人教版一次函数单元测试题(含答案)

合集下载

人教版8年级数学第十九章一次函数单元测试卷-试卷及答案解析

人教版8年级数学第十九章一次函数单元测试卷-试卷及答案解析

第十九章一次函数单元测试卷一、选择题(本大题共10道小题)1. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =02. 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )时间(分钟)路程(千米)单位家01283421A .12分钟B .15分钟C .25分钟D .27分钟3. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )4. 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3-3y 1=kx+by 2=x+ax yO5. 甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km)与行驶时间t (h)之间的函数关系.则下列说法错误的是 ( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地 km6. 某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图1l 、2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )6545060y I 1I 2A .骑车的同学比步行的同学晚出发30分钟B .步行的速度是6千米/时C .骑车同学从出发到追上步行同学用了20分钟D .骑车的同学和步行的同学同时达到目的地7. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )8. 如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( ) A. x >-2 B. x >0 C. x >1 D. x <19. 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-2-4Oy x10. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )二、填空题(本大题共10道小题) 11. 在函数y =3x +1x -2中,自变量x 的取值范围是________. 12. 将直线2y x =向右平移2个单位所得的直线的解析式是 .13. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.14. 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.BAO yx15. 如果直线y ax b =+不经过第四象限,那么ab 0(填“≥”、“≤”、“=”).16. 已知二元一次方程组⎩⎨⎧x -y =-5x +2y =-2的解为⎩⎨⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________. 17. 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.-1B A2O y x18. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________. 19. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.20. 一个一次函数的图象与直线59544y x =+平行,与x 轴,y 轴分别交于A ,B 两点,并且通过()125--,,则在线段AB 上(包括端点A ,B 两点),横纵坐标都是整数的点有_______个.三、解答题(本大题共5道小题)21. 已知2y -与x 成正比例,当3x =时,1y =,求y 与x 之间的函数关系式,并判断它是不是正比例函数.22. 为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示. (1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.23. 我市花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下x y y x 函数关系式;⑵如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;⑶若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.24. 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?25. 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.人教版8年级数学第十九章一次函数单元测试卷-答案一、选择题(本大题共10道小题)1. 【答案】D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.2. 【答案】B【解析】由题上班是平路用时3分钟走1千米,所以平路的速度是13千米/分,同理上坡路的速度为15千米/分,下坡的速度为12千米/分,所以下班先走上坡路用时12105÷=分,再走下坡路用时1122÷=分,最后走平路用时1133÷=分,所以下班共用时15分钟。

