两条直线的交点、平面上两点间的距离、点到直线的距离

合集下载

两直线的交点坐标两点间的距离

两直线的交点坐标两点间的距离
物理中的距离问题不仅涉及到理论计算,还涉及到实际测量和应用。例如,在测量地球的周长、计算天体之间的距离等方面 都有广泛应用。解决这些问题需要综合考虑数学模型、物理规律和实验数据等多个方面。
感谢观看
THANKS
计算最小路径长度
在某些优化问题中,两点间距离公式可用于计算两点之间的最小路 径长度。
距离公式的几何意义
垂直距离
01
两点间距离公式所求得的值为两点间的垂直距离,即从一点垂
直向下(或向上)到另一点的长度。
连接两点的线段
02
两点间距离公式所求得的值为连接两点的线段的长度,该线段
通过两点的中点。
空间中两点间的距离
解析几何中的距离问题不仅涉及到平面上的 两点,还涉及到空间中的两点、点到直线的 距离、两平行线间的距离等。这些概念在解 决实际问题时非常重要,例如在测量、工程
、计算机图形学等领域中都有广泛应用。
空间几何中的距离问题
空间几何是研究空间中点、线、面等几何对象性质的学科。在空间几何中,两直线的交点坐标和两点 间的距离是基本问题。通过使用向量的概念和运算规则,可以解决这些问题。空间几何在解决实际问 题时非常有用,例如在航空航天、建筑学、物理学等领域中都有广泛应用。
03
在三维空间中,两点间距离公式同样适用,只是需要增加一个
高度坐标。
03
两直线的交点与两点间的距
离关系
交点到两点的距离相等性
总结词
两直线交点到两端点距离相等
详细描述
当两直线相交于一点时,该交点到两直线端点的距离相等,这是由于两直线在交 点处垂直相交,形成等腰三角形的性质。
交点在两点连线上
总结词
空间几何中的距离问题涉及到空间中的任意两点,需要使用三维坐标系和三维向量来解决。这些概念 在解决实际问题时非常重要,例如在计算两点间的最短路径、确定物体的位置和运动轨迹等方面都有 广泛应用。

两条直线的交点坐标与距离公式

两条直线的交点坐标与距离公式

l1上一点,设其关于l的对称点为(x,y),则
{ x + 0 - y - 2-1=0,
22
y +2 ×1
=-1,
x
{ x=-1,

即(1,0),
y=-1.
(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.
故应选B.)
.
返回目录
考点四 直线系方程的应用 求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂 直于直线l3:3x-5y+6=0的直线l的方程.
两直线的交点坐标与 距离公式
.
一、两直线的交点
已知两条直线l1:A1x+B1y+C1=0与 l2:A2x+B2y+C2=0的交点坐标对应的是方程组
{A1x+B1y+C1=0 A2x+B2y+C2=0
的解,
.
返回目录
其中①当A1B2-A2B1≠0时,两条直线 相交于一点 , ② 当条A直1线B2无-A交2B点1=,0即且A1C2-A2平C1行≠,0③(当或AB11BC22--AB22BC11=≠00且)A时1,C两2A即2C1=0(或重B合1C. 2-B2C1=0)时,两条直线有无数个公共点,
.
返回目录
*对应演练*
求过点P(-1,2)且与点A(2,3)和B(-4,5)距离 相等的直线l的方程.
解法一:设直线l的方程为y-2=k(x+1),
即kx-y+k+2=0.由题意知
| 2k - 3 + k + 2 | =
| -4k - 5 + k + 2 |

两直线的位置关系及距离公式

两直线的位置关系及距离公式

解:(1)取直线 2x-y+2=0 上一点 A(0,2),设点 A(0,2) 关于直线 x+y-5=0 对称的点为 B(a,b),
则a2b+ -a b2+ =2 21-5=0
,解得ab= =35 ,
∴B(3,5),
由2x+ x-y- y+52==00 ,解得xy= =14 ,
∴直线 2x-y+2=0 与直线 x+y-5=0 的交点为 P(1,4),
线的距离公式,会求两条平行直 难度不大;若与圆、圆锥曲线结
线间的距离.
合,则出现在解答题中,具有一
定的综合性.
一、两条直线的位置关系及判定
平面内两条直线的位置关系有平行、相交、重合三种情况.
1.利用斜率判定
已知直线l1:y=k1x+b1,l2:y=k2x+b2.
(1)l1∥l2⇔k1=k2且

(2)l1⊥l2⇔
∴|4a+35b-2|=2,即4a+3b-2=±10.

由①②得ab= =1-,4, 或ab= =2-77, 87.
∴所求点P的坐标为(1,-4)或277,-87.
【考向探寻】 1.解关于“中心对称、轴对称”的问题. 2.利用对称解决有关最值问题、光线反射问题.
【典例剖析】
(1)一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射,则
反射光线所在的直线方程为
A.2x+y-6=0
B.x-2y+7=0
C.x-y+3=0
D.x+2y-9=0
(2)已知直线l:2x-3y+1=0,点A(-1,-2),求: ①点A关于直线l的对称点A′的坐标; ②直线m:3x-2y-6=0关于直线l的对称直线m′的方程.
(1)利用入射光线上的点关于直线x+y-5=0的对称点在反射光线上解题. (2)①直线l为线段AA′的垂直平分线,利用垂直关系,中点坐标公式解方程 组求出A′点坐标;②转化为点关于直线的对称.

两点间的距离及点到直线的距离PPT

两点间的距离及点到直线的距离PPT
第四单元
两点间的距离及点到 直线的距离
回顾复习
• 1、同一平面内的两条直线的位置关系有 ( 平行)和(相交) 2、一条直线的平行线有(无数)条 3、两条直线的交点叫做 (垂足 ) 4、在(同一平面 )内不相交的两条直线叫做 平行线,也可以说这两条直线(互相平行 )
认一认:
下面各组直线,哪组相交,哪组互相平行? 互相垂直?






垂直
垂直
你能过直线外一点画 这条直线的垂线吗?
一.线边重合 二.平移靠点
三. 画线 四. 标符号
你能过直线外一点画 这条直线的垂线吗?
点到直线的距离: 从直 线外一点到这条直线所画 的垂直线段的长度,叫作 点到直线的距离
两点间的距离问题
有只虫子从一个山洞到另一个山洞寻找食物, 有五条路可走,可是走哪一条路最短呢?可怜的 小虫子犯愁了,谁能帮帮它呢? 1 2 3 起点 终点 4 5
A


B
能力提升:
a、平行线间的距离处处相等 b两条直线互相平行, a、b两直线间的线 平行线间垂直线段的长度 段中那条最短? 就是平行线间的距离
这节课
你有什么收获?
作业
• 优+学案中相关的课时做完
线段最短!
大青虫家门前有条大路,它要到路上去,怎么走最近呢?
两点之间线段最短,两 点之间线段的长度就是 两点间的距离。
点到直线所 画的垂直线 段最短
点到直线的距离问题
公路
从直线外一点到这条直线所画的 垂直线段 这条线路与公路垂直! 最短,它的长度叫做 这点到直线的距离。

小结:
• 1、两点之间线段的长度就是两点间的距离。 • 2、从直线外一点到这条直线所画的垂直线段最短, 它的长度叫作点到直线的距离 • 3、两点之间线段最短,点到直线所画的垂直线段 最短 • 4、从直线外一点到已知直线,可以画无数条线段, 可以画一条垂直线段

两直线的交点坐标和距离公式

两直线的交点坐标和距离公式

两直线的交点坐标和距离公式直线是平面几何中最基本的图形之一,计算两条直线的交点坐标和距离是解决许多几何问题的基础。

在本文中,我们将详细介绍如何计算两条直线的交点坐标和距离的公式和方法。

首先,我们需要了解什么是直线。

在平面几何中,直线是由一组点组成的,这些点在同一条直线上,且直线上的任意两点可以确定直线的一条直线是由两个不同的点定义。

那么,如何计算两条直线的交点坐标呢?要计算两条直线的交点,我们需要利用直线的方程。

在平面几何中,直线可以由一般方程、点斜式方程和两点式方程表示。

1.一般方程:Ax+By+C=0。

其中A、B、C是常数。

2.点斜式方程:y-y1=m(x-x1)。

其中m是斜率,(x1,y1)是直线上的一个点。

3.两点式方程:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

其中(x1,y1)和(x2,y2)是直线上的两个点。

像这样,当我们有两条直线的方程时,我们可以通过求解方程组,找到两条直线的交点坐标。

解方程组的方法有多种,比如代入法、消元法和克莱姆法则等。

让我们通过一个具体的例子来说明如何计算两条直线的交点坐标。

例1:已知直线L1的方程为y=2x-1,直线L2的方程为y=-x+3,求两条直线的交点坐标。

解:将L1和L2的方程联立起来,得到方程组:y=2x-1y=-x+3通过消元法,我们可以先将方程组中的y消去。

将L1中的y代入L2的方程中,得到:2x-1=-x+3整理方程,得到:3x=4解方程,得到:x=4/3将x的值代入L1的方程中,得到:y=2*(4/3)-1y=8/3-1y=5/3所以,两条直线的交点坐标为(4/3,5/3)。

接下来,我们将介绍如何计算两条直线的距离。

两条直线的距离是两条直线之间最短的直线距离,也就是垂直于两条直线的连线段的长度。

计算两条直线的距离,我们可以利用点到直线的距离公式来求解。

点到直线的距离公式:d=,Ax+By+C,/√(A^2+B^2)其中,A、B、C是直线的方程中的常数。

平面上两点间的距离和点到直线的距离公式

平面上两点间的距离和点到直线的距离公式

平面上两点间的距离和点到直线的距离公式平面几何是几何学中的一个重要分支,它研究了平面上点、直线、圆等的性质和相互关系。

在平面上,我们经常需要计算两点之间的距离以及点到直线的距离,这些计算方法在实际生活中有着很广泛的应用。

下面我们将分别介绍两点间的距离和点到直线的距离的计算公式。

首先,考虑两点间的距离。

假设平面上有两个点A(x1,y1)和B(x2,y2),我们想要计算这两个点之间的距离d。

根据勾股定理,我们知道两点之间的距离可以通过点与坐标轴的距离的平方和来计算,即:d=√[(x2-x1)^2+(y2-y1)^2]。

这个公式的理解非常直观,我们可以将两点之间的直线看作是直角三角形的斜边,而点与坐标轴的距离就是直角三角形的两个直角边的长度。

因此,我们可以通过计算两个直角边的长度,然后应用勾股定理来求解斜边的长度,即两点之间的距离。

接下来,我们来讨论点到直线的距离的计算方法。

给定平面上一条直线L和一点C(x0,y0),我们想要计算点C到直线L的距离d。

为了方便计算,我们需要确定直线L的方程。

在平面几何中,常见的直线方程形式有一般式、斜截式和点斜式。

这里我们以一般式方程为例,一般式方程的形式为Ax+By+C=0,其中A、B和C是常数。

点到直线的距离的计算方法有多种,下面我们介绍其中的一种方法,即点到直线的投影方法。

我们可以将问题转化为求点C到直线L的垂直投影点D,然后计算点C到点D的距离d。

首先,我们可以利用点斜式确定直线L的斜率k。

假设直线L经过点P(x1, y1),斜率为k,则直线L的点斜式方程为y - y1 = k(x - x1)。

进一步化简,我们得到直线L的一般式方程Ax + By + C = 0,其中A =-k,B = 1,C = kx1 - y1接下来,我们需要求点C到直线L的垂直投影点D(xd, yd)的坐标。

根据垂直投影的性质,我们知道点D在直线L上,且点CD垂直于直线L。

因此,点D与直线L的斜率之积为-1,即k * kd = -1、由此,我们可以得到点D的坐标:xd = (B^2 * x0 - A * B * y0 - A * C) / (A^2 + B^2)yd = (A * B * x0 - A * A * y0 - B * C) / (A^2 + B^2)最后,我们可以计算点C到点D的距离d,即:d = √[(x0 - xd)^2 + (y0 - yd)^2]这个公式可以通过将点C到点D的距离看作直角三角形的斜边来进行解释。

