2013北京市中考数学

合集下载

北京市2013届中考数学二轮专题突破《圆中档题》课件(知识概括+典型例题点拨)

北京市2013届中考数学二轮专题突破《圆中档题》课件(知识概括+典型例题点拨)

解:(1)证明:联结 OC. ∵OC=OA, ∴∠OAC=∠OCA. ∵AC 平分∠PAE, ∴∠DAC=∠OAC, ∴∠DAC=∠OCA, ∴AD∥OC. ∵CD⊥PA,∴∠ADC=∠OCD=90°, 即 CD⊥OC.∵点 C 在⊙O 上, ∴CD 是⊙O 的切线.
(2)过 O 作 OF⊥AB 于 F, ∴∠OFA=90°. ∵AB=8,∴AF=4. 在 Rt△AFO 中,∠AFO=90°,∴AO2=42+OF2. ∵∠FDC=∠OFA=∠DCO=90°, ∴四边形 DFOC 是矩形, ∴OC=DF,OF=CD. ∵AD∶DC=1∶3, ∴设 AD=x,则 DC=OF=3x, OA=OC=DF=DA+AF=x+4, ∴(x+4)2=42+(3x)2, 解得 x1=0(不合题意,舍去),x2=1.则 OA=5. ∴⊙O 的半径是 5.
解:(1)证明:连接 OC, ∵OD⊥BC, ∴OC=OB,CD=BD, ∴△CDO≌△BDO, ∴∠COD=∠BOD. 在△OCE 和△OBE 中, ∵OC=OB ,∠COE=∠BOE, OE=OE, ∴△OCE≌△OBE, ∴∠OBE=∠OCE=90°, 即 OB⊥BE, ∴BE 与⊙O切,证明如下:联结 CO, ∵DM⊥AB,∴∠D+∠A=90°. ∵PD=PC,∴∠D=∠PCD. ∵OC=OA,∴∠A=∠OCA, ∴∠OCA+∠PCD=90°,∴PC⊥OC, ∴直线 PC 是⊙O 的切线.
(2)∵AN∥PC,∴∠NAC=∠PCD=∠D,AN⊥OC, 设垂足是 Q,则有 NQ=AQ. 2 ∴Rt△CQA 中,tan∠QAC=tanD= , 2 设 CQ=x,则 AQ= 2x, ∴OQ=3-x. ∵OA2=OQ2+AQ2, ∴32=(3-x)2+( 2x)2,解得 x=2, ∴AQ=2 2, ∴AN=2AQ=4 2.

2013年北京市中考数学试卷及答案(解析版)

2013年北京市中考数学试卷及答案(解析版)

2013年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为A. 39.6×102B. 3.96×103C. 3.96×104D. 3.96×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n的值.3 960=3.96×1032. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°答案:C 解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。

5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m 答案:B解析:由△EAB∽△EDC,得:CE CD BE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A 符合。

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。

2013届北京市中考数学二轮专题突破复习课件代数综合题

2013届北京市中考数学二轮专题突破复习课件代数综合题

专题六┃ 京考解读
解:(1)证明:∵mx2-(3m+2)x+2m+2=0 是关于 x 的一 元二次方程, ∴Δ =[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2, ∵当 m>0 时,(m+2)2>0,即Δ >0. ∴方程有两个不相等的实数根.
专题六┃ 京考解读
(3m+2)± (m+2) (2)由求根公式得 x= . 2m 2m+2 ∴x= 或 x=1. m ∵m>0, 2m+2 2(m+1) ∴ = >1. m m 2m+2 ∵x1<x2,∴x1=1,x2= . m 2m+2 2 ∴y=x2-2x1= -2×1= . m m 2 即函数解析式为 y= (m>0). m
专题六┃ 京考解读
解:(1)证明∵Δ=(-2m)2-4(m2-4)=16>0, ∴该方程总有两个不相等的实数根. (2)由题意可知 y 轴是抛物线的对称轴, ∴-2m=0,解得 m=0. ∴此抛物线的解析式为 y=x2-4. (3)如图,当直线与 C2 交于 A(-1,0)时,b=1; 当直线与 C2 交于 B(3,0)时, b=-3, ∴-3<b<1.
专题六┃ 京考解读
解: (1)∵关于 x 的一元二次方程有实根, ∴m≠0,且Δ ≥0, ∴Δ =(2m+2)2-4m(m-1)=12m+4≥0, 1 解得 m≥- . 3 1 ∴当 m≥- 且 m≠0 时此方程有实根. 3 (2)∵在(1)的条件下,且 m 取最小的整数,∴m=1, ∴原方程化为 x2-4x=0, 解得 x1=0,x2=4.
年份 分值 2008~2012 年北京第23 题考点对比
2008 7分
考点
根的判别式、求根、构造函 数、利用函数图象求取值范围

2013届北京市中考数学二轮专题突破复习课件几何综合题

2013届北京市中考数学二轮专题突破复习课件几何综合题

专题七┃ 京考解读
解: (1)线段 PG 与 PC 的位置关系是 PG PG⊥PC; = 3. PC (2)猜想:(1)中的结论没有发生变化. 证明:如图,延长 GP 交 AD 于点 H,联结 CH、CG. ∵P 是线段 DF 的中点,∴FP=DP. 由题意可知 AD∥FG. ∴∠GFP=∠HDP. ∵∠GPF=∠HPD, ∴△GFP≌△HDP. ∴GP=HP,GF=HD. ∵四边形 ABCD 是菱形, ∴CD=CB, ∠HDC=∠ABC=60°.
7分 旋转变换、对称变换、构造全等三角形
专题七┃ 京考解读
京考解读与指导
► 热考一 阅读探究型问题
例 1 请阅读下列材料: 问题:如图①,在菱形 ABCD 和菱形 BEFG 中,点 A,B,E 在同一条直线上,P 是线段 DF 的中点,联结 PG,PC.若∠ABC= PG ∠BEF=60°,探究 PG 与 PC 的位置关系及 的值. PC 小聪同学的思路是:延长 GP 交 DC 于点 H,构造全等三角形, 经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: PG (1)写出上面问题中线段 PG 与 PC 的位置关系及 的值; PC
专题七┃ 京考解读
图形变化问题的探究,关键是把握在点或图形运动过程 中或是几何图形背景变换过程中始终不变的几何量或性质, 对于变化的量要分析它的运动状态, 分析是否需要分类讨论, 分析它们和不动量之间可能有什么关系, 如何建立这种关系.题
例 3 问题: 已知△ABC 中, ∠BAC=2∠ACB, D 是△ABC 点 内的一点, AD=CD, 且 BD=BA.探究∠DBC 与∠ABC 度数的比 值. 请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以 证明. (1) 当∠BAC=90°时,依问题中的条件补全图形.观察图 形,AB 与 AC 的数量关系为________;当推出∠DAC=15°时, 可进一步可推出∠DBC 的度数为________;可得到∠DBC 与 ∠ABC 度数的比值为________;

北京市2013年中考数学试题(解析版)

北京市2013年中考数学试题(解析版)

个完全相同的不透明礼盒中,准备将它们奖给小本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。

采取验证法和排除法求解较为简单。

本题考点:两点间距离、线段.难度系数:0.4分解因式: .269mn mn m ++=的代数式表示.)本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年毫克所需的银杏树叶的片数与一年滞尘毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,解得检验:将带入中,不等于零,则是方程的根=CF=请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011每年需新增运营里程多少千米?【解析】228;1000;82.75【点评】本题将北京市轨道交通发展规划与统计结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力。

这是北京市这几年考核统计这部分知识的常见题型本题考点:条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想难度系数:0.622.操作与探究:P(1)对数轴上的点进行如下操作:先把点2,在平面直角坐标系中,对正方形及其内部的每个xOy ABCD 点进行如下操作:把每个点的横、纵坐标都乘以同一种实数到的点先向右平移个单位,再向上平移个单位(m n m 得到正方形及其内部的点,其中点的对应点分别为A B C D ''''A B ,个单位。

