c 17种 D19种
7 抛物线的焦点为,点为该抛物线上的动点,又点,则的最
小值是
A B c D。

2018北京市海淀区高三数学一模理科试题及答案

2018北京市海淀区高三数学一模理科试题及答案

资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除只供学习与交流.资料收集于网络,如有侵权请联系网站删除海淀区高三年级第二学期期中练习()参考答案与评分标准理数学2018.48540 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

小题,每小题分,共一、选择题共121432 分。

注:第题第一空均为、分,第二空均为680 分。

解答题应写出解答步骤。

三、解答题共小题,共15. 13 分)(本题满分????2?2coscos1??f()23sin(Ⅰ)66662??133?23???2??1???? 222???2·3 ····················································································分f(x)?3sin2x?cos2x(Ⅱ)?)?2sin(2x?6??????x?siny?,2k2?k k?Z,因为函数)的单调递增区间为(??22????????k?2?2x2k??k?Z,令)(226??????kk?x?k?Z,()解得63??)x(f??]?,k[k?Z?k 1 3····························分()故的单调递增区间为6313 16.分)(本题满分只供学习与交流.请联系网站删除资料收集于网络,如有侵权A112有利于病毒繁殖和传月平均相对湿度:从上表个月,该月甲地空气个月中,随机取出(Ⅰ)设事件A i.月,则用表示事件抽取的月份为第播i},A,A,AAA,A,A,A,,A??{A,A,A,12 个基本事件,共1970468151213},A,A,AA?{A,A,A 6 个基本事件,共196218016?(A)?P. ·4···································································分所以,2126空气月平均相对湿度都有利于病毒繁殖和传播的月(Ⅱ)在第一季度和第二季度的个月中,甲、乙两地02X126. ,所有可能的取值为月,故份只有,月和2121CCCC18262424???0)?2)?P(XP(X?1)??P(X??,,22215CC15C155666X的分布列为随机变量21X182P1515558%54%M.3 ·······1··········································,最小值为分的最大值为(Ⅲ)17.14 分)(本题满分1 :(Ⅰ)方法PA OCB ACOBOPO. 由题意的中点为,设,连接AO?BO?CO?11PO?,,2PC?PA?PB??PACPA?PCOAC的中点因为中,在为,PO?AC,所以?POBOB?11PO?,中,在因为,2PB?OB?PO所以AC,OB?OACOB?ABC平面因为,PO?ABC平面所以PO?PAC4·································································平面分因为PACABC?平面平面所以只供学习与交流.请联系网站删除资料收集于网络,如有侵权2:方法PA OCBPOBOACO . ,,连接设的中点为ACO?PACPA?PC的中点中,,因为为在AC?PO,所以CO?PCAO?BOPA?PB?POPO?PO?,,因为POC??POB?POA≌≌所以??90POB??POC?POA??所以OBPO?所以?,OBACOOB?ACABC平面,因为ABCPO?平面所以PAC?PO·4 ································································平面分因为ABCPAC?平面所以平面3:方法PAOQCB ACOPO?PACPA?PC,的中点为,因为在,连接中,设PO?AC所以QPQOQ OB AB. 及,的中点,连接设QOB?OABOA?AB的中点因为为在,中,OQ?AB. 所以Q AB?PB?PABPA的中点中,在,为因为PQ?AB. 所以PQOQ?QPQ,OQ?OPQ平面因为,OPQ?AB 平面所以OPQ?OP平面因为只供学习与交流.请联系网站删除资料收集于网络,如有侵权BAOP?所以?ACAB,A?ABAC ABC平面因为,ABC?PO平面所以PACPO?··4 ·······························································平面分因为ABCPAC?平面平面所以ACABCOB?PO?,如图建立空间直角坐标系,则,平面(Ⅱ)由zP(0,0,1)?1,0,0)P(1,0,0)B(0,1,0)A(O(0,0,0)C,,,,APCOB?APC(0,1,0)OB?的法向量为平面由,故平面1)(1,0,?(1,?1,0)PC?BC?,由PBC),z?(x,yn,则设平面的法向量为0y?x???0n?BC??得:由?0PC?n?0?x?z??1?y1x?(1,1,1)?n1z?,即,得,令n?OB13??cos?n,OB??3||OBn|?|13?A?PC?B是锐二面角,由二面角3B?A?PC············································9 分所以二面角的余弦值为3?10???BPBN?,则(Ⅲ)设,????)1,,?(?1,0,1)?(1?BM?BC?CM?BC?CP?(1,?1,0)?????),??1,1)(1,1BN?AB?BP?(1,1,0)??(0,?ANAB?令0AN?BM????????)?01)?(11)??(??(1得?1???1?μλ的单调递增函数,是关于即,???11?只供学习与交流.资料收集于网络,如有侵权请联系网站删除1212??]?][,?[,,时,当53342BN1][,?·4 ······1·································································分所以5BP418. 13分)(本题满分xln?)(xf0a?时,(Ⅰ)当x1xln?x?xln1?故x??f'(x)0?f'(x)e?0?x,得22xx令)ex)(0,f(·4·······················································分故的单调递增区间为ax?ax??ln?lnx1 1 xx:(Ⅱ)方法?)?f'(x22)?a)a(x(x?ax??x)1?lng(令xax?a10??????g'(x)则22xxx1aa1a?0??(?1)?g(e)?1?(1?a?0g(e)?a)?,由0?(x)g0x)?g()x,??xx?(0,x)?(时,时,故当;当00 1?1?aa eee1?a0?(x)g)e?(e,x,故存在00)(0,x),??(xxx000?)xf'(0?)(xf↗↘极大值1?)f(x故02ea?0??lnx1??02?xe?x??0013···················································??,解得故分xln12ea????0??2e a?x?0a2.e的值为故只供学习与交流.