平面上两点间距离、点到直线距离公式

平面上两点间距离、点到直线距离公式

B1 B2
y y
C1 C2
0 0
点A
A坐标(a,b)
直线L
L方程:Ax+By+C=0
点A在L上 直线L1∩L2=A
aA1 bB1 C1 0
A1 A2
x x
B1 B2
y y
C1 C2
0 0
x y
a b
直线上的点
y
l
2x y 3 0
P(x,y) x
(1)点(1,5)在直线上吗? (2)点(2,7)在直线上吗?
A(0,0) B(a,0)
| AC |2 | BD |2 2(a2 b2 c2 )
| AB |2 | BC |2 | CD |2 | AD |2 2(a2 b2 c2 )
结 论 L:3x=2的距离。
解1 : d | 3 (1) 0 2 | 5
|PA|的值。
解: 设P( x,0),则
| PA | ( x 1)2 (0 2)2 x2 2 x 5
| PB | ( x 2)2 (0 7 )2 | PA || PB |
x2 2 x 5 x2 4 x 11 解得: x 1, P(1,0)
x2 4 x 11
| PA | (1 1)2 (0 2)2 2 2
由2x 3 y 1 0令x 0得y 1 ; y 0得x 1
3
2
直线与x轴交于A( 1 ,0),与y轴交于B(0, 1 ).
2
3
L过A关于y轴对称点( 1 ,0)和B点, L方程为
2
x 1
y 1
1即: 2x 3 y 1
0
23
2、已知L的方程:2x+3y+1=;则
(1)将L向上平移2个单位得:_________

两条直线的交点坐标及两点间的距离公式高二数学同步精品课件

两条直线的交点坐标及两点间的距离公式高二数学同步精品课件

导航系统:在 导航系统中, 两点间距离公 式可以用来计 算最短路径, 从而帮助用户 找到最佳路线。
建筑设计:在 建筑设计中, 两点间距离公 式可以用来计 算建筑物之间 的距离,以确 保符合规划要
求。
物流运输:在 物流运输中, 两点间距离公 式可以用来计 算货物运输的 距离和成本, 从而优化运输
方案。
解析几何中的综合问题
直线方程:ax+by+c=0 直线交点坐标:(x, y) 两点间距离公式:d = sqrt((x2-x1)^2 + (y2-y1)^2) 例题解析:已知两条直线的方程,求它们的交点坐标及两点间的距离。
实际应用中的问题解析
公式应用:使用两条直线的 交点坐标公式求解
例题解析:通过具体的例子, 详细解析如何应用公式求解
a(d-b)/(a-c)+b)
两点间距离公式的推导过程
设两点A(x1, y1)和B(x2, y2), 求两点间的距离
证明两点间距离公式的正确性: 通过几何图形的性质和勾股定理, 证明两点间的距离公式是成立的
添加标题
添加标题
添加标题
添加标题
利用勾股定理,得到两点间的距 离公式为:d = √(x2-x1)² + (y2-y1)²
03
两点间的距离公式
两点间距离公式的推导
两点间距离的定义:两点之间直线距离 两点间距离公式的推导过程:使用勾股定理和相似三角形的性质 两点间距离公式的应用:计算两点之间的直线距离 两点间距离公式的局限性:仅适用于平面上的两点
两点间距离公式的应用
测量地图上的 距离:利用两 点间距离公式, 可以精确地测 量地图上的两 点之间的距离。
交点坐标
问题描述:已知两条直线的 方程,求它们的交点坐标

2019高中数学第三章两条直线的交点坐标、两点间的距离讲义(含解析)

2019高中数学第三章两条直线的交点坐标、两点间的距离讲义(含解析)

