2013年中考数学常考考点(二)
2013年中考数学常考考点-计算
(实数)1、计算:2182009---+)(. 2、计算:()121240-++-;3、计算:2)6()15(3--+- 4、计算:(-1)3+(2009-2)0-21-5、计算:11(π1)52-⎛⎫-++- ⎪⎝⎭6、计算10(23)1)---的结果是_________.7、计算:0(π2009)2|-.8、计算:11|3|1)22-⎛⎫-+-⨯ ⎪⎝⎭.911(2009)12-⎛⎫-++⎪⎝⎭.100(π2)1---.110|2|(2π)+-.12、计算:()()()223523----⨯-.13、0|2|(1--14、计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.15、计算:2)2(34-⨯-16、计算:21(1)π3--++17、计算:42120091--⎪⎭⎫ ⎝⎛+-(解不等式)1.(2011.南京)解不等式组,并写出不等式组的整数解.2.(2011.常州)解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x3.(2011.连云港)解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x .4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1)的解集,并写出它的整数解.5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.6. (2011.宿迁)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x7. (2011.泰州)解方程组,并求的值.8.(2011.无锡)解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x9. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
10. 解不等式组:102(2)3x x x -≥⎧⎨+>⎩11. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数解.集训三(化简求值)1、(2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.2、先化简,再求值:(2a+b )(2a-b)+b(2a+b)-4a 2b ÷b ,其中a=-21,b=2.3、先化简下面的代数式,再求值: 2()2()x y x x y +-+,其中x =,2y =4、先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.5、先化简,再求值:)(222y x y x y x +-+-,其中31,3-==y x .6、先化简,再求值:-4-2x x +24-4+4x x ÷-2xx ,其中x7、先化简再计算:y x yx y x +---222,其中x =3,y =2.8、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .10、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.11、先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .12、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =.13、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6.14.先化简,再求值:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭,其中x =集训四1、方程组233x y x y -=⎧⎨+=⎩,2、方程组321026x y x y +=⎧⎨+=⎩,3、解方程:2725x y x y -=⎧⎨+=⎩①②集训五1解方程:x x x x )2(322-=+- 2. 解方程21212339x x x -=+--3、解分式方程:132x x=- (4)164412-=-x x (5)0)1(213=-+--x x x x6. (2011.常州)解分式方程2322-=+x x7.(2011.连云港)解方程:3x = 2x -1 .8.(2011.盐城)解方程:x x -1 - 31-x= 2.。
2013年中考数学二轮专题复习 专题二 图表信息问题课件
行驶距离s(米) 0
10 10.8 …
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应
的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1, s2,请比较与的大小,并解释比较结果的实际意
思路分析 解决这类题的基本思路是“细读图表→分析→理 清关系→解决问题”,具体做法: 1.细读图表:(1)通过整体阅读,搜索有价值的信 息;(2)重视数据变化;(3)注意图表细节.这些 细节往往起提示作用. 2.理清关系:对已获取的信息加工、整合,理清 各变量之间的关系. 3.选择适当的数学工具,通过建立数学模型,解 决问题.
点C(x2,m)分别代入两直线方程,依妈妈比小明早 10分钟到达乙地列式求解. 解 (1)由图象,得:小明骑车速 度: 10÷0.5=20(km/ h). 在甲地游玩的时间是 1-0.5=0.5(h).
(2)妈妈驾车速度:20×3=60(km/h)
如图,设直线BC解析式为y=20x+ b1,
把点 B(1,10)代入得 b1=-10. ∴直线 BC 解析式为 y=20x-10 ①. 设直线 DE 解析式为 y=60x+b2, 4 把点 D3,0代入得 b2=-80. ∴直线 DE 解析式为 y=60x-80 ②. 联立①②,得 x=1.75,y=25. ∴交点 F(1.75,25). ∴小明出发 1.75 小时(105 分钟)被妈妈追上, 此时离家 25 km.
2 s2 -5t2+15t2 = =-5t2+15,∵t1<t2 t2 t2 s1 s2 ∴ - =-5t1+15-(-5t2+15)=5(t2-t1)>0 t1 t2 s1 s2 ∴ > . t1 t2
河北省中考数学总复习 第一编 教材知识梳理篇 第2章 方程(组)与不等式(组)第2节 一元二次方程及
第二节一元二次方程及应用年份题号考查点考查内容分值总分201719 一元二次方程的解法综合题,在新定义的背景下用直接开平方法解一元二次方程37 26(2)一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况4201614一元二次方程根的判别式利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512一元二次方程根的判别式考一元二次方程无实数根求参数的取值X围2 2201421 解一元二次方程(1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式;(2)用配方法解一元二次方程10 102013年未考查命题规律纵观某某近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.某某五年中考真题及模拟一元二次方程的解法1.(2014某某中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为: x 2+b a x =-c a,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a (b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017某某中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是(A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016某某二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是(B )A .-4或-1B .4或-1C .4或-2D .-4或2一元二次方程根的判别式及根与系数的关系4.(2015某某中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值X 围是(B )A .a<1B .a>1C .a ≤1D .a ≥15.(2016某某中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为06.(2016某某十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017某某二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6; (2)方程x 2-5x +6=0的两根为2或3; ①2*3=2×3-9=-3;②3*2=32-2×3=3.一元二次方程的应用8.(2016某某25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为(D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016某某十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017某某中考)某厂按用户的月需求量x(件)完成一种产品的生产,,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m. 解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝ ⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0, ∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13, ∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵Δ=(-13)2-4×1×47<0,∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50) =24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法 这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法: (1)当b =0,c ≠0时,x 2=-c a ,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根; (2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系: (1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016某某十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22; (2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3; (3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,1=2,x 2=0.1.方程(x -3)(x +1)=0的解是(C )A .x =3B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016某某路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为(A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=13.用公式法解方程: (1)(某某中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(某某中考)x 2-1=2(x +1).解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017某某中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是(A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016某某丰润二模)方程x 2-x +3=0根的情况是(D )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5.(2016某某博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值X 围是(C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017某某中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为________万元;,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染(A)A.17人B.16人C.15人D.10人【解析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x+1)人,每人传染x个人,则传染x(x+1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x个人+第二轮传染的x(x+1)人,列方程:1+x+x(1+x)=256,解得x1=15,x2,所以x=-17不合题意,应舍去;取x=15,故选C.【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x元,则每件盈利(50-x)元,数量增多2x件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x2-35x+300=0.解得x1=15,x2=20.∵要尽快减少库存,∴x=15不合题意,舍去,只取x=20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017某某中考)如图,为美化校园环境,某校计划在一块长为60 m,宽为40 m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m.(1)用含a的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为(A )A (1+x)2=4B .(2.5+x%)2=4C (1+x)(1+2x)=4D (1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为(C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__word个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.11 / 11。
中考数学常考易错点-平面直角坐标系及函数的图象