2013年北京市数学中考一、二模拟题分类汇编:操作探究

2013年北京市数学中考一、二模拟题分类汇编:操作探究

操作探究1.(2013.昌平一模22)(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H. 已知S□BHPE = 3,S□PFDG = 5,则;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.2.(2013.燕山一模22)阅读下列材料:问题:如图⑴,已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF =45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:⑴图⑴中线段BE、EF、FD之间的数量关系是;⑵如图⑵,已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;⑶如图⑶,已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.3.(2013.朝阳一模22)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).4.(2013.海淀一模22)问题:如图1,、、、是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形,使它的顶点、、、分别在直线、、、上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了的正方形网格,得到了辅助正方形,如图2所示, 再分别找到它的四条边的三等分点、、、,就可以画出一个满足题目要求的正方形.请回答:图2中正方形的边长为 .请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为,边长为1)中,画出一个等边△,使它的顶点、、落在格点上,且分别在直线a、b、c上;(3)如图4,、、是同一平面内的三条平行线,、之间的距离是,、之间的距离是,等边△的三个顶点分别在、、上,直接写出△的边长.图3 图45.(2013.东城一模22)如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.6.(2013.怀柔一模22)理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.....一条直线l与方形环的边线有四个交点、、、.小明在探究线段与的数量关系时,从点、向对边作垂线段、,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l与方形环的对边相交时(22题图1),直线l分别交、、、于、、、,小明发现与相等,请你帮他说明理由;(2)直线l与方形环的邻边相交时(22题图2),l分别交、、、于、、、,l与的夹角为,请直接写出的值(用含的三角函数表示).7.(2013.门头沟一模22)操作与探究:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是,;点P从原点O出发,平移2次后可能到达的点的坐标是,,;点P从原点O出发,平移3次后可能到达的点的坐标是;(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上,….若点P平移5次后可能到达的点恰好在直线上,则点P的坐标是;(3)探究运用:点P从原点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.8.(2013.平谷一模22)对于平面直角坐标系中的任意两点,我们把叫做两点间的直角距离,记作.(1)已知点,那么两点间的直角距离=_____________;(2)已知O为坐标原点,动点满足,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有满足条件的图形;(3)设是一定点,是直线上的动点,我们把的最小值叫做点到直线的直角距离.试求点到直线的直角距离..9.(2013.石景山一模22)问题解决:已知:如图,为上一动点,分别过点、作于点,于点,联结、.(1)请问:点满足什么条件时,的值最小?(2)若,,,设.用含的代数式表示的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式的最小值.来源:学,科,网]10.(2013.顺义一模22)如图1,在四边形中,,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).小明的思路是:在图1中,连结,取的中点,连结,根据三角形中位线定理和平行线性质,可证得.问题:如图2,在中,,点在上,,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.11.(2013.通州一模22)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形的边长为2,是的中点,沿将菱形剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为、、,周长分别记为、、,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.12.(2013.西城一模22)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0) .①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.13.(2013.延庆一模22)阅读下面材料:将正方形ABCD(如图1)作如下划分:第1次划分:分别联结正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD划分成有2013个正方形的图形?需说明理由.14.(2013.昌平二模22)(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气. 泵站修在管道的什么地方,可使所用的输气管线最短?解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;(2)【问题拓展】已知a>0,b>0,且a+b=2,写出的最小值;(3)【问题延伸】已知a>0,b>0,写出以、、为边长的三角形的面积.15.(2013.朝阳二模22)阅读下列材料:小华遇到这样一个问题,如图1, △ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.16.(2013.大兴二模22)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B 落在直线上的T处,折痕为MN.当点T 在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动(点M可以与点A重合,点N可以与点C重合),求线段AT长度的最大值与最小值的和(计算结果不取近似值).17.(2013.东城二模22)阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:①在OA,OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于为半径作弧,两弧在内交于点C.③作射线OC,则OC就是的平分线小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:作法: ①利用三角板上的刻度,在OA ,OB 上分别截取OM ,ON ,使OM =ON .②分别过以M ,N 为OM ,ON 的垂线,交于点P.③作射线OP ,则OP 就是的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).18.(2013.房山二模22)如图1,在矩形MNPQ 中,点E ,F ,G ,H 分别在边NP ,PQ ,QM ,MN 上,当时,我们称四边形EFGH 为矩形MNPQ 的反射四边形.已知:矩形ABCD 的四个顶点均为边长为1的正方形网格的格点,请解决下列问题: (1)在图2中,点E ,F 分别在BC ,CD 边上,请作出矩形ABCD 的反射四边形EFGH ,并求出反射四边形EFGH 的周长.(2)在图3中作出矩形ABCD 的所有反射四边形,并判断它们的周长之间的关系.19.(2013.密云二模22)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(2013.石景山二模22)如图,在矩形ABCD中,AB=3,BC=4,点M、N、分别在BC、AB上,将矩形ABCD沿MN折叠,设点B的对应点是点E.(1)若点E在AD边上,BM=,求AE的长;(2)若点E在对角线AC上,请直接写出AE的取值范围:.解:21.(2013.丰台二模22)操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+()=3.若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA 平移一周.请用“平移量”加法算式表示动点P的平移过程.22.(2013.海淀二模22)如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.图1 图2 图3(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.23.(2013.怀柔二模22)探究与应用已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.(1)如图,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1;(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦,若点P的坐标为(m,0)时,则b﹦;(3)依据(2)的规律,如果点P的坐标为(6,0),请你直接写出点M1和点M的坐标.解:(1)如图(2)k﹦,b﹦;(3)M1的坐标为(,),M的坐标为(,).24.(2013.西城二模22)在平面直角坐标系xOy中,点经过变换得到点,该变换记作,其中为常数.例如,当,且时,.(1) 当,且时,= ;(2) 若,则= ,= ;(3) 设点是直线上的任意一点,点经过变换得到点.若点与点重合,求和的值.第七章操作探究参考答案1.(2013.昌平一模22)解:(1)□AEPH 和□PGCF或□ABGH 和□EBCF 或□AEFD 和□HGCD . … 1分(2)1. ……………………………… 2分(3)24.……………………………… 4分2.(2013.燕山一模22)⑴线段BE、EF、FD之间的数量关系是EF=BE+FD; (1)分⑵AG的长为 5 ,△EFC的周长为 10 ;………………………3分⑶△AEF的面积为 15 .………………………5分3.(2013.朝阳一模22)解: 5;……………………………………………2分如图;………………………………………3分. ………………………………………5分4.(2013.海淀一模22)(1).………………………2分(2)①如图:(答案不唯一) …4分②.………………………5分5.(2013.东城一模22)解:(1)拼接成的四边形所图虚线所示;………………2分(2);. …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB=4,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2(+4)=;当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为.)6.(2013.怀柔一模22)理解与应用:…………………1分=∠N’NF……………………2分………………3分)……………………………5分7.(2013.门头沟一模22)解:(1)(0,6),(1,4),(2,2),(3,0).………………………2分(2)平移5次后P在y=-2x+10上,又在y=3x上,联立方程组即可。

北京市2013届中考数学二轮专题突破《四边形中档解答题》(知识概括+典型例题点拨)

北京市2013届中考数学二轮专题突破《四边形中档解答题》(知识概括+典型例题点拨)

在 Rt△AFB 中, BF 1 ∵cosB=AB= , 2 ∴∠B=60°. ∵BF=1, ∴AF= 3. ∵FC=3,由勾股定理,得 AC=2 3. ∴∠B=60°,AC=2 3.
方法二:过 A 点作 AE∥DC 交 BC 于点 E. ∵AD∥BC, ∴四边形 AECD 是平行四边形. ∴AD=EC,AE=DC. ∵AB=DC=AD=2,BC=4, ∴AE=BE=EC=AB. 可证△BAC 是直角三角形,△ABE 是等边三角形. ∴∠BAC=90°,∠B=60°. 在 Rt△ABC 中,AC=AB· tan60°=2 3. ∴∠B=60°,AC=2 3.

热考一
四边形中有关计算
例 1 四边形 ABCD 中,∠ABC =90°,∠CAB=30°,DE⊥AC 于 E, 且 AE=CE, 若 DE=5, EB=12, 求四边形 ABCD 的周长.
解:∵∠ABC=90°,AE=CE,EB=12, ∴EB=AE=CE=12. ∴AC=AE+CE=24. ∵在 Rt△ABC 中,∠CAB=30°, ∴BC=12,AB=AC· cos30°=12 3. ∵DE⊥AC,AE=CE,∴AD=DC. 在 Rt△ADE 中, 由勾股定理得 AD= AE2+DE2= 122+52=13. ∴DC=13. ∴四边形 ABCD 的周长=AB+BC+CD+DA=38+12 3.
例 3 如图 Z3-3,在梯形 ABCD 中, AD∥BC, ∠B=90°, ∠C=45°, AD=1,BC=4,E 为 AB 的中点, EF∥Dຫໍສະໝຸດ 交 BC 于点 F,求 EF 的长.
解: 方法一:如图,过点 D 作 DG⊥BC 于点 G. ∵AD∥BC,∠B=90°,∴∠A=90°.∴四边形 ABGD 为矩形. ∴BG=AD=1,AB=DG. ∵BC=4,∴GC=3. ∵∠DGC=90°,∠C=45°, ∴∠CDG=45°.∴DG=GC=3. ∴AB=3. 又∵E 为 AB 的中点,∴BE= ∵EF∥DC,∴∠EFB=45°. 在△BEF 中,∠B=90°. ∴EF= BE 3 2 = . 2 sin45° 1 3 AB= . 2 2

