最新二次函数复习专题讲义
二次函数(基础思想)讲义
二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。
2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。
⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。
基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。
5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。
7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。
二次函数复习讲义(完美)
二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB =6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y 轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x>-3时,y随x的增大而减小.因为抛物线的开口向下,顶点A是抛物线的最高点,所以函数有最大值,当x=-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x轴没有交点.①求c的取值范围;②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;。
5.二次函数专题复习讲义
二次函数①一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数②当b=c=0时,二次函数y=ax 2是最简单的二次函数.③二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为: 一般式:y=ax 2+bx+c , 顶点式:y=a (x -h )2+k , 交点式:y=a (x -x 1)(x -x 2)y=ax 2+bx+c 其顶点坐标为(-2b a ,244ac b a-).y=a (x -h )2+k 而言其顶点坐标为(h ,k ).④二次函数y=ax 2+bx+c 的对称轴为x=-2b a ,最值为244ac b a-,(k>0时为最小值,k<0时为最大值).由此可知y=ax 2的顶点在坐标原点上,且y 轴为对称轴即x=0.⑤抛物线的平移主要是移动顶点的位置:将y=ax 2沿着y 轴(上“+”,下“-”)平移k (k>0)个单位得到函数y=ax 2±k 将y=ax 2沿着x 轴(右“-”,左“+”)平移h (h>0)个单位得到y (x ±h )2.⑥在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.⑦抛物线y=ax 2+bx+c 的图像位置及性质与a ,b ,c 的作用: a 的正负决定了开口方向:当a>0时,开口向上,在对称轴x=-2b a 的左侧,y 随x 的增大而减小;在对称轴x=-2ba的右侧,y 随x 的增大而增大,此时y 有最小值为y=244ac b a -,顶点(-2b a ,244ac b a-)为最低点;当a<0时,开口向下,在对称轴x=-2b a 的左侧,y 随x 的增大而增大,在对称轴x=-2ba的右侧,y 随x 的增大而增大,此时y 有最大值为y=244ac b a -,顶点(-,244ac b a-)为最高点.a │的大小决定了开口的宽窄,│a │越大,开口越小,图像两边越靠近y 轴,│a │越小,开口越大,•图像两边越靠近x 轴a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba<0,即对称轴在y 轴左侧,垂直于x 轴负半轴,当a ,b 异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,垂直于x 轴正半轴; c 的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y •轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.经典例题:例1、要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?例2、(2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值例3、(2011四川重庆,7,4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A.a>0 B.b<0 C.c<0 D.a+b+c>0例4、2011台湾全区,28)图(十二)为坐标平面上二次函数c+=2的图形,且此图形通过(-1 , 1)、y+bxax(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y的最大值小于0 B.当x=0时,y的值大于1 CC.当x=1时,y的值大于1 D.当x=3时,y的值小于例5、(2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
二次函数复习讲义
二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2025数学大一轮复习讲义人教版 第二章 二次函数与幂函数
域为
A.(2,10) C.[2,10]
B.[1,2)
√D.[1,10)
当x∈(-2,2)时,-3<x-1<1, 则f(x)=x2-2x+2=(x-1)2+1∈[1,10).
自主诊断
4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数 a的取值范围是__(-__∞__,__4_]__.
依题意,设函数f(x)=a(x-2)2+h(a≠0), 由二次函数f(x)的图象过点(0,3),得f(0)=3, 所以4a+h=3,即h=3-4a, 所以f(x)=a(x-2)2+3-4a, 令f(x)=0,即a(x-2)2+3-4a=0, 所以ax2-4ax+3=0, 设方程的两根为x1,x2,
知识梳理
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点 (1,1) 和 (0,0) ,且在(0,+∞)上单调 递增; ③当α<0时,幂函数的图象都过点 (1,1) ,且在(0,+∞)上单调递减; ④当α为奇数时,y=xα为 奇函数 ;当α为偶数时,y=xα为 偶函数 .
限内的交点坐标为(1,1),
当
0<x<1
时,x
m n
>x,则mn <1;
m
又y=x n 的图象关于y轴对称,
m
∴y=x n 为偶函数,
m
m
∴ (x) n =n -xm=x n =n xm,
又m,n互质,∴m为偶数n为奇数.
题型二 二次函数的解析式
例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8, 试确定该二次函数的解析式.
