二元一次方程组培优训练题

合集下载

《二元一次方程组培优训练含答案》偏难

《二元一次方程组培优训练含答案》偏难

二元一次方程组培优训练考试范围:二元一次方程组;考试时间:140分钟;命题人:诚信教育注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(共16小题)1.方程组的解的个数为()A.1 B.2 C.3 D.42.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元3.“甲、乙两数之和为16,甲数的3倍等于乙数的5倍”,若设甲数为x,乙数为y,则列出方程组:(1)(2)(3)(4)中,其中正确的有()A.1组 B.2组 C.3组 D.4组4.秋天的一个周末,王明的大学同学去帮王明家收梨子,上午大家全部摘梨,下午一半同学(包括王明)继续摘梨,一半同学把梨搬运到果园外的车上以备运走,结果梨都摘完了,而需搬运的梨还留下一个人一天的工作量.如果每个人每搬运两筐梨的时间就能摘一筐梨,那么王明和他的同学共()A.4人 B.6人 C.8人 D.10人5.已知x+y=4,|x|+|y|=7,那么x﹣y的值是()A.B.C.±7 D.±116.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()7.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%,这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出()A.既不获利也不赔本B.可获利1% C.要亏本2% D.要亏本1%8.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A .B .C.D .9.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出10.若是方程组的解,则(a+b)•(a﹣b)的值为()A .﹣B .C.﹣16 D.1611.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数字如图,若要能填成,则()A.S=24 B.S=30 C.S=31 D.S=3912.如果方程组有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠113.小明在解关于x、y 的二元一次方程组时得到了正确结果后来发现“ⓧ”、“⊕”处被墨水污损了,请你帮他找出“ⓧ”、“⊕”处的值分别是()A.ⓧ=1,⊕=1 B.ⓧ=2,⊕=1 C.ⓧ=1,⊕=2 D.ⓧ=2,⊕=214.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是()A .B .C.D .15.若方程组的解x与y相等,则a的值等于()16.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟二.填空题(共12小题)17.已知x+2y﹣3z=0,2x+3y+5z=0,则=.18.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.19.若关于x,y方程组的解为,则方程组的解为.20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶km.21.如图,5个一样大小的矩形拼成一个大矩形,如果大矩形的周长为14厘米,那么小矩形的周长为厘米.22.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多道.23.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.24.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.25.已知方程组的解是,则关于x,y的方程组的解是_______________(解中不含a1,c1,a2,c2).26.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨公斤.27.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是cm.28.对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=.三.解答题(共12小题)29.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)30.某种水果的价格如表:张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?31.已知关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.32.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.33.某班参加一次智力竞赛,共a,b,c三题,每题或者得满分或者得0分.其中题a满分20分,题b、题c满分分别为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,问这个班的平均成绩是多少分?34.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,该经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?35.团体购买某“素质拓展训练营”的门票,票价如表(a为正整数):(1)某中学高一(1)、高一(2)班同学准备参加“素质拓展训练营”活动,其中高一(1)班人数不超过50,高一(2)的人数超过50但不超过80.当a=48时,若两班分别购票,两班总计应付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元.问这两个班级各有多少人?(2)某校学生会现有资金4429元用于购票,打算组织本校初三年级团员参加该项活动.为了让更多的人能参加活动,学生会统一组织购票,购票资金恰好全部用完,且参加人数超过了100人,问共有多少人参加了这一活动并求出此时a的值.36.王明决定在暑假期间到工厂打工.一天他到某长了解情况,下面是厂方有关人员的谈话内容:厂长说:我厂实行计件工资制,就是在发给每人相同生活费基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得a元,每月生活费为b元,求a,b的值;(2)厂长决定聘用王明.由于王明工作非常认真,一个月收入高达3166元,问他该月的产量是多少?37.[涵涵游园记]函函早晨到达上海世博园D区入口处等待开园,九时整开园,D区入口处有10n条安全检查通道让游客通过安检入园,游客每分钟按相同的人数源源不断到达这里等待入园,直到中午十二时D区入口处才没有排队人群,游客一到就可安检入园.九时二十分函函通过安检进入上海世博园时,发现平均一个人通过安全检查通道入园耗时20秒.[排队的思考](1)若函函在九时整排在第3000位,则这时D区入口安检通道可能有多少条?(2)若九时开园时等待D区入口处的人数不变:当安检通道是现有的1.2倍且每分钟到达D区入口处的游客人数不变时,从中午十一时开始游客一到D区入口处就可安检入园;当每分钟到达D 区入口处的游客人数增加了50%,仍要求从十二时开始游客一到D区入口处就可安检入38.阅读下列解方程组的方法,然后回答问题.解方程组解:由(1)﹣(2)得2x+2y=2即x+y=1(3)(3)×16得16x+16y=16(4)(2)﹣(4)得x=﹣1,从而可得y=2∴方程组的解是.(1)请你仿上面的解法解方程组.(2)猜测关于x、y的方程组的解是什么,并利用方程组的解加以验证.39.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?40.某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.参考答案与试题解析一.选择题(共16小题)1.方程组的解的个数为()A.1 B.2 C.3 D.4【分析】由于x、y的符号不确定,因此本题要分情况讨论.【解答】解:当x≥0,y≤0时,原方程组可化为:,解得;由于y≤0,所以此种情况不成立.当x≤0,y≥0时,原方程组可化为:,解得.当x≥0,y≥0时,,无解;当x≤0,y≤0时,,无解;因此原方程组的解为:.故选A.【点评】在解含有绝对值的二元一次方程组时,要分类讨论,不可漏解.2.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元 D.0.9元【分析】设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,建立三元一次方程组,两个方程相减,即可求得x+y+z的值.【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.【点评】解答此题的关键是根据题意列出方程组,同时还要有整体思想.3.“甲、乙两数之和为16,甲数的3倍等于乙数的5倍”,若设甲数为x,乙数为y,则列出方程组:(1)(2)(3)(4)中,其中正确的有()A.1组B.2组C.3组D.4组【分析】如果若设甲数为x,乙数为y,那么根据“甲、乙两数之和为16”,可得出方程为x+y=16;根据“甲数的3倍等于乙数的5倍”可得出方程为3x=5y,故(1)正确;再观察给出的其余三个方程组,分别是(1)方程组里两个方程的不同变形,都正确,所以正确的有4组.【解答】解:设甲数为x,乙数为y.则列出方程组正确的有:(1);(2);(3);(4).故选D.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.4.秋天的一个周末,王明的大学同学去帮王明家收梨子,上午大家全部摘梨,下午一半同学(包括王明)继续摘梨,一半同学把梨搬运到果园外的车上以备运走,结果梨都摘完了,而需搬运的梨还留下一个人一天的工作量.如果每个人每搬运两筐梨的时间就能摘一筐梨,那么王明和他的同学共()A.4人B.6人C.8人D.10人【分析】根据题中总梨数相等及每搬运两筐梨的时间就能摘一筐梨可以列出两个方程,可以把人数、一人一天摘的筐数、一人一天运的梨筐数设为未知数,列出方程组即可得解.【解答】解:设王明和他同学共x人,一人一天摘的梨筐数为a,一人一天运的梨筐数为b,根据题意得:,解得:x=8.故选C.【点评】本题考查了二元一次方程组的运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.数学来源于生活,又服务于生活,本题就是数学服务于生活的实例.5.已知x+y=4,|x|+|y|=7,那么x﹣y的值是()A .B .C.±7 D.±11【分析】由x+y=4,|x|+|y|=7可知x和y一定异号,x﹣y的值是多少,需分情况进行讨论.【解答】解:∵x+y=4,|x|+|y|=7,∴当x、y同为正时,|x|+|y|=x+y=4,而不会等于7;当x和y同为负时,|x|+|y|=﹣x﹣y=﹣(x+y)=﹣4,也不会等于7.因此x和y一定异号.当x>0,y<0时,|x|+|y|=x﹣y=7;当x<0,y>0时,|x|+|y|=﹣x+y=7,∴x﹣y=﹣7.即x﹣y=±7.故选C.【点评】要能根据已知条件正确判断字母的符号情况,还要知道绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数.6.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()A.2000元B.1925元C.1835元D.1910元【分析】本题的等量关系是:盈利=最后收入﹣购买股票成本﹣买入时所付手续费﹣卖出时所付手续费.【解答】解:(12﹣10)×1000﹣10×1000×(元),所以该投资者的实际盈利为1835元.故选C.【点评】有关股票的计算中,不能忘记在交易中所收取的手续费有两次,购买时的和成交时的.7.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%,这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出()A.既不获利也不赔本B.可获利1%C.要亏本2% D.要亏本1%【分析】要求这两台空调调价后售出的亏赚,就要先求出他们的售价.根据题意可知,本题中的等量关系是“调价后两台空调价格相同”,依此列方程求解即可.【解答】解:设这两台空调调价后的售价为x,两台空调进价分别为a、b.调价后两台空调价格为:x=a(1+10%);x=b(1﹣10%).则空调A进价为:a=,空调B进价为:b=,调价后售出利润为:==0.99﹣1=﹣0.01=﹣1%,所以亏本1%.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.8.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A .B .C .D .【分析】关键描述语是:十位上的数字x比个位上的数字y大1;新数比原数小9.等量关系为:①十位上的数字=个位上的数字+1;②原数=新数+9.【解答】解:根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选D.【点评】本题需掌握的知识点是两位数的表示方法:十位数字×10+个位数字.9.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.10.若是方程组的解,则(a+b)•(a﹣b)的值为()A .﹣B .C.﹣16 D.16【分析】考查二元一次方程组的求解.【解答】解:把x=﹣2,y=1代入原方程组,得,解得.∴(a+b)(a﹣b)=﹣16.故选C.【点评】注意掌握二元一次方程组的加减消元法和代入消元法两种解法,解方程组的基本思想是消元.此题亦可直接运用加减法求得a+b和a﹣b的值,代入求解.11.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数)18 13B.S=30 C.S=31 D.S=39如图,bxa18y13因为要求每行每列及对角线上三个方格中的数字和都等于S,则得到x+10+y=8+y+13且b+11+a=8+10+a,即可得到S.【解答】解:如图,∵每行每列及对角线上三个方格中的数字和都等于S.∴x+10+y=8+y+13,∴x=11,∵b+11+a=8+10+a,∴b=7,∴S=b+10+13=30.故选:B.【点评】这是一道关于发散性思维的典型题例,可从设未知数入手,找题目里的等量关系,层层深入,进而求解.12.如果方程组有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 【分析】此题的解法在于将两式的y用x来代替然后列出y关于x的方程,因为有唯一解,根据方程可得出a,b,c的值的条件.【解答】解:根据题意得:,∴1﹣x=,∴(a﹣b)x=c﹣b,∴x=,要使方程有唯一解,则a≠b,故选B.【点评】该题考查的是对题意的理解和对方程组的解法的认识,结合了对分式性质的理解,考查了考生对方程、分式的理解.13.小明在解关于x、y 的二元一次方程组时得到了正确结果后来发现“ⓧ”、“⊕”处被墨水污损了,请你帮他找出“ⓧ”、“⊕”处的值分别是()A.ⓧ=1,⊕=1 B.ⓧ=2,⊕=1 C.ⓧ=1,⊕=2 D.ⓧ=2,⊕=2【分析】把x,y的值代入原方程组,可得关于“ⓧ”、“⊕”的二元一次方程组,解方程组即可.【解答】解:将代入方程组,两方程相加,得x=⊕=1;将x=⊕=1代入方程x+ⓧy=3中,得1+ⓧ=3,ⓧ=2.故选B.【点评】要求学生掌握二元一次方程组常见解法,如加减消元法.14.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是()A.B .C.D .【分析】题中没有平均价,可设平均价为1.关键描述语是:B套楼房的面积比A套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B套楼房的面积﹣A套楼房的面积=24;0.9×1×B套楼房的面积=1.1×1×A套楼房的面积,根据等量关系可列方程组.【解答】解:设A套楼房的面积为x平方米,B套楼房的面积为y平方米,可列方程组为.故选D.【点评】题中的必须的量没有时,为了简便,可设其为1.要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.若方程组的解x与y相等,则a的值等于()A.4 B.10 C.11 D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a +(a﹣1)=3,解得:a=11.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.16.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟 B.4分钟C.5分钟D.6分钟【分析】设同向行驶的相邻两车的距离及车、小王的速度为未知数,等量关系为:6×车速﹣6×小王的速度=同向行驶的相邻两车的距离;3×车速+3×小王的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.【解答】解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①b x a108 y 13每隔3分钟从迎面驶来一辆18路公交车,则3x +3y=s .② 由①,②可得s=4x ,所以.即18路公交车总站发车间隔的时间是4分钟. 故选B . 【点评】本题考查二元一次方程组的应用;根据追及问题和相遇问题得到两个等量关系是解决本题的关键;设出所需的多个未知数是解决本题的突破点.二.填空题(共12小题)17.已知x +2y ﹣3z=0,2x +3y +5z=0,则=.【分析】将x 、y 写成用z 表示的代数式进行计算. 【解答】解:由题意得:,①×2﹣②得y=11z , 代入①得x=﹣19z, 原式===.故本题答案为:.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解. 18.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行 50 分钟遇到来接他的爸爸.【分析】设小林自己走的路程为S ,根据:结果比平时早20分钟到家,可知提前放学的这一天,开车的距离少2S ,得到车速==,小林走这段路程比车走这段路段多用时60﹣20=40分钟(早出发1小时,提前到达20分钟),依此列出式子求解.【解答】解:设小林自己走的路程为S . 根据题意得:=+40=+40=50(分钟).故填50.【点评】此题涉及实际问题,考查学生的分析能力,难度偏难.注意:结果比平时早20分钟到家.19.若关于x ,y 方程组的解为,则方程组的解为 .【分析】将代入可得出一个关系式,将此关系式与于关于x 的方程组对应相减,从而可得出一个新的方程组,解出即可得出答案. 【解答】解:由题意得:,∴方程组可变形为:∴对符合条件的a 1,b 1,a 2,b 2都成立.故答案为:.【点评】本题考查二元一次方程组的解,难度较大,关键是将要求的方程组根据题意变形.20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 3750 km .【分析】设每个新轮胎报废时的总磨损量为k ,一对新轮胎交换位置前走了xkm ,交换位置后走了ykm ,根据交换前磨损总量和交换后的磨损总量相等,可列出方程组,解方程组即可.【解答】解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有两式相加,得,则(千米).故答案为:3750.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.21.如图,5个一样大小的矩形拼成一个大矩形,如果大矩形的周长为14厘米,那么小矩形的周长为 6 厘米.【分析】根据题意可知,本题中的相等关系是“2个小矩形的宽等于1个小矩形的长”和“大矩形的周长为14厘米”,列方程组求解即可.【解答】解:设小矩形的宽为x 厘米,长为y 厘米,。

二元一次方程组培优训练题

二元一次方程组培优训练题

求 a,b,c 的值.
ax 5y 15
x 3
2、
解方程组
4
x

by

2
时,甲由于看错系数
a,结果解得

y

1
;乙由于看错系数
x 5
b,结果解得

y

4
,则原来的
a=______,b=______.
x y 6
x ay 3
3、如果关于
x、y
的方程组
2m-n-6
的值等于
_______.
2x y 7 ① , 5.已知二元一次方程组 x 2 y 8 ① 那么 x+y=______ ,x-y=______.
4
6x 5y
6.若 2x-5y=0,且 x≠0,则
的值是____