第1课时两条直线的交点坐标、两点间的距离[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P102~P106,回答下列问题:(1)直线上的点与其方程Ax+By+C=0的解有什么样的关系?提示:直线l上每一个点的坐标都满足直线方程,也就是说直线上的点的坐标是其方程的解.反之直线l的方程的每一个解都表示直线上的点的坐标.(2)由两直线方程组成的方程组解的情况与两条直线的位置关系有何对应关系?提示:①若方程组无解,则l1∥l2;②若方程组有且只有一个解,则l1与l2相交;③若方程组有无数解,则l1与l2重合.(3)已知平面上两点P1(x1,y1),P2(x2,y2),如何求P1,P2的距离|P1P2|?提示:①当x1≠x2,y1=y2时,|P1P2|=|x2-x1|;②当x1=x2,y1≠y2时,|P1P2|=|y2-y1|;③当x1≠x2,y1≠y2时,|P1P2|=x2-x 12+y2-y 12.2.归纳总结,核心必记(1)两条直线的交点坐标①求法:两个直线方程联立组成方程组,此方程组的解就是这两条直线的交点坐标,因此解方程组即可.②应用:可以利用两条直线的交点个数判断两条直线的位置关系.一般地,直线l1:A1x+B1y+C1=0和直线l2:A2x+B2y+C2=0的位置关系如表所示:的解(2)|P1P2|=x2-x12+y2-y12[问题思考]两点P1(x1,y1),P2(x2,y2)间的距离公式是否可以写成|P1P2|=x1-x22+y1-y22的形式?提示:可以,原因是x2-x12+y2-y12=x1-x22+y1-y22,也就是说公式中P1,P2两点的位置没有先后之分.[课前反思]通过以上预习,必须掌握的几个知识点.(1)如何求两条直线的交点坐标,怎样判断两条直线的位置关系?;(2)两点间的距离公式是什么?怎样应用?.观察图形,思考下列问题:[思考1] 在方程组中,每一个方程都可表示为一直线,那么方程组的解说明什么?提示:两直线的公共部分,即交点.[思考2] 如何求上述两直线的交点坐标?提示:将两直线方程联立,求方程组的解即可.[思考3] 两条直线相交的条件是什么? 名师指津:两直线相交的条件:(1)将两直线方程联立,解方程组,依据解的个数判断两直线是否相交.当方程组只有一解时,两直线相交.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2相交的条件是A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2,B 2≠0).(3)若两直线斜率都存在,设两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1与l 2相交⇔k 1≠k 2.讲一讲1.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.(链接教材P 103-例2)[尝试解答] 法一:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,∴其斜率k =2-2=-1. 故直线l 的方程为y =-x ,即x +y =0. 法二:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0.将原点坐标(0,0)代入上式,得λ=1, ∴直线l 的方程为5x +5y =0,即x +y =0.(1)两条直线相交的判定方法方法一:联立直线方程解方程组,若有一解,则两直线相交. 方法二:两直线斜率都存在且斜率不等. 方法三:两直线的斜率一个存在,另一个不存在. (2)过两条直线交点的直线方程的求法①常规解法(方程组法):一般是先解方程组求出交点坐标,再结合其他条件写出直线方程.②特殊解法(直线系法):先设出过两直线交点的直线方程,再结合条件利用待定系数法求出参数,最后确定直线方程.练一练1.判断下列各对直线的位置关系.若相交,求出交点坐标: (1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.解:(1)解方程组⎩⎪⎨⎪⎧2x +y +3=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-1,所以直线l 1与l 2相交,交点坐标为(-1,-1).(2)解方程组⎩⎪⎨⎪⎧x +y +2=0, ①2x +2y +3=0, ②①×2-②,得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1∥l 2. 2.(2016·潍坊高一检测)求经过直线l 1:x +3y -3=0,l 2:x -y +1=0的交点且平行于直线2x +y -3=0的直线方程.解:法一:由⎩⎪⎨⎪⎧x +3y -3=0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,∴直线l 1与l 2的交点坐标为(0,1),再设平行于直线2x +y -3=0的直线方程为2x +y +c =0,把(0,1)代入所求的直线方程,得c =-1,故所求的直线方程为2x +y -1=0. 法二:设过直线l 1、l 2交点的直线方程为x +3y -3+λ(x -y +1)=0(λ∈R ), 即(λ+1)x +(3-λ)y +λ-3=0, 由题意可知,λ+1λ-3=-2,解得λ=53,所以所求直线方程为83x +43y -43=0,即2x +y -1=0.观察下面图形:图1图2[思考1] 如何求图1中A 、B 两点间的距离? 提示:|AB |=|x A -x B |.[思考2] 图2中能否用数轴上两点A ,B 间距离求出任意两点间距离? 提示:可以,构造直角三角形利用勾股定理求解. [思考3] 怎样理解两点间的距离公式? 名师指津:对两点间距离公式的理解:(1)公式与两点的先后顺序无关,也就是说公式也可以写成|P 1P 2|=x 1-x 22+y 1-y 22,利用此公式可以将几何问题代数化.(2)当直线P 1P 2平行于坐标轴时距离公式仍然可以使用,但一般我们用下列方法:①直线P 1P 2平行于x 轴时|P 1P 2|=|x 2-x 1|;②直线P 1P 2平行于y 轴时|P 1P 2|=|y 2-y 1|.讲一讲2.已知△ABC 三顶点坐标A (-3,1)、B (3,-3)、C (1,7),试判断△ABC 的形状. [尝试解答] 法一:∵|AB |=+2+-3-2=213,|AC |=+2+-2=213,又|BC |=-2++2=226,∴|AB |2+|AC |2=|BC |2,且|AB |=|AC |, ∴△ABC 是等腰直角三角形.法二:∵k AC =7-11--=32,k AB =-3-13--=-23, 则k AC ·k AB =-1,∴AC ⊥AB . 又|AC |=+2+-2=213, |AB |=+2+-3-2=213,∴|AC |=|AB |,∴△ABC 是等腰直角三角形.1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=x 2-x 12+y 2-y 12.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. 练一练3.保持讲2条件不变,求BC 边上的中线AM 的长.解:设点M 的坐标为(x ,y ),因为点M 为BC 的中点,所以x =3+12=2,y =-3+72=2,即点M 的坐标为(2,2).由两点间的距离公式得|AM |=-3-2+-2=26,所以BC 边上的中线AM 的长为26.讲一讲3.如图,一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程及光线从O 点到达P 点所走过的路程.[思路点拨] 先求出原点关于l 的对称点,然后利用反射光线的反向延长线过对称点可求方程.[尝试解答] 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得⎩⎪⎨⎪⎧b a ·⎝ ⎛⎭⎪⎫-43=-1,8×a 2+6×b 2=25,解得⎩⎪⎨⎪⎧a =4,b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3), 又由反射光线过P (-4,3),两点纵坐标相等. 故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧y =3,8x +6y =25,解得⎩⎪⎨⎪⎧x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3⎝ ⎛⎭⎪⎫x ≤78. 由光的性质可知,光线从O 到P 的路程即为AP 的长度|AP |,由A (4,3),P (-4,3)知,|AP |=4-(-4)=8, ∴光线从O 经直线l 反射后到达P 点所走过的路程为8.光线的入射、反射的问题以及在某定直线取点,使它与两定点距离之和最小这类问题均属于点关于直线对称的问题.(1)点A (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y ),可由方程组⎩⎪⎨⎪⎧y -y 0x -x 0·⎝ ⎛⎭⎪⎫-A B =-AB ≠0,A ·x +x2+B ·y +y2+C =0求得.(2)常用对称的特例有:①A (a ,b )关于x 轴的对称点为A ′(a ,-b ); ②B (a ,b )关于y 轴的对称点为B ′(-a ,b ); ③C (a ,b )关于直线y =x 的对称点为C ′(b ,a ); ④D (a ,b )关于直线y =-x 的对称点为D ′(-b ,-a ); ⑤P (a ,b )关于直线x =m 的对称点为P ′(2m -a ,b );⑥Q (a ,b )关于直线y =n 的对称点为Q ′(a,2n -b ). 练一练3.求点A (2,2)关于直线2x -4y +9=0的对称点坐标.解:设B (a ,b )是A (2,2)关于直线2x -4y +9=0的对称点,则有AB 与已知直线垂直,且线段AB 的中点在已知直线上.∴⎩⎪⎨⎪⎧12·b -2a -2=-1,2·a +22-4·b +22+9=0.解得a =1,b =4.∴所求对称点坐标为(1,4).—————————[课堂归纳·感悟提升]————————————1.本节课的重点是了解方程组的解的个数与两直线平行、相交或重合的对应关系,会用解方程组的方法求两条相交直线交点的坐标,掌握两点间距离公式并能灵活应用.难点是了解方程组的解的个数与两直线平行、相交或重合的对应关系.2.本节课要重点掌握的规律方法(1)掌握两条直线相交的判定方法,掌握过两条直线交点的直线方程的求法,见讲1. (2)计算两点间距离的方法,见讲2. (3)点关于直线对称问题的解决方法,见讲3.3.本节课的易错点是点关于直线对称问题及求两直线交点坐标计算错误,如讲1,3.课下能力提升(二十) [学业水平达标练]题组1 两条直线交点的坐标1.下列各直线中,与直线2x -y -3=0相交的是( ) A .2ax -ay +6=0(a ≠0) B .y =2x C .2x -y +5=0 D .2x +y -3=0解析:选D 直线2x -y -3=0的斜率为2,D 选项中的直线的斜率为-2,故D 选项正确.2.(2016·佛山高一检测)若两直线l 1:x +my +12=0与l 2:2x +3y +m =0的交点在y 轴上,则m 的值为( )A .6B .-24C .±6D .以上都不对解析:选C 分别令x =0,求得两直线与y 轴的交点分别为:-12m 和-m 3,由题意得-12m =-m3,解得m =±6.3.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线的方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0解析:选A 首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0.4.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程. (1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0.解:解方程组⎩⎪⎨⎪⎧2x +y -3=0,x -y =0,得交点P (1,1).(1)若直线与l 1平行, ∵k 1=2,∴斜率k =2,∴所求直线方程为y -1=2(x -1), 即: 2x -y -1=0.(2)若直线与l 2垂直,∵k 2=32,∴斜率k =-1k 2=-23,∴所求直线方程为y -1=-23(x -1),即: 2x +3y -5=0.题组2 两点间的距离公式5.已知A (-1,0),B (5,6),C (3,4),则|AC ||CB |的值为( )A.13B.12 C .3 D .2解析:选D 由两点间的距离公式,得|AC |=[3--2+-2=42,|CB |=-2+-2=22,故|AC ||CB |=4222=2.6.已知△ABC 的顶点A (2,3),B (-1,0),C (2,0),则△ABC 的周长是( ) A .2 3 B .3+2 3 C .6+3 2 D .6+10 解析:选C |AB |=+2+32=32,|BC |=+12+0=3,|AC |=-2+32=3,则△ABC 的周长为6+3 2.7.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于________. 解析:设A (x,0),B (0,y ),∵AB 中点P (2,-1),∴x 2=2,y2=-1,∴x =4,y =-2,即A (4,0),B (0,-2),∴|AB |=42+22=2 5. 答案:2 58.求证:等腰梯形的对角线相等.证明:已知:等腰梯形ABCD .求证: AC =BD .证明:以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图平面直角坐标系. 设A (-a,0)、D (b ,c ),由等腰梯形的性质知B (a,0),C (-b ,c ). 则|AC |=-b +a2+c -2=a -b2+c 2,|BD |=b -a2+c -2=a -b 2+c 2,∴|AC |=|BD |.即等腰梯形的对角线相等. 题组3 对称问题9.与直线3x -4y +5=0关于x 轴对称的直线的方程为( ) A .3x +4y -5=0 B .3x +4y +5=0 C .3x -4y +5=0 D .3x -4y -5=0解析:选B 令x =0,解得y =54;令y =0,解得x =-53,故⎝ ⎛⎭⎪⎫0,54和⎝ ⎛⎭⎪⎫-53,0是直线3x -4y +5=0上两点,点⎝ ⎛⎭⎪⎫0,54关于x 轴的对称点为⎝ ⎛⎭⎪⎫0,-54,过两点⎝ ⎛⎭⎪⎫-53,0和⎝ ⎛⎭⎪⎫0,-54的直线即为所求,由两点式或截距式可得3x +4y +5=0.10.已知直线l :x +2y -2=0,试求:(1)点P (-2,-1)关于直线l 的对称点坐标;(2)直线l 关于点A (1,1)对称的直线方程.解:(1)设点P 关于直线l 的对称点为P ′(x 0,y 0),则线段PP ′的中点在直线l 上,且PP ′⊥l .所以⎩⎪⎨⎪⎧ y 0+1x 0+2×⎝ ⎛⎭⎪⎫-12=-1,x 0-22+2×y 0-12-2=0,解得⎩⎪⎨⎪⎧ x 0=25,y 0=195.即p ′点的坐标为⎝ ⎛⎭⎪⎫25,195. (2)设直线l 关于点A (1,1)的对称直线为l ′,则直线l 上任一点P 2(x 1,y 1)关于点A 的对称点P 2′(x ,y )一定在直线l ′上,反之也成立.由⎩⎪⎨⎪⎧ x +x 12=1,y +y 12=1,得⎩⎪⎨⎪⎧ x 1=2-x ,y 1=2-y .将(x 1,y 1)代入直线l 的方程得,x +2y -4=0,即直线l ′的方程为x +2y -4=0.[能力提升综合练]1.已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足为(1,p ),则m -n +p 为( )A .24B .20C .0D .-4解析:选B ∵两直线互相垂直,∴k 1·k 2=-1,∴-m 4·25=-1,∴m =10.又∵垂足为(1,p ),∴代入直线10x +4y -2=0得p =-2,将(1,-2)代入直线2x -5y +n =0得n =-12,∴m -n +p =20.2.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895 B.175 C.135 D.115解析:选C 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0,过定点B ⎝⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135. 3.(2016·阜阳高一检测)已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则N 点的坐标是( )A .(2,3)B .(-2,-1)C .(-4,-3)D .(0,1)解析:选A 由题意知,直线MN 过点M (0,-1)且与直线x +2y -3=0垂直,其方程为2x -y -1=0.直线MN 与直线x -y +1=0的交点为N ,联立方程组⎩⎪⎨⎪⎧ 2x -y -1=0,x -y +1=0,解得⎩⎪⎨⎪⎧ x =2,y =3,即N 点坐标为(2,3).4.已知一个矩形的两边所在的直线方程分别为(m +1)x +y -2=0和4m 2x +(m +1)y -4=0,则m 的值为________.解析:由题意,可知两直线平行或垂直,则m +14m 2=1m +1≠-2-4或(m +1)·4m 2+1·(m +1)=0,解得m =-13或-1. 答案:-13或-1 5.若直线l: y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角α的取值范围是________.解析:如图,直线2x +3y -6=0过点A (3,0),B (0,2),直线l: y =kx -3必过点(0,-3).当直线l 过A 点时,两直线的交点在x 轴上;当直线l 绕C 点逆时针(由位置AC 到位置BC )旋转时,交点在第一象限.根据k AC =-3-00-3=33,得到直线l 的斜率k >33.∴倾斜角α的范围为30°<α<90°.答案:30°<α<90°6.直线l 过定点P (0,1),且与直线l 1:x -3y +10=0,l 2:2x +y -8=0分别交于A 、B 两点.若线段AB 的中点为P ,求直线l 的方程.解:法一:设A (x 0,y 0),由中点公式,有B (-x 0,2-y 0),∵A 在l 1上,B 在l 2上,∴⎩⎪⎨⎪⎧ x 0-3y 0+10=0,-2x 0+-y 0-8=0⇒⎩⎪⎨⎪⎧ x 0=-4,y 0=2,∴k AP =1-20+4=-14, 故所求直线l 的方程为: y =-14x +1,即x +4y -4=0. 法二:设所求直线l 方程为:y =kx +1,l 与l 1、l 2分别交于A 、B .解方程组⎩⎪⎨⎪⎧ y =kx +1,x -3y +10=0⇒A ⎝ ⎛⎭⎪⎫73k -1,10k -13k -1, 解方程组⎩⎪⎨⎪⎧ y =kx +1,2x +y -8=0⇒B ⎝ ⎛⎭⎪⎫7k +2,8k +2k +2. ∵A 、B 的中点为P (0,1),则有:12⎝ ⎛⎭⎪⎫73k -1+7k +2=0,∴k =-14. 故所求直线l 的方程为x +4y -4=0.法三:设所求直线l 与l 1、l 2分别交于A (x 1,y 1)、B (x 2,y 2),P (0,1)为AB 的中点,则有:⎩⎪⎨⎪⎧ x 1+x 2=0,y 1+y 2=2⇒⎩⎪⎨⎪⎧ x 2=-x 1,y 2=2-y 1.代入l 2的方程,得: 2(-x 1)+2-y 1-8=0即2x 1+y 1+6=0.解方程组⎩⎪⎨⎪⎧ x 1-3y 1+10=0,2x 1+y 1+6=0⇒A (-4,2).由两点式:所求直线l 的方程为x +4y -4=0.法四:同法一,设A (x 0,y 0),⎩⎪⎨⎪⎧ x 0-3y 0+10=0,2x 0+y 0+6=0,两式相减得x 0+4y 0-4=0,(1)观察直线x +4y -4=0,一方面由(1)知A (x 0,y 0)在该直线上;另一方面,P (0,1)也在该直线上,从而直线x +4y -4=0过点P 、A .根据两点决定一条直线知,所求直线l 的方程为: x +4y -4=0.7.求函数y =x 2-8x +20+x 2+1的最小值.解:原式可化为y =x -2+-2 +x -2+-2.考虑两点间的距离公式,如图所示,令A(4,2),B(0,1),P(x,0),则上述问题可转化为:在x轴上求一点P(x,0),使得|PA|+|PB|最小.作点A(4,2)关于x轴的对称点A′(4,-2),由图可直观得出|PA|+|PB|=|PA′|+|PB|≥|A′B|,故|PA|+|PB|的最小值为|A′B|的长度.由两点间的距离公式可得|A′B|=-2+-2-12=5,所以函数y=x2-8x+20+x2+1的最小值为5.。