平面直角坐标系及函数的图象易错清单1.能确定较复杂函数的自变量取值范围吗?【例1】(山东济宁)函数中的自变量x的取值范围是().A. x≥0B. x≠-1C. x>0D. x≥0且x≠-1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【答案】根据题意,得x≥0且x+1≠0,解得x≥0.故选A.【误区纠错】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.能利用直角坐标系探讨点的坐标的变化规律.【例2】(山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点,B(0,4),则点B2014的横坐标为.【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【答案】∵,BO=4,故答案为10070.【误区纠错】此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.由特殊总结一般性.3.借助函数图象描述问题中两个变量之间的关系.【例3】(山东烟台)如图,点P是ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().【解析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【答案】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.【误区纠错】本题主要考查了动点问题的函数图象.注意分段考虑.名师点拨1.会画出直角坐标系,能标识点在平面直角坐标系的位置.2.能根据点的坐标的正、负性确定点的对称性及所在象限.3.理解函数的意义,会解释并区分常量与变量,能列简单的函数关系,会进行描点法画函数的图象.4.能列举函数的三种表示方法.5.会求出函数中自变量的取值范围,如保证分母不为零,使二次根式有意义等.6.能利用代入法求函数的值.7.能利用函数变化规律进行准确猜想、判断.提分策略1.函数的概念及函数自变量的取值范围.函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.【答案】 C2.函数解析式的求法.具体地说求函数的解析式和列一元一次方程解实际问题基本相似,即弄清题意和题目中的数量关系,找到能够表示所求问题含义的一个相等的关系,根据这个相等的数量关系,列出所需的代数式,从而列出两个变量之间的关系式.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【答案】(1)从纸箱厂定制购买纸箱费用y1=4x.蔬菜加工厂自己加工纸箱费用y2=2.4x+16000.(2)y2-y1=(2.4x+16000)-4x=16000-1.6x,由y1=y2,得16 000-1.6x=0,解得x=10000.∴当x<10000时,y1<y2.选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当x>10000时,y1>y2.选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当x=10000时,y1=y2.两种方案都可以,两种方案所需的费用相同.3.坐标系中的图形的平移与旋转.求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.【例3】在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.4.运用函数的图象特征解决问题.(1)由函数图象的定义可知图象上任意一点P(x,y)中的坐标值x,y是解析式方程的一个解,反之,以解析式方程的任意一解为坐标的点一定在函数的图形上.(2)注意方程与函数的结合,抓住“方程(方程的解)——点的坐标——函数图象与性质”这个网,结合数学知识,用数形结合法来解题.【例4】小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100).点C的坐标是(50,1100),点D的坐标是(60,0),设线段CD所在直线的函数解析式是s=kt+b,将点C,D的坐标代入,得所以线段CD所在直线的函数解析式是s=-110t+6600.5.分段函数的应用自变量在不同的范围内取值时,函数y和x有不同的对应关系,这种函数称为分段函数,解决分段函数的有关问题时,关键是弄清自变量的取值范围,选择适合的解析式解决问题.【例5】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是().【答案】 B专项训练一、选择题1.(四川中江县一模)已知点A(a,1)与点A'(-5,b)是关于原点O的对称点,则a+b的值为().A. 1B. 5C. 6D. 42. (深圳模拟)已知点A(a+2,a-1)在平面直角坐标系的第四象限内,则α的取值范围为().A. -2<a<1B. -2≤a≤1C. -1<a<1D. -1≤a≤23.(宁夏银川外国语学校模拟)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是().4. (内蒙古赤峰模拟)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步回到家里.下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的函数关系的大致图象是().5.(2013·广东佛山模拟)在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是().A. 2B. 8C. -2D. -86.(2013·湖北宜昌调研)在正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(cm2),y随x变化的图象可能是().7. (2013·河南南阳模拟)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为().(第7题)A. m+2n=1B. m-2n=1C. 2n-m=1D. n-2m=1二、填空题8. (广西玉林模拟)在平面直角坐标系中,点(0,2)到x轴的距离是.9. (甘肃天水模拟)函数中,自变量x的取值范围10.(四川达州模拟)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).(第10题)11.(2013·北京房山区一模)如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则点A31的坐标是.(第11题)三、解答题12. (四川峨眉山二模)如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC 先向右平移4个单位,再向下平移2个单位,得到△A'B'C'.在坐标系中画出△A'B'C',并写出△A'B'C'各顶点的坐标.(第12题)13.(2013·辽宁葫芦岛一模)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A,B的坐标分别为(3,2),(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为的长为.(第13题)参考答案与解析1. D[解析]a=5,b=-1.2. A[解析]由a+2>0,a-1<0,得-2<a<1.4. C[解析]先慢步行走,再打了一会儿太极拳,最后原路跑步回到家里.只有C图能反映爷爷离家的距离y(米)与时间x(分钟)之间的函数关系6.A[解析]利用图象可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.7. B[解析]根据题意可知OC为∠AOB的平分线,点C的坐标为(m-1,2n)且在第一象限,点C到x轴、y轴距离为m-1,2n,根据角平分线上的点到角两边距离相等,可知m-1=2n,所以m-2n=1.8. 2[解析]点p(a,b)到x轴的距离是|b|,到y轴的距离是|a|.9.x≥0且x≠1[解析]根据被开方数具有非负性且分母不等于零,得x≥0且x≠1.10. (2n,1)[解析]A4 (2,0),A8(4,0),A12(6,0),∴A4n (2n,0).11.[解析]根据31÷4=7……3,得出A31在直线y=x上,在第三象限,且在第8个圆上,求出OA31=8,通过解直角三角形即可求出答案.12.图略; 各顶点坐标为A'(2,2),B'(3,-2),C'(0,-6).。
【2013年中考攻略】专题2:待定系数法应用探讨
【2013年中考攻略】专题2:待定系数法应用探讨锦元数学工作室 编辑在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。
然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。
待定系数法是数学中的基本方法之一。
它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。
应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。
比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。
例如:“已知x 2-3=(1-A )·x 2+Bx +C ,求A ,B ,C 的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A ,B ,C 的值。
这里的A ,B ,C 就是有待于确定的系数。
代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。
例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx ,将(2,﹣从而求得正比例函数解析式。
这里的k 就是有待于确定的系数。
代入所求,从而使问题获解。
b 2=k a3=,则a=3k b=2k ,,;在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。
下面通过2011年和2012年全国各地中考的实例探讨其应用。
一. 待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。
典型例题:例:(2011云南玉溪3分)若2x 6x k ++是完全平方式,则k =【 】A .9B .-9C .±9D .±3【答案】A 。
【考点】待定系数法思想的应用。
中考数学常考知识点整理
中考数学常考知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!中考数学常考知识点整理中考数学常考知识点整理大全为避免中考忘记知识,熟背考点。
初中数学核心知识点(中考数学99个考点汇编)
初中数学常见的99个中考考点以及考试要求一、数与运算(10个考点)考点1:数的整除性以及有关概念(本考点含整数和整除、分解素因数)考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;(2)知道能被2或3、5、9整除的正整数的特征;(3)会分解素因数;(4)会求两个正整数的最小公倍数和最大公因数.具体问题讨论涉及的正整数一般不大于100.样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)考点2:分数的有关概念、基本性质和运算考核要求:(1)掌握分数与小数的互化,初步体会转化思想;(2)掌握异分母分数的加减运算以及分数的乘除运算.考点3:比、比例和百分比的有关概念及比例的性质考核要求:(1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求.考点4:有关比、比例、百分比的简单问题考核要求:(1) 考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用.考点5:有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示考核要求:(1)理解相反数、倒数、绝对值等概念;(2)会用数轴上的点表示有理数.注意:(1)去掉绝对值符号后的正负号的确定,(2)0没有倒数.考点6:平方根、立方根、n次方根的概念考核要求:(1) 理解平方根、立方根、n次方根的概念;(2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别.考点7:实数的概念考核要求:理解实数的有关概念.注意:判断无理数不看形式,要看实质.考点8:数轴上的点与实数的一一对应考核要求:掌握实数与数轴上的点的一一对应关系.解题关键是判断实数的大小.考点9:实数的运算考核要求:(1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数0和数1的特征)、运算顺序,明确有关运算性质的推广和运用;(2)会用计算器进行实数的运算.注意:(1)利用运算定律,力求简便计算和巧算,(2)运算要稳中求快,准确无误.考点10:科学记数法考核要求:(1)理解科学记数法的意义;(2)会用科学记数法表示较大的数.第二部分方程与代数(27个考点)考点11:代数式的有关概念考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;(2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式.注意单项式与多项式次数的区别.考点12:列代数式和求代数式的值考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算.考点13:整式的加、减、乘、除及乘方的运算法则考核要求:(1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积.注意:要灵活理解同类项的概念.考点14:乘法公式(平方差、两数和、差的平方公式)及其简单运用考核要求:(1)掌握平方差、两数和(差)的平方公式;(2)会用乘法公式简化多项式的乘法运算;(3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式.考点15:因式分解的意义考核要求:(1)知道因式分解的意义和它与整式乘法的区别;(2)会鉴别一个式子的变形过程是因式分解还是整式乘法.考点16:因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法)考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.考点17:分式的有关概念及其基本性质考核要求:(1)会求分式有无意义或分式为0的条件;(2)理解分式的有关概念及其基本性质;(3)能熟练地进行通分、约分.考点18:分式的加、减、乘、除运算法则考核要求:(1)掌握分式的运算法则;(2)能熟练进行分式的运算、分式的化简.考点19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:(1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论.考点20:整数指数幂,分数指数幂的运算考核要求:(1)掌握幂的运算法则;(2)会用整数指数幂及负整数指数幂进行运算;(3)掌握负整数指数式与分式的互化;(4)知道分数指数式与根式的互化。
2013届河南中考数学复习方案课件第二单元 方程组与不等式组
第6课时┃ 考点聚焦
考点2 方程及相关概念
方程的概 未知数 含有________的等式叫做方程 念
相等 使方程左右两边的值 ________ 一 方程的解 的未知数的值叫做方程的解, 元方程的解,也叫它的根
解方程 求方程解的过程叫做解方程
第6课时┃ 考点聚焦
考点3 一元一次方程的定义及解法
只含有________个未知数,且未知数 一 定义 的最高次数是________次的整式方 一 程,叫做一元一次方程 ax+b=0(a≠0) 一般形式 ________________
∴投资者选择方案二所获得的投资收益率更高. (2)由题意得 0.7x-0.62x=5, 解得 x=62.5(万元). ∴甲投资了 62.5 万元,乙投资了 53.125 万元.