2013年北京市中考数学试卷-答案

2013年北京市中考数学试卷-答案

1 / 13北京市2013年高级中等学校招生考试年高级中等学校招生考试数学答案解析一、选择题 1.【答案】B【解析】解:将3960用科学记数法表示为33.9610´【提示】科学记数法的表示形式为10n a ´的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.是负数.【考点】科学记数法—表示较大的数.表示较大的数. 2.【答案】D【解析】解:∵34143æöæö-´-=ç÷ç÷èøèø,∴34-的倒数是43-.【提示】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.,我们就称这两个数互为倒数. 【考点】倒数.【考点】倒数.3.【答案】C【考点】概率公式.【考点】概率公式.【解析】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是35. 【提示】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.比值就是其发生的概率的大小.4.【答案】C 【解析】解:∵12Ð=Ð,340Ð=°,∴()1111803180407022()Ð=´°-Ð=´°-°=°,∵a b ∥,∴4170Ð=Ð=°.【提示】根据平角的定义求出1Ð,再根据两直线平行,内错角相等解答.,再根据两直线平行,内错角相等解答. 【考点】平行线的性质.【考点】平行线的性质.5.【答案】B【解析】解:∵AB BC ^,CD BC ^,∴BAE CDE △∽△,∴AB BECD CE=∵20BE =m ,10CE =m ,20CD =m ,∴202010AB =解得:40AB =【提示】由两角对应相等可得BAE CDE △∽△,利用对应边成比例可得两岸间的大致距离AB . 【考点】相似三角形的应用.【考点】相似三角形的应用. 6.【答案】A【解析】解:A .不是轴对称图形,是中心对称图形.故此选项正确;.不是轴对称图形,是中心对称图形.故此选项正确; B .是轴对称图形,也是中心对称图形.故此选项错误;.是轴对称图形,也是中心对称图形.故此选项错误; C .是轴对称图形,不是中心对称图形.故此选项错误;.是轴对称图形,不是中心对称图形.故此选项错误; D .是轴对称图形,不是中心对称图形.故此选项错误..是轴对称图形,不是中心对称图形.故此选项错误. 【提示】根据轴对称图形与中心对称图形的概念求解.【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形,轴对称图形.【考点】中心对称图形,轴对称图形. 7.【答案】B【解析】解:根据题意得:【解析】解:根据题意得:(509014040)50=+++¸32050=¸6.4=(小时). 故这50名学生这一周在校的平均体育锻炼时间是6.4小时.小时.【提示】根据加权平均数的计算公式列出算式5106157208()550´+´+´+´¸,再进行计算即可.,再进行计算即可. 【考点】加权平均数.【考点】加权平均数. 8.【答案】A【解析】解:作OC AP ^,如图,则1122AC AP x ==, 在Rt AOC △中,1OA =,2222111442OC OA AC x x =-=-=-, 所以211402()24y OC AP x x x ==-££g g ,所以y 与x 的函数关系的图像为A 选项.选项.【提示】作OC AP ^,根据垂径定理得1122AC AP x ==,再根据勾股定理可计算出2142OC x =-,然后根据三角形面积公式得到21402()4y x x x =-££g ,再根据解析式对四个图形进行判断.,再根据解析式对四个图形进行判断.【考点】动点问题的函数图像.【考点】动点问题的函数图像. 二、填空题9.【答案】2(2)a b -【解析】解:244ab ab a -+ 2(44)a b b =-+(提取公因式)(提取公因式) 2(2)a b =-(完全平方公式)(完全平方公式)【提示】先提取公因式a ,再根据完全平方公式进行二次分解.完全平方公式:2222()a ab b a b -+=- 【考点】提公因式法与公式法的综合运用.【考点】提公因式法与公式法的综合运用. 10.【答案】21x +【解析】解:抛物线21y x =+开口向上,且与y 轴的交点为(0,1). 【提示】根据二次函数的性质,开口向上,要求a 值大于0即可.即可. 【考点】二次函数的性质.【考点】二次函数的性质.11.【答案】20【考点】矩形的性质,三角形中位线定理.【考点】矩形的性质,三角形中位线定理.【提示】根据题意可知OM 是ADC △的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.的周长. 【解析】解:∵O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,的中点,∴112.522OM CD AB ===,∵5AB =,12AD =,∴2251213AC =+=,∵O 是矩形ABCD 的对角线AC 的中点,的中点, ∴16.52BO AC ==,∴四边形ABOM 的周长为56 6.5 2.520AB AM BO OM +++=+++=12.【答案】32-13- 0,1-【解析】解:当12a =时,1B 的纵坐标为12,1B 的纵坐标和2A 的纵坐标相同,的纵坐标相同, 则2A 的横坐标为232a =-,2A 的横坐标和2B 的横坐标相同,的横坐标相同,则2B 的纵坐标为223b =-,2B 的纵坐标和3A 的纵坐标相同,的纵坐标相同,则3A 的横坐标为313a =-,3A 的横坐标和3B 的横坐标相同,的横坐标相同,则3B 的纵坐标为33b =-,3B 的纵坐标和4A 的纵坐标相同,的纵坐标相同, 则4A 的横坐标为42a =,4A 的横坐标和4B 的横坐标相同,的横坐标相同,则4B 的纵坐标为412b =, 即当12a =时,232a =-,313a =-,42a =,532a =-,112b =,223b =-,33b =-,412b =,523b =-,∵20136713=,∴2013313a a ==-;点1A 不能在y 轴上(此时找不到1B ),即0x ¹,点1A 不能在x 轴上(此时2A ,在y 轴上,找不到2B ), 即10y x =--¹,解得:1x ¹-; 综上可得1a 不可取01-、【提示】求出2a ,3a ,4a ,5a 的值,可发现规律,继而得出2013a 的值,根据题意可得1A 不能在x 轴上,也不能在y 轴上,从而可得出1a 不可能取的值.不可能取的值. 【考点】反比例函数综合题.【考点】反比例函数综合题. 三、解答题 13.【答案】见解析【答案】见解析【解析】证明:∵DE AB ∥,∴CAB ADE Ð=Ð,∵在ABC △和DAE △中,CAB ADEAB DA B DAEÐ=Ðìï=íïÐ=Ðî, ∴()ABC DAE ASA △≌△,∴BC AE =.【提示】根据两直线平行,内错角相等求出CAB ADE Ð=Ð,然后利用“角边角”证明ABC △和DAE △全等,再根据全等三角形对应边相等证明即可.等,再根据全等三角形对应边相等证明即可. 【考点】全等三角形的判定与性质.【考点】全等三角形的判定与性质.14.【答案】5【解析】解:原式2122452=+-´+=【提示】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.法则计算即可.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.15.【答案】115x -<<【解析】解:32123x x x x >-ìïí+>î①②,解不等式①得,1x >-,解不等式②得,15x <,所以,不等式组的解集是115x -<<. 【提示】先求出两个不等式的解集,再求其公共解.【提示】先求出两个不等式的解集,再求其公共解. 【考点】解一元一次不等式组.【考点】解一元一次不等式组. 16.【答案】12【解析】解:∵2410x x --=,即241x x -=,∴原式222222412931()29343912x x x y y x x x x =-+-+-=-+=-++= .【提示】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.算即可求出值.【考点】整式的混合运算—化简求值.化简求值. 17.【答案】2.5平方米平方米【解析】解:设每人每小时的绿化面积x 平方米,由题意,得平方米,由题意,得 18018036(62)x x-=+,解得: 2.5x =经检验, 2.5x =是原方程的解,且符合题意.是原方程的解,且符合题意. 答:每人每小时的绿化面积2.5平方米.平方米.【提示】设每人每小时的绿化面积x 平方米,根据增加2人后完成的时间比原来的时间少3小时为等量关系建立方程求出其解即可.系建立方程求出其解即可. 【考点】分式方程的应用.【考点】分式方程的应用.18.【答案】(1)52k <(2)2【解析】解:(1)根据题意得:44(24)2080k k =--=->△,解得:52k <;(2)由k 为正整数,得到1k =或2,利用求根公式表示出方程的解为152x k =-±-, ∵方程的解为整数,∴52k -为完全平方数,则k 的值为2.【提示】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k 的范围;的范围;(2)找出k 范围中的整数解确定出k 的值,经检验即可得到满足题意k 的值.的值. 【考点】根的判别式,一元二次方程的解,解一元二次方程—公式法.公式法. 四、解答题19.【答案】(1)见解析)见解析 (2)13【解析】证明:(1)在ABCD Y 中,AD BC ∥,且AD BC =.∵F 是AD 的中点,∴12DF AD =.又∵12CE BC =,∴DF CE =,且DF CE ∥, ∴四边形CEDF 是平行四边形;是平行四边形;(2)解:如图,过点D 作DH BE ^于点H .在ABCD Y 中,∵60B Ð=°,∴60DCE Ð=°.∵4AB =,∴4CD AB ==,∴122CH CD ==,23DH =.在CEDF Y 中,132CE DF AD ===,则1EH = ∴在Rt DHE △中,根据勾股定理知2(23)113DE =+=.【提示】(1)由“平行四边形的对边平行且相等”的性质推知AD BC ∥,且AD BC =;然后根据中点的定义、结合已知条件推知四边形CEDF 的对边平行且相等(DF CE =,且DF CE ∥),即四边形CEDF 是平行四边形;行四边形;(2)如图,过点D 作DH BE ^于点H ,构造含30度角的直角DCH △和直角DHE △.通过解直角DCH △和在直角DHE △中运用勾股定理来求线段ED 的长度.的长度.【考点】平行四边形的判定与性质,含30度角的直角三角形,勾股定理.度角的直角三角形,勾股定理. 20.【答案】(1)见解析)见解析 (2)【解析】(1)证明:P A ,PC 与O e 分别相切于点A ,C ,∴APO EPD Ð=Ð且PA AO ^,∴90P AO Ð=°, ∵AOP EOD Ð=Ð,90PAO E Ð=Ð=°∴APO EDO Ð=Ð,∴EPD EDO Ð=Ð; (2)解:连接OC ,∴6P A PC ==,∵3tan 4PDA Ð=,∴在Rt P AD △中,8AD =,10PD =,∴4CD =,∵3tan 4PDA Ð=,∴在Rt OCD △中,3OC OA ==,5OD =, ∵EPD ODE Ð=Ð,∴DEP OED △∽△,∴2DP PE ED DO DE OE===,∴2DE OE =在Rt OED △中,222OE DE OD +=,即2255OE =,∴5OE =.