6x 5y
二、选择题
1.已知二元一次方程 x+y=1,下列说法不正确的是(
11、已知 a-3b=2a+b-15=1,则代数式 a2-4ab+b2+3 的值为__________;
二、解二元一次方程组
(1)
2x
3
y

x

y 4
1
6x y 42x y16
x y 2800 (2 96%x 64% y 2800 92%
1
x 2 y z 2,
(5)

x

4
y

z

5,
2x 2 y 5z 0.
(4)
三、利用二元一次方程组求字母系数的值
ax by 2
x 2

《二元一次方程组》 培优训练(含答案)

《二元一次方程组》 培优训练(含答案)

期末复习:《二元一次方程组》培优训练一.选择题1.方程组的解是()A.B.C.D.2.若二元一次方程组的解为则a+b的值为()A.0 B.1 C.2 D.44.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3 B.4 C.5 D.65.我们知道方程组:的解是,则方程组的解是()A.B.C.D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.47.如果关于x,y的二元一次方程组的解为,则方程组的解为()A.B.C.D.8.关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2二.填空题11.若a+2b=8,3a+4b=18,则a+b的值为.12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.14.若二元一次方程组的解为,则m+n=15.有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为.三.解答题18.解方程(1)(2)19.对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.21.某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.24.阅读理解:小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:解:将方程②变形为:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入方程③得:2×3+y=5解得y=﹣1把y=﹣1代入方程①得x=4∴方程组的解是(1)模仿小聪的解法,解方程组(2)已知x,y满足方程组,解答:(ⅰ)求x2+4y2的值;(ⅱ)求3xy的值.参考答案一.选择题1.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.2.解:把代入方程组得:,解得:,则a+b=2,故选:C.3.解:设小长方形的长为x,宽为y,如图可知,.故选:A.4.解:设宾馆有客房:单人间x间、二人间y间、三人间z间,根据题意可得,,解得:y+2z=9,y=9﹣2z,∵x,y,z都是小于9的正整数,当z=1时,y=7,x=1;当z=2时,y=5,x=2;当z=3时,y=3,x=3当z=4时,y=1,x=4当z=5时,y=﹣1(不合题意,舍去)∴租房方案有4种.故选:B.5.解:∵方程组:的解是,∴由方程组可得,解得.故选:C.6.解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.7.解:由方程组得,根据题意知,即,故选:C.8.解:解方程组得:,∵x=y,∴=+1,解得:k=0.故选:B.9.解:设雉有x只,兔有y只,依题意,得:,解得:.故选:A.10.解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:,解得,故x+yz=5+5×2=15.故选:B.二.填空题(共7小题)11.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.12.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.13.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.14.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.15.解:由题意可得,,故答案为:.16.解:∵关于x、y的二元一次方程组的解是,∴关于a.b的二元一次方程组满足,解得.故关于a.b的二元一次方程组的解是.故答案为:.17.解:设笼中有x只雉,y只兔,根据题得,①,解得,不符合题;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.三.解答题(共7小题)18.解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.19.解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=1,则x+y=.20.解:设合伙人为x人,羊价为y钱,依题意,得:,∴甲同学列的方程组正确,解该方程组,得:.答:合伙人为21人,羊价为150钱.21.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,依题意,得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.解:(1)4+3=7(张),1+2=3(张).故答案为:7;3.(2)设可加工的竖式容器x个,横式容器y个,依题意,得:,解得:.答:可加工的竖式容器100个,横式容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:.∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒24.解:(1)把方程②变形:3(3x﹣2y)+2y=19 ③把①代入③得:15﹣2y=19,得y=2把y=2代入①得x=3则方程组的解为(2)(ⅰ)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③②式整理得2(x2+4y2)+xy=36 ④将③代入④得解得xy=2将xy=2代入③得x2+4y2=17(ⅱ)由(ⅰ)知xy=2,则3xy=6。

二元一次方程组提高训练题李维一用的2

二元一次方程组提高训练题李维一用的2

二元一次方程组培优训练1下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩ 2一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、 ⎩⎨⎧=+=+yx xy y x 188B 、⎩⎨⎧+=++=+y x y x y x 1018108C 、 ⎩⎨⎧=++=+yx y x y x 18108 D 、⎩⎨⎧=+=+yxy x y x )(1083若解方程⎩⎨⎧=+=-121my x y x 的解x 和y 也是二元一次方程x +y =3的解,则m 的值为( )A .2B .1C .3D .-34.若2x │m│+(m+1)y=3m-1是关于x 、y 的二元一次方程,则m 的取值范围是( ) A 、m≠-1 B 、m=±1 C 、m=1 D 、m=05.下列方程组中,有唯一一组解的是( )A .⎩⎨⎧=-=-12334y x y xB .⎩⎨⎧=--=--0531008310y x y xC .⎩⎨⎧-=-=-6223x y y xD .⎩⎨⎧=+=+842743y x y x6.方程7x+4y=100的正整数解有( )组A.1 B.2 C.3 D.4 7.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”那么驴子原来所驮货物有( )袋A. 4B. 5C. 6D. 78.已知⎩⎨⎧=-+=+-0340254z y x z y x (xyz≠0),则x ∶y ∶z 的值为( ) A 、1∶2∶3B 、3∶2∶1C 、2∶1∶3D 、不能确定9.如果方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 为A.6B.-6C.9D.-910.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为A .43-B .43 C . 34D .34-11.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 212.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 213.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种14.请写出一个x 的系数为2,且以⎩⎨⎧=-=12y x 为一个解的二元一次方程15.当k =________时,下列方程①2350x y --=,②3420x y --=,③3y kx =+ 有公共解16.若二元一次方程组⎩⎨⎧=+=-11532by ax y x 和⎩⎨⎧=+=-15y x ay cx 同解,则a=______;b= 17.已知a+2b-3c=4,5a-6b+7c=82,则代数式9a+2b-5c 的值为 。

(完整版)初一数学下册二元一次方程组试卷(含答案) 培优试题

(完整版)初一数学下册二元一次方程组试卷(含答案)  培优试题

一、选择题1.已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,则2a b-的值为()A.15B.14C.10D.82.已知关于x,y的方程组451x yax by-=-⎧⎨+=-⎩和393418x yax by+=-⎧⎨+=⎩有相同的解,那么a b+的算术平方根是()A.0 B.2±C.2D.2 3.下列方程组中,是二元一次方程组的是()A.2xy=⎧⎨=⎩B.28x yy z+=⎧⎨+=⎩C.21xyy=⎧⎨=⎩D.2103xx y⎧-=⎨+=⎩4.已知方程组321x y nx y n+=⎧⎨+=+⎩,若x,y的值相等,则n=()A.1-B.4-C.2 D.2-5.已知x=2,y=1是方程ax﹣y=7的一个解,那么a的值为()A.﹣2 B.2 C.3 D.46.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.60 B.52 C.70 D.667.已知方程组46ax byax by-=⎧⎨+=⎩与方程组35471x yx y-=⎧⎨-=⎩的解相同,则a,b的值分别为()A.521ab⎧=-⎪⎨⎪=⎩B.521ab⎧=⎪⎨⎪=-⎩C.521ab⎧=⎪⎨⎪=⎩D.521ab⎧=-⎪⎨⎪=-⎩8.若关于x、y的方程组2335x yax by+=⎧⎨-=-⎩和32111x ybx ay-=⎧⎨-=⎩有相同的解,则2021()a b+的值为()A.1-B.0 C.1 D.20219.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.60cm B.65cm C.70cm D.75cm10.已知11xy=⎧⎨=-⎩是二元一次方程组2123ax byax by+=⎧⎨-=⎩的解,则3a b-的值为()A.-2 B.2 C.-4 D.4二、填空题11.为了改善城市绿化,南川区政府决定圈出一块地打造一片花园,花园中种植牡丹花、樱花、梅花供市民欣赏,经过一段时间,花园中已种植的牡丹花、樱花、梅花的面积之比为5:4:6,根据市民喜爱程度,将在花园余下空地继续种植这三种花,经过测算,需将余下空地面积的815种植梅花,则梅花种植的总面积将达到这三种花种植总面积的2345,为了使牡丹花种植总面积与樱花种植总面积之比达到4:5,则花园内种植樱花的总面积与种植梅花的总面积之比 ________.12.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.13.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..14.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.15.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图1所示的大长方形:二组拼成一个如图2所示的正方形,但中间留下一个边长为3cm的小正方形,据此计算出每个小长方形的面积是______2cm16.若关于x 、y 的二元一次方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解为3,2x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩的解为________.17.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 18.某地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.今年元旦节,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过__________小时车库恰好停满.19.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______. 20.某出租车起步价所包含的路程为02km ,超过2km 的部分按每千米另收费.小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元.根据题意,可列方程组为_________.三、解答题21.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”. (1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为 ;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.22.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t 的和能被7整除,求出满足题意的s.23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.24.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.25.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354 () 1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x=,y=.(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)27.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?28.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.29.题目:满足方程组3512332x y kx y k+=+⎧⎨+=-⎩的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y =15,3x +y =2,∴x =95∴k =3×95=275把x =95,y =15代入方程②得k =﹣35所以k 的值为275或﹣35. 请诊断分析并评价“小勇同学的解答”.30.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,代入原式计算即可求出值. 【详解】 解:根据题意,则5325x y x y +=⎧⎨-=⎩①②, 由①×2+②得:11x =11, 解得:x =1,把x =1代入①得:5+y =3, 解得:y =-2;把x =1,y =-2代入5451ax y x by +=⎧⎨+=⎩,则104521a b -=⎧⎨-=⎩,解得:142a b =⎧⎨=⎩,∴2142210a b -=-⨯=. 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.C解析:C 【分析】根据求解二元一次方程组求出a ,b ,求出a b +计算即可; 【详解】 解:由题意可知:4539x y x y -=-⎧⎨+=-⎩和13418ax by ax by +=-⎧⎨+=⎩有相同的解, 在4539x y x y -=-⎧⎨+=-⎩①②中, ①+②得:2x =-, 将2x =-代入①得:3y =-,∴方程组的解为23x y =-⎧⎨=-⎩,在13418ax by ax by +=-⎧⎨+=⎩①②中, ①×3得:333ax by +=-③, ②-③得:21by =, ∴7b =-, ∴11a =, ∴4a b +=, ∴2=,∴故选:C . 【点睛】本题主要考查了二元一次方程组的求解、算术平方根的计算,准确计算是解题的关键.3.A解析:A 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案. 【详解】A 、符合二元一次方程组的定义,故本选项正确;B 、本方程组中含有3个未知数,故本选项错误;C 、第一个方程式的xy 是二次的,故本选项错误;D 、x 2是二次的,故本选项错误. 故选:A . 【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.4.B解析:B 【分析】先根据方程组中x 、y 相等用y 表示出x 把原方程组化为关于y 、n 的二元一次方程组,再用n 表示出y 的值,代入方程组中另一方程求出n 的值即可. 【详解】解:∵方程组321x y nx y n +=⎧⎨+=+⎩中的x ,y 相等,∴原方程组可化为:4?31?y n y n =⎧⎨=+⎩①②,由①得,4n y =, 代入②得,314nn =+,解得n =-4, 故选择:B . 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.5.D解析:D 【分析】把x =2,y =1代入方程ax ﹣y =7,得出方程2a ﹣1=7,再求出方程的解即可得到答案. 【详解】∵x =2,y =1是方程ax ﹣y =7的一个解 ∴2a ﹣1=7 解得:a =4, 故选:D . 【点睛】本题考查了二元一次方程、一元一次方程的知识;解题的关键是熟练掌握二元一次方程、一元一次方程的性质,从而完成求解.6.C解析:C 【分析】设小长方形的长、宽分别为x 、y ,根据周长为34的矩形ABCD ,可以列出方程3x +y =17;根据图示可以列出方程2x =5y ,联立两个方程组成方程组,解方程组就可以求出矩形ABCD 的面积. 【详解】解:设小长方形的长、宽分别为x 、y ,依题意得: 25317x yx y =⎧⎨+=⎩ , 解得:52x y =⎧⎨=⎩,则矩形ABCD 的面积为7×2×5=70. 故选:C . 【点睛】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.7.C解析:C 【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可. 【详解】解:解方程组35471x y x y -=⎧⎨-=⎩得:21x y =⎧⎨=⎩,∵方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,∴把21x y =⎧⎨=⎩代入方程组46ax by ax by -=⎧⎨+=⎩得:2426a b a b -=⎧⎨+=⎩,解得:521a b ⎧=⎪⎨⎪=⎩,故选:C 【点睛】本题考查了方程组的解的定义和解二元一次方程组,理解方程组的解的意义并正确解二元一次方程组是解题关键.8.A解析:A 【分析】将方程组中不含,a b 的两个方程联立,求得,x y 的值,代入,含有,a b 的两个方程中联立求得,a b 的值,再代入代数式中求解即可. 【详解】 根据题意2333211x y x y +=⎧⎨-=⎩①②①⨯2+②⨯3得:3x = 将3x =代入①得:1y =-将31x y =⎧⎨=-⎩代入51ax by bx ay -=-⎧⎨-=⎩得:3531a b b a +=-⎧⎨+=⎩③④ ③-④⨯3得:1b = 将1b =代入④得:2a =- 当21a b =-=,时, 20212021(()1)1a b +=-=-故选A . 【点睛】本题考查了解二元一次方程组,乘方运算,理解题意中方程组有相同解的意义是解题的关键.9.D解析:D 【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果. 【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150, 解得 a =75,【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.10.A解析:A【分析】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩并解方程组,再把a,b 代入3a b -. 【详解】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩,得 2123a b a b -=⎧⎨+=⎩ 解得11a b =⎧⎨=⎩所以3a b -=-2故选:A【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.二、填空题11.110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x+y ),桃花已种植面积、樱花已种植面积,梅花已种植面积,依题意列出方程组,用y 的代数式分别表示x解析:110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x +y ),桃花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x ,依题意列出方程组,用y 的代数式分别表示x 、z ,然后进行计算即可.【详解】解:设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为()x y +,牡丹花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x ,6823()15154558()415154515x y x y x y y z x z ⎧+=+⎪⎪⎪⎨+--⎪=⎪+⎪⎩, 解得:5184675y x y z ⎧=⎪⎪⎨⎪=⎪⎩, ∴花园内种植樱花的面积是:41844184441567575675135y y y y x +=+=, 花园内种植梅花的面积是:5686846151575157y y y y x +=+=, ∴花园内种植樱花的总面积与种植梅花的总面积之比是:744110135467520yy =,故答案为110:207.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.12.6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 13.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.14.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.15.135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为,长为,根据题中的等量关系:①5个长方形的宽个长方形的长,②大矩形面积大正方形的面积,解析:135【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的宽为xcm ,长为ycm ,根据题中的等量关系:①5个长方形的宽3=个长方形的长,②大矩形面积9+=大正方形的面积,列方程求解.【详解】解:设每个长方形的宽为xcm ,长为ycm ,那么可列出方程组为:5323x y x y =⎧⎨-=⎩, 解得:9{15x y ==.所以每个长方形的面积为()2·915135x y cm =⨯=. 故答案是:135.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是注意图片给出的等量关系即,①5个长方形的宽3=个长方形的长,②大矩形面积9+=大正方形的面积,以此可得出答案. 16.【分析】把代入,结合所求的方程组即可得到关于,的方程,求解即可.【详解】解:把代入得:又∵∴故答案为:【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于,的方程是解题的解析:21x y =⎧⎨=⎩ 【分析】把32x y =⎧⎨=⎩代入111222a xb yc a x b y c +=⎧⎨+=⎩,结合所求的方程组即可得到关于x ,y 的方程,求解即可. 【详解】解:把32x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩得:1112223232a b c a b c +=⎧⎨+=⎩ 又∵111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩ ∴1322x y +=⎧⎨=⎩⇒21x y =⎧⎨=⎩故答案为:21x y =⎧⎨=⎩ 【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于x ,y 的方程是解题的关键.17.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.18.【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据题意:如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.列出方程组求得x 、y ,进一步 解析:3215【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据题意:如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.列出方程组求得x 、y ,进一步代入求得答案即可.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a , 由题意得:8(23)75%2(32)75%x y a x y a-=⎧⎨-=⎩, 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 早晨6点时的车位空置率变为60%,333260%(2)163215a a a ∴÷⨯-=(小时), 答:从早晨6点开始经过3215小时车库恰好停满. 故答案为:3215.【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的等量关系关系,列出方程组是解决问题的关键. 19.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.20.【分析】根据小江乘坐这种出租车走了,付了16元;小北乘坐这种出租车走了,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为元,超过后每千米收费解析:(72)16(132)28x y x y +-=⎧⎨+-=⎩【分析】根据小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,由题意得:(72)16(132)28x y x y +-=⎧⎨+-=⎩, 故填:(72)16(132)28x y x y +-=⎧⎨+-=⎩. 【点睛】本题考查由实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目中的等量关系.三、解答题21.(1)(3,3);(2)272;(3)(32,0)或(152-,0) 【分析】(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0,解23060x y x y -+=⎧⎨+-=⎩即可得答案; (2)设直线AB 交y 轴于D ,求出B 、C 、D 的坐标,根据S △ABC =S △BCD +S △ACD 即可求出答案;(3)设点P 的坐标为(n ,0),根据△PBC 的面积等于△ABC 的面积,即272,列出方程,解之即可.【详解】解:(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0, 解23060x y x y -+=⎧⎨+-=⎩得:33x y =⎧⎨=⎩, ∴A 的坐标为(3,3);故答案为:(3,3);(2)设直线AB 交y 轴于D ,如图:∵B 是x 轴上的“健康点”,在x -2y +3=0中,令y =0得x =-3,∴B (-3,0),∵C 是y 轴上的“快乐点”,在x +y -6=0中,令x =0得y =6,∴C (0,6),在x -2y +3=0中,令x =0得y =32, ∴D (0,32), ∴CD =92, ∴S △ABC =S △BCD +S △ACD =12CD •|x B |+12CD •|x A | =1919332222⨯⨯+⨯⨯ =272; (3)设点P 的坐标为(n ,0),则BP =3n +,∵△BPC 与△ABC 面积相等,∴S △BPC =1362n ⨯+⨯=272, ∴932n +=, ∴32n =或152-, ∴点P 的坐标为(32,0)或(152-,0). 【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.22.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,表示出s t +,由s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵871299,+=∴87和12是一对“黄金搭档数”;∵6249111,+=∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s 和两位数t 的十位数字相同,∴设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,∴20,s t x y z +=++∵s 和t 是一对“黄金搭档数”,∴s t +是一个两位数,且各个数位上的数相同,又∵s 与t 的和能被7整除,∴77s t +=,共有两种情况:①20707x y z =⎧⎨+=⎩, 解得 3.5x =,∵x 为整数,∴不合题意,舍去;②206017x y z =⎧⎨+=⎩, ∵,,x y z 都是整数,且19,09,09,x y z ≤≤≤≤≤≤∴解得398x y z =⎧⎪=⎨⎪=⎩或389x y z =⎧⎪=⎨⎪=⎩, 故s 为39或38.【点睛】本题考查三元一次方程组的整数解,解题关键是理解题目中的定义,根据已知条件列出方程组.23.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)50130αβ︒︒⎧∠=⎨∠=⎩;(2)//AB CD ,理由详见解析;(3)40° 【分析】(1)利用加减消元法,通过解二元一次方程组可求出∠a 和β∠的度数;(2)利用求得的∠a 和β∠的度数可得到180αβ∠+∠=︒,于是根据平行线的判定可判断AB ∥EF ,然后利用平行的传递性可得到AB ∥CD ;(3)先根据垂直的定义得到90CAE ∠=︒,再根据平行线的性质计算C ∠的度数.【详解】解(1)解方程组223080αββα︒︒⎧+=⎨∠-∠=⎩①②, ①-②得:3150α∠=︒ ,解得:50α∠=︒把50α∠=︒代入②得:5080β∠-︒=︒解得:130β∠=︒;(2)//AB CD ,理由:∵50α∠=︒,130β∠=︒,180αβ︒∴∠+∠=,//AB EF ∴(同旁内角互补,两直线平行),又 CD//EF ,//AB CD ∴;(3)AC AE ⊥,90CAE ︒∴∠=//AB CD180C CAB ︒∴∠+∠=180905040C ︒∴∠=︒-︒-︒=.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.25.(1) 6,10;(2)02x y =⎧⎨=⎩。