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。

m=,n=-B。

m=,n=-1C。

m=-1,n=-D。

m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。

n<-3或n>1B。

n>-3且n<1C。

n≥-3且n≤1D。

n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。

y1≤y2B。

y1=y2C。

y1<y2D。

y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。

A。

一B。

二C。

三D。

四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。

k>0B。

k<0C。

0<k<1D。

k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。

(-1,1) B。

(-1,-1) C。

(2,8) D。

(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。

y=x-2中,x取x≥2B。

y=2/(x+1)中,x取x≠-1C。

y=2x中,x取全体实数D。

y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版八年级数学下册第19章一次函数单元测试题含答案

人教版八年级数学下册第19章一次函数单元测试题含答案

第十九章一次函数一、选择题(每小题4分,共28分)1.下列函数中:(1)y =πx ,(2)y =2x -1,(3)y =1x ,(4)y =2-3x ,(5)y =x 2-1,是一次函数的有( )A .4个B .3个C .2个D .1个2.若一次函数y =kx +b 的图象经过第二、三、四象限,则k ,b 的取值范围是( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >03.对于函数y =-3x +1,下列结论正确的是( ) A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >13时,y <0D .y 的值随x 值的增大而增大4.若点A (2,4)在函数y =kx 的图象上,则下列各点在此函数图象上的是( ) A .(1,2) B .(-2,-1) C .(-1,2) D .(2,-4)5.一次函数y 1=ax +b 与一次函数y 2=-bx -a 在同一平面直角坐标系中的图象大致是( )图19-Z -16.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3 B .-32C .9 D .-94图19-Z -27.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s (米)与用去的时间t (分)的关系如图19-Z -2所示,根据图象提供的有关信息,下列说法中错误的是( )A .兄弟俩的家离学校1000米B .他们同时到家,用时30分C .小明的速度为50米/分D .小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题(每小题4分,共20分)8. 函数y =x +1x -1的自变量x 的取值范围是________. 9.如图19-Z -3,直线y =ax +b 与直线y =cx +d 相交于点(2,1),则关于x 的一元一次方程ax +b =cx +d 的解为____________.10.在平面直角坐标系xOy 中,直线y =12x +2向上平移两个单位长度得到直线m ,那么直线m 与x 轴的交点坐标是________.11.一次函数y =kx +b 的图象经过点A(0,4)且与两坐标轴围成的三角形的面积为2,则这个一次函数的解析式为____________.图19-Z -319-Z -412.如图19-Z -4,在平面直角坐标系中,直线y =-12x +2分别交x 轴、y 轴于A ,B两点,点P(1,m)在△AOB 内(不包含边界),则m 的取值范围是________.三、解答题(共52分)13.(8分)一次函数的图象经过(-2,1)和(1,4)两点. (1)求这个一次函数的解析式; (2)当x =3时,求y 的值.14.(10分)已知一次函数y=2x+4.(1)在如图19-Z-5所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.图19-Z-515.(10分)如图19-Z-6,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积.图19-Z-616.(10分)某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4名)学生听音乐会.(1)设学生人数为x名,付款总金额为y(元),分别建立两种优惠方案中y与x之间的函数关系式;(2)请计算并确定出最节省费用的购票方案.17.(14分)国庆节期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价(元/台)200016001000售价(元/台) 2300 1800 1100的2倍.设该商店购买冰箱x 台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?详解详析1.B[解析] (1)y =πx ,(2)y =2x -1,(3)y =2-3x 是一次函数,共3个,故选B.2.C[解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 3.C4.A[解析]∵点A (2,4)在函数y =kx 的图象上,∴4=2k ,解得k =2,∴一次函数的解析式为y =2x .A .∵当x =1时,y =2,∴此点在函数图象上,故A 选项正确;B .∵当x =-2时,y =-4≠-1,∴此点不在函数图象上,故B 选项错误;C .∵当x =-1时,y =-2≠2,∴此点不在函数图象上,故C 选项错误;D .∵当x =2时,y =4≠-4,∴此点不在函数图象上,故D 选项错误. 5.D6.D[解析] 在函数y =2x +3中,当y =0时,x =-32,即交点坐标为(-32,0).把(-32,0)代入函数y =3x -2b ,求得b =-94.7.C[解析]A .根据函数图象右上端点的纵坐标可知,兄弟俩的家离学校1000米,故A 正确;B .根据函数图象右上端点的横坐标可知,兄弟俩同时到家,用时30分钟,故B 正确;C .根据小明与学校的距离s (米)与用去的时间t (分)的函数关系可知,小明的速度为1000÷30=1003(米/分),故C 错误;D .根据折线的第三段的端点坐标可知,小亮用5分钟走了400米,速度为400÷5=80(米/分),故D 正确.8.x ≠1[解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.9.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.(-8,0) [解析]∵直线y =12x +2向上平移两个单位长度得到直线m ,∴直线m 的解析式为y =12x +4,∵当y =0时,12x +4=0,解得x =-8,∴直线m 与x 轴的交点坐标是(-8,0).11.y =4x +4或y =-4x +4 [解析]∵一次函数y =kx +b 的图象经过点A (0,4),∴b =4,设图象与x 轴交于点B ,设B (a ,0).∵三角形的面积为2,∴12×|a |×b =2,∴a =±1,∴点B 的坐标是(1,0)或(-1,0),∴k +b =0或-k +b =0,∴k =-4或4, ∴这个一次函数的解析式为y =4x +4或y =-4x +4.12.0<m <32[解析]因为点P (1,m )在△AOB 内(不包含边界),解得0<m <32.13.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3.(2)当x =3时,y =3+3=6. 14.解:(1)如图所示:(2)令x =0,则y =4;令y =0,则x =-2.∴A (-2,0),B (0,4). (3)∵A (-2,0),B (0,4),∴OA =2,OB =4,∴△AOB 的面积=12OA ·OB =12×2×4=4.(4)由图象得x 的取值范围为x <-2.15.解:(1)由y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D (1,0).(2)设直线l 2的函数解析式为y =kx +b ,由图象知:x =4时,y =0;x =3时,y =-32.∴直线l 2的函数解析式为y =32x -6.∴C (2,-3).∵AD =3,∴S △ADC =12×3×||-3=92.16.解:(1)按优惠方案1可得y 1=20×4+(x -4)×5=5x +60(x ≥4); 按优惠方案2可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24, ∴当学生人数为24时,两种优惠方案付款一样多; ②当y 1-y 2<0时,得0.5x -12<0,解得x <24, ∴学生人数不少于4且少于24时,选方案一较划算; ③当y 1-y 2>0时,得0.5x -12>0,解得x >24, ∴当学生人数多于24时,选方案二较划算. 17.解:(1)根据题意,得2000×2x +1600x +1000×(100-3x )≤170000.解得x ≤261213.∵x 为正整数, ∴x 最大为26.答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)×2x +(1800-1600)x +(1100-1000)×(100-3x )=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500×26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.。

一次函数单元测试卷及答案

一次函数单元测试卷及答案

《一次函数》单元测验题班级:班级: 姓名:姓名: 座号:座号: 成绩:________一.选择题(每小题3分,共30分)1.在平面直角坐标系中,点(-1,-2)所在的象限是所在的象限是 ( ) A 、第一象限、第一象限 B 、第二象限、第二象限 C 、第三象限、第三象限 D 、第四象限、第四象限2. 2.函数函数1y x =-中,自变量x 的取值范围是的取值范围是 ( ) ( ) A . x < 1 B . x ≤ 1 C . x > 1 D . x ≥13. 3. 在函数在函数在函数 y y y==3x 3x--2,y =1xx +3,y =-=-2x 2x 2x,,y =-=-x x 2+7 7 是正比例函数的有是正比例函数的有( ) A . 0 . 0 个个 B . 1 . 1 个个 C . 2 . 2 个个 D . 3 . 3 个个4.点M (1,2)关于x 轴对称点的坐标为(轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)5. 如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相 位于点(3,-2)上,则○炮位于点(位于点() A. (-1,1) B. (-1,2)C. (-2,1)D. (-2,2)6. 一次函数y=y=--2x+3的图像不经过的象限是(的图像不经过的象限是( )).A A 第一象限第一象限第一象限B B B 第二象限第二象限第二象限C C C 第三象限第三象限第三象限D D D 第四象限第四象限第四象限7.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶.小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后分钟后登山的速度比小军快登山的速度比小军快8.下列函数中,y 随x 的增大而减小的有(的增大而减小的有( )①12+-=x y ② x y -=6③ 31xy +-= ④x y )21(-=A.1个B.2个C.3个D.4个9.直线.直线 y=43 x +4与 x 轴交于轴交于 A,与y 轴交于B, O 为原点,则为原点,则图3相帅炮ab a k= ,b= .k= ,b= . 0 9 9 16 16 30 t /min S /km 40 12 19.(8分) 已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。