【提示】(1)根据切线长定理和切线的性质即可证明:EPD EDO Ð=Ð;(2)连接OC ,利用3tan 4PDA Ð=,可求出4CD =,再证明OED DEP △∽△,根据相似三角形的性质和勾股定理即可求出OE 的长.的长.【考点】切线的性质,相似三角形的判定与性质.【考点】切线的性质,相似三角形的判定与性质. 21.【答案】(1)0.03 (2)见解析)见解析 (3)33.710´【解析】解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:0.0415%0.0320%´=(平方千米); (2)植物花园的总面积为:0.0420%0.2¸=(平方千米), 则第九届园博会会园区陆地面积为:0.218 3.6´=(平方千米), 第七、八界园博会的水面面积之和为:10.5 1.5+=(平方千米), 则第九届园博会水面面积为1.5平方千米,如图:平方千米,如图:(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:35007.4 3.710´»´.【提示】(1)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;(2)先算出植物花园的总面积,然后可求出第九届园博会会园区陆地面积,根据图像求出第七、八界园博会的水面面积之和,补全条形统计图即可;会的水面面积之和,补全条形统计图即可;(3)根据图表所给的信息,求出停车位数量与单日最多接待游客量成正比例关系,算出比值,求出大约需要设置的停车位数量.要设置的停车位数量.【考点】条形统计图,用样本估计总体,统计表,扇形统计图.【考点】条形统计图,用样本估计总体,统计表,扇形统计图. 22.【答案】(1)a (2)2(3)23【解析】解:(1)四个等腰直角三角形的斜边长为a ,则斜边上的高为12a ,每个等腰直角三角形的面积为:2111224a a a =g ,则拼成的新正方形面积为:22144a a ´=,即与原正方形ABCD 面积相等,∴这个新正方形的边长为a ;(2)∵四个等腰直角三角形的面积和为2a ,正方形ABCD 的面积为2a ,∴2144122ARE DWH GCT SBF AREMNPQ S S S S S S =+++==´´=△△△△△正方形; (3)如答图1所示,分别延长RD ,QF ,PE ,交F A ,EC ,DB 的延长线于点S ,T ,W .由题意易得:RSF △,QET △,PDW △均为底角是30°的等腰三角形,其底边长均等于ABC △的边长. 不妨设等边三角形边长为a ,则SF AC A ==. 如答图2所示,过点R 作RM SF ^于点M ,则1122MF SF a ==,在Rt RMF △中,133tan30236RM MF a a =°=´=g ,∴21332612RSFSa a a ==g △ 过点A 作AN SD ^于点N ,设AD AS x ==,则1sin302AN AD x =°=g ,22cos303SD ND AD x ==°=,∴2111332224ADS S SD AN x x x ===g g g △ ∵三个等腰三角形RSF △,QET △,PDW △的面积和223333124RSF S a a ==´=△,∴3RPQ ADS CFT BEW ADSS S S S S =++=△△△△△,∴233334x =´,得249x =,解得23x =或23x =-(不合题意,舍去)舍去)∴23x =,即AD 的长为23.【考点】四边形综合题.【考点】四边形综合题.【提示】(1)四个等腰直角三角形的斜边长为a ,其拼成的正方形面积为2a ,边长为a ;(2)如题图2所示,正方形MNPQ 的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ 的面积;的面积;(3)参照小明的解题思路,对问题做同样的等积变换.)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形RSF △,QET △,PDW △的面积和等于等边三角形ABC △的面积,的面积,故阴影三角形PQR △的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD 的长度.的长度. 五、解答题23.【答案】(1)(0,2)A -(1,0)B(2)22y x =-+; (3)2242y x x =--【解析】解:(1)当0x =时,2y =-,∴(0,2)A -,抛物线的对称轴为直线212m x m-=-=,∴(1,0)B ;(2)易得A 点关于对称轴直线1x =的对称点(2,2)A ¢-,则直线l 经过A ¢、B ,设直线l 的解析式为(0,)y kx b k =+¹,则220k b k b +=-ìí+=î,解得22k b =-ìí=î,所以,直线l 的解析式为22y x =-+; (3)∵抛物线的对称轴为直线1x =,∴抛物线在23x <<这一段与在10x -<<这一段关于对称轴对称,结合图像可以观察到抛物线在21x -<<-这一段位于直线l 的上方,在10x -<<这一段位于直线l 的下方,的下方, ∴抛物线与直线l 的交点的横坐标为1-,当1x =-时,2(1)24y =-´-+=,所以,抛物线过点(1,4)-,当1x =-时,224m m +-=,解得2m =,∴抛物线的解析式为2242y x x =--【提示】(1)令0x =求出y 的值,即可得到点A 的坐标,求出对称轴解析式,即可得到点B 的坐标;的坐标; (2)求出点A 关于对称轴的对称点(2,2)-,然后设直线l 的解析式为()0y kx b k =+¹,利用待定系数法求一次函数解析式解答即可;一次函数解析式解答即可;(3)根据二次函数的对称性判断在23x <<这一段与在10x -<<这一段关于对称轴对称,然后判断出抛物线与直线l 的交点的横坐标为1-,代入直线l 求出交点坐标,然后代入抛物线求出m 的值即可得到抛物线解析式.解析式.【考点】二次函数的性质,一次函数图像与几何变换,二次函数图像上点的坐标特征.24.【答案】(1)1302ABD a Ð=°-(2)见解析)见解析(3)30a =°【解析】(1)解:∵AB AC =,A a Ð=,∴ABC ACB Ð=Ð,180ABC ACB A Ð+Ð=°-Ð, ∴1118(92)002ABC ACB A a Ð=Ð=°-Ð=°-, ∵ABD ABC DBC Ð=Ð-Ð,60DBC Ð=°,即1302ABD a Ð=°-;(2)ABE △是等边三角形,证明:连接AD ,CD ,ED ,∵线段BC 绕B 逆时针旋转60°得到线段BD ,则BC BD =,60DBC Ð=°,∵60ABE Ð=°,∴160302ABD DBE EBC a Ð=°-Ð=Ð=°-, 且BCD △为等边三角形,在ABD △与ACD △中AB AC AD AD BD CD=ìï=íï=î∴()ABD ACD SSS △≌△,∴1122BAD CAD BAC a Ð=Ð=Ð=,∵150BCE Ð=°, ∴111803015022BEC BAD a a æöç÷èÐ=°-°--°==Ðø,在ABD △和EBC △中BEC BAD EBC ABD BC BDÐ=ÐìïÐ=Ðíï=î ∴()ABD EBC AAS △≌△,∴AB BE =,∴ABE △是等边三角形;是等边三角形;(3)解:∵60BCD Ð=°,150BCE Ð=°,∴1506090DCE Ð=°-°=°,∵45DEC Ð=°,∴DEC △为等腰直角三角形,∴DC CE BC ==,∵150BCE Ð=°,∴1(180150)152EBC Ð=°-°=°, ∵130152EBC a Ð=°-=°,∴30a =°.【提示】(1)求出ABC Ð的度数,即可求出答案;的度数,即可求出答案;(2)连接AD ,CD ,ED ,根据旋转性质得出BC BD =,60DBC Ð=°,求出1302ABD EBC a Ð=Ð=°-,且BCD △为等边三角形,证ABD ACD △≌△, 推出1122BAD CAD BAC a Ð=Ð=Ð=,求出12BEC BAD a Ð==Ð,证ABD EBC △≌△,推出AB BE =即可;可;(3)求出90DCE Ð=°,DEC △为等腰直角三角形,推出DC CE BC ==,求出15EBC Ð=°, 得出方程130152a °-=°,求出即可.,求出即可. 【考点】全等三角形的判定与性质,等边三角形的性质,等腰直角三角形,旋转的性质.25.【答案】(1)①,D E②03m ££(2)1r ³【解析】解:(1)①如图1所示,过点E 作O 的切线设切点为R ,∵O e 的半径为1,∴1RO =,∵2EO =,∴∠30OER =°,根据切线长定理得出O e 的左侧还有一个切点,使得组成的角等于30°,∴E 点是O e 的关联点,的关联点,∵11,22D æöç÷èø,(0,2)E -,()23,0F ,∴OF EO >,DO EO <,∴D 点一定是O e 的关联点,而在O e 上不可能找到两点与点F 的连线的夹角等于60°,故在点D .E 、F 中,O e 的关联点是,D E ;②如图2,由题意可知,若P 要刚好是C e 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,由图2可知60APB Ð=°,则30CPB Ð=°,连接BC ,则22sin BC PC BC r CPB===Ð,∴若P 点为C e 的关联点,则需点P 到圆心的距离d 满足02d r ££;由上述证明可知,考虑临界点位置的P 点,如图3,点1P 到原点的距离1212OP =´=,过点O 作直线l 的垂线OH ,垂足为H ,23tan 32FO OGF OG Ð===,∴60OGF Ð=°,∴sin 603OH OG =°=; 13sin 2OH OPH OP Ð==,∴160OPH Ð=°,可得点1P 与点G 重合,过点2P 作2P M x ^轴于点M ,可得230P OM Ð=°,∴2cos303OM OP =°=,从而若点P 为O e 的关联点,则P 点必在线段12P P 上,∴03m ££;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;的中点;考虑临界情况,如图4,即恰好E 、F 点为K e 的关联时,则1222KF KN EF ===,此时,1r =,故若线段EF 上的所有点都是某个圆的关联点,这个圆的半径r 的取值范围为1r ³.【提示】(1)①根据关联点的定义得出E 点是O e 的关联点,进而得出F 、D ,与O e 的关系;的关系;②若P 要刚好是⊙C 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,进而得出PC 的长,进而得出点P 到圆心的距离d 满足02d r ££,再考虑临界点位置的P 点,进而得出m 的取值范围;的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;再考虑临界情况,即恰好E 、F 点为K 的关联时,则1222KF KN EF ===,即可得出圆的半径r 的取值范围.的取值范围.【考点】圆的综合题.【考点】圆的综合题.。