七年级初一数学 数学第八章 二元一次方程组的专项培优练习题(含答案

七年级初一数学 数学第八章 二元一次方程组的专项培优练习题(含答案

七年级初一数学 数学第八章 二元一次方程组的专项培优练习题(含答案一、选择题1.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=2.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .20.25x y =⎧⎨=-⎩B . 4.53x y =-⎧⎨=⎩C .10.5x y =-⎧⎨=-⎩D .10.5x y =⎧⎨=⎩3.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是() A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩4.在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( )A .1B .-3C .3D .4 5.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12-6.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩7.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩8.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 29.由方程组 可得出x 与y 的关系式是( )A .x+y=9B .x+y=3C .x+y=-3D .x+y=-910.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .; B .; C .; D .二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a xb yc a x b y c +-=⎧⎨+-=⎩的解为__________. 14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本.16.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 17.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪⎨-=-⎪⎩(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___. 18.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.19.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.20.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.三、解答题21.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.22.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.23.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足34624 a b ca b c+-=⎧⎨-+=-⎩.(1)若a没有平方根,判断点A在第几象限并说明理由.(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 24.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨部分b0.8026.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D解析:D【分析】整理后①×7+②×2得出41x=41,求出x,把x的值代入①求出y即可.解:整理得:345 10143x yx y+=⎧⎨-=⎩①②,①×7+②×2得:41x=41,∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5 xy=⎧⎨=⎩,故选D.【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.3.B解析:B【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得83 74y xy x-=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.4.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.5.B解析:B先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.6.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.7.A解析:A 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .8.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.9.A解析:A【解析】分析:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.解答:解:由①得:m=6-x∴6-x=y-3∴x+y=9.故选A.10.C解析:C【解析】试题分析:设安排x个工人做螺杆,y个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x yx y+=-=.故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.二、填空题11.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.13.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为, 将解方程组变形为, ∴关于,的方程组的解为, 解得, 故答案为:. 【点睛】本题考查了二元一次方程组的解法解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩,解得1856x y ⎧=⎪⎨⎪=⎩,故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.14.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.15.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本, 设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x本, 设甲班有y 人,乙班有(80﹣y )人. 根据题意,得 xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64, 共捐书10×64+15×16+5×40=1080. 答:甲、乙、丙三班共捐书1080本. 故答案为1080. 【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.16.8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可. 【详解】如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,由题意得:AC+CD+DB+AD+BC+AB=29, ∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB , ∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD , ∴AB=8,CD=5或AB=9,CD=2, 即AB 的长度为8或9,故答案为:8或9. 【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.17.() 【解析】 【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标. 【详解】解:∵方程组(c 为常数), ∴, ∵,, ∴, ∴c=4, ∴解析:(1,33-) 【解析】 【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标. 【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-,∵30a +≥0, ∴-(4)04(4)0c c -≥⎧⎨-≥⎩,∴c =4,∴31a b =-⎧⎨=⎩,∴P 坐标为(-3,1),根据定义可知点P的影子点P/为(13(,)31---,即为P/(1,33-).故答案为(1,33 -).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c-4=0. 18.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.19.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9. 20.8 【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8 【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.三、解答题21.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论. 【详解】解:(1)∵AB BC ⊥ ∴90B ∠=︒ ∵//AB CD∴18090C B ∠=︒-∠=︒ ∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒; (2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG 证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF ∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠ ∴180GEF DAF ∠+∠=︒ ∵GEF k DAF ∠=∠ ∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点 ∴45BAE x ∠=︒>︒ ∵k 为不超过10的正整数 ∴当8k时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.22.(1)x 1 y 3=⎧⎨=⎩,x 3y 2=⎧⎨=⎩,x 5y 1=⎧⎨=⎩;(2)x 3 y 7=⎧⎨=⎩;(3)63,73,83 【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x3 {y7==;(3)由33x23y2019{x y m+=+=,解得201923mx10{33m2019y10-=-=,∵201923m10{33m201910-->>,即201933<m<201923,∴当m=63时,x=57,y=6;m=73时,x=38,y=39; m=83时,x=11,y=72; ∴所有m 的值为63,73,83. 【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.23.(1)第三象限;(2)见解析;(3)见解析 【解析】 【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OABB SAB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论; 【详解】(1)∵a 没有平方根, ∴a <0,∴点A 在第三象限; (2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b ac a=+⎧⎨=⎩∵点B 坐标为(b ,c ) ∴点B 坐标为(2+a ,a ) ∵点A 的坐标为(a ,a ) ∴AB =|2+a-a|=2,AB 与x 轴平行∴11|y |2||||22OAB B SAB a a =⨯⨯=⨯⨯= ∵△OAB 的面积大于5而小于8, ∴5||8a <<解得:58a <<或85a -<<- (3) ∵AB ∥x 轴 又∵MN ∥AB ∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.24.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】 【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值. 【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1), 摆2个正方形需要7根小木棍,4=4+3×(2-1), 摆3个正方形需要10根小木棍,10=4+3×(3-1), ……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍, 故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个, 则51311104x y x y+++=⎧⎨+=⎩,解得1216x y =⎧⎨=⎩,所以正方形有16个,六边形有12个; (3)据题意,350t s +=, 据题意,t s ≥,且,s t 均为整数, 因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.25.(1)a=2.2,b=4.2;(2) 小王家六月份最多能用水40吨 【解析】分析:(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可;(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可. 详解:(1)由题意,得解得(2)当用水量为30吨时,水费为17×(2.2+0.8)+(30-17)×(4.2+0.8)=116(元), 9200×2%=184(元), ∵116<184,∴小王家六月份的用水量可以超过30吨. 设小王家六月份的用水量为x 吨,则 17×3+13×5+6.8(x-30)≤184, 解得x≤40.∴小王家六月份最多能用水40吨.点睛:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.26.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元. 【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩. 变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①② ①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.。

人教版七年级下册:第8章《二元一次方程组》培优拔尖习题训练( 附解析)

人教版七年级下册:第8章《二元一次方程组》培优拔尖习题训练(  附解析)