人教版八年级下学期一次函数单元测试卷与参考答案

人教版八年级下学期一次函数单元测试卷与参考答案

人教版八年级下学期一次函数单元测试卷(时间:45分钟 满分:100分)班级 姓名 座号 成绩一、选择题(每小题4分,共40分)1、下列函数中,是一次函数的有( )(1)x y π= (2)12-=x y (3)xy 1= (4)x y 32-= (5)12-=x y . A 、4个 B 、3个 C 、2个 D 、1个2、一次函数1-=x y 的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、若点A (2-,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A 、41 B 、41- C 、1 D 、1- 4、已知一次函数的图象与直线1+-=x y 平行,且过点(8,2),那么此一次函数的解析式为( )A 、2--=x yB 、6--=x yC 、10+-=x yD 、1--=x y5、已知(-5,1y ),(-3,2y )是一次函数231+-=x y 图象上的两点,则1y 与2y 的关系是( )A 、1y <2yB 、1y =2yC 、1y >2yD 、无法比较6、在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为( )A 、(1-,4)B 、(1-,2)C 、(2,1-)D 、(2,1)7、一次函数b kx y +=的图象经过点(m , 1)和点(1-, m ),其中m >1,则k , b 应满足的条件是( )A 、k >0且b >0B 、k <0且b >0C 、k >0且b <0D 、k <0且b <0 8、某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用的时间x (分)之间的函数关系.下列说法错误的是( )A 、小强从家到公共汽车站步行了2公里B 、小强在公共汽车站等小明用了10分钟C 、公共汽车的平均速度是30公里/小时D 、小强乘公共汽车用了20分钟533-=+-=x y x y 与M M9、如图所示,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点4A 的坐标为( )A 、(0,64)B 、(0,128)C 、(0,256)D 、(0,512)10、如图,在平面直角坐标系中,点A (1-,m )在直线32+=x y 上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线b x y +-=上,则b 的值为( )A 、﹣2B 、1C 、1.5D 、2 二、填空题(每小题4分,共24分)11、使函数133+-=x y 有意义的自变量x 的取值范围是 .12、已知函数2)4(3+-=-m m y 是一次函数,则=m __ __.13、已知一次函数5)1(+-=x k y 随着x 的增大,y 的值也随着增大,那么k 的取值范围是__________.14、已知y 与12+x 成正比例,当5=x 时,2-=y ,则y 与x 之间的函数关系式为 .15、将直线13+=x y 向上平移1个单位长度后得到的直线是 .16、如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图像,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差_______h km /.第9题 第8题 第10题三、解答题(共36分)17、过点(0,﹣2)的直线1l :b kx y +=1(0≠k )与直线2l :12+=x y 交于点P (2,m ).(1)写出使得1y <2y 的x 的取值范围;(2)求点P 的坐标和直线1l 的解析式.18、如图,在直角坐标系中,直线4+=kx y 与x 轴正半轴交于一点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式.19、某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)根据图象求y 与x 的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?20、如图,直线l :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标.单元测试参考答案1、B2、C3、C4、C5、C6、D7、B8、D9、C 10、D11、x >31-12、4-13、k >114、112114--=x y 15、23+=x y16、417、(1)x <2 (2)2251-=x y 18、454+-=x y 19、(1)2402+-=x y (40≤x ≤120) (2)100元20、(1)A (4,0),B (0,2) (2)|4|2t S -= (3)M (2,0)或(-2,0)。

一次函数_单元测试含答案

一次函数_单元测试含答案

二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。

2021年新人教版第19章《一次函数》单元测试题及答案(1)

2021年新人教版第19章《一次函数》单元测试题及答案(1)

新人教版八年级数学第19章《一次函数》单元测试(1)时间:10分钟 满分:120分一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( )A.x >2B.x <2C.x ≠2D.x ≠-2 2.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤1 5.若一次函数y=(1-2m)x+m 的图象经过点A(x 1, y 1)和点B(x 2,y2),当x 1<x 2时,y 1<y2,且与y 轴相交于正半轴,则 m 的取值范围是( )A.m >0B.m <21C.0<m <21D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6±B.4C. 6±或4 D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )8.一次函数y=kx+b 的图象如图所示,当x <1时,Cy 的取值范围是( )A.-2<y <0B. -4<y <0C. y <-2D. y <-4 9.将直线y=-2x 向右平移2个单位所得直线的解析式为( )A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x 之间关系的函数图象是( )二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为 。

人教版数学八年级下《第十九章一次函数》单元测试题含答案

人教版数学八年级下《第十九章一次函数》单元测试题含答案

14.当直线 y 2x b 与直线 y kx 1平行时,k__________,b___________.
15.汽车行驶前,油箱中有油 55 升,已知每百千米汽车耗油 10 升,油箱中的余油量 Q (升)与它行驶的距离 s(百千米)之间的函数关系式为___ ________;为了保证行车 安全,油箱中至少存油 5 升,则汽车最多可行驶____________千米.
A.2
B.0
C.-2
11. 根据如图的程序,计算当输入 x 3 时,输出的结果 y
y x 5(x 1)




y x 5(x ≤1)
y
D. ±2 .
12.已知直线 y1=2x与直线 y = -2x+4相交于点 A.有以下结论:①点 A 的坐标为 A(1,2);② 2 当 x=1时,两个函数值相等;③当 x<1 时,y1<y2④直线 y =2x与直线 y =2 2x-4在平面 1 直角坐标系中的位置关系是平行.其中正确的是
是, A C 10 台, A D 2 台, B C 0 台, B D 6 台,此时总运费为 8600 元.
C.向上平移
5 3
个单位
B.向下平移 5 个单位
).
D.向下平移
5 3
个单位
8.经过一、二、四象限的函数是
A.y=7
B.y=-2x
C.y=7-2x
D.y=-2x-7
9.已知正比例函数 y=kx(k≠0)的函数值 y 随 x 的增大而减小,则函数 y=kx-k的图象大致 是
10.若方程 x-2=0的解也是直线 y=(2k-1)x+10与 x 轴的交点的横坐标,则 k 的值为