第6课时┃ 豫考探究
用方程或方程组解决实际问题,关键是先分析出 实际问题中的等量关系,一个方程需要一个等量关 系,方程组则需要两个等量关系.
第6课时┃ 课堂热身
课堂热身
►
热身考点1 等式的概念及性质
1.如图 6-1①,在第一个天平上,砝码 A 的质量等于砝 码 B 加上砝码 C 的质量;如图 6-1②,在第二个天平上,砝 码 A 加上砝码 B 的质量等于 3 个砝码 C 的质量. 请你判断: 1 个砝码 A 与________个砝码 C 的质量相等. 2
第6课时┃ 课堂热身
[解析] (1)相等关系: 返回时平均速度-去时平均速度= 10;(2)分别根据题意求出 x,y,b.
解:(1)设舟山与嘉兴两地间的高速公路路程为 s 千米, s s 由题意得 - =10.解得 s=360. 4 4.5 答:舟山与嘉兴两地间的高速公路路程为 360 千米. (2)将 x=360-48-36=276,b=100+80=180,y= 295.4,代入 y=ax+b+5,得 295.4=276a+180+5, 解得 a=0.4, 答:轿车的高速公路里程费是 0.4 元/千米.
最新人教版中考数学考点复习第四章三角形重点拓展(二)常考的四大相似模型与证明方法
返回目录
典型题目
5.如图Z2-5,已知在△ABC中,∠ACB=90°,点D是边AB上一点, 且△CDE∽△CAB.求证: (1)△CAD∽△CBE; (2)EB⊥AB.
返回目录
证明:(1)∵△CDE∽△CAB,
∴
∠ACB=∠DCE. ∴∠ACB-∠DCB=∠DCE-∠DCB, 即∠ACD=∠BCE. ∴△CAD∽△CBE. (2)∵△CAD∽△CBE, ∴∠CAD=∠CBE. ∵∠ACB=90°,∴∠CAD+∠CBA=90°. ∴∠CBE+∠CBA=90°,即∠EBA=90°. ∴EB⊥AB.
X字型 已知:AB∥CD,
结论:
返回目录
(2)
反X字型 已知:∠A=∠D, 结论:
返回目录
典型题目 3. 如图Z2-3,在□ABCD中,AB=4,AD=9,点E是AD上的一点,
AE=2DE.延长BE交CD的延长线于F,求DF的长.
返回目录
解:∵AE=2DE, ∴ ∵四边形ABCD是平行四边形, ∴AB∥CF. ∴△ABE∽△DFE. ∴
∴DF= AB= ×4=2.
返回目录
4.如图Z2-4,BD,AC相交于点P,连接AB,BC,CD,DA,∠1=∠2. (1)求证:△ADP∽△BCP; (2)若AB=8,CD=4,DP=3, 求AP的长. (1)证明:∵∠1=∠2, ∠DPA=∠CPB, ∴△ADP∽△BCP.
返回目录
(2)解:∵△ADP∽△BCP,
返回目录
模型图例
模型四:K字型(一线三等角) 特征:两个三角形的各自一条边在同一直线上,并且有一个顶点 重合
返回目录
(1)
一线三垂直型 已知:∠B=∠ACE=∠D=90°, 结论:①△ABC∽△CDE;
江西省2013年中考数学试卷(解析版)
江西省2013年中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.3.(3分)(2013•江西)下列数据是2013年3月7日6点公布的中国六大城市的空气污染4.(3分)(2013•江西)如图,直线y=x+a﹣2与双曲线y=交于A、B两点,则当线段AB 的长度取最小值时,a的值为()5.(3分)(2013•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()B解:从几何体的左边看可得6.(3分)(2013•江西)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2013•江西)分解因式:x2﹣4=(x+2)(x﹣2).8.(3分)(2013•江西)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.9.(3分)(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.故答案为:10.(3分)(2013•江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE 和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为2.×,,×2..11.(3分)(2013•江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为(n+1)2(用含n的代数式表示).=12.(3分)(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程x2﹣5x+6=0(答案不唯一).13.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.DAE==2514.(3分)(2013•江西)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.ACB=∠三、(本大题共2小题,每小题5分,共10分)15.(5分)(2013•江西)解不等式组,并将解集在数轴上表示出来.,16.(5分)(2013•江西)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.四、(本大题共2小题,每小题6分,共12分)17.(6分)(2013•江西)先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.÷÷+1×+1+1,.18.(6分)(2013•江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.=五、(本大题共2小题,每小题8分,共16分)19.(8分)(2013•江西)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.y=20.(8分)(2013•江西)生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)×××××÷六、(本大题共2小题,每小题9分,共18分)21.(9分)(2013•江西)如图1,一辆汽车的背面,有一种特殊性状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器)OA=5=5=2≈π22.(9分)(2013•江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y 轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.,﹣x=,,的坐标是(,﹣)的坐标代入得:﹣k+2七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.AG=GC=GE= ABAB ACDF=ACAC MG=AB24.(12分)(2013•江西)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x ﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(9,9);依此类推第n条抛物线y n的顶点坐标为(n2,n2);所有抛物线的顶点坐标满足的函数关系式是y=x;(3)探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.。
中考数学常考易错点:3-2《一次函数》
一次函数易错清单1.一次函数y=kx+b的图象的位置与k,b的符号之间的关系.【例1】(2014·湖南娄底)一次函数y=kx-k(k<0)的图象大致是().【解析】首先根据k的取值范围,进而确定-k>0,然后再确定图象所在象限即可.【答案】∵k<0,∴-k>0.∴一次函数y=kx-k的图象经过第一、二、四象限.故选A.【误区纠错】此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.2.讨论一次函数性质时漏解.【例2】(2014·四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.【解析】由于k的符号不能确定,故应分k>0和k<0两种进行解答.【误区纠错】本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.3.一次函数与不等式的关系.【例3】(2014·湖北孝感)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为().A. -1B. -5C. -4D. -3【解析】满足不等式-x+m>nx+4n>0就是直线y=-x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.【答案】∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,∴关于x的不等式-x+m>nx+4n>0的解集为-4<x<-2.∴关于x的不等式-x+m>nx+4n>0的整数解为-3.故选D.【误区纠错】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,错解误认为是关于x的不等式-x+m>nx+4n>0的解集为x>-2.4.一次函数的实际应用.【例4】(2014·山东德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 【解析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200-a)只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【答案】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,由题意,得25x+45(1200-x)=46000,解得x=400.∴购进乙型节能灯1200-400=800只.