第8章《二元一次方程组》培优拔尖习题训练一.选择题(共8小题)1.方程x+4y=20的非负整数解有()A.4组B.5组C.6组D.无数组2.已知是方程组的解,则a﹣b的值是()A.﹣1B.1C.﹣5D.53.如果是方程2x+y=0的一个解(m≠0),那么()A.m≠0,n=0B.m,n异号C.m,n同号D.m,n可能同号,也可能异号4.解方程组时,一学生把c看错得,已知方程组的正确解是,则a,b,c的值是()A.a,b不能确定,c=﹣2B.a=4,b=5,c=﹣2C.a=4,b=7,c=﹣2D.a,b,c都不能确定5.已知是二元一次方程组的解,则的算术平方根为()A.±3B.3C.D.6.方程组的解的个数为()A.1B.2C.3D.47.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出8.太原市城乡居民用电价格按用电需求分为三个档次,电价分档递增:第一档电量为170千瓦时及以下,第二档电量为171千瓦时至260千瓦时,第三档电量为261千瓦时及以上,小颖家7月用电量为210千瓦时,交电费102.17元;8月用电量为180千瓦时,交电费86.36元.若第一档电价为x元/千瓦时,第二档电价为y元/千瓦时,则可得方程()A.B.C.D.二.填空题(共6小题)9.点A是第二象限内一点,且A的坐标(x,y)是二元一次方程2x+y=3的一组解,请你写出满足条件的点A坐标(写出一个即可).10.已知方程组与有相同的解,则m+n=.11.以方程组的解为坐标的点(y,x)在第象限.12.用“代入消元法”解方程组时,可先将第方程(填序号即可)变形为,然后再代入.13.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是14.如果方程组的解为那么被“*”“△”遮住的两个数分别是.三.解答题(共7小题)15.解下列方程组(1).(2).16.小萌知道和都是二元一次方程ax+by+4=0的解,请你帮她求出a3b的立方根.17.若方程组的解x,y的和为6,求代数式3k+2000的值.18.为了积极推进轨道交通建设,某城市计划修建总长度36千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建0.06千米,乙工程队每天修建0.08千米,两工程队共需修建500天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:小华:(1)根据两名同学所列的方程组,请你分别指出未知数x表示的意义小明:x表示;小华:x表示.(2)求甲、乙两工程队分别修建有轨电车多少千米?19.随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?20.如图,数轴上A、B两点表示的数分别为a、b,且a、b满足(1)求a和b的值;(2)在数轴上有一动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向向终点B运动,同时另一动点Q从点B出发,以每秒5个单位长度的速度沿数轴负方向向终点A运动,当一个动点到达终点时,另一个动点继续运动若点M为线段PQ的中点,设点P的运动时间为t秒,请用含t的整式表示点M所表示的数;(3)在(2)的条件下,当BQ﹣OP=90时,求点M所表示的数.21.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片张,正方形铁片张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?参考答案一.选择题(共8小题)1.【解答】解:二元一次方程x+4y=20的所有正整数解有:x=4,y=4;x=8,y=3;x=12,y=2;x=16,y=1.x=0,y=5;x=20,y=0.故选:C.2.【解答】解:∵是方程组的解,∴,两个方程相减,得5a﹣5b=5,∴a﹣b=1,故选:B.3.【解答】解:把代入方程,得2m+n=0,即2m=﹣n,又m≠0,所以m,n为异号.故选:B.4.【解答】解:把代入ax+by=2,得﹣2a+2b=2①,把代入方程组,得,则①+②,得a=4.把a=4代入①,得﹣2×4+2b=2,解得b=5.解③得c=﹣2.故a=4,b=5,c=﹣2.故选:B.5.【解答】解:将x=2,y=1代入方程组得:,①+②×2得:5n=10,即n=2,将n=2代入②得:4﹣m=1,即m=3,∴m+3n=3+6=9,则=3,3的算术平方根为.故选:C.6.【解答】解:当x≥0,y≤0时,原方程组可化为:,解得;由于y≤0,所以此种情况不成立.当x≤0,y≥0时,原方程组可化为:,解得.当x≥0,y≥0时,,无解;当x≤0,y≤0时,,无解;因此原方程组的解为:.故选:A.7.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.8.【解答】解:小颖家7月电费:170x+(210﹣170)y=102.17,①小颖家8月电费:170x+(180﹣170)y=86.36,②①和②联立可得方程组.故选:C.二.填空题(共6小题)9.【解答】解:令x=﹣1,得﹣2+y=3,即y=5,则A的坐标为(﹣1,5)(答案不唯一),故答案为:(﹣1,5)(答案不唯一),10.【解答】解:∵与有相同的解,∴解方程组得,∴解m、n的方程组得∴m+n=4﹣1=3.故答案为:3.11.【解答】解:,②﹣①得:3x+3=0,解得:x=﹣1,把x=﹣1代入②得:y=5﹣1=4,则(4,﹣1)在第四象限,故答案为:四.12.【解答】解:可将方程②变形为y=或x=代入方程①,故答案为:②,y=(或x=).13.【解答】解:根据题意,得.故答案为:.14.【解答】解:把x=6代入2x+y=16得:y=4,把x=6,y=4代入得:x+y=6+4=10,则被“☆”、“□”遮住的两个数分别是10,4,故答案为:10和4.三.解答题(共7小题)15.【解答】解:(1).原方程组可化为由①×2﹣②×3,可得4y﹣(﹣9y)=39,解得y=3,把y=3代入①,可得3x+6=12,解得x=2,∴方程组的解为;(2)由①+②,可得3x+4y=18,④由②+③,可得5x+2y=16,即10x+4y=32,⑤由⑤﹣④,可得7x=14,解得x=2,把x=2代入④,可得6+4y=18,∴y=3,把x=2,y=3代入①,可得2+3+z=6,∴z=1,∴方程组的解为.16.【解答】解:把和代入二元一次方程ax+by+4=0得:得:,解得:,则a3b=(﹣3)3×1=﹣27,因此,a3b的立方根是﹣3.17.【解答】解:∵x,y的和为6,∴x+y=6,∴解得:∴3k+2000=2015.18.【解答】解:(1)小明:x表示甲工程队修建的天数;小华:x表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.(2)设甲工程队修建x千米,乙工程队修建y千米,由题意得:解得答:甲工程队修建12千米,乙工程队修建24千米.19.【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:解得:答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.20.【解答】解:(1),①×2﹣②得,a=﹣50,把a=﹣50代入①得,﹣100+b=﹣10,∴b=90;∴a=﹣50,b=90.(2)∵P A=2t,QB=5t,∴PQ=90﹣(﹣50)﹣(2t+5t),或PQ=(2t+5t)﹣[90﹣(﹣50)],∵点M为线段PQ的中点,∴点M所表示的数为[90﹣(﹣50)﹣(2t+5t)]或{(2t+5t)﹣[90﹣(﹣50)]},即点M所表示的数为70﹣t或t﹣70;(3)由题意可知OP=50﹣2t或OP=2t﹣50当OP=50﹣2t,且BQ﹣OP=90时,有:5t﹣(50﹣2t)=90∴t=20此时AP=2×20=40,BQ=20×5=100﹣50+40=﹣10,90﹣100=﹣10∴P、Q重合∴点M表示的数为﹣10当OP=2t﹣50,且BQ﹣OP=90时,有:5t﹣(2t﹣50)=90∴t=此时AP=2×=,BQ=5×=﹣50+=﹣,90﹣=∴点M表示的数为0.综上,点M所表示的数为﹣10或0.21.【解答】解:(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片7张,正方形铁片3张;(2)设加工的竖式铁容器有x个,横式铁容器有y个,根据题意得,解得答:竖式铁容器加工100个,横式铁容器加工538个;(3)设做长方形铁片的铁板m张,做正方形铁片的铁板n张,根据题意得,解得,∵在这35张铁板中,25张做长方形铁片可做25×3=75(片),9张做正方形铁片可做9×4=36(片),剩1张可裁出1个长方形铁片和2个正方形铁片,共可做长方形铁片75+1=76(片),正方形铁片36+2=38(片),∴可做铁盒76÷4=19(个)答:最多可加工成铁盒19个.。

【教师卷】初中数学七年级数学下册第八单元《二元一次方程组》经典测试题(培优)

【教师卷】初中数学七年级数学下册第八单元《二元一次方程组》经典测试题(培优)

一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×2D 解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x y x y +=⎧⎨-=-⎩①②,用①×3-②×2可以消去x , 选项A ,B , C 无法消去方程组中的未知数,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.2.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm C解析:C【分析】 设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键. 3.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 4.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .0C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4, 82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.5.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩A 解析:A【分析】 设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.6.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, A 解析:A【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得: 3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.7.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种A 解析:A【解析】试题设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.8.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( ) A .30284x y x y +=⎧⎨+=⎩ B .302484x y x y +=⎧⎨+=⎩ C .304284x y x y +=⎧⎨+=⎩ D .30284x y x y +=⎧⎨+=⎩B 解析:B【分析】设这个笼中的鸡有x 只,兔有y 只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组即可.【详解】解:若设笼中有x 只鸡,y 只兔,根据题意可得:302484x y x y +=⎧⎨+=⎩, 故选:B .【点睛】此题考查了二元一次方程组的应用;根据题意列出方程组是解决问题的关键.9.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C解析:C【分析】将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 10.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .40x y =⎧⎨=⎩ C 解析:C【分析】先用加减消元法求出x 的值,再代回第一个方程求出y 的值即可.【详解】 解:425x y x y +⎧⎨-⎩=①=②, ①+②,得:3x=9,解得:x=3,将x=3代入①,得:3+y=4,解得:y=1,所以方程组的解为31x y ⎧⎨⎩==, 故选:C .【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.二、填空题11.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.5【分析】根据两个方程系数的关系将两个方程相加即可得到答案【详解】解:①+②得:4x+4y =20则x+y =5故答案为:5【点睛】此题考查解二元一次方程组—特殊法根据所求的式子中各系数与方程组的关系将解析:5【分析】根据两个方程系数的关系将两个方程相加即可得到答案.【详解】解:612 328x yx y+=⎧⎨-=⎩①②,①+②得:4x+4y=20,则x+y=5,故答案为:5.【点睛】此题考查解二元一次方程组—特殊法,根据所求的式子中各系数与方程组的关系,将原方程组对应相加或相减即可得到答案的方法更为简便.12.如果方程组43123392x yx y+=⎧⎪⎨-=⎪⎩与方程y=kx-1有公共解,则k=______.【分析】先解方程组得再将代入y=kx-1得3k-1=0解方程即可【详解】解方程组得将代入y =kx-1得3k-1=0解得k=故答案为:【点睛】此题考查同解方程问题解二元一次方程组解一元一次方程熟练掌握解析:1 3【分析】先解方程组43123392x yx y+=⎧⎪⎨-=⎪⎩,得3xy=⎧⎨=⎩,再将3xy=⎧⎨=⎩代入y=kx-1,得3k-1=0,解方程即可.【详解】解方程组43123392x yx y+=⎧⎪⎨-=⎪⎩,得3xy=⎧⎨=⎩,将3xy=⎧⎨=⎩代入y=kx-1,得3k-1=0,解得k=13,故答案为:13.【点睛】此题考查同解方程问题,解二元一次方程组,解一元一次方程,熟练掌握解方程的方法是解题的关键.13.方程4x-5y=6,用含x的代数式表示y得______,用含y的代数式表示x得______.y=x=【分析】要用含x的代数式表示y或用含y的代数式表示x就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可【详解】解:用含x的代数式表示y移项得:﹣5y=﹣4x+6系数化解析:y=4655x-x=5342y+【分析】要用含x的代数式表示y,或用含y的代数式表示x,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:用含x的代数式表示y移项得:﹣5y=﹣4x+6,系数化为1得:y=46 55x-;用含y的代数式表示x得移项得:4x=5y+6,系数化为1得:x=53 42y+.故答案为:y=4655x-;x=5342y+.【点睛】解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.14.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)02575或41878或81181或12484【分析】设公鸡有x只母鸡有y只则小鸡有(100−x−y)只由题意得到5x +3y+=100求出符合题意的方程的解即可【详解】设公鸡有x只母鸡有y只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84.【分析】设公鸡有x只,母鸡有y只,则小鸡有(100−x−y)只,由题意得到5x+3y+1003x y--=100,求出符合题意的方程的解即可.【详解】设公鸡有x只,母鸡有y只,则小鸡有(100−x−y)只,根据题意得: 5x+3y+1003x y--=100,化简得:y =25−74x , 当x =0时,y =25,100−x−y =75;当x =4时,y =18,100−x−y =78;当x =8时,y =11,100−x−y =81;当x =12时,y =4,100−x−y =84;当x =16时,y =−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x 、y 均为整数求出二元一次方程的解.15.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______.【分析】设一开始甲乙丙三个工程队完成的工程量为b 则剩余工程量为a-b 然后表示出丙队完成的工程量根据丙队完成的工程量占总工程量的列出等式从而得到a 与b 的数量关系再表示出乙队完成的工程量把a 与b 的数量关解析:11:40.【分析】设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,然后表示出丙队完成的工程量,根据丙队完成的工程量占总工程量的1940列出等式,从而得到a 与b 的数量关系,再表示出乙队完成的工程量,把a 与b 的数量关系代入计算即可.【详解】解:设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b , ∴丙队完成的工程量为()951612a b b -+, ∴()9519161240a b b a -+=, 解得,35b a =,乙队一开始完成的工程量为412b ,后来完成的工程量为()()73316716a b a b -⨯=-, ∴乙队完成的工程量为()43433311121612516540b a b a a a a ⎛⎫+-=⨯+-= ⎪⎝⎭, ∴乙队完成的工程量与总工程量之比是11:40.故答案是:11:40.【点睛】本题考查工程问题,考查学生分析解决问题的能力,正确求出一开始完成的工程量与总工程量的数量关系是关键.16.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 17.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.【分析】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意列二元二次方程组并求解即可得到答案【详解】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意得:即①-②得:∴即这条河的解析:3/km h【分析】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h ,根据题意列二元二次方程组并求解,即可得到答案.【详解】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h根据题意得:18051806y x y x ⎧+=⎪⎪⎨⎪-=⎪⎩即3630y x y x +=⎧⎨-=⎩①② ①-②,得:23630x =-∴3x =即这条河的水流速度是3/km h故答案为:3/km h .【点睛】本题考查了二元二次方程组的知识;解题的关键是熟练掌握二元二次方程组的性质,并运用到实际问题中,从而完成求解.18.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________528【分析】分别将x=1和x=-1代入得到两个等式再用①-②整理即可得出的值【详解】解:当x=1时①当x=-1时②①-2得:即故答案为:528【点睛】本题主要考查了代数式求值和加减消元法的应用取x 解析:528【分析】分别将x=1和x=-1代入得到两个等式,再用①-②整理即可得出035a a a ++的值.【详解】解: 当x=1时,5432032a a a a a =++++ ①,当x=-1时,543201024a a a a a -=-+-+- ②,①-2得:5301056222a a a =++,即035++=528a a a .故答案为:528.【点睛】本题主要考查了代数式求值和加减消元法的应用.取x 的特殊值代入是解答此题的关键. 19.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax c by x d -=⎧⎨-=⎩的解为______.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12x y =-⎧⎨=⎩【分析】用换元法求解即可.【详解】解:∵y ax c by x d -=⎧⎨-=⎩, ∴()()()()a x y c xb y d ⎧---=⎪⎨---=⎪⎩, ∵方程组ax yc x byd -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩, ∴12x y -=⎧⎨-=-⎩, ∴12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.20.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.【分析】利用题中的新定义得到二元一次方程组求出与的值即可【详解】解:根据题中的新定义得:①②得:解得:把代入①得:∴故答案为:【点睛】此题考查了解二元一次方程组以及有理数的乘法弄清题中的新定义是解本解析:6-【分析】利用题中的新定义得到二元一次方程组,求出x 与y 的值即可.【详解】解:根据题中的新定义得:45531x y x y +=⎧⎨+=⎩①②, ①3⨯-②得:714x =,解得:2x =,把2x =代入①得:3y =-,∴6xy =-,故答案为:6-【点睛】此题考查了解二元一次方程组,以及有理数的乘法,弄清题中的新定义是解本题的关键.三、解答题21.解方程组:()()4162 2358x yx y⎧+=-⎪⎨-=-⎪⎩①②解析:9412 xy⎧=-⎪⎪⎨⎪=-⎪⎩【分析】将原方程化简整理后再运用加减消元法求解即可.【详解】解:原方程组可化为233, 252,x yx y-=-⎧⎨-=-⎩③④③-④,得21y=-,12y,将12y代入③,得94x=-.所以原方程组的解是9,41.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.解方程组:(1)25 342x yx y-=⎧⎨+=⎩(2)212 23x yx y-=⎧⎪⎨+=⎪⎩.解析:(1)21xy=⎧⎨=-⎩;(2)23xy=⎧⎨=⎩【分析】(1)利用加减法解方程组;(2)利用加减法解方程组.【详解】(1)25342x y x y -=⎧⎨+=⎩①②, ①×4+②得:11x =22,即x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:213212x y x y -=⎧⎨+=⎩①②, ①×2+②得:7x =14,即x =2,把x =2代入①得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握方程组的解法:代入法和加减法的解法是解题的关键.23.已知关于x 、y 的二元一次方程组为3331x y x y a +=⎧⎨+=+⎩(1)直接写出....二元一次方程组的解为(结果用含a 的式子表示)______________ (2)若21x y a -=-,求a 的值解析:(1)38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩;(2)0a =或45a = 【分析】(1)直接由代入消元法解方程组,即可求出答案;(2)由绝对值的意义进行化简,然后计算即可得到答案.【详解】解:(1)3331x y x y a +=⎧⎨+=+⎩①②, 由①得:33x y =-③,把③代入②,得:3(33)1y y a -+=+, 解得:118y a =-+, 把118y a =-+代入③,得38x a =,∴38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩; 故答案为:38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩; (2)由(1)可知311(1)121882x y a a a a -=--+=-=-, 当11212a a -=-,解得:0a =; 当11(21)2a a -=--,解得:45a =; 【点睛】本题考查了解二元一次方程组,绝对值的意义,解题的关键是熟练掌握运算法则进行计算.24.解方程组:3234x y x y +=⎧⎨-=-⎩解析:11x y =-⎧⎨=⎩【分析】利用代入消元法求出解即可.【详解】解:3234x y x y +=⎧⎨-=-⎩①② 由①得23x y =-③将③代入②,得()3234y y --=-,6-9y-y=-4,-10y=-10,∴1y =.将1y =代入③,得1x =-.∴原方程组的解为11x y =-⎧⎨=⎩【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.解下列方程组(1)34225x y x y +=⎧⎨-=⎩(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩ 解析:(1)21x y =⎧⎨=⎩-;(2)34x y =⎧⎨=⎩【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①②②×4得 8420x y -= ③,①+③得 11x=22,解得 x=2,把x=2代入①得6+4y=2,解得 y=-1,∴方程组的解为21x y =⎧⎨=⎩-; 2)234347x y x y ⎧+=⎪⎨⎪-=-⎩①②①×16得164323x y += ③ ②+③得25253x =, 解得x=3,把x=3代入②得 9-4y=-7,解得y=4,∴方程组的解为34x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,掌握解二元一次方程组的解题步骤是解题关键.26.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 解析:6a =【分析】求出方程组 4x y a x y a+=⎧⎨-=⎩的解,代入35900x y --=即可求出a 的值. 【详解】解:4x y a x y a +=⎧⎨-=⎩①②, ①+②得:25x a =,即25x a =.,把25x a =.代入①得:15y a =-., 把25x a =.,15y a =-.代入方程, 得:7575900a a +-=..,解得:6a =.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键. 27.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by a x y +=⎧⎨+=⎩有相同的解,求,a b 的值. 解析:75a =-,115b =-. 【分析】首先把3x-y=7和2x+y=8联立方程组,求得x 、y 的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a 、b 的方程组,进一步解方程组求得答案即可.【详解】 解:由题意得3728x y x y -=⎧⎨+=⎩, 解得32x y =⎧⎨=⎩, 把32x y =⎧⎨=⎩代入原方程组+y ax b x by a =⎧⎨+=⎩, 得,3+232a b b a =⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.28.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?解析:(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量,结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可列出关于x,y的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:600 203515000x yx y+=⎧⎨+=⎩,解得:400200 xy=⎧⎨=⎩.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