依题意 3b≤12,所以 b≤16,
二次函数复习讲义(完美)
二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB=6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F 三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)() 2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x >-3时,y 随x 的增大而减小.因为抛物线的开口向下,顶点A 是抛物线的最高点,所以函数有最大值,当x =-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解 方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x 轴没有交点.①求c 的取值范围; ②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【答案与解析】(1)∵每件商品利润为(x-30)元.∴销售m件商品利润为m(x-30)元,又∵m=162-3x,∴每天利润y=(162-3x)(x-30).即y=-3x2+252x-4860.(2)∵y=-3x2+252x-4860=-3(x-42)2+432,又∵a=-3<0,∴当x=42时,=432(元).。
二次函数专题复习讲义
二次函数专题复习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是-2b a,244ac b a -.例1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. 1求m 、c 的值;2求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3、二次函数的平移当k>0k<0时,抛物线y=ax 2+ka ≠0的图象可由抛物线y=ax 2向上或向下平移|k|个单位得到;当h>0h<0时,抛物线y=ax-h 2a ≠0的图象可由抛物线y=ax 2向右或向左平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是=3x+22=3x-22=3x 2+2 =3x 2-2 专题练习11.对于抛物线y=13-x 2+103x 163-,下列说法正确的是A.开口向下,顶点坐标为5,3B.开口向上,顶点坐标为5,3C.开口向下,顶点坐标为-5,3D.开口向上,顶点坐标为-5,3 2.若抛物线y=x 2-2x+c 与y 轴的交点为0,-3,则下列说法不正确的是 A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为-1,0,3,03.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从上图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.填序号专题复习二:二次函数表达式的确定图1图2本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1、如图1,用一段长为30米的篱笆围成一个一边靠墙墙的长度不限的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y 单位:米2与x 单位:米的函数关系式为 不要求写出自变量x 的取值范围.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+ca ≠0;2.若已知抛物线的顶点坐标或最大小值及抛物线上另一个点的坐标,则可用顶点式:y=ax-h 2+ka ≠0; 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=ax-x 1x-x 2a ≠0. 例2 已知抛物线的图象以A-1,4为顶点,且过点B2,-5,求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A-2,0、B1,0,且经过点C2,8.1求该抛物线的解析式; 2求该抛物线的顶点坐标.专项练习21.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为 =2ax-1 =2a1-x =a1-x 2=a1-x22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C,且tan∠ACO=12,CO=BO,AB=3,则这条抛物线的函数解析式是 . 3.对称轴平行于y 轴的抛物线与y 轴交于点0,-2,且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,.1求此二次函数的关系式; 2求此二次函数图象的顶点坐标;3填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题. 考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.ABC D图1菜园墙图2例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0a ≠0,a,b,c,为常数的一个解x 的范围是A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________. 考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是专项练习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:1写出方程20ax bx c ++=的两个根.2写出不等式20ax bx c ++>的解集.3写出y 随x 的增大而减小的自变量x 的取值范围.4若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图2专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:1理解问题;2分析问题中的变量和常量;3用函数表达式表示出它们之间的关系;4利用二次函数的有关性质进行求解;5检验结果的合理性,对问题加以拓展等.例1某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.1假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;不要求写自变量的取值范围2商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元3每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少专题训练41.