2013年北京中考数学试题答案及解析

2013年北京中考数学试题答案及解析

正保远程教育旗下品牌网站 美国纽交所上市公司(NYSE:DL)中小学教育网 2013年北京中考数学试题答案及解析中小学教育网教师对今年北京中考数学试题与2012年北京市中考数学试卷和初三强化提高班的课程、模拟题进行了一些分析和对比,发现:2013年北京中考数学试卷,题型结构总体稳定,灵活性加强,难度稍微有点加深;今年中考的考查知识点与网校课程及讲义完全契合,95%左右的题目与课程讲义中给出的题目所考查的知识点完全相同,约有65%的题目与讲义中老师给出的题目只差一些具体数字(解题方法完全相同)。

这其中,多边形问题、常见辅助线的构造问题、平移旋转问题、应用题、二次函数图像与解析式、函数与圆综合题等都结合近年的中考真题做了专题讲解与复习。

可以这样说,学过这个班级的同学,对考题中90%的题目不陌生,甚至还有不少题目老师 “讲过”。

下面是网校老师对2013年北京中考数学试卷的分析及原题解析,供大家参考。

一、题型、题量及分值比例分布基本涵盖了《考试说明》所要求的所有知识点,如:数与代数、三角形、四边形、圆、一次函数、二次函数。

题量共25道题目,共72分。

难度比例约为:5:3:2二、试卷总体特点1、本套试卷在保持对基础知识的考查力度上,更加重视对数学思维方法和学生综合素质能力的考察,体现了“实践与操作,综合与探究,创新与应用”的命题特点。

2、在题型设计上,总体稳定,但加强了“实际应用问题”“几何探究问题”的考察力度与难度。

第17题,第22题,第22题都与实际生活联系比较紧密,第22题难度比较大;第22题难度加大,第25题难度与去年相比难度略有降低;如第22题是几何探究问题,重点考察学生探究,推理能力,难度加大。

试卷的分析,我们可以看出,2013年中考数学书卷在“稳中求变”的过程中,试题难度有所增加,由此可见这套试卷更加注重考察学生的综合能力。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学记数法表示应为A .39.6×102B .3.96×103C .3.96×104D .0.396 ×104【考点】科学记数法与有效数字。

2013届北京市中考数学复习PPT第一单元

2013届北京市中考数学复习PPT第一单元

单 项 式
系数
第3课时┃ 考点聚焦 ► 名 称 同 类 项 考点2 同类项、合并同类项 概念 相同 所含字母________,并且相同 相同 字母的指数也分别________的 项叫做同类项,几个常数项也 是同类项 防错提醒 同类项与系数无关, 也与字母的排列顺序 无关,如-7xy与yx是 同类项
第1课时┃ 考点聚焦
京考探究
年份 2008 题型 选择 4分 选择4分 选择4分 绝对值 科学 记数法 非负数 和为零
考情分析
2009 2010 2011 2012 2013 你来猜
相反数 科学 记数法
倒数 科学 记数法
绝对值 科学 记数法
相反数 科学 记数法
第1课时┃ 京考探究
3 22 例 2 [2011²东城八上期末] 在实数 5, , -8, , π 7 0.3 中,无理数有 ( B ) A.1 个 B.2 个 C.3 个 D.4 个
第2课时┃ 京考探究
3 1 [解析] 分别求出 x2= ,x3=4,x4=- ,„,寻找循 4 3 环规律“差倒数为 3 个循环的数”,∵2012=670³3+2, 3 ∴x2012=x2= . 4
本题属于新定义和找规律的综合题.定义新运算是 指用一种新的运算符号或表达式表示一种新的运算规则, 解决此类题的关键是要正确理解新定义的算式含义,严格 按照新定义的计算顺序,将数值代入算式中,再把它转化 为一般的四则运算,然后进行计算.
相反数
倒数
第1课时┃ 考点聚焦
名称 定义 性质
a(a>0) |a|=0(a=0) -a(a<0)
绝对 数轴上表示数a的点与原点的________, 记作|a| 距离 值
数法
设这个数为m,①当 |m|≥10时,n等于 把一个数写成________的形式.(其中 原数的整数位数减1; a³10n 1≤|a|<10.n为整数),这种记数法 ②当|m|≤1时, |n|等于原数左起第 叫科学记数法 一个非零数字前所 有零的个数