故购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200-a)只,商场的获利为y元,由题意,得y=(30-25)a+(60-45)(1200-a),y=-10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴-10a+18000≤[25a+45(1200-a)]×30%.∴a≥450.∵y=-10a+18000,∴k=-10<0.∴y随a的增大而减小.∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.【误区纠错】本题考查了单价×数量=总价的运用,列了一元一次方程解实际问题的运用,一次函数的解析式的运用,解答时求出求出一次函数的解析式是关键.名师点拨1.掌握一次函数的定义,能利用定义进行判断.2.正确画出一次函数的图象,并利用图象说出它的变化特点,能利用图象求函数的近似解.3.会求一次函数解析式.4.会用函数思想解决实际问题.提分策略1.一次函数图象的平移.直线y=kx+b(k≠0)在平移过程中k值不变.平移的规律是若上下平移,则直接在常数b后加上或减去平移的单位数;若向左(或向右)平移m个单位,则直线y=kx+b(k≠0)变为y=k(x+m)+b(或k(x-m)+b),其口诀是上加下减,左加右减.【例1】如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则kb= .【解析】∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2.∵y=kx+b的图象经过点A(1,-2),∴2+b=-2,解得b=-4.∴kb=2×(-4)=-8.【答案】-82.一次函数与一次方程(组),一元一次不等式(组)相结合问题.【例2】一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.【解析】∵一次函数y=kx+b过点(2,3),(0,1),∴一次函数的解析式为y=x+1.当y=0时,x+1=0,x=-1.∴一次函数y=x+1的图象与x轴交于点(-1,0).∴关于x的方程kx+b=0的解为x=-1.【答案】x=-13.一次函数图象与两坐标轴围成的三角形面积问题.这一类问题主要考查在给定一次函数解析式或一次函数图象的前提下,求图象与坐标轴围成的三角形的面积.在这类问题中,如果三角形的一边与一坐标轴重合,那么可直接应用三角形及坐标求面积,如果三角形的任何一边均不与坐标轴重合,那么一般来说,我们可以利用“割补法”化不规则的三角形为规则的三角形,从而求得三角形的面积.【例3】在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.【答案】(1)∵直线与x轴的交点坐标为(4,0),与y轴交点坐标为(0,3),4.用一次函数解决相关问题.(1)利用一次函数进行方案选择.一次函数的方案决策题,一般都是利用自变量的取值不同,得出不同方案,并根据自变量的取值范围确定出最佳方案.【例4】某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元;(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?【答案】(1)由题意,得y1=4x+400, y2=2x+820.(2)令4x+400=2x+820,解得x=210,所以当运输路程小于210 km时,y1<y2,选择邮车运输较好;当运输路程等于210 km时,y1=y2,选择两种方式一样;当运输路程大于210 km时,y1>y2,选择火车运输较好.(2)利用一次函数解决资源收费问题.此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分段点;(2)针对每一段函数关系,求解相应的函数解析式;(3)利用条件求未知问题.【例5】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(千瓦时)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:(2)小明家某月用电120千瓦时,需要交电费元;(3)求第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式;(4)在每月用电量超过230千瓦时时,每多用1千瓦时电要比第二档多付电费m元,小刚家某月用电290千瓦时,交电费153元,求m的值.【答案】(1)第二档140<x≤230,第三档x>230.(2)54(3)设第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式为y=ax+c.将(140,63),(230,108)代入,得则第二档每月电费y(元)与用电量x(千瓦时)之间的函数关系式为(4)根据图象,得用电230千瓦时,需要付费108元,用电140千瓦时,需要付费63元,故108-63=45(元),230-140=90(千瓦时),45÷90=0.5(元),则第二档电费为0.5元/千瓦时.∵小刚家某月用电290千瓦时,交电费153元,290-230=60(千瓦时),153-108=45(元),45÷60=0.9(元),m=0.9-0.5=0.4,故m的值为0.4.(3)利用一次函数解决其他生活实际问题.结合函数图象及性质,弄清图象上的一些特殊点的实际意义及作用,寻找解决问题的突破口,这是解决一次函数应用题常见的思路.“图形信息”题是近几年的中考热点考题,解此类问题应做到三个方面:(1)看图找点,(2)见形想式,(3)建模求解.【例6】周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.【答案】(1)小明骑车速度为,在甲地游玩的时间是1-0.5=0.5(h).(2)妈妈驾车速度为20×3=60(km/h),设直线BC解析式为y=20x+b1.专项训练一、选择题1. (2014·安徽安庆外国语学校模拟)已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为().A. 1或-2B. 2或-1C. 3D. 42.(2014·安徽淮北五校联考)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m的取值范围是().A. m>1B. m<-5C. -5<m<1D. m<13. (2014·安徽铜陵模拟)能表示图中一次函数图象的一组函数对应值列表的是().(第3题)ABCD4. (2013·上海静安二模)函数y=kx-k-1(常数k>0)的图象不经过的象限是().A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2013·重庆一中一模)如图反映的过程是:妈妈带小米从家去附近的动物园玩,他们先去鳄鱼馆看鳄鱼,又去熊猫馆看熊猫,然后回家.如果鳄鱼馆和熊猫馆的距离为m千米,小米在熊猫馆比在鳄鱼馆多用了n分钟,则m,n的值分别为().(第5题)A. 1,8B. 0.5,12C. 1,12D. 0.5,8二、填空题6. (2014·江苏苏州高新区一模)已知函数y1=x,y2=2x+3,y3=-x+4,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.7.(2014·湖北宜昌一模)已知y是x的一次函数,下表列出了部分对应值,则m= .8. (2014·湖南吉首三模)如图,已知直线与x轴,y轴分别交于点A和点B,M 是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处,则直线AM的函数解析式是.(第8题)9.(2013·上海静安二模)如果点A(-1,2)在一个正比例函数y=f(x)的图象上,那么y随着x 的增大而(填“增大”或“减小”).10. (2013·江西饶鹰中考模拟)一次函数y=kx+b(kb<0)图象一定经过第象限.11. (2013·湖北武汉中考全真模拟)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图(1)表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图(2)分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象,则甲每小时完成件,乙提高工作效率后,再工作个小时与甲完成的工作量相等.(第11题)三、解答题12.(2014·湖北襄阳模拟)某市自来水公司为了鼓励市民节约用水,于2014年4月开始采用以用户为单位按月分段收费办法收取水费,新按月分段收费标准如下:标准一:每月用水不超过20吨(包括20吨)的水量,每吨收费2.45元;标准二:每月用水超过20吨但不超过30吨的水量,按每吨a元收费;标准三:超过30吨的部分,按每吨(a+1.62)元收费.(说明:a>2.45)(1)居民甲4月份用水25吨,交水费65.4元,求a的值;(2)若居民甲2014年4月以后,每月用水x(吨),应交水费y(元),求y与x之间的函数关系式,并注明自变量x的取值范围;(3)随着夏天的到来,各家的用水量在不但增加.为了节省开支,居民甲计划自家6月份的水费不能超过家庭月收入的2%(居民甲家的月收入为6540元),则居民甲家六月份最多能用水多少吨?13.(2014·广西南宁五模)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式;(2)求渔船和渔政船相遇时,两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?(第13题)14. (2014·广东模拟)甲和乙进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶,再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示甲在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(2)求出AB所在直线的函数关系式;(3)如果乙上坡平均速度是甲上坡平均速度的一半,那么两人出发后多长时间第一次相遇?