直线的交点坐标和距离公式

直线的交点坐标和距离公式

第二节 直线的交点坐标与距离公式之南宫帮珍创作[备考方向要明了]1.两条直线的交点设两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,(1)若方程组有唯一解,则两条直线相交,此解就是交点的坐标;(2)若方程组无解,则两条直线无公共点,此时两条直线平行,反之,亦成立.[探究] 1.如何用两直线的交点判断两直线的位置关系? 提示:当两条直线有一个交点时,两直线相交;没有交点时,两条直线平行,有无数个交点时,两条直线重合.2.距离点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=x2-x12+y2-y12点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2|A2+B2公式时应注意什么?提示:使用点到直线距离公式时要注意将直线方程化为一般式.使用两条平行线间距离公式时,要将两直线方程化为一般式且x、y的系数对应相等.[自测·牛刀小试]1.(教材习题改编)原点到直线x+2y-5=0的距离是( ) A.1 B.3C.2 D.5解析:选D d=|-5|12+22= 5.2.点A在x轴上,点B在y轴上,线段AB的中点M的坐标是(3,4),则AB的长为( )A.10 B.5C.8 D.6解析:选 A 设A(a,0),B(0,b),则a=6,b=8,即A(6,0),B(0,8).所以|AB|=6-02+0-82=36+64=10.3.若三条直线2x+3y+8=0,x-y-1=0和x+by=0相交于一点,则b =( )A .-1B .-12C .2 D.12解析:选B由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,将其代入x +by =0,得b =-12.4.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为________.解析:设直线l 1的方程为x +y +λ=0,则 2=|-1-λ|12+12=|λ+1|2,解得λ=1或λl 1的方程为x +y +1=0或x +y -3=0.答案:x +y +1=0或x +y -3=05.点(2,3)关于直线x +y +1=0的对称点是________. 解析:设对称点为(a ,b ),则⎩⎪⎨⎪⎧b -3a -2=1,a +22+b +32+1=0,解得⎩⎪⎨⎪⎧a =-4,b =-3.答案:(-4,-3)两条直线的交点问题[例1] 12:x -y +3=0的交点P ,且与直线l 3:2x -y +2=0垂直的直线l 的方程是________________.(2)已知两直线l 1:mx +8y +n =0与l 2:2x +my -1=0,若l 1与l 2相交,则实数m ,n 满足的条件是__________.[自主解答](1)法一:由方程组⎩⎪⎨⎪⎧x +y +1=0,x -y +3=0,解得⎩⎪⎨⎪⎧x =-2,y =1,即点P (-2,1),∵l 3⊥l ,∴k =-12,∴直线l 的方程为y -1=-12(x +2),即x +2y =0.法二:∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x +y +1+λ(x -y +3)=0, 即(1+λ)x +(1-λ)y +1+3λ=0.∵l 与l 3垂直,∴2(1+λ)-(1-λ)=0,解得λ=-13.∴直线l 的方程为23x +43y =0,即x +2y =0.(2)因为两直线l 1与l 2相交,所以当m =0时,l 1的方程为y =-n8,l 2的方程为x =12,两直线相交,此时m ,n 满足条件m =0,n ∈R ;当m ≠0时,由两直线相交.所以m 2≠8m,解得m ≠±4,此时,m ,n 满足条件m ≠±4,n ∈R .[答案] (1)x +2y =0 (2)m ≠±4,n ∈R若将本例(1)中条件“垂直”改为“平行”,试求l 的方程.解:由方程组⎩⎪⎨⎪⎧x +y +1=0,x -y +3=0,解得⎩⎪⎨⎪⎧x =-2,y =1,即点P (-2,1).又l ∥l 3,即k =2,故直线l 的方程为y -1=2(x +2), 即2x -y +5=0. ———————————————————经过两条直线交点的直线方程的设法经过两相交直线A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(这个直线系方程中不包含直线A 2x +B 2y +C 2=0)或m (A 1x +B 1y +C 1)+n (A 2x +B 2y +C 2)=0.1.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)反证法:假设l 1与l 2不相交,则l 1与l 2平行,则有k 1=k 2,代入k 1k 2+2=0得k 21=k 22=-2,显然不成立,与已知矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P的坐标为⎝⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1,而2x 2+y2=2⎝⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1, 即交点P (x ,y )在椭圆2x 2+y 2=1上.距离公式的应用[例2](1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.[自主解答] (1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P (2,-1)且垂直于x 轴的直线满足条件, 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0. (2)作图可得过P 点与原点O 的距离最大的直线是过P 点且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过P 点不存在到原点距离超出5的直线, 因此不存在过P 点且到原点距离为6的直线. ———————————————————求两条平行线间距离的两种思路(1)利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.2.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1), ∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0. ∵点P (a ,b )在上述直线上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4,或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.对 称 问 题[例3] 1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.[自主解答] (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. ———————————————————求点关于直线对称问题的基本方法(1)已知点与对称点的连线与对称轴垂直; (2)已知点与对称点的中点在对称轴上.利用以上两点建立方程组可求点关于直线的对称问题. 3.直线y =2x 是△ABC 的一个内角平分线所在的直线,若点A (-4,2),B (3,1),求点C 的坐标.解:把A ,B 两点的坐标代入y =2x 知,A ,B 不在直线y =2x 上,因此y =2x 为∠ACB 的平分线,设点A (-4,2)关于y =2x 的对称点为A ′(a ,b ),则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22,∵⎩⎪⎨⎪⎧b -2a +4·2=-1,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴A ′(4,-2).∵y =2x 是∠ACB 平分线所在直线的方程,∴A ′在直线BC 上,∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0.由⎩⎪⎨⎪⎧y =2x ,3x +y -10=0,解得⎩⎪⎨⎪⎧x =2,y =4,∴C (2,4).1条规律——与已知直线垂直及平行的直线系的设法 与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为:(1)垂直:Bx -Ay +m =0; (2)平行:Ax +By +n =0.1种思想——转化思想在对称问题中的应用一般地,对称问题包含点关于点的对称,点关于直线的对称,直线关于点的对称,直线关于直线的对称等情况,上述各种对称问题最终化归为点的对称问题来解决.2个注意点——判断直线位置关系及运用两平行直线间的距离公式的注意点(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑;(2)运用两平行直线间的距离公式d =|C 1-C 2|A 2+B2的前提是将两方程中的x ,y 的系数化为分别相等.创新交汇——新定义下的直线方程问题1.直线方程是高考的常考内容,但一般不单独考查,常与圆、圆锥曲线、函数与导数、三角函数等内容相结合,以交汇创新的形式出现在高考中.2.解决新定义下的直线方程的问题,难点是对新定义的理解和运用,关键是要分析新定义的特点,把新定义所叙述的问题的实质弄清楚,并能够应用到具体的解题过程中.[典例] (2013·上海模拟)在平面直角坐标系中,设点P (x ,y ),定义[OP ]=|x |+|y |,其中O 为坐标原点.对于以下结论:①符合[OP ]=1的点P 的轨迹围成的图形的面积为2;②设P 为直线5x +2y -2=0上任意一点,则[OP ]的最小值为1;其中正确的结论有________(填上你认为正确的所有结论的序号).[解析] ①由[OP ]=1,根据新定义得,|x |+|y |=1,上式可化为y =-x +1(0≤x ≤1),y =-x-1(-1≤x ≤0),y =x +1(-1≤x ≤0),y =x -1(0≤x ≤1),画出图象如图所示.根据图形得到四边形ABCD 为边长是2的正方形,所以面积等于2,故①正确; ②当点P 为⎝ ⎛⎭⎪⎪⎫25,0时,[OP ]=|x |+|y |=25+0<1,所以[OP ]的最小值不为1,故②错误;所以正确结论有①.[答案] ①[名师点评]1.本题有以下创新点(1)考查内容的创新,对解析几何问题与函数知识巧妙地结合创新.(2)考查新定义、新概念的理解和运用的同时考查思维的创新,本题考查了学生的发散思维,思维方向与思维习惯有所分歧.2.解决本题的关键有以下两点(1)根据新定义,讨论x 的取值,得到y 与x 的分段函数关系式,画出分段函数的图象,即可求出该图形的面积;(2)认真观察直线方程,可举一个反例,得到[OP ]的最小值为1是假命题.3.在解决新概念、新定义的创新问题时,要注意以下几点(1)充分理解概念、定理的内涵与外延;(2)对于新概念、新结论要具体化,举几个具体的例子,代入几个特殊值;(3)注意新概念、新结论的正用会怎样,逆用会怎样,变形用又将会如何.[变式训练]四边形OABC 的四个顶点坐标分别为O (0,0),A (6,2),B (4,6),C (2,6),直线y =kx ⎝ ⎛⎭⎪⎫13<k <3把四边形OABC 分成两部分,S 暗示靠近x 轴一侧那部分的面积.(1)求S =f (k )的函数表达式;(2)当k 为何值时,直线y =kx 将四边形OABC 分为面积相等的两部分.解:(1)如图所示,由题意得k OB =32. ①当13<k <32时,直线y =kx 与线段AB :2x +y =14相交,由⎩⎪⎨⎪⎧ y =kx ,2x +y =14,解得交点为P 1⎝ ⎛⎭⎪⎫14k +2,14k k +2. 因为点P 1到直线OA :x -3y =0的距离为d =143k -110k +2,所以S =12|OA |·d =143k -1k +2; ②当32≤k <3时,直线y =kx 与线段BC :y =6相交于点P 2⎝ ⎛⎭⎪⎫6k ,6, 所以S △OP 2C =12|P 2C |·6=63-k k .又因为S 四边形OABC =S △AOB +S △OBC =14+6=20,所以S =S 四边形OABC -S △OP 2C =26-18k.故S =f (k )=⎩⎪⎨⎪⎧ 143k -1k +2⎝ ⎛⎭⎪⎫13<k <32,26-18k ⎝ ⎛⎭⎪⎫32≤k <3. (2)若要直线y =kx 平分四边形OABC 的面积,由(1),知只需143k -1k +2=10,解得k =1716. 一、选择题(本大题共6小题,每小题5分,共30分)1.点(1,-1)到直线x -y +1=0的距离是( ) A.12B.32C.322D.22解析:选C d =|1--1×1+1|12+-12=322. 2.(2013·海口模拟)直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( )A .(3,0)B .(-3,0)C .(0,-3)D .(0,3)解析:选D 由题意知,直线l 2的方程为y -1=2(x +1), 令x =0,得y =3,即点P 的坐标为(0,3).3.(2013·南昌模拟)P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为 2,则P 点坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,|4x -6|=2,4x -6=±2, 即x =1或x =2,故P (1,2)或(2,-1).4.(2013·南京调研)与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到l 的距离为10.则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0解析:选C 由⎩⎪⎨⎪⎧ 7x +5y -24=0,x -y =0,得交点(2,2),设l 的方程为y -2=k (x -2),即kx -y +2-2k =0, ∵|5k -1+2-2k |k 2+-12=10,解得k =3. ∴l 的方程为3x -y -4=0.6.曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是( )A .m >4或m <-4B .-4<m <4C .m >3或m <-3D .-3<m <3解析:选A 曲线|x |2-|y |3=1的草图如图所示.与直线y =2x +m 有两个交点.则m >4或m <-4.二、填空题(本大题共3小题,每小题5分,共15分)7.已知坐标平面内两点A (x ,2-x )和B ⎝ ⎛⎭⎪⎪⎫22,0,那么这两点之间距离的最小值是________.解析:d =⎝ ⎛⎭⎪⎪⎫x -222+ 2-x 2= 2⎝ ⎛⎭⎪⎪⎫x -3242+14≥12. 即最小值为12. 答案:128.与直线x -y -2=0平行,且它们的距离为22的直线方程是________________.解析:设与直线x -y -2=0平行的直线方程为x -y +c =0,则22=|c +2|12+-12,得c =2或c =-6,即所求直线方程为x -y +2=0或x -y -6=0.答案:x -y +2=0或x -y -6=09.平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________(将你认为所有正确的序号都填上).①0 ②12③1 ④2 ⑤3 解析:三条直线将平面分为6部分,则这三条直线相交于一点或有且只有两条平行,经验证可知,当k=0,1,2时均符合题意.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分)10.过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,求直线l的方程.解:设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.11.光线从A(-4,-2)点射出,到直线y=x上的B点后被直线y=x反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(-1,6),求BC所在的直线方程.解:作出草图,如图所示,设A关于直线y=x的对称点为A′,D关于y轴的对称点为D′,则易得A′(-2,-4),D′(1,6).由入射角等于反射角可得A′D′所在直线经过点B与C.故BC所在的直线方程为y-66+4=x-11+2,即10x-3y+8=0.12.已知直线l经过直线2x+y-5=0与x-2y=0的交点P,(1)点A(5,0)到l的距离为3,求l的方程;(2)求点A(5,0)到l的距离的最大值.解:(1)∵经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧ 2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10.1.记直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直时m 的取值集合为M ,直线x +ny +3=0与直线nx +4y +6=0平行时n 的取值集合为N ,则M ∪N =________.解析:当直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直时,m 满足(m +2)(m -2)+3m (m +2)=0,解得m =12或m =-2, 故M =⎩⎨⎧⎭⎬⎫-2,12; 直线x +ny +3=0与直线nx +4y +6=0平行,当n =0时,显然两直线不服行;当n ≠0时,两直线平行的充要条件是1n =n 4≠36,即n =-2,所以N ={-2}. 故M ∪N =⎩⎨⎧⎭⎬⎫-2,12.答案:⎩⎨⎧⎭⎬⎫-2,12 2.已知 A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上,则AC 所在直线方程是________________.解析:设点A 关于直线y =x +1对称的点A ′为(x 0,y 0), 则⎩⎪⎨⎪⎧ y 0-1x 0-3=-1,y 0+12=x 0+32+1,解得⎩⎪⎨⎪⎧ x 0=0,y 0=4, 即A ′(0,4).故直线A ′B 的方程为2x -y +4=0.由⎩⎪⎨⎪⎧ 2x -y +4=0,y =x +1,得⎩⎪⎨⎪⎧ x =-3,y =-2,即C (-3,-2).故直线AC 的方程为x -2y -1=0.答案:x -2y -1=03.已知直线l 过点P (3,1)且被两平行线l 1:x +y +1=0,l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解:法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别是A (3,-4),B (3,-9), 截得的线段长|AB |=|-4+9|=5,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =k (x -3)+1,分别与直线l 1,l 2的方程联立,由⎩⎪⎨⎪⎧ y =k x -3+1,x +y +1=0,解得A ⎝ ⎛⎭⎪⎫3k -2k +1,1-4k k +1. 由⎩⎪⎨⎪⎧ y =k x -3+1,x +y +6=0,解得B ⎝ ⎛⎭⎪⎫3k -7k +1,1-9k k +1. 由两点间的距离公式,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫1-4k k +1-1-9k k +12=25, 解得k =0,即所求直线方程为y =1.综上可知,直线l 的方程为x =3或y =1.法二:设直线l 与l 1,l 2分别相交于A (x 1,y 1),B (x 2,y 2), 则x 1+y 1+1=0,x 2+y 2+6=0.两式相减,得(x 1-x 2)+(y 1-y 2)=5.①又(x 1-x 2)2+(y 1-y 2)2=25,②联立①②可得⎩⎪⎨⎪⎧ x 1-x 2=5,y 1-y 2=0,或⎩⎪⎨⎪⎧ x 1-x 2=0,y 1-y 2=5,由上可知,直线l 的倾斜角分别为0°和90°, 故所求的直线方程为x =3或y =1.法三:因为两平行线间的距离 d =|6-1|2=522, 如图,直线l 被两平行线截得的线段为5,设直线l 与两平行线的夹为角θ,则sin θ=22, 所以θ=45°.因为两平行线的斜率是-1,故所求直线的斜率不存在或为零.又因为直线l过点D(3,1),所以直线l的方程为x=3或y=1.4.已知直线l在两坐标轴上的截距相等,且点A(1,3)到直线l的距离为2,求直线l的方程.解:(1)当直线l在两坐标轴上的截距不为零时,可设方程为x+y+m=0(m≠0),由已知|1+3+m|12+12=2,解得m=-2或m=-6,故所求的直线方程为x+y-2=0或x+y-6=0.(2)当直线l在两坐标轴上的截距为零时,可设方程为y=kx,由已知|k-3|k2+-12=2,解得k=1或k=-7,故所求的直线方程为x-y=0或7x+y=0.综上,所求的直线方程为x+y-2=0或x+y-6=0或x-y=0或7x+y=0.。