第8章二元一次方程组(培优篇)【挑战满分】年七年级数学下册阶段性复习精选精练(人教版)含答案

第8章二元一次方程组(培优篇)【挑战满分】年七年级数学下册阶段性复习精选精练(人教版)含答案

第8章 二元一次方程组(培优篇)一、单选题(本大题共12小题,每小题3分,共36分)1.满足方程组35223x y m x y m +=+ìí+=î的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .52.由方程组可得出x 与y 的关系式是( )A .x+y=9B .x+y=3C .x+y=-3D .x+y=-93.“若方程组111222325325a x b y c a x b y c +=ìí+=î的解是34x y =ìí=î,则方程组111222a xb yc a x b y c +=ìí+=î的解是( )A .48x y =ìí=îB .912x y =ìí=îC .1520x y =ìí=îD .9585x y ì=ïïíï=ïî4.已知方程组()21119x y kx k y +=ìí+-=î的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣25.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( )A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)6.若二元一次方程组 5515x y y x -=ìïí=ïî的解为x=a ,y=b ,则a+b 的值 ( )A .54B .7513C .3125D .29257.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁8.如图,将正方形ABCD 的一角折叠,折痕为AE ,点B 落在点B ′处,B AD Т比BAE Ð大48°.设BAE Ð和B AD Т的度数分别为x °和y °,那么x 和y 满足的方程组是( )A .4890y x y x -=ìí+=îB .482y x y x -=ìí=îC .48290x y y x -=ìí+=îD .48290y x y x -=ìí+=î9.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生( )人.A .38B .40C .42D .4510.解方程组3423126x y z x y z x y z -+=ìï+-=íï++=î①②③时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C .加减法消去z ,将①+②与③+②D .代入法消去x ,y ,z 中的任何一个11.定义新运算:对于任意实数a ,b 都有a ※b =am -bn ,等式右边是通常的减法和乘法运算.规定,若3※2=5,1※(-2)=-1,则(-3)※1的值为( )A .-2B .-4C .-7D .-1112.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=L ,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .69二、填空题(本大题共6小题,每小题4分,共24分)13.已知关于x ,y 的方程组25241x y a x y a +=-ìí-=-î给出下列结论:正确的有_____.(填序号)①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为正整数的解有3对14.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.15.甲乙两人共同解方程组515(1)42(2)ax y x by +=ìí-=-î,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-ìí=-î;乙看错了方程(2)中的b ,得到方程组的解为54x y =ìí=î;计算20192018110a b æö+-=ç÷èø________.16.若m 1,m 2,…,m 2021是从0,1,2,这三个数中取值的一列数,且m 1+m 2+…+m 2021=1530,(m 1-1)2+(m 2-1)2+…+(m 2021-1)2=1525,则在m 1,m 2,…,m 2021中,取值为2的个数为_________.17.在等式2y ax bx c =++中,当1x =-时,0y =;当2x =,3y =;当5x =时,60y =,则a =______,b =______,c =______.18.已知a ,b ,c 为3个自然数,满足232021a b c ++=,其中a b c ££,则||||||a b b c c a -+-+-的最大值是__________.三、解答题(本大题共6小题,共60分)19.(8分)解方程组(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+ìí-+=++î20.(10分)(1)用代入法解方程组:3 759 x yx y-=ìí+=-î(2)用加减法解方程组:2232(3)31 x yx yì+=ïíï+-=î21.(10分)若关于,x y的二元一次方程组213x y ax y+=+ìí-=-î的解都为正数.(1)求a的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a的值.22.(10分)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.23.(10分)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A ,B ,C ,双方约定:A=2a ﹣b ,B=2b ,C=b+c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?24.(12分)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②2´可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=ìí+=î,则x y -=________,x y +=________;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=________.参考答案解:根据题意35223x y m x y m +=+ìí+=î①②,由加减消元法把①-②,得22x y +=③;然后由x 与y 的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=.故选C.2.A解:分析:由①得m=6-x ,代入方程②,即可消去m 得到关于x ,y 的关系式.解答:解:由①得:m=6-x∴6-x=y-3∴x+y=9.故选A .3.D 解:∵方程组111222325325a x b y c a x b y c +=ìí+=î 的解是34x y =ìí=î,∴111222985985a b c a b c +=ìí+=î,两边都除以5得:11122298559855a b c a b c ì+=ïïíï+=ïî,对照方程组111222a xb yc a x b y c +=ìí+=î可得,方程组111222a x b y c a x b y c +=ìí+=î的解为9585x y ì=ïïíï=ïî,故选D .【点拨】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值.解:()21119x y kx k y +=ìïí+-=ïî①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=,代入x+y=3得:k-2=6,解得:k=8,故选:C .【点拨】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.D【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可.解:由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则{ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b ,∵a ,b 是任意实数,∴x+y=1,③由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④由③④解得,x=1,y=0,∴(x,y)为(1,0);故选D.6.A【分析】首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a+b 的值.解:解方程组5515x y y x -=ìïí=ïî得:2524524x y ì=ïïíï=ïî则2552424a b ==,, 则305244a b +==. 故选A .【点拨】此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.7.A【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x-=-ìí-=-î即210225x y x y -=-ìí-=î由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.故选:A .【点拨】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.8.D【分析】根据由将正方形ABCD 的一角折叠,折痕为AE ,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组.解:.设BAE Ð和B AD Т的度数分别为x °和y °由题意可得:48290y x y x -=ìí+=î故答案为D.【点拨】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键.9.A【分析】根据题意,分别假设未知数,再根据对话内容列出方程组,即可求解答案.解:设得3分,4分,5分和6分的共有x 人,它们平均得分为y 分,分两种情况:(1)得分不足7分的平均得分为3分,xy +3×2+5×1=3(x +5+3),xy ﹣3x =13①,(2)得3分及以上的人平均得分为4.5分,xy +3×7+4×8=4.5(x +3+4),4.5x ﹣xy =21.5②,①+②得1.5x =34.5,解得x =2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A .【点拨】考查了二元一次方程组的应用,解题的关键是了解题意,根据数量关系列出方程组,即可求出结果.10.C【分析】根据加减消元的方法,当未知数的系数相等或互为相反数时即可进行加减消元.据此即可解题.解:∵三个方程中z 的系数已经相等或互为相反数,∴第一次消去未知数的最佳方法是加减法消去z ,将①+②与③+②故选C.【点拨】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元法的应用条件是解题关键.11.A【分析】按照定义新运算的法则,先求出m 和n 的值,再把算式转化为有理数运算即可.解:根据题意,3※2=5,1※(-2)=-1,得,32521m n m n -=ìí+=-î,解得,11m n =ìí=-î,则(-3)※1=(-3)×1-1×(-1)=-2,故选:A .【点拨】本题考查了定义新运算,二元一次方程组和有理数混合计算,解题关键是根据定义新运算法则把两个等式转化为二元一次方程组,求出m 、n 的值.12.A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181•1•0•691•(•0•21564001x y z x y z x y z -++ìï+-+íï+++în === ,解方程组即可确定正确的答案.解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018=a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181•1•0•691•(•0•21564001x y z x y z x y z -++ìï+-+íï+++în ===化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点拨】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.13.①②【分析】①将a=1代入方程组的解,求出方程组的解,即可做出判断;②将a 看做已知数求出方程组的解表示出x 与y ,即可做出判断;③将a 看做已知数求出方程组的解表示出x 与y ,即可判断正整数解;解:解关于x ,y 的方程组25241x y a x y a +=-ìí-=-î得2122x a y a=+ìí=-î①当1a =时,原方程组的解是30x y =ìí=î,此时30x y =ìí=î是213x y a +=+=的解,故①正确;②原方程组的解是2122x a y a =+ìí=-î,∴30x y +=¹,即无论a 取何值,x ,y 的值不可能是互为相反数,故②正确;③x ,y 都为正整数,则210220x a y a =+>ìí=->î,解得112a -<<,正整数解分别是当10,2a a ==时,故只有两组,故③错误;故答案为①②【点拨】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.11解:分析:1※2=5,2※1=3的含义是当x =1,y =2时,ax +by 2=5,当x =2,y =1时,ax +by 2=3,由此列二元一次方程组求a ,b 的值后,再求解.详解:根据题意得4523a b a b ìíî+=+=,解得11a b ìíî==.当a =1,b =1时,x ※y =x +y 2.所以2※3=2+32=11.故答案为11.点拨:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.15.0【分析】根据题意,将31x y =-ìí=-î代入方程(2)可得出b 的值,54x y =ìí=î代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果.解:根据题意,将31x y =-ìí=-î代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54x y =ìí=î代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110a b æö+-ç÷èø=1-1=0.故答案为:0.【点拨】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.16.517【分析】设0有a 个,1有b 个,2有c 个,由(1-1)2=0,(0-1)2=1,(2-1)2=1,可得1525a c +=,由m 1+m 2+…+m 2021=1530,可得21530b c +=,再由数字总个数为2021,即可列出方程求解.解:设0有a 个,1有b 个,2有c 个,∵(m 1-1)2+(m 2-1)2+…+(m 2021-1)2=1525,∵m 1,m 2,…,m 2021是从0,1,2这三个数中取值的一列数,(1-1)2=0,(0-1)2=1,(2-1)2=1,∴1525a c +=∵m 1+m 2+…+m 2021=1530,∴21530b c +=,∴2021215301525a b c b c a c ++=ìï+=íï+=î,解得1008496517a b c =ìï=íï=î,故取值为2的个数为517个,故答案为:517.【点拨】此题考查了三元一次方程的应用,有理数的乘方和有理数的加法运算,解题的关键在于能够找到等量关系列出方程求解.17. 3 -2 -5【分析】由“当1x =-时,0y =;当2x =时,3y =;当5x =时,60y =”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论.解:根据题意,得042325560a b c a b c a b c -+=ìï++=íï++=î①②③,②-①,得1a b +=④;③-①,得410a b +=⑤.④与⑤组成二元一次方程组1410a b a b +=ìí+=î,解这个方程组,得32a b =ìí=-î,把32a b =ìí=-î代入①,得5c =-.因此325a b c =ìï=-íï=-î,故答案为为3,2-,5-.【点拨】本题考查了解三元一次方程组,解题的关键是由点的坐标得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.18.1346【分析】先化简绝对值,再根据方程取非负整数解即可.解:∵a b c ££,∴||||||22a b b c c a b a c b c a c a -+-+-=-+-+-=-,∵a ,b ,c 为3个自然数,22c a -要想取最大值,a 应该取最小值0,代入得,232021b c +=,当b=1时,c最大,最大值为673,22673201346c a-=´-=,故答案为:1346.【点拨】本题考查了绝对值化简和不定方程求非负整数解,解题关键是根据题意化简绝对值并确定a、b、c的最值.19.16 xy=-ìí=-î.【分析】先对方程组的每一个方程进行化简,再利用加减消元法解方程组.解:原方程组可化为24(1) 39(2)x yx y-=ìí+=-î(1)+(2),得55x=-1x=-把1x=-代入(1),得6y=-所以原方程组的解是16 xy=-ìí=-î.【点拨】本题考查解二元一次方程组,多项式乘以多项式.本题方程组看起来比较繁琐,一定要对每一个等式进行化简,再解方程组.20.(1)1x=21y=22ìïïíï-ïî;(2)x=2y=3ìíî.【分析】(1)由x-y=3得x=3+y,再代入求出x,再求出y;(2)先对原方程组变形,再运用加减消元法解答.解:(1)3759 x yx y-=ìí+=-î①②由①得x=3+y③将③代入②得:y=1 22 -将y=122-代入③得:x=12-所以原方程组的解为:1x=21 y=22ìïïíï-ïî(2)原方程组可化为:3x212 235yx y+=ìí-=-î①②①×2得:6x+4y=24③②×3得:6x-9y=-15④③-④得:13y=39,解得:y=3将y=3代入①中得:x=2所以原方程组的解为:x=2 y=3ìíî【点拨】本题考查了二元一次方程组得两种解法,其关键在于扎实的计算能力和严谨的思维. 21.(1)a>1;(2)a的值为2.解:分析:(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)首先用含a的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y 可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.详解:(1)213x y ax y+=+ìí-=-î得:12x ay a=-ìí=+î,∵12x ay a=-ìí=+î,且的二元一次方程组213x y ax y+=+ìí-=-î的解都为正数.∴1020aa->ìí+>î,∴12aa>ìí>-î,即a>1.(2)因为二元一次方程组的解是等腰三角形的一条腰和底边长,周长为9,分类讨论:①当x=a-1为腰时,有:2(a-1)+a+2=9,解得a=3,此时三角形三边为(2,2,5)(不符合题意,舍去)②当y=a+2为腰时,有:2(a+2)+a-1=9,解得a=2,此时三角形三边为(1,4,4)(符合题意)综上所述:a的值为2.点拨:本题考查了等腰三角形的性质, 二元一次方程组的解, 三角形三边关系.22.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.【分析】(1)设1辆A货车和1辆B货车一次可以分别运货x吨和y吨,根据“3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨”列方程组求解可得;(2)设货运公司安排A货车m辆,则安排B货车n辆.根据“共有190吨货物”列出二元一次方程组,结合m,n均为正整数,即可得出各运输方案.再根据方案计算比较得出费用最小的数据.解:(1)1辆A货车和1辆B货车一次可以分别运货x吨和y吨,根据题意可得:3290 54160x yx y+=ìí+=î,解得:2015xy=ìí=î,答:1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)设安排A型车m辆,B型车n辆,依题意得:20m+15n=190,即3834nm-=,又∵m,n均为正整数,∴82mn=ìí=î或56mn=ìí=î或210mn=ìí=î,∴共有3种运输方案,方案1:安排A型车8辆,B型车2辆;方案2:安排A型车5辆,B型车6辆;方案3:安排A型车2辆,B型车10辆.方案1所需费用:500´8+400´2=4800(元);方案2所需费用:500´5+400´6=4900(元);方案3所需费用:500´2+400´10=5000(元);∵4800<4900<5000,∴安排A型车8辆,B型车2辆最省钱,最省钱的运输费用为4800元.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;根据据总费用=500×安排A型车的辆数+400×B型车的辆数分别求出三种运输方案的总费用.23.(1)1、6、8;(2)3、4、7.解:试题分析:(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.试题解析:(1)由题意得:223{2335ABC´-==´=+,解得:A=1,B=6,C=8.答:接收方收到的密码是1、6、8;(2)由题意得:22{2811a bbb c-==+=,解得:a=3,b=4,c=7.答:发送方发出的密码是3、4、7.考点:三元一次方程组的应用.24.(1)-1,5;(2)购买5支铅笔、5块橡皮、5本日记本共需30元;(3)-11【分析】(1)已知2728x yx y+=ìí+=î①②,利用解题的“整体思想”,①-②即可求得x-y,①+②即可求得x+y的值;(2)设每支铅笔x元,每块橡皮y元,每本日记本z元,根据题意列出方程组,根据(1)中“整体思想”,即可求解;(3)根据*x y ax by c =++,可得3*53515a b c =++=,4*74728a b c =++=,1*1a b c =++,根据“整体思想”,即可求得a b c ++的值.解:(1)2728x y x y +=ìí+=î①②①-②,得x-y=-1①+②,得3x+3y=15∴x+y=5故答案为:-1,5(2)设每支铅笔x 元,每块橡皮y 元,每本日记本z 元,则203232395358x y z x y z ++=ìí++=î①②①×2,得40x+6y+4z=64③③-②,得x+y+z=6∴5(x+y+z)=30∴购买5支铅笔、5块橡皮、5本日记本共需30元答:购买5支铅笔、5块橡皮、5本日记本共需30元(3)∵*x y ax by c=++∴3*53515a b c =++=①,4*74728a b c =++=②,1*1a b c=++∴②-①,得213a b +=③∴51065a b +=④①+②,得712243a b c ++=⑤⑤-④,得22222a b c ++=-∴11a b c ++=-故答案为:-11【点拨】本题考查了利用“整体思想”解二元二次方程组,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,引入了新运算,根据定义结合“整体思想”求代数式的值.。