资料收集于网络,如有侵权请联系网站删除1lnx1x?(0,??f(x))x?(0,??)?2,的最大值为,(Ⅱ)方法且存在:的充要条件为对任意的0x?(0,??))??x?(0,2xlnxa?e?的意价于对任得使,,且存在使得,等22e x?a e lnx10?20x?a e02lnx??e xa,00a2xlnx?)g(x?e.的最大值为等价于2e g'(x)??1,x g'(x)?02e?x.,得令)g(x↗↘极大值g(x)222222ee?elne?g(e)?ea?. ·13 ··························,即的最大值为故分1914 分)((本小题)41???1?22ba??222a?b?c?,(Ⅰ)由题意?c3???e?a2?6?c,,解得:2b??22a22yx C??1·5 ···················································分的标准方程为故椭圆821(x?2)y?1?l1)PTPTQQ(2,的方程为-则点或,点的坐标为直线(Ⅱ)假设直线或,的斜率不存在,21xy??2. 即222?yx??1??822?04?4?x?x,联立方程,得1?x?y?2??2 lC. 相切,不合题意此时,直线与椭圆只供学习与交流.资料收集于网络,如有侵权请联系网站删除TPTQ. 的斜率存在故直线和1 :方法),y)Q(xP(x,y,则设,22111y?12)x:y?1??(TP,直线2x?11y?22)y?1?x?(TQ:直线2x?22??x2x21?2ON?|OM|2?|?|,故1?1yy?2111t?y?xxPQ:?OT:y0?t)由直线,设直线(2222?yx1????28220??tx?2t?x4?2?联立方程,1?t?xy??2?2t2??x?x4?2tx?x?0??,当时,21212x?x?221)(??4?|OM||?|ON1y?y?1212?xx?221)(??4?111?x?t1tx??21221)??4(t2)(x?x)(xx?t?2112?4?1121)t?x)?(?xx?(t?1)(x22112421)t?t)?4(4?(t?2)(?22t???411221)(t?(?2t)?1)(2t?4)?(t??24?4.4 (1)分只供学习与交流.资料收集于网络,如有侵权请联系网站删除2 :方法TQ)yx,,y)Q(P(xkk TP和和,直线设的斜率分别为,21122111xPQ:y?x?tOT:y?t?0)由,设直线(2222?yx??1??8222?4?0tx?2?xt?2?联立方程,1?x??ty??22x?x??2tx?x?2t?40??,当时,2121y?1y?121??k?k21x?2x?22111x?t?1x?t?1 2122??x?2x?221xx?(t?2)(x?x)?4(t?1)2211?(x?2)(x?2)212?4?(t?2)(?2t)?2t4(t?1)?(x?2)(x?2)21?0TQ TP的斜率和为零故直线和直线?TMN??TNM故TM?TN故MNMNT2的中点横坐标为在线段故的中垂线上,即|OM|?|ON|?4·14·····································································故分20. 13 分)(本题满分N?N?N?BA”.3 ”“·“···········3 ”“·············数表数表,值分,其(Ⅰ)不是是为aa N?A”“,的值和均是数表(Ⅱ)假设ji,'',ji a?max{a,a,...,a}?max{a,a,...,a}?a'?ii;若,则①'i,j',1',ii,1',2i,2jni,ii',ni a?min{a,a,...,a}?min{a,a,...,a}?a'jj?;若②,则'jj1,''i2,ji,j'1,j',2,jnn,j,j j?j''i?i,则一方面,③若a?max{a,a,...,a}?a?min{a,a,...,a}?a,'ji',''ji,ni,1i,2i,ji,'j1,'2,j,nj另一方面只供学习与交流.资料收集于网络,如有侵权请联系网站删除a?max{a,a,...,a}?a?min{a,a,...,a}?a;j1,i',2jii',n',1j2,ji',j',ij',n,i N?N?A”““. ·····8 . ”··················是唯一的值,则其即若数表数表分是矛盾1 :(Ⅲ)方法A?(a)1931936121.…列的数表行,组成的对任意的由,,,1919i,j?jj)bB?(iiBA列,即如下,将数表的第的第定义数表列的元素写在数表行,第行,第19j,i19?b?a1?j?1919i?1?),(其中jij,i,显然有:31919361B21…列的数表,组成的,①,数表行是由,jjAB列的元素数表行的元素,即为数表②的第的第iiAB 行的元素③列的元素,即为数表数表的第的第j a i A列中的最小值④是第若数表行中的最大值,也是第中,ji,j b i B. 行中的最小值则数表是第中,列中的最大值,也是第ij,C?(c)B362 ,即定义数表如下,其与数表对应位置的元素的和为19?,i19j c?362?b1?j?19191?i?),(其中ii,jj,显然有31919361C21…列的数表数表,是由,①,行,组成的j b i B列中的最小值中,若数表列中的最大值,也是第②是第ij,j c i C列中的最大值中,列中的最小值,也是第是第则数表ij,A?(a)1919336121…列的数表行,,特别地,对由,,组成的1919i,j?31919361C21…列的数表,组成的,,①,数表行是由j a i A列中的最小值②是第若数表行中的最大值,也是第中,ji,j c i C 列中的最大值是第则数表列中的最小值,也是第中,ij,a1?j?19C??A??N??N191?i?””““值,其),则,且其即对任意的值,为(其中ji,1919c?362?b?362?a.为jj,i,iij,C?T(A)T(C)?AC?T(A)N?362A“”,的,即数表值记,则与数表之和为?N?362“”,值中的数表两两配对,使得每对数表的之和为故可按照上述方式对19E(X)?181X. ·3 ·1 ·························································的数学期望故分2 :方法19,20,21,...,341,342,343X.所有可能的取值为只供学习与交流.资料收集于网络,如有侵权请联系网站删除k?19,20,21,...,341,342,343n?kX?A,则中使得的数表,记的个数记作k19181822?C?C?[(18n?19)!].k?k361k?1218182n?19?C?C?[(18)!]?n,则则k?361?k?k1k362343343343????(362?nnk?kn)?k k362k?k19??k?19k19k?)??(EX,???(362?nk)n?k kk19?k19k?E(X)?181362)(2EX???. ·············343343343???nnn kkk19k?19?k?19k343343···13 分故,343343??nn kk19k19?k?只供学习与交流.。