(第14题)15. (2013·河北三模)两辆校车分别从甲、乙两站出发,匀速相向而行,相遇后继续前行,已知两车相遇时中巴比大巴多行驶40千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至中巴到达乙站这一过程中y与x之间的函数关系.根据图象提供的信息,解答下列问题:(1)请你说明点B,C的实际意义;(2)求线段AB所在直线的函数关系式和甲、乙两站的距离;(3)求两车速度及中巴从甲站到乙站所需的时间t;(4)若中巴到达乙站后立刻返回甲站,大巴到达甲站后停止行驶,请你在图中补全这一过程中y关于x的函数的大致图象.参考答案与解析1.A[解析]先求出直线y=kx-3与y=-1以及y=3的交点坐标,要注意这两个交点可能在一、四象限(k>0),也可能在二、三象限(k<0).再根据所围成的四边形是梯形,根据梯形的面积公式进行计算.根据第二象限内点具有x<0,y>0,确定m的取值范围是-5<m<1.3. D[解析]直接根据图象经过的点进行判断.显然该图象经过(-3,2),(0,-1)二点.4.B[解析]∵k>0,∴-k<0.∴-k-1<0.∴y=kx-k-1(常数k>0)的图象经过一、三、四象限.5. D[解析]根据图象,此函数大致可分以下几个阶段:①0~12分钟,从家走到鳄鱼馆;②12~27分钟,在鳄鱼馆看鳄鱼;③27~33分钟,从鳄鱼馆走到熊猫馆;④33~56分钟,在熊猫馆看熊猫;⑤56~74分钟,从熊猫馆回家;综合上面的分析,由③的过程知,m=1.5-1=0.5(千米);由②④的过程知n=(56-33)-(27-12)=8(分钟).6. 2[解析]-x+4=x,解得x=2,∴y=x=2.7. 1[解析]设一次函数的解析式是y=kx+b,将(1,3),(2,5)代入求出解析式即可.8[解析]由题,知点A和点B的坐标分别是A(6,0),B(0,8),所以AB=10,由题意,得点B'的坐标是(-4,0),再利用相似可求得OM=3,所以过A(6,0),M(0,3)的直线的解析式是.9.减小[解析]设正比例函数解析式为y=kx(k≠0),∵过点(-1,2),∴2=k×(-1),解得k=-2.故正比例函数解析式为y=-2x.∵k=-2<0,∴y随着x的增大而减小.10.一、四[解析]∵kb<0,∴k,b异号.①当k>0时,b<0,此时一次函数y=kx+b(kb<0)图象经过第一、三、四象限;②当k<0,b>0时,此时一次函数y=kx+b(kb<0)图象经过第一、二、四象限;综上所述,一次函数y=kx+b(kb<0)图象一定经过第一、四象限.则甲每小时完成30件.设乙提高工作效率后再工作m小时与甲完成的工作量相等,由题意,得2×20+(20+40)m=2×30+30m,12. (1)由题意,得20×2.45+5a=65.4,解得a=3.28.(2)由题意,得当0≤x≤20时,y=2.45x;当20<x≤30时,y=20×2.45+3.28(x-20)=3.28x-16.6;当x>30时,y=20×2.45+10×3.28+(x-30)×(3.28+1.62)=4.9x-65.2.(3)6540×2%=130.8.∵20×2.45=49,49+10×3.28=81.8,而49<81.8<130.8,∴居民甲家6月份用水超过30吨.设他家6月用水x吨,故4.9x-65.2≤130.8,解得x≤40.故居民甲家计划6月份最多用水40吨.13. (1)当0≤t≤5时,s=30t;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390.(2)渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b,解得k=45,b=-360.∴s=45t-360.解得t=10,s=90.渔船离黄岩岛距离为 150-90=60 (海里).(3)s渔=-30t+390,s渔政=45t-360.(2)甲上坡的平均速度为480÷2=240(m/min),则其下坡的平均速度为240×1.5=360(m/min),所以y=-360x+1200.(3)乙上坡的平均速度为240×0.5=120(m/min),甲的下坡平均速度为240×1.5=360(m/min),由图象得甲到坡顶时间为2分钟,此时乙还有480-2×120=240(m),没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).15.(1)点B的实际意义是两车2小时相遇;点C的纵坐标的实际意义是中巴到达乙站时两车的距离.(2)设直线AB的解析式为y=kx+b,由题意,知直线AB过(1.5,70)和(2,0),∴直线AB的解析式为y=-140x+280.当x=0时,y=280.∴甲、乙两站的距离为280千米.(3)设中巴和大巴的速度分别为V1千米/小时,V2千米/小时,∴中巴和大巴速度分别为80千米/小时,60千米/小时.t=280÷80=3.5(小时).(4)当小时时,大巴到达甲站,当t=7小时时,大巴回到甲站,故图象如下:(第15题)。
北京市2013年中考数学试题(解析版)
个完全相同的不透明礼盒中,准备将它们奖给小本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。
采取验证法和排除法求解较为简单。
本题考点:两点间距离、线段.难度系数:0.4分解因式: .269mn mn m ++=的代数式表示.)本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年毫克所需的银杏树叶的片数与一年滞尘毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,解得检验:将带入中,不等于零,则是方程的根=CF=请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011每年需新增运营里程多少千米?【解析】228;1000;82.75【点评】本题将北京市轨道交通发展规划与统计结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力。
这是北京市这几年考核统计这部分知识的常见题型本题考点:条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想难度系数:0.622.操作与探究:P(1)对数轴上的点进行如下操作:先把点2,在平面直角坐标系中,对正方形及其内部的每个xOy ABCD 点进行如下操作:把每个点的横、纵坐标都乘以同一种实数到的点先向右平移个单位,再向上平移个单位(m n m 得到正方形及其内部的点,其中点的对应点分别为A B C D ''''A B ,个单位。
2013年安徽省中考数学试卷及答案(Word解析版)
安徽省2013年中考数学试卷一、选择题(共10小题,每小题4分,满分40分)))5.(4分)(2013?安徽)已知不等式组,其解集在数轴上表示正确的是()放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率123∴能让两盏灯泡同时发光的概率为:=();当CE=3,CF=3EC=,而EM=3EC?CF=﹣;CE=BC=3CF=CD=3,而EM=3,所以EC?CF=x6xCBP=安徽)若x≤.x≤.x≤、PC的=8.2BCEF=EF=EF=时,四边形EF=EF=EF=,所以由已知条件可以推知EF=EF=AB=.EF=BD===EF=EF=.分)﹣|.=2×+12+=0,0),17.(8分)(2013?安徽)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1)放在直角坐标系中,设其中第一个基本图的对称中心x1,2),规律型:图形的变化类;规律型:点的坐标.M==M=2×=,=;+2=3)的对称中心的横坐标为=5,=7,=4025,,汛AE.(结ABF=∠α=60°=10m∠β=45°AE==10m2000元要)根据购买的两种球拍数一样,列出方程=,求出方程的=,21.(12分)(2013?安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统400×=64q=30+q=20+35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(30+20+=3530+x20+﹣=﹣y=,x﹣(∴随时,最大,y=﹣=23.(14分)(2013?安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不,∴△ABE∽△DEC∴,∴。
2013版中考总复习数学(人教版 全国通用)基础讲练 第1讲 实数(含答案点拨)
第一单元数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.知识梳理一、实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫负无理数无限不循环小数二、实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a的相反数是____,零的相反数是零;(2)a与b互为相反数⇔a+b=____.3.倒数(1)实数a(a≠0)的倒数是____;(2)a与b互为倒数⇔______.4.绝对值(1)数轴上表示数a的点与原点的______,叫做数a的绝对值,记作|a|.(2)|a |=⎩⎪⎨⎪⎧(a >0), (a =0), (a <0).5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同. 6.科学记数法、近似数、有效数字 (1)科学记数法把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质 1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. 四、实数的运算 1.运算律(1)加法交换律:a +b =______.(2)加法结合律:(a +b )+c =________. (3)乘法交换律:ab =____.(4)乘法结合律:(ab )c =______.(5)乘法分配律:a (b +c )=__________. 