2023年九年级中考数学专题培优训练:二元一次方程组 【含答案】

2023年九年级中考数学专题培优训练:二元一次方程组 【含答案】

2023年九年级中考数学专题培优训练:二元一次方程组一、单选题(本大题共15小题)1. (湖南省株洲市2022年中考数学真题)对于二元一次方程组,将①式127y x x y =-⎧⎨+=⎩①②代入②式,消去可以得到( )y A .B .217x x +-=227x x +-=C .D .17x x +-=227x x ++=2. (辽宁省抚顺本溪辽阳市2022年中考数学真题)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( )A .B .C .D .4.521x y x y -=⎧⎨+=⎩ 4.521y x x y-=⎧⎨-=⎩ 4.5112x y x y -=⎧⎪⎨+=⎪⎩ 4.5112y x x y -=⎧⎪⎨-=⎪⎩3. (山东省聊城市2022年中考数学真题)关于,的方程组的解中x y 2232x y k x y k -=-⎧⎨-=⎩x 与y 的和不小于5,则k 的取值范围为( )A .8k ≥B .8k >C .8k ≤D .8k <4. (江苏省扬州市2022年中考数学真题)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,x 兔有只,那么可列方程组为( )y A .B .C .D .354494x y x y +=⎧⎨+=⎩354294x y x y +=⎧⎨+=⎩944435x y x y +=⎧⎨+=⎩352494x y x y +=⎧⎨+=⎩5. (湖南省湘潭市2022年中考数学真题)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有张桌子,有条凳子,根x y 据题意所列方程组正确的是( )A .B .404312x y x y +=⎧⎨+=⎩124340x y x y +=⎧⎨+=⎩C .D .403412x y x y +=⎧⎨+=⎩123440x y x y +=⎧⎨+=⎩6. (湖北省宜昌市2022年中考数学真题)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .227. (湖北省武汉市2022年中考数学真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是( )xy A .9B .10C .11D .128. (江苏省宿迁市2022年中考数学真题)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A .B .C .D .()7791x y x y-=⎧⎨-=⎩()7791x y x y+=⎧⎨-=⎩7791x y x y +=⎧⎨-=⎩7791x y x y-=⎧⎨-=⎩9. (浙江省宁波市2022年中考数学真题)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米35在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为( )A .B .C .D .10375x y x y +=⎧⎪⎨+=⎪⎩10375x y x y +=⎧⎪⎨+=⎪⎩75103x y x y +=⎧⎪⎨+=⎪⎩75103x y x y +=⎧⎪⎨+=⎪⎩10. (浙江省嘉兴市2022年中考数学真题)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .B .C .D .7317x y x y +=⎧⎨+=⎩9317x y x y +=⎧⎨+=⎩7317x y x y +=⎧⎨+=⎩9317x y x y +=⎧⎨+=⎩11. (浙江省杭州市2022年中考数学真题)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .1032019xy =B .1032019yx =C .1019320x y -=D .1910320x y -=12. (黑龙江省齐齐哈尔市2022年中考数学真题)端午节前夕,某食品加工厂准备将生产的粽子装入A 、B 两种食品盒中,A 种食品盒每盒装8个粽子,B 种食品盒每盒装10个粽子,若现将200个粽子分别装入A 、B 两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A .2种B .3种C .4种D .5种13. (黑龙江省省龙东地区2022年中考数学真题)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )A .5B .6C .7D .814. (广东省深圳市2022年中考数学真题)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为根,下等草x 一捆为根,则下列方程正确的是( )y A . B . C .D .51177255y x y x -=⎧⎨-=⎩51177255x y x y +=⎧⎨+=⎩51177255x y x y -=⎧⎨-=⎩71155257x y x y -=⎧⎨-=⎩15. (贵州省毕节市2022一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .B .C .D .46383548x y x y +=⎧⎨+=⎩46483538y x y x +=⎧⎨+=⎩46485338x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩二、填空题(本大题共11小题)16. (江苏省无锡市2022年中考数学真题)二元一次方程组的解为 .321221x y x y +=⎧⎨-=⎩17. (湖北省随州市2022年中考数学真题)已知二元一次方程组,则2425x y x y +=⎧⎨+=⎩的值为 .x y -18. (吉林省2022年中考数学真题)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可x y 列方程组为 .19. (四川省雅安市2022年中考数学真题)已知是方程ax +by =3的解,则代数12x y =⎧⎨=⎩式2a +4b ﹣5的值为 .20. (黑龙江省绥化市2022年中考数学真题)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有 种购买方案.21. (湖北省江汉油田、潜江、天门、仙桃2022年中考数学真题)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.22. (山东省潍坊市2022年中考数学真题)方程组的解为 .2313320x y x y +=⎧⎨-=⎩23. (贵州省黔东南州2022年中考数学真题)若,则()2250x y +-=的值是 .x y -24. (贵州省贵阳市2022年中考数学真题)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程x y,则 表示的方程是 .423x y +=25. (重庆市2022年中考数学真题(B 卷))特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为 .26. (山东省威海市2022年中考数学真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =.三、解答题(本大题共6小题)27. (浙江省台州市2022年中考数学真题)解方程组:.2435x y x y +=⎧⎨+=⎩28. (广西柳州市2022年中考数学真题)解方程组:227x y x y -=⎧⎨+=⎩①②.29. (广西桂林市2022年中考数学真题)解二元一次方程组:13x y x y -=⎧⎨+=⎩.30. (湖北省荆州市2022年中考数学真题)已知方程组的解满足32x y x y +=⎧⎨-=⎩①②,求k 的取值范围.235kx y -<31. (辽宁省大连市2022年中考数学真题)2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?32. (山东省泰安市2022年中考数学真题)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.参考答案1. 【答案】B 【分析】将①式代入②式消去去括号即可求得结果.【详解】解:将①式代入②式得,2(1)227x x x x +-=+-=,故选B .2. 【答案】C 【分析】本题的等量关系是:绳长-木长=4.5,木长-绳长=1,据此可以列方程求解;12【详解】设绳子长x 尺,木长y 尺,依题意可得:,4.5112x y x y -=⎧⎪⎨+=⎪⎩故选:C 3. 【答案】A 【分析】由两式相减,得到3x y k +=-,再根据x 与 y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得,3x y k +=-根据题意得:,35k -≥解得:.8k ≥所以的取值范围是.k 8k ≥故选:A .4. 【答案】D 【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可【详解】一只鸡1个头2个足,一只兔1个头4个足设鸡有只,兔有只x y 由35头,94足,得:352494x y x y +=⎧⎨+=⎩故选:D5. 【答案】B 【分析】根据四条腿的桌子和三条腿的凳子共12个可列方程x +y =12,根据桌子腿数与凳子腿数的和为40条可列方程4x +3y =40,组成方程组即可.【详解】解:根据题意可列方程组,124340x y x y +=⎧⎨+=⎩故选:B .6. 【答案】B 【分析】设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.【详解】设1艘大船与1艘小船分别可载x 人,y 人,依题意:232246x y x y +=⎧⎨+=⎩①②(①+②)÷3得:26x y +=故选:B .7. 【答案】D 【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .8. 【答案】B 【分析】设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:,()7791x y x y+=⎧⎨-=⎩故选:B .9. 【答案】A 【分析】根据题意列出方程组即可;【详解】原来有米x 斗,向桶中加谷子y 斗,容量为10斗,则;10x y +=已知谷子出米率为,则来年共得米;35375x y +=则可列方程组为,10375x y x y +=⎧⎪⎨+=⎪⎩故选A .10. 【答案】A 【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场平场负场,得分总++9=和为17.【详解】解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:,29317x y x y ++=⎧⎨+=⎩7317x y x y +=⎧∴⎨+=⎩故选:A .11. 【答案】C 【分析】根据题中数量关系列出方程即可解题;【详解】解:由10张A 票的总价与19张B 票的总价相差320元可知,1019320x y -=或1910320y x -=,∴1019320x y -=,故选:C .12. 【答案】C 【分析】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意列出方程,求解即可.【详解】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意得,8x +10y =200,∵x 、y 都为正整数,∴解得204x y =⎧⎨=⎩,158x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,516x y =⎧⎨=⎩,∴一共有4种分装方式;故选:C .13. 【答案】A 【分析】设设购买毛笔x 支,围棋y 副,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x 支,围棋y 副,根据题意得,15x +20y =360,即3x +4y =72,∴y =18-x .34又∵x ,y 均为正整数,∴或812x y =⎧⎨=⎩或129x y =⎧⎨=⎩或166x y =⎧⎨=⎩或203x y =⎧⎨=⎩,415x y =⎧⎨=⎩∴班长有5种购买方案.故选:A .14. 【答案】C 【分析】设上等草一捆为根,下等草一捆为根,根据“卖五捆上等草的根数减去11根,就x y 等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.【详解】解:设上等草一捆为根,下等草一捆为根,根据题意得:x y .51177255x yx y -=⎧⎨-=⎩故选:C15. 【答案】D 【分析】设马每匹x 两,牛每头y 两,根据马四匹、牛六头,共价四十八两与马三匹、牛五头,共价三十八两列方程组即可.【详解】设马每匹x 两,牛每头y 两,由题意得,46483538x y x y +=⎧⎨+=⎩故选D .16. 【答案】23x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:.321221x y x y +=⎧⎨-=⎩①②①+②×2得:7x =14,解得:x =2,把x =2代入②得:2×2-y =1解得:y =3,所以,方程组的解为,23x y =⎧⎨=⎩故答案为:.23x y =⎧⎨=⎩17. 【答案】1【分析】直接由②-①即可得出答案.【详解】原方程组为,2425x y x y +=⎧⎨+=⎩①②由②-①得.1x y -=故答案为:1.18. 【答案】##5352x y x y +=⎧⎨+=⎩5253x y x y +=⎧⎨+=⎩【分析】根据题中两个等量关系:5个大桶加上1个小桶可以盛酒3斛;1个大桶加上5个小桶可以盛酒2斛,列出方程组即可.【详解】由题意得:5352x y x y +=⎧⎨+=⎩故答案为:5352x y x y +=⎧⎨+=⎩.19. 【答案】1【分析】把代入ax +by =3可得,而2a +4b ﹣5,再整体代入求值12x y =⎧⎨=⎩23a b +=()225a b =+-即可.【详解】解:把代入ax +by =3可得:12x y =⎧⎨=⎩,23a b += 2a +4b ﹣5∴()225a b =+-.2351=´-=故答案为:120. 【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出,由于,3124y x =-1≥x 且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.1y ≥【详解】解:设:购买甲种奖品x 件,乙种奖品y 件,,解得,4348x y +=3124y x =-∵,且x ,y 都是正整数,1≥x 1y ≥∴y 是4的整数倍,∴时,,4y =341294x ⨯=-=时,,8y =381264x ⨯=-=时,,12y =3121234x ⨯=-=时,,不符合题意,16y =3161204x ⨯=-=故有3种购买方案,故答案为:3.21. 【答案】23.5【分析】设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,根据“3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨”,即可得出关于x ,y 的二元一次方程组,再整体求得(4x +3y )即可得出结论.解:设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,依题意,得:34225225x y x y +=⎧⎨+=⎩,两式相加得8x +6y =47,∴4x +3y =23.5(吨) ,故答案为:23.5.22. 【答案】23x y =⎧⎨=⎩【分析】用①×2+②×3,可消去未知数y ,求出未知数x ,再把x 的值代入②求出y 即可.【详解】解:,2313320x y x y +=⎧⎨-=⎩①②①×2+②×3,得13x =26,解得:x =2,把x =2代入②,得6-2y =0,解得y =3,故方程组的解为.23x y =⎧⎨=⎩故答案为:.23x y =⎧⎨=⎩23. 【答案】9【分析】根据非负数之和为0,每一项都为0,分别算出x ,y 的值,即可【详解】∵()2250x y +-≥0≥()2250x y +-=∴250240x y x y +-=⎧⎨++=⎩解得:143133x y ⎧=⎪⎪⎨⎪=-⎪⎩141327()9333x y --===-故答案为:924. 【答案】232x y +=根据横着的算筹为10,竖放的算筹为1,依次表示的系数与等式后面的数字,即,x y 可求解.【详解】解:表示的方程是232x y +=故答案为:232x y +=25. 【答案】4:3【分析】设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,根据三种特产的总利润是总成本的25%列得,计算220%30%320%225%232x m y m x m mx my mx ⋅⋅+⋅+⋅=++可得.【详解】解:设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,由题意得,220%30%320%225%232x m y m x m mx my mx ⋅⋅+⋅+⋅=++解得3y =4x ,∴y :x =4:3,故答案为:4:3.26. 【答案】1【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m ,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m -n +4,第三行中间数字为n -6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m 可得关于m ,n 方程组,解出即可.【详解】如图,根据题意,可得第二行的数字之和为:m +2+(-2)=m可知第三行左边的数字为:m -(-4)-m =4第一行中间的数字为:m -n -(-4)=m -n +4第三行中间数字为m -2-(m -n +4)=n -6第三行右边数字为:m -n -(-2)=m -n +2再根据对角线上的三个数字之和相等且都等于m 可得方程组为:6422n m m n m +=⎧⎨-++-+=⎩解得60m n =⎧⎨=⎩∴061n m ==故答案为:127. 【答案】21x y =⎧⎨=⎩【分析】用加减消元法解二元一次方程组即可;【详解】.2435x y x y +=⎧⎨+=⎩①②解:,得.-②①1y =把代入①,得.1y =2x =∴原方程组的解为.21x y =⎧⎨=⎩28. 【答案】31x y =⎧⎨=⎩【分析】用加减消元法解方程组即可.【详解】解:①+②得:3x =9,∴x =3,将x =3代入②得:6+y =7,∴y =1.∴原方程组的解为:31x y =⎧⎨=⎩.29. 【答案】21x y =⎧⎨=⎩【分析】利用加减消元法可解答.【详解】解:13x y x y -=⎧⎨+=⎩①②①+②得:2x =4,∴x =2,把x =2代入①得:2﹣y =1,∴y =1,∴原方程组的解为:21x y =⎧⎨=⎩.30. 【答案】1310k <【分析】先求出二元一次方程组的解,代入中即可求k ;235kx y -<【详解】解:令①+②得,,25x =解得:,52x =将代入①中得,,52x =532y +=解得:,12y =将,代入得,,52x =12y =235kx y -<5123522k ⨯-⨯<解得:.1310k <31. 【答案】冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.【分析】设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y 元,再根据购买1个x 冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元,列方程组,再解方程组即可.【详解】解:设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个元,y 元,则x2400341000x y x y ì+=ïí+=ïî①②②-①得2⨯200,x =把代入①得:200x =100,y =解得:200,100x y ì=ïí=ïî答:冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.32. 【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得30206000, 1.220 1.2155100.x yx y+=⎧⎨⨯+⨯=⎩解,得100,150. xy=⎧⎨=⎩A种茶每盒100元,B种茶每盒150元.∴。