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S单位:平方米随矩形一边长x单位:米的变化而变化.1求S与x之间的函数关系式,并写出自变量x的取值范围;2当x是多少时,矩形场地面积S最大最大面积是多少2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高3.一座拱桥的轮廓是抛物线型如图1所示,拱高6m,跨度20m,相邻两支柱间的距离均为5m.1将抛物线放在所给的直角坐标系中如图2所示,求抛物线的解析式;2求支柱EF的长度;3拱桥下地平面是双向行车道正中间是一条宽2m的隔离带,其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车汽车间的间隔忽略不计请说明你的理由.x图1。
二次函数复习专题讲义全
二次函数复习专题讲义全1.二次函数概念:指形如y=ax^2(a≠0)的函数。
2.简单二次函数:其图像为过原点的一条抛物线,对称轴为y轴,最值依赖于a的正负性。
3.增减性:当a>0时,在对称轴左边(x0),y随x的增大而增大;当a0),y随x的增大而减小。
4.一般二次函数概念:指形如y=ax^2+bx+c(a≠0)的函数,注意还有顶点式、交点式以及它们之间的转换。
5.二次函数图像:是一条抛物线,开口方向依赖于a的正负性,顶点坐标为(-b/2a。
c-b^2/4a)。
6.对称轴:为x=-b/2a。
7.最值:当a>0时,y的最小值为c-b^2/4a;当a<0时,y 的最大值为c-b^2/4a。
8.增减性:当a>0时,在对称轴左边(x-b/2a),y随x的增大而增大;当a-b/2a),y随x的增大而减小。
9.待定系数法可以用来求解析式,二次函数可以应用于建立函数模型解决实际问题。
10.二次函数的三种解析式:一般式、顶点式和交点式。
其中,顶点式和交点式可以相互转换。
注意,a≠0,而b和c可以为零。
1.系数a决定抛物线的开口方向和大小。
当a>0时,开口向上;当a<0时,开口向下。
绝对值|a|决定开口大小,|a|越大,开口越小;|a|越小,开口越大。
2.系数c决定抛物线与y轴的交点位置。
当c>0时,交点在y轴正半轴;当c=0时,交点在抛物线顶点上方;当c<0时,交点在y轴负半轴。
3.系数a和b共同决定抛物线对称轴的位置。
当- b/2a>0时,对称轴在y轴右侧;当- b/2a<0时,对称轴在y轴左侧;当- b/2a=0时,对称轴为y轴。
4.特别地,当a=1时,顶点坐标为(-b/2.a+b+c),当x=-1时,有y=a-b+c。
5.抛物线y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系:若抛物线与x轴有两个交点,则方程有两个不相等的实根;若抛物线与x轴有一个交点,则方程有两个相等的实根;若抛物线与x轴无交点,则方程无实根。
(完整版)非常好的讲义二次函数图像与性质
二次函数图像及性质一、二次函数的定义一般地,形如2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数. 注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是全体实数.二、二次函数的图象 1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向 当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然.a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大. 温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.(2)b 和a 共同决定抛物线对称轴的位置(抛物线的对称轴:2bx a=-)当0b =时,抛物线的对称轴为y 轴; 当a 、b 同号时,对称轴在y 轴的左侧; 当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3.点的坐标设法⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()22x x ,的对称点为()212122x x y y --,. 4.二次函数的图象信息⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴判断2ba-的大小.⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性. ⑸ 根据抛物线所经过的已知坐标的点,可得到关于a b c ,,的等式.⑹ 根据抛物线的顶点,判断244ac b a-的大小.三、二次函数的图象及性质1. 二次函数2y ax =0a ≠()的性质:⑴抛物线2y ax =的顶点是坐标原点(0,0),对称轴是0x =(y 轴). ⑵函数2y ax =的图像与a 的符号关系.①当0a >时⇔抛物线开口向上⇔顶点为其最低点; ②当0a <时⇔抛物线开口向下⇔顶点为其最高点;2.二次函数2(0)y ax c a =+≠的性质3. 二次函数2y ax bx c =++0a ≠()或2()y a x h k =-+(0a ≠)的性质⑴开口方向:00a a >⇔⎧⎨<⇔⎩向上向下⑵对称轴:2bx a=-(或x h =)⑶顶点坐标:24(,)24b ac b a a--(或(,)h k )⑷最值:0a >时有最小值244ac b a -(或k )(如图1); 0a <时有最大值244ac b a-(或k )(如图2); ⑸单调性(单调性的概念无需掌握):二次函数2y ax bx c =++(0a ≠)的变化情况(增减性)①如图1所示,当0a >时,对称轴左侧2b x a <-,y 随着x 的增大而减小,在对称轴的右侧2bx a<- ,y 随x 的增大而增大;②如图2所示,当0a >时,对称轴左侧2b x a <-, y 随着x 的增大而增大,在对称轴的右侧2bx a<-,y 随x 的增大而减小;⑹与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=) 成立的x 值.一、二次函数的概念【例1】 已知函数2y ax bx c =++⑴当a ,b ,c 是怎样的数时,它是一次函数? ⑵当a ,b ,c 是怎样的数时,它是正比例函数? ⑶当a ,b ,c 是怎样的数时,它是二次函数?二、二次函数的图象及性质1、画出函数2288y x x =-+-的图象,并指出图象顶点坐标、对称轴及函数最值.2、画出函数23(2)1y x =+-的图象,并指出图象顶点坐标、对称轴及函数最值.