(完整)人教版数学八年级上册第6章一次函数单元测试题(含答案),推荐文档

(完整)人教版数学八年级上册第6章一次函数单元测试题(含答案),推荐文档

2 1 初二数学第六单元测试题一、选择题:(本题共 10 小题,每小题 3 分,共 30 分)1.如果 y = (m -1)x 2-m 2+ 3 是一次函数,那么 m 的值是…………………………( )A. 1 ;B. -1;C. ±1 ;D. ± ;2. (2015•南平)直线 y=2x+2 沿 y 轴向下平移 6 个单位后与 x 轴的交点坐标是 ............... ( ) A .(-4,0);B .(-1,0);C .(0,2);D .(2,0);13. 若点 A (-2,m )在正比例函数 y = - 2x 的图象上,则 m 的值是………………()A . ;B . - 1; C .1; D .-1;4 44. 若一次函数 y=(2-m )x-2 的函数值 y 随 x 的增大而减小,则 m 的取值范围是 …………( )A .m <0;B .m >0;C .m <2 ;D .m >2; 5. 直线 y=kx+b 不经过第四象限,则…………………………………………………()A .k >0,b >0;B .k <0,b >0;C .k≥0,b≥0;D .k <0,b≥0; 6. (2014.深圳)已知函数 y=ax+b 经过(1,3),(0,-2),则 a-b=… .......... ( )A .-1;B .-3;C .3;D .7;7. 如图,直线 y=-x+m 与 y=nx+4n (n≠0)的交点的横坐标为-2,则关于 x 的不等式- x+m >nx+4n >0 的整数解为……………………………………………………………( ) A .-1; B .-5; C .-4; D .-3;第 7 题图第 9 题 图 第 10 题 图8.已知直线l 经过点 A (1,0),且与直线 y = x 垂直,则直线l 的函数表达式为 ......................................... ( )A. y = -x +1 ;B. y = -x -1;C. y = x +1 ;D. y = x -1;9. 小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间, 然后回家,如图描述了小明在散步过程汇总离家的距离 s (米)与散步所用时间 t (分)之间的函数关系,根据图象,下列信息错误的是 ............................................................... ( )A. 小明看报用时 8 分钟;B .公共阅报栏距小明家 200 米;5. (2015•无锡)一次函数标为 .与两坐标 6.如图,已 x - y = 2 的解是 2x + y = 1 值, C .小明离家最远的距离为 400 米; D .小明从出发到回家共用时 16 分钟;10. (2014•黑龙江)如图,在平面直角坐标系中,边长为 1 的正方形 ABCD 中,AD 边的中点处有一动点 P ,动点 P 沿 P→D→C→B→A→P 运动一周,则 P 点的纵坐标 y 与点 P 走过的路程 s 之间的函数关系用图象表示大致是……………………………………( )A.B. C. D.二、填空题:(本题共 8 小题,每小题 3 分,共 24 分)211.函数 y =x -1中自变量 x 的取值范围是 .12.已知 m 是整数,且一次函数 y = (m + 4)x + m + 2 的图像不经过第二象限,则 m =.13.已知一次函数 y = kx + k - 3 的图像经过点(2,3),则 k 的值为.14.请你写出一个图像过点(0,2),且 y 随 x 的增大而减小的一次函数的解析式 .1 y=2x-6 的图象与 x 轴的交点坐标为 .与 y 轴的交点坐 轴围成的三角形面积为 . 1 知函数 y=x-2 和 y=-2x+1 的图象交于点 P ,根据图象可得方程组⎧⎨.⎩第 16 题图第 17 题图17. (2013 春•玉田县期中)在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC 、CD 、DA 运动至点 A 停止,设点 P 运动的路程为 x ,△ABP 的面积是 . 18.如图,点 Q 在直线 y=-x 上运动,点 A 的坐标为(1,0),当线段 AQ 最短时,点 Q 的坐标为 .三、解答题:(本大题共 10 题,满分 76 分)19.(本题满分 8 分)已知一次函数 y = (1- 2m )x + m +1 ,求当 m 为何时 (1) y 随着 x 的增大而增大?(2)图像经过一、二、四象限? (3)图像经过一、三象限? (4)图像与 y 轴的交点在 x 轴上方?第 18 题图20.(本题满分 6 分)已知一次函数y=kx+b的图像经过 A(1,1),B(2,-1)两点,求这个函数的表达式.21.(本题满分 7 分)在平面直角坐标系中,点 O 是坐标原点,过点 A(1,2)的直线y=kx+b 与x 轴交于点 B,且S AOB=4,求k 的值.22.(本题满分 7 分)如图,直线 y=2x+3 与x 轴交于点 A,与y 轴交于点 B.(1)求A、B 两点的坐标;(2)过B 点作直线 BP 与x 轴交于点 P,且使 OP=2OA,求△ABP的面积.23.(本题满分 7 分)已知:y+2 与3x 成正比例,且当 x=1 时,y 的值为 4.(1)求y 与x 之间的函数关系式;(2)若点(-1,a)、点(2,b)是该函数图象上的两点,试比较 a、b 的大小,并说明理由.24.(本题满分 8 分)如图,在平面直角坐标系中,点 A(0,4),B(3,0),连接 AB,将△AOB沿过点 B 的直线折叠,使点 A 落在x 轴上的点A′处,折痕所在的直线交 y 轴正半轴于点 C,求直线 BC 的解析式.25.(本题满分 7 分)如图,直线l1:y =x +1与直线l2:y =mx +n 相交于点P(1,b).