2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=____(a ≠0);(2)负整数指数幂的意义为:a -p =______(a ≠0,p 为正整数). 五、实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b . 3.倒数比较法 若1a >1b ,a >0,b >0,则a <b . 4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.(提示:本书[知识梳理]栏目答案见第122~123页) 自主测试1.-2的倒数是( )A .-12B ..12C .-2D .22.-2的绝对值等于( )A .2B .-2C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝⎛⎭⎫13-1=-3 C .9=±3 D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106 LC .3.2×105 LD .3.2×104 L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 6.计算:|-5|+16-32.考点一、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3解析:因为-5是整数属于有理数,-0.1是有限小数属于有理数,12是分数属于有理数,3开不尽方是无理数,故选D. 答案:D方法总结 一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.触类旁通1 在实数5,37,2,4中,无理数是( )A .5B .37C . 2D . 4考点二、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )A .6B .-6C .9D .-9(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+(b -a )2=__________.解析:(1)-15的倒数为1-15=-5;(2)因为(-3)2=9,9的相反数是-9,故选D ;(3)本题考查了绝对值,平方根及数轴的有关知识. 由图可知,a <0,b >0,|a |>|b |,所以a +b <0,b -a >0,原式=-a -b +b -a =-2a . 答案:(1)-5 (2)D (3)-2a方法总结 1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出. 2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.触类旁通2 下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15考点三、平方根、算术平方根与立方根 【例3】(1)(-2)2的算术平方根是( )A .2B .±2C .-2D . 2 (2)实数27的立方根是__________.解析:(1)(-2)2的算术平方根,即(-2)2=|-2|=2; (2)27的立方根是327=3. 答案:(1)A (2)3方法总结 1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a ≥0;②算术平方根a 本身是非负数,即a ≥0.2.(3a )3=a ,3a 3=a .触类旁通3 4的平方根是( ) A .2 B .±2 C .16 D .±16考点四、科学记数法、近似数、有效数字【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105解析:用科学记数法表示的数必须满足a ×10n (1≤|a |<10,n 为整数)的形式;求近似数时注意看清题目要求和单位的换算;查有效数字时,要从左边第1个非零数查起,到精确到的数为止.682 000=6.82×105≈6.8×105.答案:D方法总结 1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.触类旁通4 某种细胞的直径是5×10-4毫米,这个数是( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 考点五、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________. 解析:因为x -2≥0,(3-y )2≥0,而x -2+(3-y )2=0,所以x -2=0,3-y =0,解得x =2,y =3,则xy -x 2=2×3-22=2.答案:2方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.触类旁通5 若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0 D .4 考点六、实数的运算【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝⎛⎭⎫12-3+⎝⎛⎭⎫cos 68°+5π0+|33-8sin 60°|. (1)分析:2-1=12,cos 30°=32,|-5|=5,(π-2 011)0=1.解:原式=12+3×32+5-1=12+32+5-1=6.(2)分析:⎝⎛⎭⎫12-3=(2-1)-3=23=8,⎝⎛⎭⎫cos 68°+5π0=1,sin 60°=32. 解:原式=-1-8+1+⎪⎪⎪⎪33-8×32=-8+ 3.点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1ap (a ≠0).(2)a 0=1(a ≠0). 方法总结 提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.考点七、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3 解析:由负数小于正数可得-3最小,故只要比较2.5和7的大小即可,由2.52<(7)2,得2.5<7,所以-3<2.5<7. 答案:A方法总结 实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.触类旁通6在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .81.(2012湖北黄石)-13的倒数是( )A .13B .3C .-3D .-132.(2012江苏南京)下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .(-2)23.(2012北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10114.(2012四川南充)计算2-(-3)的结果是( ) A .5 B .1 C .-1 D .-55.(2012四川乐山)计算:⎪⎪⎪⎪-12=__________. 6.(2012重庆)计算:4+(π-2)0-|-5|+(-1)2 012+⎝⎛⎭⎫13-2.1.下列各数中,最小的数是( )A .0B .1C .-1D .- 2 2.若|a |=3,则a 的值是( )A .-3B .3C .13D .±33.下列计算正确的是( )A .(-8)-8=0B .⎝⎛⎭⎫-12×(-2)=1 C .-(-1)0=1 D .|-2|=-24.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+15.(1)实数12的倒数是____.(2)写出一个比-4大的负无理数__________.6.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.7.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.8.如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的顺序循环运动,则第2 012步到达点________处.9.计算:|-2|+(-1)2 012-(π-4)0.参考答案导学必备知识 自主测试1.A 1-2=-12.2.A3.D A 中-|-3|=-3,B 中⎝⎛⎭⎫13-1=3,C 中9=3.4.C 0.32×100万=320 000=3.2×105.5.C 因为从数轴可知:m 小于0,n 大于0,则mn <0,m -n <0. 6.解:|-5|+16-32=5+4-9=0. 探究考点方法触类旁通1.C 因为5是整数,37是分数,4=2是整数.触类旁通2.A 因为5的相反数是-5,-15的相反数是15,15的相反数是-15.触类旁通3.B触类旁通4.C 因为0.05=5×10-2,0.005=5×10-3,0.000 5=5×10-4,0.000 05=5×10-5,故选C.触类旁通5.B 因为|m -3|≥0,且(n +2)2≥0,又因为|m -3|+(n +2)2=0,所以m -3=0且n +2=0.所以m =3,n =-2,所以m +2n =3+2×(-2)=-1.触类旁通6.A 因为根据正数大于0,0大于负数,正数大于负数,解答即可. 品鉴经典考题1.C ∵-3×⎝⎛⎭⎫-13=1,∴-13的倒数是-3. 2.C A 中,|-2|=2,是正数,故本选项错误;B 中,(-2)2=4,是正数,故本选项错误;C 中,-2<0,是负数,故本选项正确;D 中,(-2)2=4=2,是正数,故本选项错误.3.C 因为科学记数法的形式为a ×10n ,用科学记数法表示较大的数,其规律为1≤a <10,n 是比原数的整数位数小1的正整数,所以60 110 000 000=6.011×1010.4.A 原式=2+3=5.5.12根据负数的绝对值是它的相反数,得⎪⎪⎪⎪-12=12. 6.解:原式=2+1-5+1+9=8. 研习预测试题1.D 因为正数和0都大于负数,2>1,两个负数比较大小,绝对值大的反而小,所以-2最小.2.D 绝对值为3的数有+3和-3两个,且互为相反数.3.B (-8)-8=-16,⎝⎛⎭⎫-12×(-2)=1,-(-1)0=-1,|-2|=2. 4.A 因为数轴上A ,B 两点对应的实数分别为1和3, 所以OA =1,OB = 3.所以AB =OB -OA =3-1. 由题意可知,BC =AB =3-1.所以OC =OB +BC =3+(3-1)=23-1. 5.(1)2 (2)-4+2(答案不唯一)6.7 因为-3<0,11>3,1<7<3. 7.56 因为2☆3=12+13=36+26=56. 8.A 由题意知,每隔8步物体到达同一点,因为2 012÷8=251余4,所以第2 012步到达A 点.9.解:原式=2+1-1=2.。