【例2】 已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【例3】 已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限.【例4】 函数1y ax =+与()210y ax bx a =++≠的图象可能是( )1xyO 1BxyO1C xy O1xy O【例5】 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可.能.是( )例题精讲yxOyxODC B A xyO xyO xyO O yx【例6】 在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )BCD【例7】 下左图所示为二次函数2y ax bx c =++的图象,则一次函数by ax c=-的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【例8】 已知,如图所示为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【例9】 已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:A.抛物线开口向上 B. 抛物线与y 轴交于负半轴 C. 当4x =时,0y > D. 方程20ax bx c ++=的正根在3与4之间【例10】 若二次函数222y ax bx a =++-(a ,b 为常数)的图象如右图,则a 的值为( )A. 2-B.C. 1D.【例11】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断24a b c a b c a b c b ac ++-+-、、、、、的符号.【例12】 二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【例13】 已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<③0abc >;④420a b c-+<;⑤1c a ->其中所有正确结论的序号是( A .①② B .①③④C .①②③⑤D .①②③④⑤【例14】 已知二次函数2()0y ax bx c a =++≠的图象如图所示,则下列结论0ac >①; ②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大; ④0a b c -+<, 其中正确的个数( )A .4个B .3个C .2个D .1个【例15】 已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③0a b c -+<;④0a c +>,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个【例16】 如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有( )A.1个B.2个C.3个D.4个【例17】 二次函数23(2)my m x -=-在其图象对称轴的左侧,y 随着x 的增大而减小,则m 的值为_____.【例18】 二次函数252(1)m m y m x --=-在其图象对称轴的右侧,y 随着x 的增大而减小,则m 的值为_____. 【例19】 已知点()15A x ,,()25B x ,是函数223y x x =-+上两点,则当12x x x =+时,函数值y = .【例20】 已知22934y x x =++,当x 取不同的值1x ,2x 时函数值相等,则当12x x x =+时的值( )A.与1x =的函数相等.B.与0x =的函数相等.C.与14x =的函数相等.D.与94x =-的函数相等.【例21】 若二次函数22m y mx -=有最大值,则m =________. 【例22】 若二次函数21my mx +=有最小值,则m =________.【例23】 二次函数2(1)2y x =--的图象上最低点的坐标是 ( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)【例24】 抛物线()()213y x x =+-的顶点坐标是( ).A .()1,3--B .()1,3C .()1,8-D .()1,8-【例25】 已知1a <-,点(1a -,1)y ,(a ,2)y ,(1a +,3)y 都在函数2y x =的图象上,则( )A. 123y y y <<B. 132y y y <<C. 321y y y <<D. 213y y y <<【例26】 已知二次函数2y ax bx c =++的图象过点()()()123257A B C ,,,,,.若点()12M y -,,()21N y -,,()38K y ,也在二次函数2y ax bx c =++的图象上,则下列结论正确的是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<【例27】 若1134A y ⎛⎫- ⎪⎝⎭,,254B y ⎛⎫- ⎪⎝⎭,,314C y ⎛⎫ ⎪⎝⎭,为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<【例28】 已知二次函数()2110y a x b =-++和()2250y b x a =--+分别有最大值、最小值,则这两个二次函数的图像有 个交点. 【例29】 已知抛物线()20y ax bx c a =++>的对称轴为直线1x =,且经过点()()1212y y -,,,,试比较1y 和2y 的大小:1y ____2y (填“>”,“<”或“=”)【例30】 已知二次函数()()2223y m x mx m =-+--的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是_________________. 【例31】 设抛物线为21y x kx k =-+-,根据下列各条件,求k 的值.⑴ 抛物线的顶点在x 轴上; ⑵ 抛物线的顶点在y 轴上; ⑶ 抛物线经过点(1,2)--; ⑷ 抛物线经过原点;⑸ 当1x =-时,y 有最小值; ⑹ y 的最小值为1-.【例32】 已知点()5A a b +-,与点()13B a b -,关于原点对称,求函数2y x ax b =++的顶点坐标.【例33】 设23y x ax a =++-, 当x 取任意实数时,y 恒为非负数,求a 的取值范围;【例34】 设直线y kx b =+与抛物线2y ax =的两个交点的横坐标分别是12,x x ,且直线与x 轴的交点的横坐标为3x ,求证:123111x x x +=.。