(完整版)二元一次方程组培优学生版附答案

(完整版)二元一次方程组培优学生版附答案

5 2《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1 .已知(a — 2) x — by 冋—勺=5是关于x 、y 的二元一次方程,则a = _____ b = _____2 .若 |2a + 3b — 7与(2a + 5b — 1))互为相反数,则 a = ___, b = _____ .3 .二兀一次方程 3x + 2y = 15的正整数解为 ______________ .4. _________________________________ 2x — 3y = 4x — y = 5 的解为 .5. _________________________________________________________ 已知x —2是方程组3mx 2y 1的解,则m 2-n 2的值为 ________________________________________ .y 14x ny 726 .若满足方程组3x 2y 4 的x 、y 的值相等,贝U k 二 _____________ . kx (2k 1)y 67 .已知勺=b =—,且 a + b — c =—,贝U a =, b = , c = .23412x 3y 28 .解方程组3y z 4,得X =z 3x 6x 1 x 2 11.关于x ,y 的二元一次方程ax + b = y 的两个解是 , ,则这个二元一次y 1 y 1 方程是 ................. ( ) (A) y =2x + 3 (B ) y = 2x — 3(C ) y = 2x + 1 (D ) y = — 2x + 1 9 .若方程组 2x y 3的解互为相反数,则k 的值为…........... ()2kx (k 1)y 10(A ) 8 (B ) 9 (C ) 10 (D ) 11x 0x 110 .若, 1都是关于X 、 y 的方程|a|x + by = 6的解, 则a + b 的值为( )y2 y3(A ) 4(B ) —10 (C ) 4 或—10 ( D )— 4 或 102分,共16分):(二)选择题(每小题12 .由方程组3z 4z (A)(C)13 .如果x 2y 2x 3y 2 : 1(—2) 100可得,(B ) 1 :(— 2): (— 1) (D ) 1 : 2 :(— 1)是方程组2y a + 4c = 2 (B ) 14 .关于x 、y 的二元一次方程组 ax by bxcy 4a +c =2 2x 的解,那么,下列各式中成立的是 …((A )— 6 3x15 .若方程组 ax (B ) 4y b y mx(C ) (C ) a + 4c + 2 = 0 (D ) 4a + c + 2 =0 y 1 没有解时,m 的值是 3y 2a x 3 2x y 5 by 4有相同的解,贝U a 、b 的值为((A ) 2, 3 (B ) 3, 2 (C ) 2,— 1( D )— 1, 216 .若 2a + 5b + 4z = 0, 3a + b — 7z = 0,则 a + b — c 的值是 ............... ()(A ) 0(B ) 1(C ) 2(D )— 1(三) 解方程组(每小题4分,共16分):x y 3 5 y _ 2 2 2 3x 2y 0. 22(x 150) 5(3y 50) 8.5 10%x 60%y80010023. 已知满足方程2 x — 3 y = m — 4与3 x +4 y = m + 5的x , y 也满足方程2x + 3y = 3m — 8,求m 的值.24. 当x = 1, 3,— 2时,代数式ax 2 + bx + c 的值分别为2, 0, 20,求:(1) a 、b 、c 的 值;(2)当 x = — 2 时,ax 2 + bx + c 的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分): 25. 有一个三位整数,将左边的数字移到右边,则比原来的数小 45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小 3.求原来的数.26. 某人买了 4 000元融资券,一种是一年期,年利率为 9%另一种是两年期,年利率 是12%分别在一年和两年到期时取出,共得利息 780元.两种融资券各买了多少?27. 汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶 40千米,而后一 半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时 55千米的速度前进,结果 仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.x y x y1 19. 253(x y) 2(x y) 6.20 .x y 4z 5y z 4x1z x 4y 4 .5分, 3z 0 共20分):「忘 x 4y 21 .已知 '4x 5y 2z22.甲、乙两人解方程组 220 , xyz 工0,求 3x 22xy 2 z的值. 4x ax b 写成了它的相反数, 解得by by x 1 ,甲因看错a ,解得 5 1,求a 、b 的值. 2 2,乙将其中一个方程的3(四)解答题(每小《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1 .已知(a — 2) x — by* 1 = 5是关于x 、y 的二元一次方程,则a = ____ b = _____ 【提示】要满足“二元”“一次”两个条件,必须J 2工0,且b 工0,及| a|— 1二1. 【答案】a = — 2,b 工0.2 .若 |2a + 3b — 7与(2a + 5b — 1))互为相反数,则 a = __ b = _____ .【提示】由“互为相反数”得|2a + 3 b — 7|+ (2a + 5b — 1) 2二0,再解方程组2a 3b 7 0 2a5b 1【答案】a = 8, b =一 3.3 .二元一次方程3x + 2y = 15的正整数解为 ______________ .15 3x【提示】将方程化为y =,由y >0、x >0易知x 比0大但比5 小,且x 、y 均为2整数.x 1 x 3 【答案】y 6,y 3.可将三个方程左、右两边分别相加,得 2 x + 3 y + z = 6,再与3 y + z = 4相减,可得x .【答 案】x = 1,y= -,z = 3.3(二)选择题(每小题2分,共16分):4.2x — 3y = 4x — y = 5 的解为 2x •【提示】解方程组 4x5.已知x y 3mx 2y 1的解,则m 2— n 2的值为 4x n y 7 2 的值.【答案】—8-.43x 2y 4的x 、y 的值相等,贝U k = _kx (2k 1)y 6换,先求出x 、y 的值.【答案】k =-.61,且 a + b — c = ,贝U a =12代入方程组,求—2是方程组 6.若满足方程组3y 5 •【答案】x y 5y x•【提示】把 y11—2 1 「【提示】作y = x 的代【提示】即作方程组 b c 34 ,故可设a = 2 k , b = 3 k , c = 4 k ,代入另一个方程求 k b c丄12的值.1 .-a = ,b = ,c6 -x 3y 8.解方程组3y z z 3x【答案】 1=1 .【点评】设“比例系数”是解有关数量比的问题的常用方法. 34 2刁曰X,4,得 X = 6.【提示】根据方程组的特征,9 •若方程组2x y 3 的解互为相反数,贝u k 的值为 .............. ()2kx (k 1)y 10(A ) 8 ( B ) 9 (C ) 10 ( D ) 11【提示】将y 二—x 代入方程2 x —y = 3,得x = 1,y = — 1,再代入含字母k 的方程求解.【答 案】D •1都是关于x 、y 的方程|a|x + by = 6的解,贝U a + b 的值为( 3(B)— 10 (C ) 4 或—10 ( D )— 4 或 10【提示】将x 、y 对应值代入,得关于| a|,b 的方程组 2b 16【答案】C . | a | - b 6 .3【点评】解有关绝对值的方程,要分类讨论. 11.关于x ,y 的二元一次方程ax + b = y 的两个解是方程是 ................. ( )(A ) y = 2x + 3 (B ) y = 2x — 3 (C) y = 2x + 1(D ) y = — 2x + 1【提示】将x 、y 的两对数值代入ax + b = y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.x 2y 3z 012 .由方程组可得,x : y : z 是 .......................... ()2x 3y 4z 0(A ) 1 : 2 : 1 (B ) 1 :(— 2): (— 1) (C ) 1 :(— 2): 1 (D ) 1 : 2 :(— 1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性 质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来 解方程组,是可行的方法.13 .如果x 1是方程组ax by 0的解,那么,下列各式中成立的是…() y 2 bx cy 1(A ) a + 4c = 2 (B ) 4a + c = 2 (C ) a + 4c + 2 = 0 (D ) 4a + c + 2 = 0x 1【提示】将 代入方程组,消去b ,可得关于a 、c 的等式.y 2【答案】C .2x y 114 .关于x 、y 的二元一次方程组 没有解时,m 的值是 .......... ()mx 3y 2(A )— 6 (B )— 6 (C ) 1 (D ) 0【提示】只要满足 m : 2二3:(— 1)的条件,求m 的值. 【答案】B .10 •若(A) 4x 2y 1,则这个二元一次5【点评】对于方程组 3x15 .若方程组 ax a 1x a 2x 4y 2by 5 by c b 2y c 2 ,仅当別二P 工9时方程组无解.a ?b ? C 2 (A) 2, 3 (B ) 3, a x 3 2x2by 4 有相同的解,贝U a 、b 的值为(y 5 (C ) 2,— 1(D)- 1, 2 【提示】由题意,有 3x 4y “相同的解”可得方程组2x y y 2,解之并代入方程组5axby求 a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键. 16 .若 2a + 5b + 4z = 0, 3a + b — 7z = 0,(A ) 0 (B ) 1 (C ) 2 【提示】把c 看作已知数,解方程组 2a 3a 贝U a + b — c 的值是 ............. (D )— 1 5b 4c 0 用关于c 的代数式表示a 、 b 7c 0 b ,再代入 a + b — c. 【答案】A . 【点评】本题还可采用整体代换(即把 (三)解方程组(每小题4分,共16分): x y 3 5y _ 2 2 217.2223x 2y 0. 2【提示】将方程组化为一般形式,再求解. x 2 3 y2 150) 5(3y 50) 8.5 a + b — c 看作一个整体)的求解方法. 【答案】2(x 18. 10%x 60%y 800100【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 500 30 .x 【答案】 y x y 19 . 23(x y) 2(x y) 6 .A R【提示】用换元法,设x — y = A , x + y = B ,解关于A 、R 的方程组~ - 1 ,253A 2B 6y 1.20 . X y :z [【提示】 将三个方程左,右两边分别相加,得 4x — 4y +4z = 8,故x - y z 4x 1 Jz x 4y 4.y + z = 2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答1案] x 54y 5z 1.(四)解答题(每小题5分,共20分):21 .已知x 4y3z 0 , 工。