(全优试卷)北京市海淀区高三年级下学期期中练习(一模)理科数学Word版含答案

(全优试卷)北京市海淀区高三年级下学期期中练习(一模)理科数学Word版含答案

海淀区高三年级第二学期期中练习数 学(文科) 2018.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)(A)(2)已知向量a =(l ,2),b =0),则a +2b =(A)2) (B)4) (C)(1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6(C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,(A)1 (B)2(C)(5(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面(A)(7(8列说法错误的是(B )ON 取值范围为 (C)ON 的取值范围为(D)第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

(9) .( 10)已知点(2,0)的离心率为 .( 11)直线为参数)的公共点个数为 .( 12)(13)一次数学会议中,有五位教师来自A,B,C三所学校,其中A学校有2位,B学校有2位,C学校有1位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则共有种不同的站队方法.( 14);.三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

( 15)(本小题13分)(I)( 16)(本小题13分)流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利J=-些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于40%时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度(I)从上表12个月中,随机取出1个月,求该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率;(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空设乙地上表12值和最小值.(只需写出结论)( 17)(本小题14分)1)的平面展开图(如图2)中,的正方形,△ABE和△BCF(I)(18)(本小题13分)(I).( 19)(本小题14分)(I)( 20)(本小题13分),n na ⎪⎪⎭个数恰好出现一次)(I)海淀区高三年级第二学期期中练习数学(理)参考答案与评分标准2018.4一、选择题共8小题,每小题5分,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法3:
设 的中点为 ,连接 ,因为在 中, ,
所以
设 的中点 ,连接 , 及 .
因为在 中, , 为 的中点
所以 .
因为在 中, , 为 的中点
所以 .
因为 , 平面
所以 平面
因为 平面
所以
因为 , 平面
所以 平面
因为 平面 4分
所以平面 平面
(Ⅱ)由 平面 , ,如图建立空间直角坐标系,则
, , , ,
②若数表 中, 是第 列中的最大值,也是第 列中的最小值
则数表 中, 是第 列中的最小值,也是第 列中的最大值
特别地,对由 , , ,…, 组成的 行 列的数表
①数ห้องสมุดไป่ตู้ 是由 , , ,…, 组成的 行 列的数表
②若数表 中, 是第 行中的最大值,也是第 列中的最小值
则数表 中, 是第 列中的最小值,也是第 列中的最大值
①若 ,则 ;
②若 ,则 ;
③若 , ,则一方面