二次函数专题讲义(含解析)
二次函数 专题讲义考点回顾一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
【全文】中考数学专题《二次函数》复习课件(共54张PPT)
例2:某工厂大门是一抛物线水泥建筑物,如图所示,大门底部 宽AB=4m,顶点C离地面高度为4.4m,现有一辆满载货物的汽 车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4米,请判 断这辆车能够顺利通过大门?(请用三种不同的方法解决)
y=ax²
y x
(-2,-4.4)
(2,-4.4)
y
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a 其中正确的结论的个数是( ) A 1个 B 2个 C 3个 D 4个 D
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
练习: 1、二次函数y=ax2+bx+c(a≠0)的图象如图
B 所示,则a、b、c的符号为( )
A、a<0,b>0,c>0 B、a<0,b>0,c<0 C、a<0,b<0,c>0 D、a<0,b<0,c<0
二次函数复习专题讲义
二次函數【知識清單】 ※一、網路框架※二、清單梳理1、一般の,形如2(0,,,)y a x b x c a a b c =++≠是常数の函數叫二次函數。
例如222212,26,4,5963y x y x y x x y x x =-=+=--=-+-等都是二次函數。
注意:係數a不能為零,,b c 可以為零。
2(0)0=00=0000000y ax a y a y a y a x y x x y x a x y x x y x ⎧=≠⎧⎪⎪⎪><⎨⎪><>⎧⎪⎨⎪<<>⎩⎩最小值最大值概念:形如的函数简单二次函数图像:是过(0,0)的一条抛物线对称轴:轴性质最值:当时,;当时,当时,在对称轴左边(即),随的增大而减小。
在对称轴右边(即),随的增大而增大。
增减性当时,在对称轴左边(即),随的增大而增大。
在对称轴右边(即),随的增大而减小。
二次函数2222(0)004242440=0=440y ax bx c a a a b ac b a a b x a ac b ac b a y a y a a a ⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩=++≠⎧><⎪⎪-⎪⎨⎪⎪=⎪⎩--><>最小值最大值概念:形如的函数,注意还有顶点式、交点式以及它们之间的转换。
开口方向:,开口向上;,开口向下。
图像:是一条抛物线顶点坐标:(-,)对称轴:-最值:当时,,当时,一般二次函数性质:当时,在对称轴左增减性:22022b b x y x x y x a a b b a x y x x y x a a ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎧⎪<>⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪<<>⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩边(即-),随的增大而减小。
在对称轴右边(即-),随的增大而增大。
当时,在对称轴左边(即-),随的增大而增大。
二次函数复习讲义(按教材顺序)
二次函数复习讲义(按教材顺序)课时1:二次函数的认识一、知识点:一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 二、基本知识练习函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 三、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1 2.下列函数中,是二次函数的是( ) A .y =x 2-1B .y =x -1C .y =8xD .y =8x 2课时2:y =ax 2的图象与性质一、知识点:抛物线y =ax 2的性质2.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_____对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越_______. 二、基本知识练习2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________.3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________三、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________, 当x =___________时,有最_________值是_________.2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.课时3:y =ax 2+k 的图象与性质一、知识点2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________;抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________.3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________. 二、基本知识练习2.将二次函数y =5x -3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________. 三、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13 x 2+3向______平移______个单位得到的. 3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为__________,与x 轴的交点坐标为_________.课时4:y =a(x-h)2的图象与性质一、知识点 1.2.对于二次函数的图象,只要|a |相等,则它们的形状_______,只是_______不同.二、基本知识练习12.抛物线y =4 (x -2)2与y 轴的交点坐标是_________,与x 轴的交点坐标为_______. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为_______________.把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为________________. 