2013年北京中考数学真题卷含答案解析

2013年北京中考数学真题卷含答案解析

2013年北京市高级中等学校招生考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.在《关于促进城市南部地区加快发展第二阶段行动计划(2013~2015)》中,北京市提出了总计约3960亿元的投资计划.将3960用科学记数法表示应为()A.39.6×102B.3.96×103C.3.96×104D.0.396×1042.-34的倒数是()A.43B.34C.-34D.-433.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.15B.25C.35D.454.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC, CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m轴对称图形的是()6.下列图形中,是中心对称图形但不是..7.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时8.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:ab2-4ab+4a=.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=.11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.12.如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=1x.在l上取一点A1,过A1作x 轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2.请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2=,a2013=;若要将上述操作无限次地进行下去,则a1不能取...的值是.三、解答题(本题共30分,每小题5分)13.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.14.计算:(1-√3)0+|-√2|-2cos45°+(14)-1.15.解不等式组:{3x>x-2, x+13>2x.16.已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.17.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.18.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.四、解答题(本题共20分,每小题5分)19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连结DE,CF.2(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.20.如图,AB是☉O的直径,PA,PC与☉O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;,求OE的长.(2)若PC=6,tan∠PDA=3421.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕.以下是根据近几届园博会的相关数据绘制的统计图的一部分.第六届至第九届园博会园区陆地面积和水面面积统计图第九届园博会植物花园区各花园面积分布统计图(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表日均接待游客量(万人次) 单日最多接待游客量(万人次)停车位数量(个) 第七届 0.8 6 约3 000 第八届 2.3 8.2 约4 000 第九届 8(预计) 20(预计) 约10 500 第十届 1.9(预计)7.4(预计)约22.阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.图1图2小明发现,分别延长QE,MF,NG,PH 交FA,GB,HC,ED 的延长线于点R,S,T,W,可得△RQF, △SMG,△TNH,△WPE 是四个全等的等腰直角三角形(如图2).请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若S△RPQ=√3,则AD的长为.3图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.24.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求α的值.25.对于平面直角坐标系xOy中的点P和☉C,给出如下定义:若☉C上存在两个点A,B,使得∠APB=60°,则称P为☉C的关联点.已知点D(12,12),E(0,-2),F(2√3,0).(1)当☉O的半径为1时,①在点D,E,F中,☉O的关联点是;②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是☉O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.答案全解全析:1.B 3 960=3.96×103.故选B.2.D ∵(-34)×(-43)=1,∴-34的倒数是-43.故选D.3.C 5个小球中标号大于2的有三个,故摸出标号大于2的小球的概率是35.故选C.4.C ∵∠1+∠2+∠3=180°,∠3=40°,∴∠1+∠2=140°.∵∠1=∠2,∴∠1=70°. ∵a∥b,∴∠4=∠1=70°.故选C.5.B ∵∠ABE=∠ECD=90°,∠AEB=∠DEC,∴△ABE∽△DCE,∴AB DC =BE EC,∴AB 20=2010,∴AB=40 m.故选B.6.A A 项是中心对称图形,但不是轴对称图形. B 项既是中心对称图形,又是轴对称图形. C 项不是中心对称图形,是轴对称图形.D 项既不是中心对称图形,又不是轴对称图形.故选A. 7.B x =5×10+6×15+7×20+8×550=6.4(小时).故选B.8.A 考虑三个特殊点,当AP 的长为0或2时,不构成△APO;当AP 的长为1时,△APO 为边长是1的等边三角形,其面积为√34,因为14<√34<12,所以只有选项A 符合.故选A.评析 本题考查的是函数图象的变化规律,不仅考查了定性分析,还考查了定量分析,通过构造函数处理较困难,而通过寻找特殊点较容易处理.属中档题. 9.答案 a(b-2)2解析 ab 2-4ab+4a=a(b 2-4b+4)=a(b-2)2. 10.答案 x 2+1解析 抛物线即二次函数,则函数表达式应为y=ax 2+bx+c(a≠0).∵开口向上,∴a>0.∵与y 轴交于点(0,1),∴c=1.所以满足题设条件的一个抛物线的解析式为y=x 2+1,答案不唯一.11.答案 20解析 ∵AB=5,AD=12,∴AC=13,∴BO=6.5. ∵M 、O 分别为AD 、AC 的中点, CD=5,∴MO=2.5,AM=6,∴C 四边形ABOM =AM+MO+BO+AB=6+2.5+6.5+5=20. 12.答案 -32;-13;0,-1解析 根据题意可以得到点A 1(2,-3),点B 1(2,0.5),点A 2(-1.5,0.5),点B 2(-1.5,-23),点A 3(-13,-23),点B 3(-13,-3),点A 4(2,-3),所以A 1,A 2,A 3,…,A n ,…中,三个坐标为一个循环,A 2 013是一个循环中的最后一个,故它的横坐标与A 3的横坐标相同,为-13.当A 1的横坐标为a 1时,可以分别表示出点A 1(a 1,-a 1-1),点B 1(a 1,1a 1),点A 2(-1-1a 1,1a1),点B 2(-1-1a 1,-a 1a 1+1),点A 3(-1a1+1,-a 1a 1+1),点B 3(-1a 1+1,-a 1-1).因为操作要无限次地进行下去,所以每一个点都要有意义,即分母不为0,故a 1不能取的值是-1,0.评析 读懂题目中的操作方法是解决本题的关键,属中档题. 13.证明 ∵DE ∥AB, ∴∠BAC=∠ADE.在△ABC 和△DAE 中,{∠BAC =∠ADE ,AB =DA ,∠B =∠DAE ,∴△ABC≌△DAE. ∴BC=AE.14.解析 (1-√3)0+|-√2|-2cos 45°+(14)-1=1+√2-2×√22+4 =5.15.解析 {3x >x -2, ①x+13>2x .② 解不等式①,得x>-1.解不等式②,得x<15.∴不等式组的解集为-1<x<15. 16.解析 (2x-3)2-(x+y)(x-y)-y 2=4x 2-12x+9-(x 2-y 2)-y 2=3x 2-12x+9.∵x 2-4x-1=0,∴x 2-4x=1.∴原式=3(x 2-4x)+9=12.17.解析 设每人每小时的绿化面积是x 平方米.由题意得1806x -180(6+2)x =3.解得x=2.5.经检验,x=2.5是原方程的解,且符合题意.答:每人每小时的绿化面积是2.5平方米.18.解析 (1)由题意,得Δ=4-4(2k-4)>0.∴k<52. (2)∵k 为正整数,∴k=1,2.当k=1时,方程x 2+2x-2=0的根x=-1±√3不是整数;当k=2时,方程x 2+2x=0的根x 1=-2,x 2=0都是整数.综上所述,k=2.19.解析 (1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC.∵F是AD的中点,AD.∴FD=12BC,∴FD=CE.∵CE=12∵FD∥CE,∴四边形CEDF是平行四边形.(2)如图,过点D作DG⊥CE于点G.∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠1=∠B=60°.在Rt△DGC中,∠DGC=90°,∴CG=CD·cos∠1=2,DG=CD·sin∠1=2√3.BC=3,∴GE=1.∵CE=12在Rt△DGE中,∠DGE=90°,∴DE=√DG2+GE2=√13.20.解析(1)证明:∵PA、PC与☉O分别相切于点A、C, ∴PA=PC,∠APO=∠EPD.∵AB是☉O的直径,∴PA⊥AB.∵DE⊥PO,∴∠A=∠E=90°.∵∠POA=∠DOE,∴∠APO=∠EDO.∴∠EPD=∠EDO.(2)连结OC,则OC⊥PD.在Rt△PAD中,∠A=90°,PA=PC=6,tan∠PDA=34, 可得AD=8,PD=10.∴CD=4.在Rt△OCD中,∠OCD=90°,CD=4,tan∠ODC=34, 可得OC=3,OD=5.在Rt△PCO中,由勾股定理得,PO=3√5.可证得Rt△DEO∽Rt△PCO.∴OEOC =ODOP,即OE3=3√5.∴OE=√5.21.解析(1)0.03.(2)补全条形统计图如下图.第六届至第九届园博会园区陆地面积和水面面积统计图(3)3 600,3 700,3 800,3 900其中之一.评析 处理本题的关键是看清扇形图和条形图之间的关系,再按照题目要求逐一解决.属中档题.22.解析 (1)a.(2)由(1)可知,由△RQF,△SMG,△TNH,△WPE 拼成的新正方形的面积与正方形ABCD 的面积相等.∴△RAE,△SBF,△TCG,△WDH 这四个全等的等腰直角三角形的面积之和等于正方形MNPQ 的面积.∵AE=BF=CG=DH=1,∴正方形MNPQ 的面积S=4×12×1×1=2.AD 的长为23.23.解析 (1)当x=0时,y=-2.∴点A 的坐标为(0,-2).将y=mx 2-2mx-2配方,得y=m(x-1)2-m-2.∴抛物线的对称轴为直线x=1.∴点B 的坐标为(1,0).(2)由题意得点A 关于直线x=1的对称点的坐标为(2,-2).设直线l 的解析式为y=kx+b.∵点(1,0)和(2,-2)在直线l 上,∴{0=k +b ,-2=2k +b .解得{k =-2,b =2.∴直线l 的解析式为y=-2x+2.(3)由题意可知,抛物线关于直线x=1对称,直线AB 和直线l 也关于直线x=1对称. ∵抛物线在2<x<3这一段位于直线AB 的下方,∴抛物线在-1<x<0这一段位于直线l的下方.又∵抛物线在-2<x<-1这一段位于直线l的上方,∴抛物线与直线l的一个交点的横坐标为-1.∴由直线l的解析式y=-2x+2可得这个点的坐标为(-1,4).∵抛物线y=mx2-2mx-2经过点(-1,4),∴m=2.∴所求抛物线的解析式为y=2x2-4x-2.评析本题考查了一次函数、二次函数的综合运用,充分考查了二次函数图象的对称性,有一定难度.24.解析(1)∠ABD=30°-1α.2(2)△ABE为等边三角形.证明:连结AD,CD.∵∠DBC=60°,BD=BC,∴△BDC是等边三角形,∴∠BDC=60°,BD=DC.又∵AB=AC,AD=AD,∴△ABD≌△ACD,∴∠ADB=∠ADC.∴∠ADB=150°.∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC.又∵BD=BC,∠ADB=∠ECB=150°,∴△ABD≌△EBC.∴AB=EB.∴△ABE是等边三角形.(3)∵△BDC是等边三角形,∴∠BCD=60°.∴∠DCE=∠BCE-∠BCD=90°.又∵∠DEC=45°,∴CE=CD=BC.∴∠EBC=15°.,∴α=30°.∵∠EBC=∠ABD=30°-α2评析本题考查了全等三角形、等边三角形、等腰三角形的相关知识,正确地构造全等三角形是解决本题的关键.属中等偏难题.25.解析(1)①D,E.②当OP=2时,过点P向☉O作两条切线PA,PB(A,B为切点),则∠APB=60°.∴点P为☉O的关联点.事实上,当0≤OP≤2时,点P是☉O的关联点;当OP>2时,点P不是☉O的关联点.∵F(2√3,0),且∠GFO=30°,∴∠OGF=60°,OF=2√3,OG=2.如图,以O为圆心,OG为半径作圆,设该圆与l的另一个交点为M.当点P在线段GM上时,OP≤2,点P是☉O的关联点;当点P在线段GM的延长线或反向延长线上时,OP>2,点P不是☉O的关联点.连结OM,可知△GOM为等边三角形.过点M作MN⊥x轴于点N,可得∠MON=30°,ON=√3.∴0≤m≤√3.(2)设该圆圆心为C.根据②可得,若点P是☉C的关联点,则0≤PC≤2r.由题意知,点E,F都是☉C的关联点,∴EC≤2r,FC≤2r.∴EC+FC≤4r.又∵EC+FC≥EF(当点C在线段EF上时,等号成立),∴4r≥EF.∵E(0,-2),F(2√3,0),∴EF=4.∴r≥1.事实上,当点C是EF的中点时,对所有r≥1的☉C,线段EF上的所有点都是☉C的关联点. 综上所述,r≥1.评析本题定义了坐标系中圆的关联点,需要对圆的相关知识熟练掌握,并通过画图观察,找到临界状态,再逐一进行验证.本题充分考查了学生的综合能力,难度较大.。