平面上两点间距离、点到直线距离公式

平面上两点间距离、点到直线距离公式
2
D(b,c) C(a+b,c)
| AC | (a b ) c
2 2
| BD |2 (b a ) 2 c 2
2 2
A(0,0) B(a,0)
2
| AC | | BD | 2(a b c ) | AB |2 | BC |2 | CD |2 | AD |2 2(a 2 b 2 c 2 ) 结论成立 .
(3)点(3, 8)在直线上吗?
直线的方程就是直线上每一 点坐标满足的一个关系式.
例1、求下列直线的交点坐标:
l1 : 3 x 4 y 2 0 l2 : 2 x y 2 0
3 x 4 y 2 0 x 2 解 : 解方程组 2 x y 2 0 y 2 所以 l1与l 2交点为 ( 2,2)
2 2
x 2x 5
2
| PB | ( x 2) 2 (0 7 ) 2 | PA || PB | 2 2 x 2 x 5 x 4 x 11 解得 : x 1, P (1,0) | PA | (1 1) (0 2) 2 22ຫໍສະໝຸດ 2一、两直线的交点(坐标):
已知直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0, 则l1与l2的交点P坐标(x,y)就是方程组的解:
A1 x B1 y C1 0 A x B y C 0 2 2 2
点A 直线L 点A在L上 直线L1∩L2=A A坐标(a,b) L方程:Ax+By+C=0
aA1 bB1 C1 0 A1 x B1 y C1 0 x a A x B y C 0 y b 2 2 2

解析几何中的基本公式

解析几何中的基本公式

解析几何中的基本公式解析几何是高中数学中的一门重要学科,它研究几何图形的坐标表示方法和相关性质。

在解析几何中,使用了一系列经典的基本公式,本文将对这些公式进行详细解析。

一、两点间距离公式在解析几何中,经常需要计算两点之间的距离。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们之间的距离可以用以下公式表示:$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$其中 $d$ 表示两点之间的距离。

这个公式的计算方法非常简单,只需要将两点横、纵坐标的差值平方相加,再开方即可。

二、两点间中点公式在解析几何中,还需要计算两点间的中点。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们的中点可以用以下公式表示:$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$这个公式的计算方法也非常简单,只需要将两点横、纵坐标分别求出平均值,即可得到中点的坐标。

三、点到直线距离公式在解析几何中,还需要计算一个点到一条直线的距离。

对于一条直线 $ax+by+c=0$ 和一个点 $P(x_0,y_0)$,它们之间的距离可以用以下公式表示:$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$其中 $d$ 表示点 $P$ 到直线的距离。

这个公式的计算方法稍微有些复杂,但是可以通过向量的方法来简化计算。

四、直线的斜截式方程公式在解析几何中,我们经常需要用一条直线的方程表示它的位置关系。

在平面直角坐标系中,如果直线的斜率为$k$,截距为$b$,则这条直线的方程可以用以下公式表示:$$y=kx+b$$这个公式非常简单明了,如果已知一条直线的斜率和截距,则可以用这个公式求出它的方程。

五、两条直线的交点公式在解析几何中,我们经常需要求出两条直线的交点,以确定它们的位置关系。

对于一条直线 $y=k_1x+b_1$ 和另一条直线$y=k_2x+b_2$,它们的交点可以用以下公式表示:$$(\frac{b_2-b_1}{k_1-k_2},\frac{k_1b_2-k_2b_1}{k_1-k_2})$$这个公式的计算方法稍微有些复杂,需要将两条直线的方程联立后,解出它们的交点坐标。

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修
A.x+3y=0

2

3
C. + =1
答案:C
1
3
1
D.y=- x+4
3
B.y=- x-12
)
S 随堂练习
UITANG LIANXI
首 页
1
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2
2.两点间的距离公式
已知平面上两点 P1(x1,y1),P2(x2,y2)间的距离为|P1P2|,则
-1
2-1
=
-(-3)
,
2-(-3)
首 页
探究一
探究二
探究三
探究四
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究五
探究四坐标法的应用
将几何问题代数化,即用代数的语言描述几何要素及其关系,并最终解决几
何问题,这种处理问题的方法叫作坐标法(或解析法),通过这种方法,把点与
坐标、曲线与方程联系起来,实现空间形式与数量关系的结合.
坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.
坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有
两点:
①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相
垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑
ICHU ZHISHI
HONGDIAN NANDIAN
探究五
解:(1)设所求直线方程为 x+2y-2+λ(3x-2y+2)=0.

2.3.1两条直线交点的坐标 2.3.2两点间距离公式教案-高中数学人教版(2019)选择性必修一

2.3.1两条直线交点的坐标 2.3.2两点间距离公式教案-高中数学人教版(2019)选择性必修一

2.3.1两条直线的交点坐标2.3.2两点间的距离公式一、内容解析内容解析第 3 节“直线的交点坐标与距离公式”是运用直线的方程判断两条直线的位置关系,求两条直线相交时交点的坐标;推导点到直线的距离公式、两条平行直线间的距离公式.求两直线的交点坐标的方法,学生在初中的一次函数中已经学会使用,高中阶段则重新从直线上点的坐标与直线的方程的关系的角度切入,加深了对求交点坐标的本质的理解.在前节已经学习了如何利用直线的方程来判断两直线的位置关系的基础上,本节要通过解两条直线的方程组成的方程组,从解的个数来判断两直线的位置关系.距离问题是欧氏几何的基本问题之一,在欧氏几何中,把两点间线段的长度定义为距离. 而两点间的距离公式与过两点的直线斜率公式是平面解析几何中两个最基本的公式. 教科书中用向量方法得出平面上两点间的距离公式,同时,还设置了问题引导学生思考两点间的距离公式是否可以使用勾股定理来解决,使学生了解两种推导两点间距离的方法,并且能够评价对两种方法的体会.运用坐标法解决平面几何问题主要是培养学生数形结合的数学思想.将坐标语言的表述应用于平面几何问题有助于培养学生的直观想象、数学运算素养.通过对平面几何问题的解决,使得学生首先会用原理、公式、并通过练习实现学生达到熟练掌握运算方法、技巧的能力.结合以上分析,确定本节课的教学重点:求两条直线交点坐标、判断两直线的位置关系、求两点间的距离.二、目标和目标解析1.目标与学科素养目标:(1)理解解方程组的方法求两条相交直线的交点坐标;(2)了解根据方程组的解的个数判定两条直线的位置关系;(3)掌握平面上两点间的距离公式;(4)理解用坐标法证明简单的平面几何问题.素养:(1)数学抽象:掌握平面内两点间的距离公式;(2)数学运算:求两直线的交点坐标、判断两直线的位置关系、求两点间的距离;(3)数学建模:用坐标法解决平面几何问题.2.目标解析达成上述目标的标志是:(1)能列出方程组,并正确求出两直线的交点坐标.(2)能够根据方程组解的个数判断两直线的位置关系.(3)能够运用公式求出两点间的距离.(4)能够根据题意,建立合适的平面直角坐标系,完成对平面几何问题的证明.三、教学问题诊断分析学生在初中的一次函数中已经能够解决过求两直线交点的问题,在2.2节直线的方程一节中也学习了如何用直线的方程来判断两直线的位置关系.在本节中从曲线上的点与曲线方程的关系入手,揭示解方程组法求两直线交点坐标的本质.由于前面学生已有知识的铺垫,理解这一点应该不太困难.从两曲线公共点个数来判断它们的位置关系,是几何中的重要方法,在解析几何后面的位置关系问题的研究中还要多次出现,要让学生理解这种判断两曲线位置关系的思路,从而理解通过方程组解的个数来判断两直线位置关系的方法.学生在必修课程中已经接触过已知起点坐标和终点坐标的向量求解模长的问题,这实际上为本节课两点间的距离公式提供了基础.实际上,本节中两点间距离公式就是通过求一个向量的模长来证明的.因此,两点间距离公式的推导和记忆都不会对学生造成太大的认知障碍.但是对于两点间距离公式的应用,会给学生带来一些困扰.首先,就是运算量会稍大一些;其次,对于简单的平面几何问题的证明,是否想到通过建系用坐标法解决、怎么建系以及建系后的运算都会使学生的学生产生困难.本节课的教学难点是用坐标法解决平面几何问题.四、教学过程设计(一)概念的引入在平面几何中,我们对直线做了定性研究,引入平面直角坐标系后,我们用二元一次方程表示直线,直线的方程就是相应直线上每一点的坐标所满足的一个关系式,这样我们可以通过方程把握直线上的点,进而用代数方法对直线进行定量研究,本节课我们学习的主要问题是两条直线的交点坐标以及平面内两点间距离问题.问题1:点与直线的关系是什么?师生活动:学生独立思考、讨论交流.教师提示,引导学生从点与直线的关系入手,并填写表格.设计意图:通过对点与直线关系的复习,帮助学生再次明确曲线上的点的坐标满足曲线方程.问题2:如果两直线11110l:A x+B y+C=,22220l:A x+B y+C=相交于一点A,若点A的坐标为()m,n则点A的坐标与这两条直线的方程有何关系?师生活动:学生独立思考、讨论交流. 设计意图:引导学生明确公共点同时在两条直线上,因此公共点的坐标应该同时满足两条直线的方程,也就是公共点的坐标就是方程组的解..(二)概念的理解(1)两条直线的交点坐标问题1:求两条直线交点坐标的方法是什么?师生活动:学生独立思考,根据复习引入部分的探讨回答问题.设计意图:总结复习引入部分的探究,并得到求交点坐标的方法.问题2:直线1111:0,l A x B y C ++=2222:0,l A x B y C ++=它们的方程组成的二元一次方程组为1112220;0.A x B y C A x B y C ++=⎧⎨++=⎩当方程组有唯一解时,直线1l 与2l 的位置关系是怎样的?当方程组有无数个解时,直线1l 与2l 的位置关系是怎样的?当方程组无解时,直线1l 与2l 的位置关系是怎样的?师生活动:指导学生分析,找到方程组的解的情况与两条直线位置关系之间的对应关系.学生讨论,在教师的指导下总结.设计意图:.通过问题引起学生对方程组解的个数与直线间位置关系二者之间的联系的思考,使学生理解可以通过解方程组的方法来判断直线的位置关系.问题3:根据对问题2的研究,我们可以怎么样判断直线1l 与直线2l 的位置关系?师生活动:学生思考、讨论交流,总结结论.设计意图:对问题2的探究进行总结归纳,同时得到判断两直线位置关系的方法. 问题4:你能用直线的斜率判断上述各对直线的位置关系吗?比较用斜率判断和解方程组这两种方法,你有什么体会?师生活动:学生思考、讨论交流,教师总结.设计意图:让学生回忆使用斜率的方法解决本题,并与解方程组的方法进行比较,体会两种方法的联系与区别:用斜率判断和解方程组判断这两种方法都是通过代数方法研究直线与直线的位置关系.用斜率容易判断直线与直线的平行或相交(垂直),但无法直接得出相交时两直线的交点坐标.(2)两点间的距离公式我们知道,在各种几何量中,直线段的长度是最基本的.所以,在解析几何中,最基本的公式自然是用平面内两点的坐标表示这两点间距离的公式.下面我们就来研究这个公式.请同学们阅读教科书第72页的探究部分:如图2.3-2,已知平面内两点111222()()P x ,y ,P x ,y ,如何求1P ,2P 间的距离12PP ? 问题1:此公式与两点的先后顺序有关吗?师生活动:学生思考、讨论交流. 设计意图:通过问题,使学生明确公式与点的顺序无关,从而加深对公式的理解. 问题2:当直线12P P 平行于x 轴时,12PP 怎么表示?当直线12P P 平行于y 轴时,12PP 怎么表示?师生活动:学生思考、讨论交流.设计意图:两点间距离公式适用于两个点在平面内任意位置的问题,使学生明确公式与点的顺序无关.问题3:你能利用111222()()P x ,y ,P x ,y 构造直角三角形,再用勾股定理推到两点间距离公式吗?师生活动:学生思考、讨论交流,教师总结.设计意图:先引导学生如何构造直角三角形,再利用分类讨论思想,使用勾股定理推导出两点间的距离公式,并与向量法的推导形成对比,让学生体会方法的不同.(三)概念的巩固应用例1.求下列两条直线的交点坐标,并画出图形:12:3420,:220.+-=++=l x y l x y师生活动:学生分析解题思路,并尝试写出解题过程.教师可以根据学生的解题过程是否规范,条理是否清楚进行讲解.设计意图:利用例1使学生明确求交点坐标的方法,会使用解方程组的方法求解两条直线的交点坐标,并能根据直线方程画出图形.例2.判断下列各对直线的位置关系.如果相交,求出交点坐标:(1)12:0:3100;l x y l x y -=+3-=,,(2)12:340:6210;l x y l x y -+=--=,(3)12:3450:68100.l x y l x y +-=+-=,师生活动:学生分析解题思路,教师给出解答示范.设计意图:利用例2使学生巩固利用方程组解的个数判断两直线位置关系的方法. 练习2.分别判断下列直线的位置关系,若相交,求出它们的交点.(1)12:27:3270l x y l x y -=+-=和;(2)12:2640:41280l x y l x y -+=-+=和;(3)12:4240:23l x y l y x ++==-+和.师生活动:学生做练习,教师根据学生练习情况给予反馈.设计意图:利用与例2完全类似的问题,有针对性的对判断两直线位置关系的方法进行巩固.例3.已知点2()1,A -,(2),7B ,在x 轴上求一点P ,使PA PB =,并求PA 的值. 师生活动:学生分析解题思路,教师给出解答示范.设计意图:通过例3使学生巩固两点间距离公式,以及学会将已知条件中的几何关系转化为代数语言.除此之外,也培养学生的数学运算的素养..练习3.已知点(3),6A ,在x 轴上的点P 与点A 的距离等于10,求点P 的坐标. 师生活动:学生做练习,教师根据学生练习情况给予反馈.设计意图:利用与例4完全类似的问题,有针对性的对例题进行巩固.例4.用坐标法证明:平行四边形两条对角线的平方和等于两条邻边的平方和的两倍教师引导学生分析解题思路,与学生共同完成解题过程,并向学生提出以下问题:问题1:证明过程的第一步是什么?问题2:建系后的步骤是什么?问题3:写出点的坐标后,应继续做什么?问题4:用坐标进行代数运算后的步骤是什么?问题5:通过这个例题,我们利用坐标法解决平面几何问题的基本步骤应该是怎样的? 问题6:根据例4的条件,你是否还有其他建立坐标系的方法?师生活动:学生阅读证明过程,教师以问题串的形式向学生提出问题,学生交流讨论,教师归纳总结.设计意图:问题1,2,3,4,5的作用是引导学生注意解题步骤,并启发学生概括出坐标法解决平面几何问题的基本步骤;问题6引导学生明白,对于同一个问题,建系的方法并不唯一,但是我们应该选择更有利于我们运算的坐标系.比如,建系时可以利用相互垂直的两直线作为坐标轴;应该让几何图形的边或顶点等几何元素更多的位于坐标轴上;也可以利用几何图形的对称性,以对称轴为其坐标轴;等等.△的形状.练习4.已知点(3),(3,3),--,判断ABC,1(1,7)A B C师生活动:学生做练习,教师根据学生练习情况给予反馈.设计意图:通过练习4,使学生巩固用坐标法解决平面几何问题的基本思想,本题可以使用两种不同的方法进行解决,通过一题多解,拓宽学生的思维,提升学生逻辑推理的数学素养.(四)归纳总结、布置作业教师引导学生回顾本节知识,本节课我们学习了以下问题:(1)求两条直线的交点坐标;(2)判断两直线的位置关系;(3)两点间的距离公式;(4)用坐标法解决平面几何问题.设计意图:从方法以及公式两个方面对本节课的知识进行归纳小结,使学生从整体上把握本节课所学的知识.布置作业:教科书第72页,练习1,2,3;教科书第74页,练习1,2,3.。