(1)求b 的值;⎧y =x +1(2)不解关于 x,y 的方程组⎨y =mx +n ,请你直接写出它的解;⎩(3)直线l3:y =nx +m 是否也经过点 P?请说明理由.26.(本题满分 6 分)已知直线 y=kx+b 经过点 A(5,0),B(1,4).(1)求直线 AB 的解析式;(2)若直线 y=2x-4 与直线 AB 相交于点 C,求点 C 的坐标;(3)根据图象,写出关于 x 的不等式 2x-4>kx+b 的解集.27.(本题满分 10 分)某社区活动中心为鼓励居民加强体育锻炼,准备购买 10 副某种品牌的羽毛球拍,每副球拍配 x(x≥2)个羽毛球,供社区居民免费借用.该社区附近 A、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为 30 元,每个羽毛球的标价为 3 元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的 90%)销售;B 超市:买一副羽毛球拍送 2 个羽毛球.设在 A 超市购买羽毛球拍和羽毛球的费用为 yA(元),在 B 超市购买羽毛球拍和羽毛球的费用为 yB(元).请解答下列问题:(1)分别写出 yA、yB 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配 15 个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.28.(本题满分 10 分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的 2.5 倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间 x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?4 ⎩2017-2018 学年第一学期初二数学第六单元测试题参考答案一 、 选 择 题 : 1.B ;2.D ;3.C ;4.D ;5.A ;6.D ;7.D ;8.A ;9.A ;10.D ; 二、填空题:11.x ≠ 1;12.-3 或-2;13.2;14. y = -x + 2 (答案不唯一);15.(3,0),⎧x = 1 ⎛ 1 1 ⎫(0,-6,9;16. ⎨ y = -1;17.10;18. 2 , - ; ⎩⎝ ⎭ 三、解答题:19.(1) m < 1 ;(2) m > 1 ;(3) m = -1;(4) m > -1且m ≠ 1;20.2y = -2x + 3 ;21. 2 2 k = - 2 或 2 ; 3 522.(1)A ⎛ -2 3 ,⎪0 ⎫ ;B (0, 3);(24) 27 或 9 ; ⎝ ⎭ 23.(1) y = 6x - 2 ;(2) a < b ; 24. y = - 1 x + 3;2 2⎧x = 125. (1) b = 2 ;(2) ⎨ y = 2 ;(3)直线 y=nx+m 也经过点 P .理由如下: ∵当 x=1 时,y=nx+m=m+n=2,∴(1,2)满足函数 y=nx+m 的解析式,则直线经过点 P . 26. (1) y = -x + 5 ;(2) (3, 2);(3)x > 3 ; 27. 解:(1)由题意,得 yA=(10×30+3×10x)×0.9=27x+270; yB=10×30+3(10x-20)=30x+240;(2)当 yA=yB 时,27x+270=30x+240,得 x=10; 当 yA >yB 时,27x+270>30x+240,得 x <10; 当 yA <yB 时,27x+270<30x+240,得 x >10∴当2≤x<10 时,到B 超市购买划算,当 x=10 时,两家超市一样划算, 当 x >10 时在 A 超市购买划算.(3)由题意知 x=15,15>10,∴选择 A 超市,yA=27×15+270=675(元), 先选择 B 超市购买 10 副羽毛球拍,送 20 个羽毛球,然后在 A 超市购买剩下的 羽毛球:(10×15-20)×3×0.9=351(元),共需要费用 10×30+351=651(元) .∵651 元<675 元,∴最佳方案是先选择 B 超市购买 10 副羽毛球拍,然后在 A 超市购买 130 个羽毛球.28. 解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h. 故答案为:24;(2) 由题意得邮政车的速度为:24×2.5=60km/h .2设邮政车出发 a 小时两车相遇,由题意得 24(a+1)=60a ,解得:a= .32答:邮政车出发 小时与自行车队首次相遇;39(3) 由题意,得邮政车到达丙地的时间为:135÷60= ,4∴邮政车从丙地出发的时间为: 9 + 2 +1 = 21,∴B4 49 + 2 +1 = 21,C (7.5,0). 4 445 49 ,∴D⎛ 49 ⎫ 自行车队到达丙地的时间为:135÷24+0.5= +0.5= 888 ,135⎪ . ⎝ ⎭⎪⎧135 = 21 k + b设 BC 的解析式为 y = k x + b ,由题意得 1 1 1 ⎨4 1 1 ,∴ k 1 =−60, b 1 =450, ∴ y 1 = -60x + 450 ,⎩0 = 7.5k 1 + b 1设 ED 的解析式为 y 2 = k 2 x + b 2 ,由题意得⎧72 = 3.5k 2 + b 2 ,解得: ⎧k 2 = 24 ,∴ y = 24x -12 .当 y = y 时 , ⎨⎪ 49 ⎨ 135 = ⎩b = -122 1 2 ⎩⎪8 k 2 + b 2 2 -60x+450=24x-12,解得:x=5.5. y 1 =-60×5.5+450=120. 答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地 120km .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