另一方面

矛盾.即若数表 是“ 数表”,则其“ 值”是唯一的.8分
(Ⅲ)方法1:
对任意的由 , , ,…, 组成的 行 列的数表 .
定义数表 如下,将数表 的第 行,第 列的元素写在数表 的第 行,第 列,即
(其中 , )
显然有:
①数表 是由 , , ,…, 组成的 行 列的数表
共12个基本事件,
共6个基本事件,
所以, .4分
(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故 所有可能的取值为 , , .
, ,
随机变量 的分布列为
0
1
2
(Ⅲ) 的最大值为 ,最小值为 .13分
17.(本题满分14分)
(Ⅰ)方法1:
②数表 的第 行的元素,即为数表 的第 列的元素
③数表 的第 列的元素,即为数表 的第 行的元素
④若数表 中, 是第 行中的最大值,也是第 列中的最小值
则数表 中, 是第 列中的最大值,也是第 行中的最小值.
定义数表 如下,其与数表 对应位置的元素的和为362,即
(其中 , )
显然有
①数表 是由 , , ,…, 组成的 行 列的数表
海淀区高三年级第二学期期中练习
数学(理)参考答案与评分标准2018.4
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
题号
1
2
3
4
5
6
7
8
答案
C
A
D
B
A
D
D
B
二、填空题共6小题,每小题5分,共30分。
题号
9
10
11
12
13
14
答案
2
48
注:第12、14题第一空均为3分,第二空均为2分。
设 的中点为 ,连接 , .由题意
, ,
因为在 中, , 为 的中点
所以 ,
因为在 中, , ,
所以
因为 , 平面
所以 平面
因为 平面 4分
所以平面 平面
方法2:
设 的中点为 ,连接 , .
因为在 中, , 为 的中点
所以 ,
因为 , ,
所以 ≌ ≌
所以
所以
因为 , 平面
所以 平面
因为 平面 4分
所以平面 平面
三、解答题共6小题,共80分。解答题应写出解答步骤。
15.(本题满分13分)
(Ⅰ)
3分
(Ⅱ)
因为函数 的单调递增区间为 ( ),
令 ( ),
解得 ( ),
故 的单调递增区间为 ( )13分
16.(本题满分13分)
(Ⅰ)设事件 :从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用 表示事件抽取的月份为第 月,则
即对任意的 ,其“ 值”为 (其中 , ),则 ,且其“ 值”为 .
记 ,则 ,即数表 与数表 的“ 值”之和为 ,
故可按照上述方式对 中的数表两两配对,使得每对数表的“ 值”之和为 ,
故 的数学期望 .13分
方法2:
所有可能的取值为 .
记 中使得 的数表 的个数记作 , ,则
.
则 ,则

故 , .13分
解得: , ,
故椭圆 的标准方程为 5分
(Ⅱ)假设直线TP或TQ的斜率不存在,则P点或Q点的坐标为(2,-1),直线l的方程为 ,即 .
联立方程 ,得 ,
此时,直线l与椭圆C相切,不合题意.
故直线TP和TQ的斜率存在.
方法1:
设 , ,则
直线 ,
直线
故 ,
由直线 ,设直线 ( )
联立方程,
当 时, ,
由 平面 ,故平面 的法向量为
由 ,
设平面 的法向量为 ,则
由 得:
令 ,得 , ,即
由二面角 是锐二面角,
所以二面角 的余弦值为 9分
(Ⅲ)设 , ,则


即 ,μ是关于λ的单调递增函数,
当 时, ,
所以 14分
18.(本题满分13分)
(Ⅰ)当 时,

令 ,得
故 的单调递增区间为 4分
(Ⅱ)方法1:


由 ,
故存在 ,
故当 时, ;当 时,

极大值


故 ,解得 13分
故 的值为 .
(Ⅱ)方法2: 的最大值为 的充要条件为对任意的 , 且存在 ,使得 ,等价于对任意的 , 且存在 ,使得 ,
等价于 的最大值为 .

令 ,得 .

极大值

故 的最大值为 ,即 .13分
(19)(本小题14分)
(Ⅰ)由题意 ,
14分
方法2:
设 , ,直线 和 的斜率分别为 和
由 ,设直线 ( )
联立方程,
当 时, ,
故直线 和直线 的斜率和为零


故 在线段 的中垂线上,即 的中点横坐标为2
故 14分
20.(本题满分13分)
(Ⅰ) 是“ 数表”,其“ 值”为3, 不是“ 数表”.3分
(Ⅱ)假设 和 均是数表 的“ 值”,
相关文档
最新文档