中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以四边形为载体的几何压轴问题【方法归纳】北京市中考数学倒数第二道压轴题会以四边形为载体的几何压轴题出现,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2018·北京·中考真题)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【真题再现】1.(2014·北京·中考真题)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=20°,求∠ADF的度数.(3)如图2,若45°<∠PAB<∠90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.2.(2015·北京·中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)3.(2013·北京·中考真题)请阅读下列材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为_________;(2)求正方形MNPQ的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,,求AD的再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√33长.4.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【模拟精练】1.(2022·北京昌平·模拟预测)两张宽度均为4的矩形纸片按如图所示方式放置(1)如图①,求证:四边形ABCD是菱形.(2)如图②,点P在BC上,PF⊥AD于F,若S四边形ABCD=16√2,PB=2,①求∠BAD的度数;②求DF的长.2.(2021·北京四中模拟预测)如图所示,四边形ABCD为菱形,AB=2,∠ABC=60°,点E为边BC上动点(不含端点),点B关于直线AE的对称点为点F,点G为DF中点,连接AG.(1)依题意,补全图形;(2)点E运动过程中,是否可能EF∥AG?若可能,求BE长;若不可能,请说明理由;(3)连接CG,点E运动过程中,直接写出CG的最小值.3.(2021·北京门头沟·一模)在正方形ABCD中,将边AD绕点A逆时针旋转a(0°<a<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG//AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<a<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.4.(2020·北京亦庄实验中学二模)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,过点D作DF AP于F.(1)求∠FDP的度数;(2)连接BP,请用等式表示线段BP与线段AF之间的数量关系,并证明.(3)连接PC,若正方形的边长为√2,直接写出△BCP面积的最大值.5.(2020·北京四中模拟预测)在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;t,0).(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(32①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.6.(2020·北京延庆·一模)四边形ABCD 中,∠A=∠B= 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线CD对称,过点E作EG∥AF交CD于点G,连接FG,DE.(1)求证:四边形DEGF 是菱形;(2)若AB=10,AF=BC=8,求四边形DEGF 的面积.7.(2019·北京·一模)如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x.(当点E与点B重合时,x的值为0),DF=y,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量1x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x , y1) , (x , y2),并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.8.(2017·北京顺义·一模)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)9.(2018·北京顺义·一模)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Qcm(P、Q两点速度改变后一直保持此速度,直到两点同时改变速度,分别变为每秒2cm、54停止),如图2是ΔAPD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1,y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?10.(2021·北京四中模拟预测)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是;(2)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.11.(2021·北京四中九年级开学考试)定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知△ABC,请用尺规作出△ABC的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy中,矩形OABC的边OA在x轴的正半轴上、OC在y轴的正半轴上,OA=6,OC=4.①请判断直线y=43x−83是否为矩形OABC的面积等分线,并说明理由;②若矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在△ABC中,点A的坐标为(−2,0),点B的坐标为(4,3),点C的坐标为(2,0),点D的坐标(0,−2),求过点D的一条△ABC的面积等分线的解析式.(4)在△ABC中点A的坐标为(−1,0),点B的坐标为(1,0),点C的坐标为(0,1),直线y= ax+b(a>0)是△ABC的一条面积等分线,请直接写出b的取值范围.12.(2021·北京·九年级专题练习)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.13.(2021·北京·九年级专题练习)如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.14.(2021·北京石景山·九年级期末)已知矩形MBCD的顶点M是线段AB上一动点,AB=BC,矩形MBCD的对角线交于点O,连接MO,BO.点P为射线OB上一动点(与点B不重合),连接PM,作PN⊥PM交射线CB于点N.(1)如图1,当点M与点A重合时,且点P在线段OB上.①依题意补全图1;②写出线段PM与PN的数量关系并证明.(2)如图2,若∠OMB=α,当点P在OB的延长线上时,请补全图形并直接写出PM与PN的数量关系.15.(2020·北京·北师大实验中学九年级开学考试)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB 到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD的数量关系________.16.(2017·全国·九年级专题练习)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②17.(2020·北京通州·一模)已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件______(填入序号)满足时,一定有EM=EA,并证明这个结论.18.(2020·北京一七一中九年级阶段练习)在四边形ABCD中,∠B+∠D=180°,对角线AC 平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,直接写出线段AD、AB、AC的数量关系.(2)如图2,若将(1)中的条件“∠B=90°”去掉,求边AD、AB与对角线AC的数量关系.请证明.(3)如图3,若∠DAB=2αAD、AB与对角线AC的数量关系(用α来表示)19.(2020·北京四中九年级阶段练习)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE.若AB=4,求线段EC的长.(2)如图2,M为线段AC上一点(不与A,C重合),以AM为边向上构造等边三角形△AMN,线段AN与AD交于点G,连接NC,DM,Q为线段NC的中点.连接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论.(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.20.(2020·北京顺义·九年级期末)已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.21.(2022·北京·九年级单元测试)图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.22.(2022·北京·九年级单元测试)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AE的值是;BE(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(2019·北京·101中学九年级阶段练习)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG 之间的数量关系(用含α的式子表示);24.(2022·北京朝阳·二模)在正方形ABCD中,E为BC上一点,点M在AB上,点N在DC上,且MN⊥DE,垂足为点F.(1)如图1,当点N与点C重合时,求证:MN=DE;(2)将图1中的MN向上平移,使得F为DE的中点,此时MN与AC相交于点H,①依题意补全图2;②用等式表示线段MH、HF,FN之间的数量关系,并证明.25.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.。

北京市2013届中考数学二轮专题突破《填空压轴题》课件(知识概括+典型例题点拨)

北京市2013届中考数学二轮专题突破《填空压轴题》课件(知识概括+典型例题点拨)

(二) 与图形有关的规律探究性问题
例 4 已知 Rt△ABC 中,∠ACB=90°, AC=6, BC=8, 过直角顶点 C 作 CA1⊥AB, 垂足为 A1,再过 A1 作 A1C1⊥BC,垂足为 C1,过 C1 作 C1A2⊥AB,垂足为 A2,再过 A2 作 A2C2⊥BC,垂足为 C2,„,这样一直 作下去, 得到了一组线段 CA1, A1C1, C1A2, A2C2,„,AnCn,则 A1C1=________,AnCn =________.
3或4
6n-3
[解析] 根据题意画出图形,再找出点 B 的横坐标与 △AOB 内部(不包括边界)的整点 m 之间的关系.
当点 B 在(3,0)点或(4,0)点时,△AOB 内部(不包括 边界)的整点为(1,1)(1,2)(2,1),共三个点, ∴当 m=3 时,点 B 的横坐标的所有可能值是 3 或 4;

热考二
定义新运算
例7
在下表中, 我们把第 i 行第 j 列的数记为 ai,j(其
中 i,j 都是不大于 5 的正整数),对于表中的每个数 ai,j 规 定如下:当 i≥j 时,ai,j=1;当 i<j 时,ai,j=0.例如:当 i =2,j=1 时,ai,j=a2,1=1.按此规定,a1,3=________; 表中的 25 个数中,共有________个 1;计算 a1,1·ai,1+
a1,2· ai,2+a1,3· ai,3+a1,4· ai,4+a1,5· ai,5 的值为________.
0 15
1
[解析] 因为 1<3,根据规定,当 i<j 时,ai,j=0,所以 a1,3=0;按照方格中排序可知,满足 i=j 的恰好为对角线 上的五个数,从而可知 i≥j 的数共有 15 个;第 3 空按规律 可知后四项都为 0,因此结果为 1.

2013年北京市中考真题 北京市数学真题解析版

2013年北京市中考真题 北京市数学真题解析版


已掌握
考察内容:
考点
函数综合题 2013年北京市中考真题 【难易度】4

已掌握
考察内容:
第 13 页 /共 19 页
2013年北京市中考真题《解析版》
考点
分式方程 2013年北京市中考真题 【难易度】3

已掌握
考察内容:
第 14 页 /共 19 页
2013年北京市中考真题《解析版》
考点
二次函数 2013年北京市中考真题 【难易度】2
2013年北京市中考真题《解析版》
第 17 页 /共 19 页
2013年北京市中考真题《解析版》
考点
相似三角形 2013年北京市中考真题 【难易度】3□来自已掌握考察内容:
考点
科学记数法 2013年北京市中考真题 【难易度】1

已掌握
考察内容:
考点
三角形中位线、中点四边形
第 18 页 /共 19 页
考点
相似三角形 2013年北京市中考真题 【难易度】2

已掌握
考察内容:
第 4 页 /共 19 页
2013年北京市中考真题《解析版》
考点
因式分解 2013年北京市中考真题 【难易度】1

已掌握
考察内容:
考点
一元二次方程 2013年北京市中考真题 【难易度】2

已掌握
考察内容:
考点
全等三角形
第 5 页 /共 19 页

已掌握
考察内容:
考点
平行四边形 2013年北京市中考真题 【难易度】3

已掌握
考察内容:
第 2 页 /共 19 页
2013年北京市中考真题《解析版》

北京市历年中考数学试题及答案(word版)

北京市历年中考数学试题及答案(word版)

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013—2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为A。

39。

6×102B。

3。

96×103 C. 3.96×104D。

3。

96×104 2。

的倒数是A. B. C. D。

3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为A。

B. C。

D。

4. 如图,直线,被直线所截,∥,∠1=∠2,若∠3=40°,则∠4等于A。

40°B。

50°C。

70° D. 80°5。

如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC。

30m D. 20m6. 下列图形中,是中心对称图形但不是轴对称图形的是7。

某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 6。

2小时B。

6.4小时 C. 6。

5小时 D. 7小时8。

如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO的面积为,则下列图象中,能表示与的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9。