八年级数学下册《一次函数》单元检测卷及答案(人教版)

八年级数学下册《一次函数》单元检测卷及答案(人教版)

八年级数学下册《一次函数》单元检测卷及答案(人教版) 一、选择题(计30分)1.若y=x+2﹣3b是正比例函数,则b的值是()A.0B.C.D.2.一次函数y=2x+3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.分别给出了变量y与x之间的对应关系,y不是x的函数的是()A.B.C.D.4.一次函数y=x+2的图象大致是()A.B.C.D.5.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x﹣201y3p0 A.1B.2C.3D.46.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2B.x≤2C.x≥4D.x≤47.将一次函数y=x+k与y=kx的图象画在同一坐标系中,正确的是()A.B.C.D.8.已知y﹣1与x成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()A.4B.﹣4C.6D.﹣69.过点P(8,2)且与直线y=x+1平行的直线是()A.y=x+10B.y=x﹣10C.y=x﹣2D.y=x﹣610.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(计24分)11.函数y=(k﹣2)x+3中,y随x增大而减小,则k.12.在函数y=中,自变量x的取值范围是.13.已知y=﹣mx+1的图象经过A(﹣1,3),B(■,﹣9)两点,B点的横坐标被墨水污染了,被污染处是.14.若三点A(0,3),B(﹣3,0)和C(6,a)在同一条直线上,则a=.15.若一次函数y=kx﹣(2k+1)的图象与y轴交于点A(0,2),则k=.16.已知方程组的解为,则一次函数y=3x﹣3与y=﹣x+3的交点P的坐标是.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4…的等边三角形(如图所示).根据图形推断每个等边三角形卡片总数S与边长n的关系式.三、解答题(计66分)19.已知函数y=2x﹣3.(1)作出函数的图象,并标出图象与x轴、y轴的交点坐标;(2)由图象观察:当﹣2≤x≤4时,函数值y的变化范围.20.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.21.已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?22.科学家探究出一定质量的某气体在体积不变的情况下,压强p(103Pa)随温度t(℃)变化的函数解析式是p=kt+b,其图象为如图所示的射线AB.(1)根据图象求出上述气体的压强p与温度t的函数解析式;(2)当压强为200×103Pa时,求上述气体的温度.23.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?24.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.参考答案一、选择题(计30分)1.解:由正比例函数的定义可得:2﹣3b=0解得:b=.故选:B.2.解:∵一次函数y=2x+3,k=2,b=3∴该函数的图象经过第一、二、三象限,不经过第四象限故选:D.3.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B不正确.故选:B.4.解:一次函数y=x+2当x=0时,y=2;当y=0时,x=﹣2故一次函数y=x+2图象经过(0,2)(﹣2,0);故根据排除法可知A选项正确.故选:A.5.解:一次函数的解析式为y=kx+b(k≠0)∵x=﹣2时y=3;x=1时y=0∴解得∴一次函数的解析式为y=﹣x+1∴当x=0时,y=1,即p=1.故选:A.6.解:不等式ax+b≥0的解集为x≤2.故选:B.7.解:A.一次函数y=kx的k>0与一次函数y=x+k的k<0矛盾,错误;B.从图象知,一次函数y=kx的图象不经过原点,错误;C.一次函数y=kx的k>0与一次函数y=x+k的k>0一致,正确;D.从图象知,一次函数y=kx的图象不经过原点,错误.故选:C.8.解:根据题意设y﹣1=kx把x=2,y=9代入得9﹣1=2k,解得k=4所以y﹣1=4x,即y=4x+1当y=﹣15时,4x+1=﹣15,解得x=﹣4.故选:B.9.解:设所求一次函数的解析式为y=kx+b∵直线y=kx+b与y=x+1平行∴k=1∴y=x+b将P(8,2)代入y=x+b得2=8+b解得b=﹣6∴所求一次函数的解析式为y=x﹣6.故选:D.10.解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt把(5,300)代入可求得k=60∴y甲=60t设乙车离开A城的距离y与t的关系式为y乙=mt+n把(1,0)和(4,300)代入可得解得∴y乙=100t﹣100令y甲=y乙可得:60t=100t﹣100,解得t=2.5即甲、乙两直线的交点横坐标为t=2.5此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50当100﹣40t=50时,可解得t=当100﹣40t=﹣50时,可解得t=又当t=时,y甲=50,此时乙还没出发当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或时,两车相距50千米∴④不正确;综上可知正确的有①②共两个故选:B.二、填空题(计24分)11.解:∵一次函数y=(k﹣2)x+3中,y随x增大而减小∴k﹣2<0∴k<2.故答案为:<2.12.解:根据题意得解得x≥2且x≠4∴自变量x的取值范围是x≥2且x≠4故答案为x≥2且x≠4.13.解:把A(﹣1,3)代入y=﹣mx+1得3=m+1,解得m=2∴函数解析式为y=﹣2x+1把y=﹣9代入y=﹣2x+1得﹣9=﹣2x+1,解得x=﹣5∴被污染处是5.故答案为:5.14.解:设直线的解析式是y=kx+b.把A(0,3),B(﹣3,0)代入函数解析式,得解得:∴y=x+3,①把C(6,a)代入①,得a=6+3=9,即a=9;故答案是:9.15.解:∵一次函数y=kx﹣(2k+1)的图象与y轴交于点A(0,2)∴﹣(2k+1)=2解得:k=﹣.故答案为:﹣.16.解:方程组的解为;即x=,y=1同时满足方程组中的两个方程;因此点(,1)同时满足两个一次函数的解析式.所以一次函数y=3x﹣3与y=﹣x+3的交点P的坐标是(,1).故答案为:(,1).17.解:设直线解析式为y=kx+b把(2,0)代入得2k+b=0,解得b=﹣2k所以y=kx﹣2k把x=0代入得y=kx﹣2k得y=﹣2k所以直线与y轴的交点坐标为(0,﹣2k)所以×2×|﹣2k|=2,解得k=1或﹣1所以所求的直线解析式为y=x﹣2或y=﹣x+2.故答案为y=x﹣2或y=﹣x+2.18.解:图1中,当n=2时,S=4.图2中,当n=3时,S=9.….依此类推,总数S与边长n的关系式S=n2(n≥1).三、解答题(计66分)19.解:(1)令x=0,得y=﹣4;令y=0,得x=2,描出(0,﹣4),(2,0)这两个点,如图∴图象与x轴、y轴的交点坐标分别为(,0),(0,﹣3);(2)∵k=2>0,图象经过第一,三象限,y随x的增大而增大∴当x=﹣2,y=﹣7;当x=4,y=5.所以当﹣2≤x≤4时,函数值y的变化范围为﹣7≤y≤5.20.解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.21.解:(1)设一次函数解析式为y=kx+b∵图象过两点A(1,1),B(5,9)∴解得:∴函数解析式为:y=2x﹣1;(2)当x=3时,y=6﹣1=5≠7∴点C(3,7)不在这条直线上;(3)∵y>0∴2x﹣1>0∴x>.22.解:(1)函数p=kt+b的图象过点(0,10),(25,120)可得.解得.所求的函数关系式是p=t+110(t≥0);(2)当p=200×103Pa时由(1)得t+110=200解得t=225即当压强为200千帕时,气体的温度是225℃.23.解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意可得:5x+9(140﹣x)=1000解得:x=65∴140﹣x=75(千克)答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元设总利润为W,由题意可得出:W=3x+4(140﹣x)=﹣x+560故W随x的增大而减小,则x越小W越大因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍∴140﹣x≤3x解得:x≥35∴当x=35时,W最大=﹣35+560=525(元)故140﹣35=105(kg).答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.24.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0∴x=1∴D(1,0);(2)设直线l2的解析表达式为y=kx+b由图象知:x=4,y=0;x=3,,代入表达式y=kx+b∴∴∴直线l2的解析表达式为;(3)由解得∴C(2,﹣3)∵AD=3∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C 纵坐标的绝对值=|﹣3|=3则P到AD距离=3∴P纵坐标的绝对值=3,点P不是点C∴点P纵坐标是3∵y=1.5x﹣6,y=3∴1.5x﹣6=3x=6所以P(6,3).第11 页共11 页。