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为
2013年全国数学中考试卷分类汇编:规律探索题
2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
2013北京中考数学试题、答案解析版
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
中考数学常考易错点:2-2《分式方程》
分式方程易错清单1.解分式方程时为什么容易出错?【例1】(2014·新疆)解分式方程:+=1.【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.【答案】方程两边都乘以(x+3)(x-3),得3+x(x+3)=x2-9,去括号,得3+x2+3x=x2-9,解得x=-4.检验:把x=-4代入(x+3)(x-3)≠0,∴x=-4是原分式方程的解.【误区纠错】最简公分母找错,加重计算负担,导致出错;在计算中,注意常数项要乘以最简公分母,不要漏乘.【例2】(2014·内蒙古呼和浩特)解方程:-=0.【解析】先去分母,化为整式方程求解即可.本题最简公分母是x(x+2)(x-2).【答案】去分母,得3x-6-x-2=0,解得x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【误区纠错】解分式方程产生增根,忘记验根.【例3】(2014·贵州黔西南州)解方程:=.【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.【答案】方程两边都乘以(x+2)(x-2),得x+2=4,解得x=2,经检验,x=2不是分式方程的解,故原分式方程无解.【误区纠错】增根不是分式方程的根,本题学生常犯错误是,漏写最后一句话:“原分式方程无解”.2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2014·云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经检验,x=30是原方程的根.故第一批盒装花每盒的进价是30元.【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师点拨1.会利用分式方程的定义判断分式方程.2.能利用最简公分母将分式方程化为整式方程,会利用换元思想解分式方程.3.会利用检验思想判断分式是否存在增根.4.会利用分式方程解决实际问题,并且注意求出的方程的解是否存在实际意义.提分策略1.分式方程的解法.解分式方程常见的误区:(1)忘记验根;(2)去分母时漏乘整式的项;(3)去分母时,没有注意符号的变化.【例1】解方程:+=1.【解析】根据解分式方程的一般步骤,将分式方程化为整式方程求解,最后再验根即可.【答案】方程两边都乘以(x+2)(x-2),得2+x(x+2)=x2-4,去括号,得2+x2+2x=x2-4,解得x=-3.检验:把x=-3代入(x+2)(x-2)≠0,∴x=-3是原分式方程的解.2.利用分式方程解决实际问题.列分式方程解决实际问题,是近几年中考的热点问题.在列方程之前,应先弄清问题中的已知数与未知数,以及它们之间的数量关系,用含未知数的式子表示相关量,然后再用题中的主要相等关系列出方程.求出解后,必须进行检验,既要检验是否为所列方程的解,又要检验是否符号题意.【例2】几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解析】设票价为x元,根据图中所给的信息可得小伙伴的人数为,根据小伙伴的人数不变,列方程求解.【答案】设票价为x元,由题意,得=+2,解得x=60,经检验,x=60是原方程的根,则小伙伴的人数为=8.故小伙伴们的人数为8人.专项训练一、选择题1. (2014·四川简阳模拟)全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为().A. +2=+0.5B. -=2-0.5C. -=2-0.5D. -=2+0.52. (2013·广西钦州四模)将分式方程1-=去分母,整理后得().A. 8x+1=0B. 8x-3=0C. x2-7x+2=0D. x2-7x-2=0二、填空题3. (2014·四川峨眉山二模)已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程是.4. (2014·北京平谷区模拟)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,则A型机器人每小时搬运千克化工原料.5. (2014·甘肃天水模拟)已知分式值为0,那么x的值为.6. (2013·广东珠海一模)方程=的解是.7. (2013·浙江锦绣·育才教育集团一模)已知关于x的方程=5的解是正数,则m的取值范围为.三、解答题8. (2014·宁夏银川外国语学校模拟)解方程:-1=.9.(2014·安徽安庆一模)甲、乙两个工程队都有能力承包一项筑路工程,乙队单独完成的时间比甲队单独完成多5天,若先由甲、乙两队合作4天后,余下的工程再由乙队单独完成,一共所用时间和甲队单独完成的时间恰好相等.则甲、乙两队单独完成此项任务各需要多少天?10. (2014·江苏南京二模)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?11. (2013·浙江湖州模拟)解方程:+=2.12. (2013·上海长宁区二模)解方程:-=.13.(2013·广东惠州惠城区模拟)小红家星期六到惠东巽寮湾游玩,从家到目的地全程80km,由于周末车流量较大,实际行驶速度是原计划的,结果实际比原计划多用了15分钟,求原计划的行驶速度是多少.14.(2013·安徽芜湖一模)2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5,6月份药品价格的月平均增长率是多少?参考答案与解析1. C[解析]自行车队的时间减去长跑队的时间=(2-0.5)小时.2. D[解析]去分母,得x(x+1)-(5x+2)=3x,去括号,得x2+x-5x-2=3x,整理,得x2-7x-2=0.3.+= [解析]若甲队单独完成需x天,则乙队单独完成需(2x-10)天,根据两人合作的工作效率等于,可列出方程.4.100[解析]设A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x-20)千克.依题意,得=,解得x=100.经检验,x=100是方程的解且符合实际意义.5.-1[解析]根据题意,得x2+3x+2=0,解得x1=-1,x2=-2(使分母等于零,所以舍去).6.x= [解析]化为整式方程,得5(2-x)=3(x+2),解得x=.经检验,x=是原方程的根.7.m>-10且m≠-4[解析]原方程化为整式方程,得2x+m=5x-10,解得x=(10+m),因为解为正数,所以(10+m)>0,解得m>-10.同时要保证分母不为零,所以m≠-4.8.去分母,得x(x+2)-(x-1)(x+2)=2x(x-1),整理,得2x2-3x-2=0,解得x1=-,x2=2.检验:把x1=-,x2=2代入(x-1)(x+2)≠0,∴原方程的根是x1=-,x2=2.9. (1)设甲队单独完成此项任务需要x天,则乙队单独完成此项任务需要(x+5)天.根据题意,得4+=1,去分母,得4(x+5)+4x+x(x-4)=x(x+5).解得x=20.经检验,x=20是原方程的解,则x+5=25(天).所以甲队单独完成此项任务需要20天,乙队单独完成此项任务需要25天.10.设原来报名参加的学生有x人,依题意,得-=4.解得x=20.经检验,x=20是原方程的解且符合题意.故原来报名参加的学生有20人.11.去分母,得x-1=2(x-3),去括号,得x-1=2x-6,解得x=5.经检验,x=5是原方程的根.12.去分母,得3(x+1)-(x-1)=x(x+5),整理,得x2+3x-4=0,解得x1=1,x2=-4.经检验,x1=1是原方程的增根,x2=-4是原方程的根,∴x=-4是原方程的根.13.设原计划的行驶速度为x千米/小时.根据题意,得-=.解得x=80.经检验,x=80是原方程的解.故原计划的行驶速度为80千米/小时.14. (1)设该药品的原价格是x元/盒,则下调后每盒价格是x元/盒.根据题意,得=+2,解得x=15.经检验,x=15是原方程的解.∴x=15,x=10.故该药品的原价格是15元/盒,则下调后每盒价格是10元/盒. (2)设5,6月份药品价格的月平均增长率是a.根据题意,得10(1+a)2=14.4,解得a1=0.2=20%,a2=-2.2(不合题意,舍去).故5,6月份药品价格的月平均增长率是20%.。
新课标版中考数学教材知识梳理第13课时二次函数的图象与性质
第三单元 函数
第13课时 二次函数的图象与性质
中考考点清单
考点1 二次函数的概念(高频考点)
1.定义:如果函数的表达式是自变量的二次多 项式,那么这样的函数称为二次函数,它的一般 式是①_y_=_a_x_2_+_b_x_+_c__(a,b,c是常数,且a≠0).
二次函数的表达式还可以表示成顶点式: y=a(x-h)2+k(a,h,k为常数,a≠0);两点式:② _y=__a_(x_-_x_1_)(_x_-_x_2)_(a,x1,x2为常数,a≠0).
2a
∵抛物线的对称轴是直线x=-1,∴y=a-b+c的值最 大,即把x=m(m≠-1)代入得:y=am2+bm+c<ab+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确, 即正确的有3个,故选B.