分解因式:=_________________10。

请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式__________10 11。

【真题解析版】2013年北京市中考数学试卷及答案

【真题解析版】2013年北京市中考数学试卷及答案

北京市2013年中考数学试卷一、选择题(本题共32分,每小题4分。

下列各题均有四个选项,其中只有一个是符合题意的。

1.(4分)(2013•北京)在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》2.(4分)(2013•北京)﹣的倒数是()B(﹣)的倒数是﹣.3.(4分)(2013•北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号B的概率是=4.(4分)(2013•北京)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()(=5.(4分)(2013•北京)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()∴∴B7.(4分)(2013•北京)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时8.(4分)(2013•北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()..C..AC=AP=x OC=x(AP===S=AP=二、填空题(本题共16分,每小题4分)9.(4分)(2013•北京)分解因式:ab2﹣4ab+4a=a(b﹣2)2.10.(4分)(2013•北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=x2+1(答案不唯一).11.(4分)(2013•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.CD=AB=2.5=13AC=6.512.(4分)(2013•北京)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2013=﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0、﹣1.,,,,,﹣﹣﹣,,,﹣∵;、﹣;三、解答题(本题共30分,每小题5分)13.(5分)(2013•北京)已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.14.(5分)(2013•北京)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.﹣×+415.(5分)(2013•北京)解不等式组:.,<.16.(5分)(2013•北京)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.17.(5分)(2013•北京)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.18.(5分)(2013•北京)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.<±四、解答题(本题共20分,每小题5分)19.(5分)(2013•北京)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.CE=BCDH=2AD=3=20.(5分)(2013•北京)如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE的长.,可求出PDA=,PDA=,∴21.(5分)(2013•北京)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为0.03平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).×=0.0322.(5分)(2013•北京)阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为a2;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为.,则斜边上的高为aa a=×a××SF=a×=•a×a的面积为∴×或x=,即的长为..五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2013•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣2(m≠0)与y 轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在﹣2<x<﹣1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.﹣,24.(7分)(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.αCAD=∠BAC=αBEC=﹣ACB=(﹣ααCAD=BAC=ααα(α25.(8分)(2013•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C 上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(,),E(0,﹣2),F(2,0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是D,E.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.EF=2()PC=OGF==,OPH==,KF=2KN=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. (2013北京,1,4分)在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划.将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 【答案】B .2. (2013北京,2,4分)43-的倒数是 A. 34 B. 43 C. 43- D. 34-【答案】D .3. (2013北京,3,4分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 【答案】C.4. (2013北京,4,4分) 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 【答案】C.5. (2013北京,5,4分)如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB 等于 A. 60 m B. 40 m C. 30 m D. 20 m【答案】B.6. (2013北京,6,4分)下列图形中,是中心对称图形但不是轴对称图形的是【答案】A.7. (2013北京,7,4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时 【答案】B.8. (2013北京,8,4分)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是【答案】A.二、填空题(本题共16分,每小题4分)9. (2013北京,9,4分)分解因式:a ab ab 442+-=_________________ 【答案】a (b -2)210. (2013北京,10,4分)请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y =__________. 【答案】x 2+1.11. (2013北京,11,4分)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM 的周长为__________ 【答案】20.12. (2013北京,12,4分)如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,….记点A n 的横坐标为n a ,若21=a ,则2a =__________,2013a =__________;若要将上述操作无限次地进行下去,则1a 不.能取..的值是__________ 【答案】-32,-13,0,-1.三、解答题(本题共30分,每小题5分)13. (2013北京,13,5分)如图,已知D 是AC 上一点,AB =DA ,DE ∥AB ,∠B =∠DAE . 求证:BC =AE . 证明:∵D E ∥AB ∴∠CAB =∠ADE 在 △ABC 与△DAE 中 ,,.CAB ADE AB DA B DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ADE ≌△BAC (ASA ) ∴ B C =AE.14. (2013北京,14,5分)计算:1)41(45cos 22)31(-+︒--+-. 【解】原式=212242+-⨯+=5.15. (2013北京,15,5分)解不等式组:⎪⎩⎪⎨⎧>+->x x x x 23123解:由 3x > x - 2 ,得 x >-1 由123x x +>,得 15x <∴不等式组的解集为115x -<<. 16. (2013北京,16,5分)已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值. 【解】代数式化简得:22224120x x x y y -+-+-3x 2-12x +9 3(x 2- 4x +3) ∵ x 2 -4x =1代入得 ∴原式 =12.17. 列方程或方程组解应用题:(2013北京,17,5分)某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.解:设每人每小时的绿化面积为x 平方米. 则有18018036(62)x x-=+ 解得x =2.5.经检验:x =2.5时,公分母不为0,所以x =2.5是原分式方程的解. 答:每人每小时的绿化面积为2.5 平方米.18.(2013北京,18,5分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值. 解:(1)Δ=b 2–4ac =4-4(2k -4)=20-8k . ∵方程有两个不等的实根 ∴20-8k >0 ∴k <52. (2)∵k 为整数, ∴0<k <52(且k 为整数),即k 为1或2, ∴1,2152x k =-±-. ∵方程的根为整数, ∴5-2k 为完全平方数. 当k =1时,5-2k =3; 当k =2时,5-2k =1. ∴k =2.四、解答题(本题共20分,每小题5分)19.(2013北京,19,5分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =21BC ,连结DE ,CF . (1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 【解】(1)在□ABCD 中, A D ∥BC ,AD =BC . ∵ F 是 A D 中点.∴DF =12AD ,又∵CE =12BC ∴DF =CE 且DF //CE .∴四边形CEDF 为平行四边形. (2)过点D 作DH ⊥BE 于H , 在□ABCD 中,∵∠B =60° ∴∠DCE =60° ∵AB =4, ∴CD =4.∴CH =2,DH =23. 在□CEDF 中,CE =DF =12AD =3. ∴EH =1.在Rt △DHE 中,DE =22(23)113+=.20.(2013北京,20,5分)如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于点A ,C ,PC交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD =∠EDO ; (2)若PC =6,tan ∠PDA =43,求OE 的长.解:(1)∵ P A 、 P C 与圆O 分别相切于点 A 、 C . ∴ ∠APO =∠EPD 且 P A ⊥AO 即∠PAO =90° ∵∠AOP =∠EOD ,∠PAO =∠E =90°. ∴∠APO =∠EDO. 即 ∠EPD =∠EDO. (2)连结 O C ∴ P A =PC = 6. ∵tan ∠PDA =43∴在 R t △PAD 中 A D =8 , P D =10 ∴ C D =4 ∵tan ∠PDA =43∴在 R t △OCD 中, O C =OA =3 , O D =5.∵∠EPD=∠EDO.∴△OED ∽△DEP∴10251 PD DEOD OE===在R t△OED中,OE2+DE2=52.∴OE=5.21.(2013北京,21,5分)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为__________平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表日均接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.8 6 约3 000 第八届 2.3 8.2 约4 000 第九届8(预计)20(预计)约10 500 第十届 1.9(预计)7.4(预计)约________【解】 (1) 0.03; (2)陆地面积 3.6 水面面积1.5 图略; (3)3700.22.(2013北京,22,5分)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE =BF =CG =DH =1,当∠AFQ =∠BGM =∠CHN =∠DEP =45°时,求正方形MNPQ 的面积.小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________; (2)求正方形MNPQ 的面积. 参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD =BE =CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________. 【解】(1) a(2)四个等腰直角三角形面积和为 a 2 正方形 A BCD 的面积为 a 2∴ S 正方形MNPQ =S △ARE + S △DWH +S △GCT +S △SBF =4S △ARE =2141 2.2⨯⨯=(3)23. 提示:模仿小明的操作,向正三角形外面补出三个“尖角三角形”,如下图.这样,外面的三个“尖角三角形”的面积之和恰为阴影三角形的面积!五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0). (2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩ ∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方.∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4) 当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .24.(2013北京,24,7分)在△ABC 中,AB =AC ,∠BAC =α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC =45°,求α的值. 【解】(1)30°-12α;(2)△ABE 为等边三角形 证明连接 A D 、 C D 、 E D ∵线段 B C 绕点 B 逆时针旋转 60° 得到线段 B D则 B C =BD ,∠DBC =60°又∵∠ABE = 60°∴∠ABD = 60°-∠DBE =∠EBC =30°-12α; 且 △BCD 为等边三角形. 在 △ABD 与△ACO 中 ,,.AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ) ∴∠BAD =∠CAD =12∠BAC =12α∵∠BCE = 150° ∴∠BCE =180°-(30°-12α)-150°=12α.在 △ABD 与△EBC 中,,.BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△EBC (AAS ) ∴AB =BE .(3)∵∠BCD =60°,∴∠BCE =150°. ∴∠DCE =150°-60°=90°. ∵∴∠DCE =45°. ∴△DCE 为等腰直角三角形 ∴DE =CE =BC ∵∠BCE =150°. ∴(180150)15.2EBC ︒-︒∠==︒ 而∠EBC =30°-12α;=15. ∴α=15°.25.(2013北京,25,8分)对于平面直角坐标系x O y 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (21,21),E (0,-2),F (32,0) (1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是__________;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.解:(1)①D 、E ;②由题意可知,若P 点刚好是圆C 的关联点;需要点P 到圆C 的两条切线PA 和PB 之间所夹的角度为60°;由图1可知∠APB =60°,则∠CPB =30°,连接BC ,则PC =22.sin BC BC r CPB==∠ ∴点P 点为圆C 的关联点;则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界位置的P 点,如图2;点P 到原点的距离OP =2×1=2;过O 作x 轴的垂线OH ,垂足为H ;23tan 32OF OGF OG ∠===; ∴∠OGF =60°;∴OH =OG ·sin60°=3, ∴3tan 2OH OPH OP ∠== ∴∠OPH =60°;易知点P 1与点G 重合,过P 2作P 2M ⊥x 轴于点M ;易得∠P 2OM =30°;∴OM =OP 2·cos30°=3.从而若点P 为圆O 的关联点,则P 点必在线段P 1P 2上;∴0≤m ≤3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;考虑临界情况,如图3;即恰好E,F点为圆K的关联时,则KF=2KN=12EF=2;∴此时r=1;故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围r≥1.···2分。

相关文档
最新文档