平面上两点间的距离和点到直线的距离公式

平面上两点间的距离和点到直线的距离公式

平面上两点间的距离和点到直线的距离公式在平面上,假设有两个点A(x1,y1)和B(x2,y2),我们可以使用勾股定理来计算这两个点之间的距离。

勾股定理表述为:在直角三角形中,直角边的平方和等于斜边的平方。

根据这个定理,我们可以得出两个点之间的距离公式:d=√((x2-x1)²+(y2-y1)²)其中,d表示两点之间的距离。

点到直线的距离公式:在平面上,假设有一条直线L,以及一个点P(x,y)不在直线上。

我们可以使用点到直线的距离公式来计算点P到直线L的距离。

点到直线的距离可以表示为该点到直线上的垂直线段的长度。

为了计算点P到直线L的距离,我们可以通过以下步骤进行:1.首先,我们需要确定直线的方程。

直线可以用一般式方程Ax+By+C=0来表示,其中A、B和C是常数。

2.然后,我们可以使用以下公式来计算点P到直线L的距离:d=,Ax+By+C,/√(A²+B²)其中,d表示点P到直线L的距离,Ax+By+C,表示点P带入直线方程后的结果的绝对值,√(A²+B²)是直线方程中A和B的平方和的平方根。

这个公式的推导过程可以通过垂直距离的性质证明。

假设直线L的方程是Ax+By+C=0,点P的坐标是(x,y),以及点Q是直线L上离点P最近的点。

我们可以通过求点P和点Q的连线与直线L的交点来找到点Q的坐标。

然后,我们可以证明向量PQ与直线L的法向量是垂直的。

根据向量的性质,我们可以得出以下等式:(A,B)·(x-xQ,y-yQ)=0化简上述等式得到:Ax-AxQ+By-ByQ=0其中,(A,B)表示直线L的法向量,(xQ,yQ)表示点Q的坐标。

最后,我们可以得出以下等式:Ax+By=AxQ+ByQ将点P的坐标代入上述等式得到:Ax+By=AxP+ByP进一步化简得到:Ax+By+C,=,AxP+ByP+C因此,点P到直线L的距离可以表示为:d=,Ax+By+C,/√(A²+B²)这就是点到直线的距离公式。

两条直线的距离公式

两条直线的距离公式

两条直线的距离公式直线的距离是指直线之间最短的距离。

在平面几何中,我们可以使用以下两种方法来计算两条直线之间的距离。

考虑一条直线L1,它的一般方程为Ax+By+C1=0;以及一条直线L2,它的一般方程为Ax+By+C2=0。

假设我们要计算直线L1和L2之间的距离。

我们可以选择直线L1上的一点P(x1,y1),通过将该点的坐标代入直线L2的一般方程,计算出点P到直线L2的距离。

1.首先,计算点P到直线L2的距离的公式为:d=,Ax1+By1+C2,/√(A^2+B^2)其中,Ax1+By1+C2,表示点P到直线L2的有向距离,也可以理解为点P的投影在直线L2上的有向距离;√(A^2+B^2)表示直线L2的斜率的模。

2.为了得到点P到直线L1上的距离,我们可以对直线L1和L2的角色进行互换,重复上述步骤即可。

3.最后,直线L1和L2之间的距离,即为点P到直线L1上的距离和点P到直线L2上的距离中的较小值。

方法二:两直线之间的最短距离公式考虑一条直线L1,它的一般方程为Ax+By+C1=0;以及一条直线L2,它的一般方程为Ax+By+C2=0。

通过平移直线L1和L2,我们可以将直线L1的一点P(x1,y1)和直线L2的一点Q(x2,y2)分别转移到原点O(0,0)上。

此时,直线L1和L2变为经过原点O的直线,它们的一般方程变为:L1:Ax+By=0;L2:Ax+By=0。

1.首先,我们将直线L2沿直线L1的法线方向作平移,直到与直线L1重合。

这样,我们得到直线L2'。

由于直线L2'与直线L1重合,所以它们之间的距离为0。

2.为了计算直线L1和直线L2的距离,我们可以计算点P'(x1',y1')到直线L2'的距离。

3.接下来,我们可以将点P'平移回到原来的位置,得到点P的坐标(x1,y1)=(x1'+x0,y1'+y0)。

4.最后,点P到直线L2的距离,即为点P'到直线L2'的距离。

DBF直线的交点坐标与距离公式

DBF直线的交点坐标与距离公式

分别判断下列直线是否相交 若相交, 判断下列直线是否相交, 例5 分别判断下列直线是否相交,若相交,求出它们的交 点. (1)l1:2x-y=7 和 l2:3x+2y-7=0; - = + - = ; (2)l1:2x-6y+4=0 和 l2:4x-12y+8=0; - + = - + = ; (3)l1:4x+2y+4=0 和 l2:y=- +3. =-2x+ + + = =- 系 思维突破: 思维突破:可依据方程组解的情况来判断两直线的位置关 .
2x-y-7=0 解:(1)方程组 3x+2y-7=0 2x-6y+4=0 (2)方程组 4x-12y+ 8= 0 x=3 的解为 y=- 1

因此直线 l1 和 l2 相交,交点坐标为 ,- . 相交,交点坐标为(3,- ,-1). 有无数组解, 有无数组解,
3.3
直线的交点坐标 与距离公式
主要内容
3.3.1 两条直线的交点坐标 3.3.2 两点间的距离 3.3.3 点到直线的距离 3.3.4两条平行直线间的距
1.在平面几何中,我们只能对直线作定性的研究, 1.在平面几何中,我们只能对直线作定性的研究, 在平面几何中 如平行、相交、垂直等.在平面直角坐标系中, 如平行、相交、垂直等.在平面直角坐标系中,我们用 二元一次方程表示直线,从而可以对直线进行定量分析, 二元一次方程表示直线,从而可以对直线进行定量分析, 如确定直线的斜率、截距等. 如确定直线的斜率、截距等. 2.在同一平面内 两条直线之间存在平行、相交、 在同一平面内, 2.在同一平面内,两条直线之间存在平行、相交、 重合等位置关系, 重合等位置关系,这些位置关系的基本特征与公共点 的个数有关. 因此,如何将两直线的交点进行量化, 的个数有关. 因此,如何将两直线的交点进行量化, 便成为一个新的课题. 便成为一个新的课题. 思考1:若点P在直线l上 则点P的坐标(x 1:若点 与直线l 思考1:若点P在直线 上,则点P的坐标(x0,y0)与直线 的方程Ax+By+C=0有什么关系? Ax+By+C=0有什么关系 的方程Ax+By+C=0有什么关系? 思考2:直线2x+y-1=0与直线2x+y+1=0,直线3x+4y-2=0 思考2:直线2x+y-1=0与直线2x+y+1=0,直线3x+4y2:直线2x+y 与直线2x+y+1=0 3x+4y 与直线2x+y+2=0的位置关系分别如何? 2x+y+2=0的位置关系分别如何 与直线2x+y+2=0的位置关系分别如何? 思考3:能根据图形确定直线3x+4y 2=0与直线 3:能根据图形确定直线3x+4y与直线2x+y+2=0 思考3:能根据图形确定直线3x+4y-2=0与直线2x+y+2=0 的交点坐标吗?有何办法求得这两条直线的交点坐标? 的交点坐标吗?有何办法求得这两条直线的交点坐标?