4.将抛物线y =-13 (x -1)x 2向右平移2个单位后,得到的抛物线解析式为___________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y =-2x 2都相同的二次函数解析式________________. 三、目标检测1.抛物线y =2 (x +3)2的开口__________;顶点坐标为__________;对称轴是_________;当x >-3时,y___________;当x =-3时,y 有_______值是_________.2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =_________,n =__________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.课时5:y =a(x -h)2+k 的图象与性质一、 知识点1.2二、基本知识练习 1.2.y =6x 2+3与y =6 (x -1)2+10_____________相同,而____________不同. 3.顶点坐标为(-2,3),开口方向和大小与抛物线y =12 x 2相同的解析式为( ) A .y =12 (x -2)2+3B .y =12 (x +2)2-3C .y =12 (x +2)2+3D .y =-12 (x +2)2+34.二次函数y =(x -1)2+2的最小值为__________________.5.将抛物线y =5(x -1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y =ax 2+k 的顶点在直线y =-2上,且x =1时,y =-3,求a 、k 的值. 7.若抛物线y =a (x -1)2+k 上有一点A (3,5),则点A 关于对称轴对称点A ’的坐标为________________. 三、目标检测1.2.抛物线y =-3 (x +4)2+1中,当x =_______时,y 有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)课时6:y=ax2+bx+c的图象与性质二、基本知识练习1.求二次函数y=x2+3x-4与y轴的交点坐标为________,与x轴的交点坐标_______.2.二次函数y=x2+3x-4的顶点坐标为_________,对称轴为___________.3.一元二次方程x2+3x-4=0的根的判别式△=______________.4.二次函数y=x2+bx过点(1,4),则b=________________.5.一元二次方程y=ax2+bx+c(a≠0),△>0时,一元二次方程有_______________,△=0时,一元二次方程有___________,△<0时,一元二次方程_______________.三、知识点应用例1.求二次函数y=ax2+bx+c与x轴交点(含y=0时,则在函数值y=0时,x的值是抛物线与x 轴交点的横坐标).例1 求y=x2-2x-3与x轴交点坐标,与y轴交点坐标例2.探讨:二次函数y=ax2+bx+c 中a、b、c以及△=b2-4ac对图象的影响.例3 如图,由图可得:a_______0b_______0c_______0△______0例4 已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.四、目标检测1.求抛物线y=2x2-7x-15与x轴交点坐标_______,与y轴的交点坐标为______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.4.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.5.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______06.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0课时7:二次函数y=ax2+bx+c解析式求法一、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.二、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?三、基本知识练习1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.四、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.2.如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?课时8:用函数观点看一元二次方程1.知识点1.已知二次函数y =-x 2+4x 的函数值为3,求自变量x 的值,可以看作解一元二次方程_________________.反之,解一元二次方程-x 2+4x =3又可以看作已知二次函数 _________________的函数值为3的自变量x 的值.一般地:已知二次函数y =ax 2+bx +c 的函数值为m ,求自变量x 的值,可以看作解一元二次方程ax 2+bx +c =m .反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数y =ax 2+bx +c 的值为m 的自变量x 的值.2.二次函数y =ax 2+bx +c 与x 轴的位置关系:一元二次方程ax 2+bx +c =0的根的判别式△=b 2-4ac . (1)当△=b 2-4ac >0时 抛物线y =ax 2+bx +c 与x 轴有两个交点; (2)当△=b 2-4ac =0时 抛物线y =ax 2+bx +c 与x 轴只有一个交点; (3)当△=b 2-4ac <0时 抛物线y =ax 2+bx +c 与x 轴没有公共点. 二、基本知识练习1.二次函数y =x 2-3x +2,当x =1时,y =________;当y =0时,x =_______. 2.二次函数y =x 2-4x +6,当x =________时,y =3. 3.如图, 一元二次方程ax 2+bx +c =0的解为________________HG FED C BA4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0三、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______0 2.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.四、目标检测1.