新人教版一次函数测试及答案

新人教版一次函数测试及答案

八年级数学《一次函数》单元测试题班别: 姓名: 评价:一、选择题。

(每小题5分,共30分)1、下列函数关系式中,是正比例函数的是 ( ) A 、y = -8x B 、y = 8x+1 C 、281y x =+ D 、8y x=- 2、一次函数2(3)y x =-+的图象不经过 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、如图,为一次函数 y = kx + b 的图象,则k 、b 应满足的条件是 ( )A 、k > 0 且 b >0B 、k > 0 且 b < 0C 、k < 0 且 b>0D 、k < 0 且 b <04、函数y kx b =+的图象如图所示,若y <0, 则x 的取值范围是 ( )A 、x <-2B 、x <3C 、x >3D 、x >-25、一次例函数y = 2x-1的图象大致是 ( )6、如图,直线AB 对应的函数表达式是 ( )A 、332y x =-+B 、332y x =+C 、233y x =-+D 、233y x =+二、填空题。

(每小题5分,共30分)7、写出一个y 随x 的增大而增大的正比例函数的解析式___________ 。

8、已知一次例函数y = kx+2,当k_______时,y 随x 增大而减少。

9、点A (2,4)在正比例函数的图象上,这个正比例函数的解析式是__________。

10、函数y =2x + 1的图象是不经过第_______象限的一条直线。

11、一次函数y kx b =+的图象经过点(2,0)和(0,2),则其函数的解析式为 ____________ 。

12、平行四边形相邻两边分别是x 和y ,它的周长为30,则y 关于x 的函数关系式是__________________。

三、解答题。

(每小题10分,共40分) 13、如图,直线y kx b =+经过点A B ,,求k 的值。

一次函数单元测试题及答案

一次函数单元测试题及答案

一次函数测试题(含答案)一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+13.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-38.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共36分) 19.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?20.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?x y1234-2-1C A-14321O21.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?22、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y=12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

(完整版)(一次函数单元测试题含答案)

(完整版)(一次函数单元测试题含答案)

一次函数单元测试题(分数120分时间:120分钟)一、选择题(本大题共10小题,共30分)1.一次函数y=(k+2)x+k2−4的图象经过原点,则k的值为()A. 2B. −2C. 2或−2D. 32.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<03.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.4.已知直线y=(m−3)x−3m+1不经过第一象限,则m的取值范围是()A. m≥13B. m≤13C. 13≤m<3 D. 13≤m≤35.下列函数关系式中:①y=2x+1;②y=1x ;③y=x+12−x;④s=60t;⑤y=100−25x,表示一次函数的有()A. 1个B. 2个C. 3个D. 4个6.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度8.如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.9.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小华先到达青少年宫;②小华的速度是小明速度的2.5倍;③a=24;④b=480.其中正确的是()A. ①②④B. ①②③C. ①③④D. ①②③④10.已知一次函数y=ax+4与y=bx−2的图象在x轴上相交于同一点,则ba的值是( )A. 4B. −2C. 12D. −12二、填空题(本大题共10小题,共30分)11.函数y=√x+2−√3−x中自变量x的取值范围是______.12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知y−2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是______ .14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是 .15.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .16.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .17.如图,在平面直角坐标系中,直线y=−√52x+2√5与x轴,y轴分别交于点A,B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则点D的坐标为______ 。

新人教版八年级下册一次函数单元测试题(附答案)

新人教版八年级下册一次函数单元测试题(附答案)

新人教版八年级下册一次函数单元测试题(附答案)一次函数单元测试题一、填空(30分)1.已知函数y=(k-3)xk-8是正比例函数,则k=4.2.函数表示法有三种,分别是解析式、图象、数据表。

3.函数y=(x-1)/(x-2),自变量x的取值范围是x≠2.4.已知一次函数经过点(-1,2)且y随x增大而减小,请写出一个满足上述条件的函数关系式y=-x+1.5.已知y+2和x成正比例,当x=2时,y=4且y与x的函数关系式是y=2x。