高二寒假讲义07 直线的交点坐标与距离公式

高二寒假讲义07  直线的交点坐标与距离公式

直线的交点坐标与距离公式(含答案)知识梳理1、两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解.2、距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为21221221)()(||y y x x P P -+-= 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. (3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.知识典例题型一 交点问题例 1 直线230x y k +-=和120x ky -+=的交点在y 轴上,则k 的值为( ) A .-24 B .6C .6±D .-6【答案】C 【分析】通过直线的交点代入两条直线方程,然后求解k 即可.【详解】解:因为两条直线230x y k +-=和120x ky -+=的交点在y 轴上, 所以设交点为(0,)b ,所以30120b k kb -=⎧⎨-+=⎩,消去b ,可得6k =±.故选:C .巩固练习当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【分析】 解方程组12kx y k ky x k-=-⎧⎨-=⎩得两直线的交点坐标,由102k <<,判断交点的横坐标、纵坐标的符号,得出结论.【详解】解方程组12kx y k ky x k -=-⎧⎨-=⎩,得两直线的交点坐标为21,11k k k k -⎛⎫ ⎪--⎝⎭, 1210,0,0211k k k k k -<<∴--, 所以交点在第二象限,故选B.题型二 两点的距离例 2 已知点()2,1A --,(),3B a ,且5AB =,则a 的值为( ) A .1 B .5-C .1或5-D .1-或5【答案】C 【分析】利用两点间距离公式构造方程求得结果. 【详解】 由题意知:()()222315AB a =+++=,解得:1a =或5-本题正确结果:C巩固练习(多选)对于225x x ++,下列说法正确的是( ) A .可看作点(),0x 与点()1,2的距离 B .可看作点(),0x 与点()1,2--的距离 C .可看作点(),0x 与点()1,2-的距离 D .可看作点(),1x -与点()1,1-的距离 【答案】BCD 【分析】化简225x x ++=()()()()2222102111x x ++±=++--,结合两点间的距离公式,即可求解.【详解】由题意,可得()222514x x x ++=++=()()()()2222102111x x ++±=++--,可看作点(),0x 与点()1,2--的距离,可看作点(),0x 与点1,2的距离,可看作点(),1x -与点()1,1-的距离,故选项A 不正确, 故答案为:BCD.题型三 点到直线的距离例 3 已知点A(-3,-4),B(6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于( )A .79B .13-C .79-或13-D .79-或13【答案】C 【分析】直接根据点到直线的距离公式列出关于a 的方程,求出方程的解,得到a 的值. 【详解】因为A 和B 到直线l 的距离相等, 由点A 和点B 到直线的距离公式, 2234163111a a a a --+++=++,化简得3364a a +=+|,()3364a a +=±+,解得实数79a =-或13-,故选C.巩固练习(多选)已知直线l 经过点(3,4),且点(2,2),(4,2)A B --到直线l 的距离相等,则直线l 的方程可能为( ) A .23180x y +-= B .220x y --= C .220x y ++= D .2360x y -+=【答案】AB 【分析】由题可知直线l 的斜率存在,所以设直线l 的方程为4(3)y k x -=-,然后利用点到直线的距离公式列方程,可求出直线的斜率,从而可得直线方程 【详解】当直线l 的斜率不存在时,显然不满足题意.当直线l 的斜率存在时,设直线l 的方程为4(3)y k x -=-,即430kx y k -+-=.由已知得2211k k =++,所以2k =或23k =-, 所以直线l 的方程为220x y --=或23180x y +-=. 故选:AB题型四 平行线间的距离例 4 已知直线3230x y +-=和610x my ++=互相平行,则它们之间的距离是( )A .4B .1313C 51326D 71326【答案】D 【解析】因为3x+2y-3=0和6x+my+1=0互相平行,所以3∶2=6∶m,所以m=4.直线6x+4y+1=0可以转化为3x+2y+12=0, 由两条平行直线间的距离公式可得:d=()2213232--+=7213=713.巩固练习若直线1:60l x ay ++=与()2:2320l a x y a -++=平行,则1l 与2l 间的距离为 【答案】823【分析】根据两直线平行求出a 的值,得出两条直线方程,再求直线之间的距离. 【详解】由题:直线1:60l x ay ++=与()2:2320l a x y a -++=平行, 则()32a a =-,即2230a a --=,解得3a =或1a =-, 当3a =时,直线1:360l x y ++=与2:360l x y ++=重合; 当1a =-时,直线1:60l x y -+=与22:03l x y -+=平行, 两直线之间的距离为268232-=.题型五 三角形的面积求解例 5 已知直线l 过点()2,3P 且与定直线0:2l y x =在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点(),0B a . (1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.【答案】(1)12a >(2)33y x =- 【分析】(1)求出直线l 与直线0:2l y x =平行时,直线l 的斜率,由斜率公式以及题设条件确定实数a 的取值范围;(2)当直线l 的斜率不存在时,求出点,A B 坐标,得出4S =;当直线l 的斜率存在时,设出方程,求出斜率的范围,联立直线l 与直线0l 的方程求出点A 坐标,由三角形面积公式结合判别式法,得出S 取得最小值时直线l 的斜率,进而得出直线l 的方程. 【详解】(1)当直线l 与直线0:2l y x =平行时,如下图所示322BP k a==-,解得12a =,此时不能形成AOB ,则12a ≠又点(),0B a 在x 轴正半轴上,且直线l 与定直线0l 在第一象限内交于点A12a ∴>(2)当直线l 的斜率不存在时,即(2,0)B ,(2,4)A ,此时12442S =⨯⨯= 当直线l 的斜率存在时,设直线l 的方程为(2)3y k x =-+ 由于斜率存在,则12a >且2a ≠ 又32BP k a=-,2k ∴>或k 0< 由(2)32y k x y x =-+⎧⎨=⎩,得3264,22k k A k k --⎛⎫⎪--⎝⎭ 则22123644129222k k k k S k k k k---+=⨯⨯=-- 即2(4)(122)90S k S k ---+=由2(122)36(4)0S S ∆=---≥,整理得(3)0S S -则3S ≥,即S 的最小值为3此时2690k k -+=,解得3k =则直线l 的方程为3(2)333y x x =-+=-巩固练习已知△ABC 的两条高线所在直线方程为2x -3y +1=0和x +y =0,顶点A (1,2). 求:(1)BC 边所在的直线方程; (2)△ABC 的面积.【答案】(1) 2x +3y +7=0;(2)452. 【分析】(1)先判断A 点不在两条高线上,再利用垂直关系可得AB 、AC 的方程,进而通过联立可得解; (2)分别求|BC |及A 点到BC 边的距离d ,利用S △ABC =12×d ×|BC |即可得解. 【详解】(1)∵A 点不在两条高线上,由两条直线垂直的条件可设k AB =-,k AC =1. ∴AB 、AC 边所在的直线方程为3x +2y -7=0,x -y +1=0. 由得B (7,-7). 由得C (-2,-1).∴BC 边所在的直线方程2x +3y +7=0. (2)∵|BC |=,A 点到BC 边的距离d =,∴S △ABC =×d ×|BC |=××=.巩固提升1、直线5y x =-+与直线1y x =+的交点坐标是( ) A .()1,2 B .()2,3C .()3,2D .()2,1【答案】B 【分析】联立两直线方程,求出公共解,即可得出两直线的交点坐标. 【详解】联立两直线的方程51y x y x =-+⎧⎨=+⎩,解得23x y =⎧⎨=⎩,因此,两直线的交点坐标是()2,3.故选:B.2、两平行直线12,l l 分别过点()()1,3,2,1P Q --,它们分别绕,P Q 旋转,但始终保持平行,则12,l l 之间的距离的取值范围是( ) A .()0,∞+ B .[]0,5C .(]0,5D.(【答案】C 【分析】先判断当两直线1l ,2l 与直线PQ 垂直时,两平行直线1l ,2l 间的距离最大,计算得到最大值,进而得到范围. 【详解】5PQ ==当1PQ l ⊥时,1l 与2l 的最大距离为5, 因为两直线平行,则两直线距离不为0, 故选:C.3、“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 【答案】B 【解析】试题分析:由题意知点(2,1)到直线340x y C ++=的距离为33=,解得5C =或25C =-,所以“5C =”是“点(2,1)到直线340x y C ++=的距离为3”的充分不必要条件,故选B. 4、两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A.4 BCD 【答案】D 【分析】由两直线平行,可求得m 的值,代入两平行线距离公式,即可求解.【详解】因为两直线平行,所以361m ⨯=⨯,解得m =2, 将6x +2y +1=0化为3x +y +12=0, 由两条平行线间的距离公式得d==, 故选:D .5、直线l 经过原点,且经过另两条直线2380x y ++=,10x y --=的交点,则直线l 的方程为( ) A .20x y += B .20x y -=C .20x y +=D .20x y -=【答案】B 【分析】联立方程可解交点,进而可得直线的斜率,可得方程,化为一般式即可. 【详解】 联立方程238010x y x y ++=⎧⎨--=⎩,解得:12x y =-⎧⎨=-⎩所以两直线的交点为()1,2--,所以直线的斜率为20210--=--,则直线l 的方程为:2y x =,即20x y -=. 故选:B6、若直线0kx y -=和直线2360x y +-=的交点在第一象限,则k 的取值范围为__________.【答案】,3⎛⎫+∞ ⎪ ⎪⎝⎭【分析】由0,2360,kx y x y ⎧--=⎪⎨+-=⎪⎩解得交点坐标为x y ⎧=⎪⎪⎨⎪=⎪⎩根据交点位置得到0,0,>>解出即可.【详解】由0,2360,kx y x y ⎧--=⎪⎨+-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩又∵直线0kx y --=和直线2360x y +-=的交点在第一象限,∴60,230,k ⎧+>⎪⎪+>解得3k >.故答案为3⎛⎫+∞ ⎪⎪⎝⎭. 7、已知直线1:l 3250x y +-=与直线2:l 4110x ay +-=,且12l l ⊥,则直线1l 与直线2l 的交点坐标是______. 【答案】12,2⎛⎫- ⎪⎝⎭【分析】由12l l ⊥得3420a ⨯+=,求出a ,再解方程组求交点坐标. 【详解】因为12l l ⊥,所以3420a ⨯+=,所以6a =-.联立3250,46110,x y x y +-=⎧⎨--=⎩解得2,1,2x y =⎧⎪⎨=-⎪⎩,故直线1l 与直线2l 的交点坐标是12,2⎛⎫- ⎪⎝⎭.故答案为:12,2⎛⎫-⎪⎝⎭8、点(,6)P m 到直线3420x y --=的距离不大于4,则m 的取值范围是________. 【答案】462,3⎡⎤⎢⎥⎣⎦【分析】根据点到直线的距离公式即可列出不等式,解出即可. 【详解】4≤,解得4623m ≤≤.故答案为:462,3⎡⎤⎢⎥⎣⎦.。