类型二 二次函数表达式的确定 例2(’14淄博)如图,二次数:y=x2+bx+c的图象 过点B(0,-2).它与反比例函数y 8 的图象交
函数 二次函数y=ax2+bx+c(a,b,c为常数,a≠0)
图象
a值
a>0
a<0
对称轴 直线x=③__2_ba_
顶点 坐标
b 4ac b2
④___2_a_, __4_a ___
在对称轴的左侧, 在对称轴的左侧,
即x<- b 时,y随x的 即当x<- b 时,y随
2a
2a
增大而减小;在对 x的增大而增大;在
例1题图
【解析】∵由二次函数图像可知a>0,∴函数有
最小值,故A对.∵函数图像与x轴交点为(-
2013年中考数学复习专题讲座2:新概念型问题(含答案)
2013年中考数学专题讲座二:新概念型问题一、中考专题诠释所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.考点二:运算题型中的新概念整理得:x2+2x+1-(1-2x+x2)-8=0,即4x=8,解得:x=2.故答案为:2点评:此题考查了整式的混合运算,属于新概念的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.对应训练2.(2012•株洲)若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=.考点三:探索题型中的新概念例3 (2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B 重合)、我们称∠APB是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB=°;②若⊙O的半径是1,AB=,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.思路分析:(1)①根据直径所对的圆周角等于90°即可求解;②根据勾股定理的逆定理可得∠AOB=90°,再分点P在优弧上;点P在劣弧上两种情况讨论求解;(2)根据点P在⊙O1上的位置分为四种情况得到∠APB与∠MAN、∠ANB之间的数量关系.解:(1)①若AB是⊙O的直径,则∠APB=90.②如图,连接AB、OA、OB.在△AOB中,∵OA=OB=1.AB=,∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧上时,∠AP1B=∠AOB=45°;当点P在劣弧上时,∠AP2B=(360°﹣∠AOB)=135°…6分(2)根据点P在⊙O1上的位置分为以下四种情况.第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN﹣∠ANB;第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),∴∠APB=∠MAN+∠ANB﹣180°;第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°﹣∠MAN﹣∠ANB,第四种情况:点P在⊙O2内,如图④,∠APB=∠MAN+∠ANB.点评:综合考查了圆周角定理,勾股定理的逆定理,点与圆的位置关系,本题难度较大,注意分类思想的运用.对应训练3.(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.A.(7,6)B.(7,-6)C.(-7,6)D.(-7,-6)四、中考真题演练一、选择题1.(2012•六盘水)概念:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)]等于( )A .5B .6C .7D .8点评:本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键.3. (2012•丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )A .2010B .2012C .2014D .2016二、填空题 4.(2012•常德)规定用符号[m]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为 .5.(2012•随州)概念:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非实数对(a ,b )是点M 的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是( )42.64解:∵(x1,y1)•(x2,y2)=x1x2+y1y2,∴(4,5)•(6,8)=4×6+5×8=64,故答案为64.四、中考真题演练一、选择题1.A2.B.3.D解:∵3,6,9,12,…称为三角形数,∴三角数都是3的倍数,∵4,8,12,16,…称为正方形数,∴正方形数都是4的倍数,∴既是三角形数又是正方形数的是12的倍数,∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数.故选D.二、填空题4.4解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.5.C解:如图所示,所求的点有4个,三、解答题,,(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA-OH1=2-m,由相似关系可知,M1H1=2AH1,即2=2(2-m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2-OA=m-2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学常考考点(二)⏹ (六)自变量取值范围;1.函数的自变量x 的取值范围是 。
函数11y x =-的自变量的取值范围是___.2.函数11-=x y 的自变量x 的取值范围是_____.3.函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x ≤4.函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤⏹ (七)平面展开图、三视图;1.如左下图是一个几何体的三视图,根据图中提供的数据(单位:cm )可求得这个几何体的体积为A . 2cm 3B .4 cm 3C .6 cm 3D .8 cm 32.图中所示几何体的俯视图是3.如图所示的物体是一个几何体,其主视图是( )4.右图是由四个相同的小立方体组成的立体图形,它的左视图是( )第1题图俯视图左视图主视图1111225.下图中所示的几何体的主视图是( )6.圆锥侧面展开图可能是下列图中的( )7.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体______块。
8.如图是一个正方体的表面展开图,则图中“加”字所在面的对面所标的字是( )A .北B .京C .奥D .运(八)多边形的内角和外角和、正多边形铺满地面; 1.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B .5C .6D .72.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ). A .5B .6C .7D .83.若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A .10 B .9C .8D .64. 一个正多边形的一个内角为120度,则这个正多边形的边数为( ) A .9 B.8 C.7 D.6A .B .C .D .A .B .C .D .(第8题图)5.下列图形中,单独选用一种图形不能进行平面镶嵌的图形是A. 正三角形B. 正方形C. 正五边形D. 正六边形6. 某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有().A.4种 B.3种 C.2种 D.1种7. 分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有()A.①②③B.②③④C.①②④D.①②③④都可以8.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有()A.2种B.3种C.4种D.5种9.只用下列图形不能进行平面镶嵌的是()A.正六角形 B.正五边形 C.正四边形 D.正三边形10.为了美化城市,建设中的某小广场准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是()A.1,2 B.2,1 C.2,3 D.3,211.正八边形的每个内角为____________它的外角和为____________12.若多边形的内角和为1260°,则从一个顶点出发引的对角线条数是________13.若一个正多边形的一个内角是120°,则这个正多边形的边数是__________14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______________15.如图7,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.16.若正多边形的一个外角是45°,则该正多边形的边数是.17.已知一个n边形的内角和是1080︒,则n=;则n边形的的对角线共______条 (九)分式加减、乘除的简单计算;1.化简:2222444m mn nm n-+-= 2.已知分式11xx+-的值为0,那么x的值为______________。
3.化简22a aa+的结果是 4.当x时,分式23x-没有意义5.约分:23416___________20x y xy -= 224___________________44x x x -=-+ 6.通分:(1)213x ,512xy- 公分母:____________ 通分后得:____________________ (2)21x x +,21x x- 公分母:______________ 通分后得:____________________ 7.计算:2236______105y y x x ÷= 222__________1x x x x x +=- 111x x x +=++_______ 11__________22x x x -+=--22a b a b a b-=--___________2111x xx x -+=++_____________8.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >9.化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( )A .y x - B . x y - C .xyD .y x10.化简222a b a ab-+的结果为( )A .b a - B .a b a - C .a ba +D .b -11.下列计算错误的是( )A .2m + 3n=5mn B .426a a a =÷ C .632)(x x = D .32a a a =⋅ 12.下列计算正确的是(). A 、235a a a += B 、623a a a ÷= C 、()326aa = D 、236a a a ⨯=13.化简:322)3(x x -的结果是() A .56x - B .53x - C .52x D .56x 14.计算:52a a -= .15.计算:()()2121x x ++-=(十)方格纸画中心对称、轴对称、平移、旋转图形;1. 观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2. 如图,将ABC △绕点A 逆时针旋转80°得到AB C ''△.若50BAC ∠=°,则CAB '∠的度数为( )C B 'C 'BA C DE第9题A .30°B .40°C .50°D .80°3. 如图,将ABC △绕点C 顺利针方向旋转40︒得A CB ''△,若A C AB ''⊥,则BAC ∠等于( )A.50︒ B.60︒ C.70︒ D.80︒4. 下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( )A .①②B .②③C .②④D .①④5. 如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40° B.30° C.20° D.10°6. 在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43, B .()34, C .()12--, D .()21--,7. 在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++ 8. 要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( )A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位9. 如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.A D FD 'C 'A 'B DAC10. 如图,将矩形纸片ABCD 沿EF 折叠后,点C D 、分别落在点C D ''、处.若65AFE ∠=°,则C EF '∠= 度.11. 将函数33y x =-+的图象向上平移2个单位,得到函数 的图象.12. 矩形ABCD 的边86AB AD ==,,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似于开始的位置1111A B C D 时(如图所示),则顶点A 所经过的路线长是_________.13. 如图,在126⨯的格图中(小正方形的边长均为1个单位),A ⊙的半径为1,B ⊙的半径为2,要使A ⊙与静止的B ⊙相外切..,那么A ⊙由图示位置需向右平移 个单位. 14. 如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点A 关于y 轴对称的点的坐标; (2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.15. ABC 在平面直角坐标系中的位置如图所示,将ABC 沿y 轴翻折得到111A B C ,再将111A B C 绕点O 旋转180°得到222A B C . 请依次画出111A B C 和222A B C .DCABA 1B 1C 1D 1l第12题16.如图7,正方形格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.(1)在正方形格中,作出11AB C △;(不要求写作法)(2)设格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)BCA图7。