根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;2.填空1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx +c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).课时9:实际问题与二次函数一、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.二、例题讲解例1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?例2.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?三、课堂练习1.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x (月份)与市场售价这种蔬菜每千克的种植成本y (元/千克)与上市时间x (月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P (元/千克)关于上市时间x (月份)的函数关系式;(2)若图中抛物线过A 、B 、C 三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)2.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.四、目标检测1.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x 元,求:(1)房间每天入住量y (间)关于x (元)的函数关系式;(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式,当每个房间的定价为多少元时,w 有最大值?最大值是多少?图①2.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1-3讲二次函数全章综合提高【知识清单】 ※一、网络框架※二、清单梳理概念:形如y=ax 2(a#0的函数简单二次函数图像:是过0,0)的一条抛物线对称轴:y 轴性质撮值:当a >£时,y 最小值=0;当a <0时,y 最大值=0护减性』当玄>0时,在对称轴左边(即<0),y ^x 的增大而减小。
在对称轴右边(即乂),录随的增大而增大。
曰— 当a<o 时,在对称轴左边(即<0)的增大而增大。
在对称轴右边(即〉o ),yw 的增大而减小。
概念:形如ywx 2处9(日=0的函数,注意还有顶点式、交点式以及它们之间的转换。
当a .(时,在对称轴左边(即x <-—),ys<的增大而减小。
在对称轴右边(即.-—),y 随的增大而增大。
增减性:2a 2a当a <0时,在对称轴左边(即<- —) 丫随的增大而增大。
在对称轴右边(即>-上),y 随x 的增大而减小。
' 2a2a待定系数法求解析式应用■与一元二次方程和不等式的关系 建立函数模型解决实际问题般的,形如y 二ax 2• bx • c (a = 0,a,b,c 是常数)的函数叫二次函数。
例如2 21 2 2y = -2x , y = 2x 6,y x -4x, y 二-5x ■ 9x-6 等都是二次函数。
注意:系数 a3不能为零,b,c 可以为零。
2、二次函数的三种解析式(表达式)二次函数一般二次函数2图像:是一条抛物线顶点坐标:(上,I 2a对称轴:x = BI.2a2 最值:当a>0时,y最小值=4a ^b,4a 开口方向:a>0,开口向上;a<0,开口向下。
. ................... b 4ac-b 2)4a当a^y"呼性质:①一般式:y = ax2 bx c(^--= 0,a,b,c是常数)②顶点式:y =a(x-h)2•k(a, h, k为常数,且a = 0),顶点坐标为(h,k)③交点式:y =a(x - xj(x-x2)(a = 0,其中x1, x2是抛物线与x轴的交点的横坐标)3、二次函数的图像位置与系数a,b,c之间的关系①a:决定抛物线的开口方向及开口的大小。
当 a . 0时,开口方向向上;当a :::0时,开口方向向下。
|a|决定开口大小,当|a|越大,则抛物线的开口越小;当|a|越小,则抛物线的开口越大。
反之,也成立。
②c:决定抛物线与y轴交点的位置。
当c 0时,抛物线与y轴交点在y轴正半轴(即x 轴上方);当c0时,抛物线与y轴交点在y轴负半轴(即x轴下方);当c = 0时,抛物线过原点。
反之,也成立。
③a和b :共同决定抛物线对称轴的位置。
当-——.0时,对称轴在y轴右边;当-一:::02a 2a时,对称轴在y轴左边;当- 一=0 (即当b = 0时)对称轴为y轴。
反之,也成立。
2a④特别:当x = 1时,有y=a b;当x = -1时,有y=a「b c。
反之也成立。
2 24、二次函数y=a(x-h) k的图像可由抛物线y = ax向上(向下),向左(向右)平移而得到。
具体为:当h 0时,抛物线y = ax2向右平移h个单位;当h :::0时,抛物线y二ax2 向左平移-h个单位,得到y=a(x「h)2;当k 0时,抛物线y = a(x「h)2再向上平移k个单位,当k : 0时,抛物线y=a(x-h)2再向下平移-k个单位,而得到y=a(x-h)2的图像。
5、抛物线y = ax2• bx • c(a = 0)与一元二次方程ax2 bx 0(a = 0)的关系:①若抛物线讨二aj b x ( c a0 )与x轴有两个交点,则一元二次方程2ax b x ( a0有两个不相等的实根。
②若抛物线y=ax ■ b x ( c a0 )与x轴有一个交点,则一元二次方程2 ax • bx • c = 0(a = 0)有两个相等的实根(即一根)。
③若抛物线y=a2x・b x( c 0a)与x轴无交点,则一元二次方程2 ax, b x 0(aC没)有实根。
26、二次函数y =ax bx c(a = 0,a, b,c是常数)的图像与性质考点一:二次函数的概念【例1】下列函数中是二次函数的是( )2Ay =8x 1 B.y - -8x -1 C.y 二E3 D.y 2 -4x x【解析】根据二次函数的定义即可做出判断,A中y 2 2=8x 1 符合y = ax bx c(a = 0)的形式,所以是二次函数,B,C分别是一次函数和反比例函数,D中右边2-4不是整式,x显然不是二次函数。
【答案】A2【例2】已知函数y =(m2-2m)x m$虫_3mx+(m+1)是二次函数,则m= ______________ 。
【解析】根据二次函数的定义,只需满足两个条件即可二次项系数不为零,且x的最高次I m2— 2 m 0 f im ~~ 0 且、im ~~ 2数为2 ”。
故有严2m 0,解得£,综上所述,m取1。