6.直线y=3x+b与y轴交点(0,-2),则这条直线不经过第三象限。

7.直线y=x-1和y=x+3的位置关系是平行,由此可知方程组y=x-1y=x+3解的情况为无解。

8.一次函数图象经过第二、三、四象限,那么它的表达式是y=-x。

9.已知点A(a,-2)。

B(b,-4)在直线y=-x+6上,则a、b的大小关系是a>b。

10.从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是y=2.4+(t-3)。

二、选择(30分)1.下列函数,y随x增大而减小的是(B)。

A.y=xB.y=x-1C.y=x+1D.y=-x+12.若点A(2,4)在直线y=kx-2上,则k=(C)。

A.2B.3C.4D.53.y=kx+b图象如图则(B)。

A.k>0.b>0B.k>0.b<0XXX<0.b<0D.k04.已知直线y=(k-2)x+k不经过第三象限,则k的取值范围是(D)。

A.k≠2B.k>2C.0<k<2D.k≤25.函数y=3-x自变量x取值范围是(C)。

A.x≥3B.x>3C.x≤3D.x<36.y=kx+k的大致图象是(C)。

ABCD7.函数y=kx+2,经过点(1,3),则y=0时,x=-2. A.-2B.2C.0D.±28.直线y=x+1与y=-2x-4交点在(A)。

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版一次函数单元测试题(含答案)
一、选择题
1. 已知正比例函数y =kx (k ≠0)的图象过第二、四象限,则( )
A .y 随x 的增大而减小
B .y 随x 的增大而增大
C .当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小
D .不论x 如何变化,y 不变
2. 表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )
3. 若直线y=
2
1x+n 与y=mx -1相交于点(1, -2) ,则[ ] A m=21,n=-25 B m=21,n=-1 C m=-1,n=-25 D m=-3,n=-23
4. 点A (-5,y 1)和B(-2,y 2)都在直线y=-2
1x 上,则y 1和y 2 的关系是[ ] A y 1≤y 2 B y 1=y 2 C y 1<y 2 D y 1>y 2
5. 若ab >0,bc <0,则函数y=b
1(ax -c)的图象不经过第[ ]象限。

A 一 B 二 C 三 D 四
6. 如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k 的取值范围是 ( )
A. k >0
B. k <0
C. 0<k <1
D. k >1
7. 小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是( )
A .37.2分钟
B . 48分钟
C . 30分钟
D . 33分钟
8. 下列四点中,在函数23+=x y 的图象上的点是 ( )
A .(-1,1) B.(-1,-1) C.(2,0) D.(0,-1.5)
9. 下列函数中,自变量的取值范围选取错误..
的是 ( )
A .x 取x ≥2
B .y=
11x +中,x 取x ≠-1 C .y=2x 2中,x 取全体实数 D .
中,x 取x ≥-3
10. 如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )
A B C D
二、填空题
11. 如图(1)所示的是实验室中常用的仪器,向以下容器内均匀注水,最后把容器注满,在注水过程中,容器的水面高度与时间的关系如图(2)•所示,图中PQ 为一线段,则这个容器是__________.
12. 直线y 1=k 1x +b 1和直线y 2=k 2x +b 2相交于y 轴上同一点的条件是___;这两直线平行的条件是___.
13. 在函数1-=x y 中,自变量x 的取值范围是_________________.
14. 一次函数的图象过点(1,2),且y 随x 的增大而增大, 则这个函数解析式是___.
15. 等腰三角形的周长为30cm ,它的腰长为y cm 与底长x cm 的函数关系式是___.
16. 如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是 .
17. 若直线y =x +m 与直线y =-2x +4的交点在x 轴上,则m = .
18. 生物学家研究表明,某种蛇的长度y (cm)是其尾长x (cm)的一次函数,当蛇的尾长为6cm 时,蛇长为45.5cm ;当尾长为14cm 时,蛇长为105.5cm .那么当一条蛇的尾长为10cm 时,这条蛇的长度是 cm .
19. 一个一次函数的图象与直线12+-=x y 平行,且经过点(2,-1),则这个一次函数的表达示为 .
20. 函数y=2x 向左平移3个单位所得到的函数为 ,再向下平移5个单位得到的函数为 .
三、计算题
21. 某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图9所示,其中BA 是线段,BA ∥x 轴,AC 是射线。

①当x ≥30时,求y 与x 之间的函数关系式;
②若小李4月份上网20小时,他应付多少元的上网费?
③若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
22. 如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y . 求点C 的坐标,并回答当x 取何值时1y >2y ?
四、应用题
23. 张老师写出一个一次函数的解析式,甲、乙、丙三位同学分别说出这个函数的一条性质.
甲:函数图象不经过第三象限;
乙:当x<2时,y>0;
丙:y随x的增大而减小.
已知这三位同学的叙述都是正确的,请你构造出满足上述所有性质的一个函数.
24. 根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
25. 某服装厂现大A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利45元,做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利50元。

若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y与x的函数关系式,并求出自变量x的取值范围;
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
答案
一、选择题
1. A
2. A
3. C
4. D
5. D
6. D
7. A
8. B
9. D 10. A
二、填空题
11. 锥形瓶;12. b 1=b 2、k 1=k 2;13. y =32x 、y =-32
x ;14. y =x -1(只需使k >0,b <0即可) 15. 23、53; 16. 0m ≤ 17. 2-
18. 75.5 19. y=-2x+3 20. y=2x+6 y=2x+1 三、计算题
21. 解:①设y 与x 之间的函数关系式为y=kx+b 把x=30 ,y=60;x=40,y=90分别代入y=kx+b ,解得k=3,b=-30,所以y 与x 之间的函数关系式为y=3x -30
②60 元
③把y=75代入y=3x -30,解得x=35 即他在该月份的上网时间是35小时。

22. y=-2x+6 x=2 C (2,2 )
四、应用题
23. 2y x =-+(答案不惟一)
24. ①y=916x ;② y=51x+5
7 25. (1)y=45x+50(80-x )
(2)当x=36时最大值是3820元。

相关文档
最新文档