28知识讲解_两直线的位置关系、交点坐标与距离公式_提高

28知识讲解_两直线的位置关系、交点坐标与距离公式_提高

两直线的位置关系、交点坐标与距离公式编稿:丁会敏 审稿:王静伟【学习目标】1.掌握解方程组的方法,求两条相交直线的交点坐标.2.掌握两点间距离公式,点到直线距离公式,会求两条平行直线间的距离.3.熟练掌握两条直线平行与垂直的充要条件.【要点梳理】【高清课堂:两直线的交点与点到直线的距离381525 知识要点1】要点一:直线的交点求两直线与的交点坐标,只需求两直线方程联立所得方程组的解即可.若有,则方程组有无穷多个解,此时两直线重合;若有,则方程组无解,此时两直线平行;若有,则方程组有唯一解,此时两直线相交,此解即两直线交点的坐标.要点诠释:求两直线的交点坐标实际上就是解方程组,看方程组解的个数.要点二:过两条直线交点的直线系方程一般地,具有某种共同属性的一类直线的集合称为直线系,它的方程叫做直线系方程,直线系方程中除含有以外,还有根据具体条件取不同值的变量,称为参变量,简称参数.由于参数取法不同,从而得到不同的直线系.过两直线的交点的直线系方程:经过两直线,交点的直线方程为,其中是待定系数.在这个方程中,无论取什么实数,都得不到,因此它不能表示直线.要点三:两直线平行设两条不重合的直线的斜率分别为.若,则与的倾斜角与相等.由,可得,即.因此,若,则.反之,若,则.要点诠释:1.公式成立的前提条件是①两条直线的斜率存在分别为;②不重合;2.当两条直线的斜率都不存在且不重合时,的倾斜角都是,则.要点四:两直线垂直21tan tan αα=21k k =1111110(0)A x B y C A B C ++=≠2222220(0)A x B y C A B C ++=≠11122200A xB yC A x B y C ++=⎧⎨++=⎩111222A B CA B C ==111222A B C A B C =≠1122A BA B ≠,x y 1111:0l A x B y C ++=2222:0l A x B y C ++=111222()0A x B y C A x B y C λ+++++=λλ2220A x B y C ++=2l 21,l l 21,k k 21//l l 1l 2l 1α2α21αα=21//l l 21k k =21k k =21//l l 2121//k k l l =⇔21k k ,21l l 与21l l 与90︒21//l l设两条直线的斜率分别为.若,则.要点诠释:1.公式成立的前提条件是两条直线的斜率都存在;2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.要点五:两点间的距离公式两点间的距离公式为.要点诠释:此公式可以用来求解平面上任意两点之间的距离,它是所有求距离问题的基础,点到直线的距离和两平行直线之间的距离均可转化为两点之间的距离来解决.另外在下一章圆的标准方程的推导、直线与圆、圆与圆的位置关系的判断等内容中都有广泛应用,需熟练掌握.要点六:点到直线的距离公式点到直线的距离为要点诠释:(1)点到直线的距离为直线上所有的点到已知点的距离中最小距离;(2)使用点到直线的距离公式的前提条件是:把直线方程先化为一般式方程;(3)此公式常用于求三角形的高、两平行线间的距离及下一章中直线与圆的位置关系的判断等.要点七:两平行线间的距离本类问题常见的有两种解法:①转化为点到直线的距离问题,在任一条直线上任取一点,此点到另一条直线的距离即为两直线之间的距离;②距离公式:直线与直线的距离为要点诠释:(1)两条平行线间的距离,可以看作在其中一条直线上任取一点,这个点到另一条直线的距离,此点一般可以取直线上的特殊点,也可以看作是两条直线上各取一点,这两点间的最短距离;(2)利用两条平行直线间的距离公式时,一定先将两直线方程化为一般形式,且两条直线中x ,y 的系数分别是相同的,才能使用此公式.【典型例题】类型一、判断两直线的位置关系例1.是否存在实数a ,使三条直线,,能围成一个三角形?请说明理由.【思路点拨】 要使三条直线能围成一个三角形,则它们中任意两条都不平行,且三条直线不相交于同一点.【答案】a ≠1且a ≠-1且a ≠―221,l l 21,k k 21l l ⊥121-=⋅k k 12121-=⋅⇔⊥k k l l 111222()()P x y P x y ,,,12P P =00()P x y ,0Ax By C ++=d 00()P x y ,0Ax By C ++=P 10Ax By C ++=20Ax By C ++=d 2221||BA C C d +-=1:10l ax y ++=2:10l x ay ++=3:0l x y a ++=【解析】(1)当时,,即a=±1.(2)当时,―a=―1,即a=1.(3)当时,,即a=1.(4)当与、相交于同一点时,由得交点(―1―a ,1),将其代入ax+y+1=0中,得a=―2或a=1.故当a ≠1且a ≠-1且a ≠―2时,这三条直线能围成一个三角形.【总结升华】 本例分类讨论时容易疏忽某种情况,特别是三条直线相交于同一点这种情况更要注意.举一反三:【变式1】直线5x+4y ―2m ―1=0与直线2x+3y ―m=0的交点在第四象限,求m 的取值范围.【答案】【解析】解得所以,解得.类型二、过两条直线交点的直线系方程例2.求经过两直线2x ―3y ―3=0和x+y+2=0的交点且与直线3x+y ―1=0平行的直线方程.【思路点拨】 可先求出交点坐标,再根据点斜式求出所要求的直线方程;也可利用直线系(平行系或过定点系)求直线方程.【答案】15x+5y+16=0【解析】解法一:设所求的直线为,由方程组得.∵直线和直线3x+y ―1=0平行,∴直线的斜率k=―3.∴根据点斜式有,即所求直线方程为15x+5y+16=0.12//l l 1a a-=-13//l l 23//l l 11a-=-1l 2l 3l 10x ay x y a ++=⎧⎨++=⎩3,22⎛⎫-⎪⎝⎭54210,230,x y m x y m +--=⎧⎨+-=⎩23727m x m y +⎧=⎪⎪⎨-⎪=⎪⎩2307207m m +⎧>⎪⎪⎨-⎪<⎪⎩3,22m ⎛⎫∈- ⎪⎝⎭l 233020x y x y --=⎧⎨++=⎩3575x y ⎧=-⎪⎪⎨⎪=-⎪⎩l l 73355y x ⎡⎤⎛⎫⎛⎫--=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦解法二:∵直线过两直线2x ―3y ―3=0和x+y+2=0的交点,∴设直线的方程为2x ―3y ―3+(x+y+2)=0,即(+2)x+(―3)y+2―3=0.∵直线与直线3x+y -1=0平行,∴,解得.从而所求直线方程为15x+5y+16=0.【总结升华】直线系是直线和方程理论的发展,是数学符号语言中一种有用的工具,是一种很有用的解题技巧,应注意掌握和应用. 举一反三:【变式1】求证:无论m 取什么实数,直线(2m ―1)x+(m+3)y ―(m ―11)=0都经过一个定点,并求出这个定点的坐标.证法一:对于方程(2m ―1)x+(m+3)y ―(m ―11)=0,令m=0,得x ―3y ―11=0;令m=1,得x+4y+10=0.解方程组,得两直线的交点为(2,―3).将点(2,―3)代入已知直线方程左边,得(2m ―1)×2+(m+3)×(―3)―(m ―11)=4m ―2―3m ―9―m+11=0.这表明不论m 取什么实数,所给直线均经过定点(2,―3).证法二:将已知方程以m 为未知数,整理为(2x+y ―1)m+(―x+3 y+11)=0.由于m 取值的任意性,有,解得.所以所给的直线不论m 取什么实数,都经过一个定点(2,―3).类型三:两条直线平行的条件例3.已知ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),求顶点D 的坐标.【答案】 (3,4)【解析】解法1:设D (m ,n ),线段AC 的中点为E (2,2),所以线段BD 的中点为E (2,2),则,解得m=3,n=4,所以D (3,4).解法2:设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,所以,解得m=3,n=4,所以D (3,4).【总结升华】 解决此类问题的关键是充分利用几何图形的几何性质,并用解析几何中的相关知识解决.解决本题的关键是如何利用平行四边形的几何性质,其出发点是已知平行四边形的三个顶点如何作出第四个顶点,这两种作法对应着两种解法.举一反三:l l λλλλl 2323311λλλ+--=≠-112λ=31104100x y x y ---⎧⎨++=⎩2103110x y x y +-=⎧⎨-++=⎩23x y =⎧⎨=-⎩122022m n +⎧=⎪⎪⎨+⎪=⎪⎩013104130041nmn m --⎧=⎪⎪--⎨--⎪=⎪--⎩【变式1】与直线平行,并且距离等于的直线方程是____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两条直线的交点、平面上两点间的距离、点到直线的距离
重难点:能判断两直线是否相交并求出交点坐标,体会两直线相交与二元一次方程的关系;理解两点间距离公式的推导,并能应用两点间距离公式证明几何问题;点到直线距离公式的理解与应用.
经典例题:求经过点P(2,-1),且过点A(-3,-1)和点B(7,-3)距离相等的直线方程.
当堂练习:
1.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点坐标就是方程组的实数解,以下四个命题:
(1)若方程组无解,则两直线平行(2)若方程组只有一解,则两直线相交
(3)若方程组有两个解,则两直线重合(4)若方程组有无数多解,则两直线重合。

其中命题正确的个数有()
A.1个B.2个C.3个D.4个
2.直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0相交,则实数k的值为()
A.B.C.D.
3.直线y=kx-k+1与ky-x-2k=0交点在第一象限,则k的取值范围是()
A.0<k<1 B.k>1或-1<k<0 C.k>1或k<0 D.k>1或k<
4.三条直线x-y+1=0、2x+y-4=0、ax-y+2=0共有两个交点,则a的值为()
A.1 B.2 C.1或-2 D.-1或2
5.无论m、n取何实数,直线(3m-n)x+(m+2n)y-n=0都过一定点P,则P点坐标为()
A.(-1,3)B.(-,)C.(-,)D.(-)
6.设Q(1,2), 在x轴上有一点P , 且|PQ|=5 , 则点P的坐标是()
A.(0,0)或(2,0) B.(1+,0) C.(1-,0) D.(1+,0)或(1-,0)
7.线段AB与x轴平行,且|AB|=5 , 若点A的坐标为(2,1) , 则点B的坐标为()
A. (2,-3)或(2,7)
B. (2,-3)或(2,5) C.(-3,1)或(7,1) D.(-3,1)或(5,1)
8.在直角坐标系中, O为原点. 设点P(1,2) , P/(-1, -2) , 则OPP/的周长是()
A.2B.4C.D.6
9.以A(-1,1) ,B(2,-1) , C(1 ,4)为顶点的三角形是()
A.锐角三角形B.直角三角形C.等腰三角形D.等腰直角三角形
10.过点(1,3)且与原点的距离为1的直线共有()
A.3条B.2条C.1条D.0条
11.过点P(1,2)的直线与两点A(2,3)、B(4,-5)的距离相等,则直线的方程为()A.4x+y-6=0 B.x+4y-6=0 C.3x+2y=7或4x+y=6 D.2x+3y=7或x+4y=6
12.直线l1过点A(3,0),直线l2过点B(0,4),,用d表示的距离,则()
A.d 5 B.3C.0D.0<d
13.已知两点A(1,6)、B(0,5)到直线的距离等于a, 且这样的直线可作4条,则a的取值范围为()
A.a 1 B.0<a<1 C.0<a 1 D.0<a<21
14.若p、q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.
15.直线ax+by+6=0与x-2y=0平行,并过直线4x+3y-10=0和2x-y-10=0的交点,则a= _______,
b=___________.
16.已知ABC的顶点A(-1,5) ,B(-2,-1) ,C(4,7), 则BC边上的中线AD的长为___________.
17.已知P为直线4x-y-1=0上一点,P点到直线2x+y+5=0的距离与原点到这条直线的距离相等,则P点的坐标为___________.
18.ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.
19.已知二次方程x2+xy-6y2-20x-20y+k=0表示两条直线,求这两条直线的交点坐标.
20.已知平行四边形ABCD的三个顶点的坐标是A(-3,-4),B(3,-2),C(5,2),求点D的坐标.
21.直线经过点A(2,4),且被平行直线x-y+1=0与x-y-1=0所截得的线段的中点在直线x+y-3=0上,求直线的方程.
参考答案:
经典例题:
解:若过P点的直线垂直于x轴,点A与点B到此直线的距离均为5,所求直线为x=2;
若过P点的直线不垂直于x轴时,设的方程为y+1=k(x-2), 即kx-y+(-1-2k)=0.
由,即|5k|=|5k+2|, 解得k=-
所求直线方程为x+5y+3=0;综上,经过P点的直线方程为x=2或x+5y+3=0.
当堂练习:
1.D;
2.D;
3.B;
4.C;
5.D;
6.D;
7.C;
8.B;
9.D; 10.B; 11.C; 12.D; 13.B; 14. (-); 15. –2, 4; 16. 2; 17.
(;
18. 解:kCE= -, AB方程为3x-2y-1=0,由, 求得A(1,1),设C(a,b) , 则D(, C点在CE上,BC中点D在AD上,, 求得C(5,2),
再利用两点间距离公式,求得AC的长为
19. 解:利用待定系数法,原二次函数可化为(x-2y+m)(x+3y+n)=0, 由两个多项式恒等,对应项系数对应相等,于是有(x-2y-12=0)(x+3y-8)=0由, 得两直线交点坐标为().
20. 解:设点P为平行四边形ABCD的中心, 则P是对角线AC的中点,
即P( 1, -1) . 点P又是对角线BD的中点, D(-1,0).
21. 解:中点在x+y-3=0上,同时它在到两平行直线距离相等的直线x-y=0上,
从而求得中点坐标为(,),由直线过点(2,4)和点(,),得直线的方程为5x-y-6=0.。

相关文档
最新文档