[m2-3m+4=2 或m = 2【答案】1【针对训练】2 21、若函数y=(m-2)x m mx是二次函数,则该函数的表达式为y二_____________ 。
考点二:待定系数法在求解二次函数解析式中的应用【例1】已知点a,8在二次函数y二ax2的图象上,贝U a的值是()A2 B.-2 C.-2 D. — 2【解析】因为点a,8在二次函数y=ax2的图象上,所以将点a,8代入二次函数y = ax2中,可以得出a3=8,则可得a =2 ,【答案】A.【例2】(2011 ,泰安)若二次函数y = ax2• bx • c的x与y的部分对应值如下表,则当x二-1时,y的值为()x -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3A. 5B.-3C.-13 -272【解析】设二次函数的解析式为y = ax-h i亠k,因为当x - -4或-2时,y = 3,由抛物线的对称性可知h = -3,h = 5,所以y = a(x+3) +5,把(—2,3)代入得,2a = -2,所以二次函数的解析式为y = —2(x+3) +5,当x=3时,y = —27。
【答案】C【针对训练】1、(2002年太原)过(—1,0)(3,0)(1,2)三点的抛物线的顶点坐标是()2 *14A. 1,2B.(1,mC. -1,5D.(2,E)2、无论m为何实数,二次函数y = x2- 2-mx,m的图象总是过定点(A.1,3B.1,0C.(—1,3) D(—1,0)【例3】(2010,石家庄一模)如图所示,在平面直角坐标系中,二次函数y =ax2• bx • c的图象顶点为A. - 2,-2,且过点B 0,2,贝y y与x的函数关系式为()2 2 2 2A. y=x2+2B.y=(x-2)+2C. y = (x-2)-2D.y=(x + 2)-22【解析】设这个二次函数的关系式为y = ax・2 -2 ,将B 0,2代入得2=(0+2$—2,解得:a=1,故这个二次函数的关系式是y=(x+2)2—2,【答案】D【针对训练】1 21、二次函数y = ^x +bx+啲顶点为(2,— 1),则二次函数的解析式为____________________ .【例4】二次函数y=x +bx+c过点(—3,0)(1, 0)则二次函数的解析式为_____________ 。
考点三:二次函数的图像与性质的综合应用(与系数a,b,c的关系)【例1】(2012,兰州)已知二次函数y=a(x 1)-b(a=0)有最小值1,则a、b的大小关系为()A. a bB. a bC. a = bD.不能确定【考点】涉及二次函数顶点坐标和最值2【解析】因为二次函数y = a(x •1)- b (a = 0)有最小值1,所以a 0,- b = 1,b - -1,所以a b。
【答案】A.【针对训练】21、二次函数y =2x -4x -1的最小值是 _____________ 。
22、(2013,兰州)二次函数y二-2(x-1)3的图象的顶点坐标是()A. (1,3)B. (T,3)C. (1,-3)D.(T,-3)3、抛物线y = _x(x -2)的顶点坐标是()A- (-1,1) B. (-1J) C. (1,) D.(1,1)2 2【例2】(2012,兰州)抛物线y =(x • 2) -3可以由抛物线y二x平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位【考点】涉及函数平移问题2 2【解析】抛物线y二x向左平移2个单位可得到抛物线y =(x • 2),再向下平移3个单位2可得到抛物线y =(x,2) -3。
【答案】B.【针对训练】2 2 21、(2012,南京)已知下列函数:(1)y =x ;(2)y - -X ;(3)y =(X -1)2。
其中,图象通过平移可以得到函数y =x2• 2x -3的图象的有 _____________ (填写所有正确选项的序号)。
2(2009,上海)将抛物线y =x2 -2向上平移一个单位后,得到新的抛物线,那么新的抛物线的表达式是______________________ 。
3、将抛物线y = -x2向左平移2个单位后,得到的抛物线的解析式是(A. y = -x2 2B. y = _(x 2)2C. y =_(x-2)2 D. y = -x2-24、将抛物线y二ax2• bx • c(a =0)向下平移3个单位,在向左平移4个单位得到抛物线y = -2x2 -4x +5,则原抛物线的顶点坐标是_____________【例3】(2013,长沙)二次函数y =ax2• bx c的图象如图所示,则下列关系式错误的是()A. a 0B. c 0D. a b c 0C. b2-4ac 0【考点】图像与系数的关系【解析】观察题中图象可知,抛物线的开口方向向上,抛物线与y轴的交点在y轴的正半轴上,与x轴有两个交点,所以a 0,c 0,b2-4ac 0,且当x = 1时,a b c ::0。
显然选项A、B、C都正确,只有选项D错误。
【答案】D. 【例4】(2011,山西)已知二次函数y二ax2• bx c的图象如图所示,对称轴为直线x =1,则下列结论正确的是()A. ac 0B. 方程ax bx ^0的两根是x1 - -1,X2 =3C. 2a _b =0D.当x・0时,y随x的增大而减小【考点】图像与性质的综合应用【解析】由图象可知a :::0,c 0,故A错误;因对称轴为直线X = 1 ,所以一 =1,2a故C错误;由图象可知当1 x 0时,y随x的增大而增大,故D错误;由二次函数的对称性可知B选项正确,22、(2011,重庆)已知抛物线 y =ax bx c (^20)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(【答案】B.【针对训练】2函数y = mx • m 和函数y = -mx 2x 21、(2013,呼和浩特)在同一平面直角坐标系中, m 是常数,且m = 0)的图象可能是( C.D.A. a 0B. b 0C. c ::D. a b c 03、在反比例函数中y = a (a = 0),当x 0时,y 随x 的增大而减小,则二次函数x坐标分别为x1, x2,其中-2 ■■:捲:::-1,0 :::x2::: 1 ,下列结论:①4a - 2b •c :::0 ;②22a -b c0 :③a c -1 :④b +8a :>4ac,其中正确的选项有 ________________【例5】已知关于x的函数y = x2• 4x • 3,求当-1乞x^1时函数的最大值和最小值【针对训练】1、已知函数y=2x2,4x-1,试求当-1乞x岂2的最大值和最小值2、已知函数^2x2 4|x| -1,试求当-1冬x岂2的最大值和最小值【例6】已知二次函数y = ax + b才(ca0)其中a b c满足a+b + c = 0和9a-3b+c = 0,则该二次函数的对称轴是直线 ________________ 。