浙教版七年级下册第二单元《二元一次方程组》培优题

浙教版七年级下册第二单元《二元一次方程组》培优题

七年级下册第二单元《二元一次方程组》培优题一.选择题(共6小题)1.若x:y=3:4,则的值为()A.31 B.C.D.不能确定2.甲乙两人同时解方程组时,甲正确解得,乙因抄错c而解得,则a,c的值是()A.B.C.D.3.已知方程组的解是正整数,则m的值为()A.6 B.4 C.﹣4 D.24.对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则x y的值是()A.﹣1 B.0 C.1 D.25.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积为()A.a﹣b B.a+b C.ab D.a2﹣ab6.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2 B.135mm2 C.108mm2 D.96mm2二.填空题(共6小题)7.若x,y为实数,且满足(x+2y)2+=0,则x y的值是.8.关于x、y的方程组,那么=.9.已知:关于x、y的二元一次方程组,则4x2﹣4xy+y2的值为.10.己知t满足方程组,则x和y之间满足的关系是x=.11.给出下列程序:,已知当输入x值为1时,输出值为1;已知当输入x值为﹣1时,输出值为﹣3;当输入x值为2时,输出的值为.12.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.三.解答题(共3小题)13.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?14.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片张,正方形铁片张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?15.温州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,两个乐团共需花费5600元.请回答以下问题:(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?(2)甲、乙两个乐团各有多少名学生?(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.七年级下册第二单元《二元一次方程组》培优题参考答案与试题解析一.选择题(共6小题)1.若x:y=3:4,则的值为()A.31 B.C.D.不能确定【分析】设x=3a,y=4a,代入代数式,求出即可.【解答】解:∵x:y=3:4,设x=3a,y=4a,∴==﹣.故选B.【点评】本题主要考查对解二元一次方程,求出代数式的值等知识点的理解和掌握,能根据题意得出是解此题的关键.2.(2015秋•山亭区期末)甲乙两人同时解方程组时,甲正确解得,乙因抄错c而解得,则a,c的值是()A.B.C.D.【分析】(1)根据方程组解的定义,无论c是对是错,甲和乙求出的解均为ax+by=2的解.将和分别代入ax+by=2,组成方程组,从而得出a的值.(2)将甲的正确解代入cx﹣7y=8,从而得出c的值.【解答】解:将和分别代入ax+by=2,得,解得a=4,把代入cx﹣7y=8,得3c+14=8,所以c=﹣2.故选A.【点评】本题需要对二元一次方程组的解和二元一次方程的解的定义有一个深刻的认识,知道不定方程有无数个解.3.(2012春•高安市校级月考)已知方程组的解是正整数,则m的值为()A.6 B.4 C.﹣4 D.2【分析】先用加减消元法消去x,把m当做已知表示出y,再把四个选项代入检验选出符合条件的m的值即可.【解答】解:②×2﹣①得,y=,把A代入得,y==6,代入②得,x+4×6=8,解得,x=﹣16,不合题意舍去;把B代入得,y==3,代入②得,x+4×3=8,解得,x=﹣4,不合题意舍去;把C代入得,y==1,代入②得,x+4=8,解得,x=4,符合题意;把D代入得,y==2,代入②得,x+4×2=8,解得,x=0,不合题意舍去;故选C.【点评】此题比较复杂,解答此类题目时要注意先求出符合条件的y的值,再求出未知数x的值看是否符合条件,不能盲目进行选择.4.(2016•德州模拟)对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则x y的值是()A.﹣1 B.0 C.1 D.2【分析】根据(a,b)※(c,d)=(ac﹣bd,ad+bc),得出(x,y)※(1,﹣1)的值即可求出x,y的值.【解答】解:∵(a,b)※(c,d)=(ac﹣bd,ad+bc),∴(x,y)※(1,﹣1)=(x+y,﹣x+y)=(1,3),∵当且仅当a=c且b=d时,(a,b)=(c,d);∴,解得:,∴x y的值是(﹣1)2=1,故选:C.【点评】此题主要考查了新定义.根据已知得出规律以及解二元一次方程组,根据题意得出(x,y)※(1,﹣1)=(x+y,﹣x+y)是解决问题的关键.5.(2015•张家口二模)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积为()A.a﹣b B.a+b C.ab D.a2﹣ab【分析】设大正方形的边长为x1,小正方形的边长为x2,根据图示可得等量关系:①大正方形边长+2个小正方形的边长=a,②大正方形边长﹣2个小正方形的边长=b,解出x1、x2的解,再利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,,解得;②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故选:C.【点评】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的关系,表示出大小两个正方形的边长.6.(2015春•杭州期末)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2 B.135mm2 C.108mm2 D.96mm2【分析】设每个小长方形的长为xmm,宽为ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽﹣一个长=3,于是得方程组,解出即可.【解答】解:设每个长方形的长为xmm,宽为ymm,由题意,得,解得:.9×15=135(mm2).故选:B.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.二.填空题(共6小题)7.(2016•钦州)若x,y为实数,且满足(x+2y)2+=0,则x y的值是.【分析】因为,(x+2y)2≥0,≥0,所以可利用非负数的和为0的条件分析求解.【解答】解:∵(x+2y)2+=0,且(x+2y)2≥0,≥0,∴解之得:∴x y=4﹣2==.【点评】本题考查了解二元一次方程组、非负数的和为0的条件、负指数幂,解题的关键是理解几个非负数的和为0的条件是各自为08.(2016•潍坊一模)关于x、y的方程组,那么=10.【分析】设a=,b=,方程组化为关于a与b的方程组,求出方程组的解得到a与b的值,即为与的值,即可求出所求式子的值.【解答】解:设a=,b=,方程组化为,①×3﹣②×2得:5a=65,解得:a=13,将a=13代入①得:b=3,则﹣=a﹣b=13﹣3=10.故答案为:10【点评】此题考查了解二元一次方程组,利用了换元的思想,是一道基本题型.9.(2016•泰州校级三模)已知:关于x、y的二元一次方程组,则4x2﹣4xy+y2的值为25.【分析】方程组中两方程相加表示出2x﹣y,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:,①+②得:2x﹣y=5,则原式=(2x﹣y)2=25,故答案为:25【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.(2014春•陇西县期末)己知t满足方程组,则x和y之间满足的关系是x=15y﹣6.【分析】要想得到x和y之间满足的关系,应把t消去.【解答】解:由第一个方程得:,由第二个方程得:,∴,∴x=15y﹣6.【点评】最终得到x和y之间满足的关系,方法应是消去无关的第三个未知数,结果应是用y的代数式表示x.11.给出下列程序:,已知当输入x值为1时,输出值为1;已知当输入x值为﹣1时,输出值为﹣3;当输入x值为2时,输出的值为15.【分析】把已知的两组值代入原式可得关于k、b方程组,然后用适当的方法求解.最后把x=2代入所求式子中即可.【解答】解:当输入x值为1时,输出值为1;已知当输入x值为﹣1时,输出值为﹣3;代入程序可得方程组,解得.故此输出数为y=2x3﹣1,输入x值为2时,输出数为y=2x3﹣1=2×23﹣1=15.【点评】这类题目有一定的开放性,解题的关键是掌握方程组解法中的代入消元法和加减消元法.12.(2009•江苏模拟)已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.【分析】根据示例,运用换元思想,即可列出简易方程组,很容易求出方程组的解.【解答】解:∵,,又∵的解是,∴,即.【点评】本题给出了一些材料,考查了同学们的阅读分析能力,需要同学们有一定的逻辑分析能力.三.解答题(共3小题)13.(2015•海安县校级模拟)江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【分析】(1)可设生产甲种产品x件,生产乙种产品y件,根据等量关系:①生产甲种产品需要的A种原料的吨数+生产乙种产品需要的A种原料的吨数=A种原料120吨,②生产甲种产品需要的B种原料的吨数+生产乙种产品需要的B种原料的吨数=B种原料50吨;依此列出方程求解即可;(2)可设乙种产品生产z件,则生产甲种产品(z+25)件,根据等量关系:甲种产品的产值+乙种产品的产值=总产值1375千元,列出方程求解即可.【解答】解:(1)设生产甲种产品x件,生产乙种产品y件,依题意有,解得,15×50+30×20=750+600=1350(千元),1350千元=135万元.答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)设乙种产品生产z件,则生产甲种产品(z+25)件,依题意有(1+10%)×50(z+25)+(1﹣10%)×30z=1375,解得z=0,z+25=25,120﹣25×4=120﹣100=20(吨),50﹣25×2=50﹣50=0(吨).答:安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.14.(2014春•南安市校级月考)某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片7张,正方形铁片3张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?【分析】(1)一个竖式长方体铁容器需要4个长方形铁皮和1个正方形铁皮;一个横式长方体铁容器需要3个长方形铁皮和2个正方形铁皮;(2)设加工的竖式铁容器有x个,横式铁容器有y个,由题意得:①两种容器共需长方形铁皮2014张;②两种容器共需正方形铁皮1176张,根据等量关系列出方程组即可;(3)设做长方形铁片的铁板m张,做正方形铁片的铁板n张,由题意得:①长方形铁片的铁板m张+正方形铁片的铁板n张=35张;②长方形铁片的铁片的总数=正方形铁片总数×2,列出方程组,再解即可.【解答】解:(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片7张,正方形铁片3张;(2)设加工的竖式铁容器有x个,横式铁容器有y个,根据题意得,解得答:竖式铁容器加工100个,横式铁容器加工538个;(3)设做长方形铁片的铁板m张,做正方形铁片的铁板n张,根据题意得,解得,∵在这35张铁板中,25张做长方形铁片可做25×3=75(片),9张做正方形铁片可做9×4=36(片),剩1张可裁出1个长方形铁片和2个正方形铁片,共可做长方形铁片75+1=76(片),正方形铁片36+2=38(片),∴可做铁盒76÷4=19(个)答:最多可加工成铁盒19个.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.15.(2016春•杭州期中)温州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,两个乐团共需花费5600元.请回答以下问题:(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?(2)甲、乙两个乐团各有多少名学生?(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.【分析】(1)若甲、乙两个乐团合起来购买服装,则每套是70元,计算出总价,即可求得比各自购买服装共可以节省多少钱;(2)设甲、乙个乐团各有x名、y名学生准备参加演出.根据题意,显然各自购买时,甲乐团每套服装是70元,乙乐团每套服装是80元.根据等量关系:①共75人;②分别单独购买服装,一共应付5600元,列方程组即可求解;(3)利用甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友恰好使得福利院65位小朋友全部得到“心连心活动”的温暖列出方程探讨答案即可.【解答】解:(1)买80套所花费为:80×60=4800(元),最多可以节省:5600﹣4800=800(元).(2)解:设甲乐团有x人;乙乐团有y人.根据题意,得解得答:甲乐团有40人;乙乐团有35人.(3)由题意,得3a+5b=65变形,得b=13﹣a因为每位乐团的人数不少于5人且人数为正整数得:或.所以共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人.【点评】此题考查二元一次方程组与二元一次方程的实际运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

七年级数学人教版下册 第8章 二元一次方程组 培优训练(含答案)

七年级数学人教版下册 第8章 二元一次方程组 培优训练(含答案)

15.
(2020·北京)方程组
x y 1 3x y 7
,
的解为
.
16. 有下列三对数:①


其中
是方程 3x+y=8 的
解,
是方程 2x-y=7 的解,
是方程组
的解.(填序号)
17. (2019·上海)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛, 大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5 大桶加 1 小桶共 盛 3 斛米,1 大桶加 5 小桶共盛 2 斛米,依据该条件,1 大桶加 1 小桶共盛 斛 米.(注:斛是古代一种容量单位).
13. (2020·泰安)方程组x5+x+y﹦3y1﹦6,72的解是___________.
14. 某宾馆有单人间和双人间两种房间,入住 3 个单人间和 6 个双人间共需 1 020 元,入住 1 个单人间和 5 个双人间共需 700 元,则入住单人间和双人间各 5 个共 需____________元.
19. 【答案】1050 [解析] 设该药店购进甲、乙两种体温计分别为 x 支,y 支.依题 意,得
解得 则 750+300=1050(支),故甲、乙两种体温计共购进 1050 支.
20. 【答案】4【解析】设李红出门没有买到口罩的次数是 x,买到口罩的次数是 y,
由题意得:
,整理得:
,解得:
,因此本题答案为
10. 【答案】 B 【解析】 设可以购买 x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出 关于 x,y 的二元一次方程,结合 x,y 均为正整数即可得出小明有 4 种购买方案. 设可以购买 x 支康乃馨,y 支百合,依题意,得:2x+3y=30,∴y=10﹣23x. ∵x,y 均为正整数,∴xy==38,yx==66,xy==94,xy==122,∴小明有 4 种购买方案. 故选:B.

(完整版)二元一次方程组培优练习

(完整版)二元一次方程组培优练习

二元一次方程组培优练习1、含有 个未知数,并且所含未知数的项的次数都是 的整式方程叫做二元一次方程。

2、含有 个未知数的两个 次方程所组成的一组方程,叫做二元一次方程。

3、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的 。

4、 叫做二元一次方程组的解。

1、下列几个方程:①123=-y x ;②123=+y x ;③x 2+y 2=3;④7(x-y )=3(x+y );⑤2x 2+5=-3x ;⑥321=-yx ,其中二元一次方程有( )A 、1B 、2C 、3D 、4 例1 若方程x 2m-1+53n-2m =7是二元一次方程,求m ,n 的值。

已知关于x ,y 的方程(a-1)x |a|+(b-2)y b2-3=5是二元一次方程,计算a ,b 的值。

求二元一次方程5x+2y=12的非负数整数解。

已知二元一次方程ax-2y=5的一个解为⎩⎨⎧-==21y x ,求(a-2)2009的值。

5、已知⎩⎨⎧-==13y x 是方程4x+my=10和mx-ny=11公共解,求m 2+2n 的值。

6、当y=-3时,关于x ,y 的二元一次方程3x+5y= -3和3y-2ax=a+2有相同的解,求a 的值。

7、二元一次方程2x+y=7的正整数解有 。

8、方程y=2x-3与3x+2y=1的公共解是 。

9、根据下列条件,设适当的未知数列二元一次方程或二元一次方程组。

(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子的2倍,求现在父亲的年龄和儿子的年龄。

10、已知2a-3b+77的绝对值与b-3a 的平方互为相反数,求关于x 的方程ax=b 的解。

11、是否存在整数k ,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解?并求出各个解。

例1 解方程组 ⎩⎨⎧+==1233y x yx例2 解方程组⎩⎨⎧=-=+246923y x y x解方程组⎩⎨⎧=+=+7252y x y x2、如果|x+y+2|+(x-y)2=0,那么x= ,y= 。

七年级初一数学数学第八章 二元一次方程组的专项培优练习题(及答案

七年级初一数学数学第八章 二元一次方程组的专项培优练习题(及答案

七年级初一数学数学第八章 二元一次方程组的专项培优练习题(及答案一、选择题1.同时适合方程2x+y=5和3x+2y=8的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .31x y ==-⎧⎨⎩2.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .254.若|321|0x y --=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种 6.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .35 2416x y x y +=⎧⎨=⎩C .35 16224x y x y +=⎧⎨=⨯⎩D .35 21624x y x y +=⎧⎨⨯=⎩7.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩ B .71x y =⎧⎨=-⎩ C . 3.50.5x y =⎧⎨=-⎩ D . 3.50.5x y =⎧⎨=⎩8.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3 B .3,2 C .2,4 D .3,49.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.由方程组71x m y m+⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.13.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.14.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.15.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.16.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.17.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.22.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求s t的值. 23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;(3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.25.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?26.计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25, 328x yx y+=⎧⎨+⎩①=,②①×2-②得,x=2,代入①得,2×2+y=5,y=1故原方程组的解为2,1. xy=⎧⎨=⎩故选:B.【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.2.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.4.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.5.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C .【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.6.D解析:D【解析】【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案.【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y +=⎧⎨⨯=⎩. 故选:D.【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.7.C解析:C【解析】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩. 故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.8.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.9.A解析:A【分析】先根据代入消元法解方程组,然后判断即可;【详解】21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫ ⎪⎝⎭在第一象限. 故选A .【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.10.A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,设甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.13.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分, 由题意可得:5x+15y+40z=10(x ﹣3)+20(y ﹣2)+30(z ﹣1)①,z=y ﹣7 ②; 由①得:x+y ﹣2z=20 ③,将②代入③得:x+y ﹣2(y ﹣7)=20,解得:x ﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x ﹣3)﹣(y ﹣2)=(x ﹣y )﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.15.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

2022-2023学年人教新版数学七年级下册第8章+二元一次方程组(培优题)

2022-2023学年人教新版数学七年级下册第8章+二元一次方程组(培优题)

第8章二元一次方程组(培优题)-2022年人教新版数学七年级下册一.选择题1.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.80cm B.75cm C.70cm D.65cm2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.2018B.2019C.2020D.20213.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是()A.73cm B.74cm C.75cm D.76cm4.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时5.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.6.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有()A.2个B.3个C.4个D.5个7.在某学校举行的课间“桌面操”比赛中,为奖励表现突出的班级,学校计划用260元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品只能购买3个或4个且钱全部用完的情况下(注:每种方案中都有三种奖品),共有多少种购买方案()A.12种B.13种C.14种D.15种8.方程2x﹣y=5的解是()A.B.C.D.9.爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换了是一个三位数,它比9:00时看到的两位数中间多了个0则10:00时看到里程碑上的数是()A.15B.24C.42D.5110.如图,8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的周长为()A.2cm B.6cm C.12cm D.16cm二.填空题11.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,5克巴旦木仁,5克黑加仑;乙种每袋装有5克核桃仁,10克巴旦木仁,10克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.05元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%.若公司销售这种混合装的坚果总利润率为25%,则该公司销售甲、乙两种袋装坚果的数量之比是.12.山间白云缭绕,似雾非雾,似烟非烟,磅礴郁积,气象万千,古人称“赤多白少”为“缙”,故名缙云山.正是这特殊的地理环境,独特的气候,赋予了缙云山甜茶汤色碧绿清爽,气味芳鲜醇和.甜茶还富含人体所需的8种氨基酸,大量维生素及微量元素,健康养生,独具风味.故来此游玩的人们,临走时都会带一些回家送亲朋好友.商家为了促销,采取以套盒包装的方式进行销售,套盒A:买三大袋和一中袋送一中袋;套盒B:买两大袋和两中袋送一小袋.套盒A和套盒B的售价之比为37:34.小华计划购买一定数量的套盒A与套盒B.由于资金不够,他思考了一下,决定将原本计划买套盒A和套盒B的数量进行调换,同时商店老板决定将套盒A打8折卖给他,套盒B价格不变,这样原计划所用花费与实际所用花费之差恰好可以购买7袋中袋的甜茶,则小华一共购买了个套盒.13.在长方形ABCD中,放入六个形状、大小相同的小长方形,所标尺寸如图所示.试求图中阴影部分的总面积为平方厘米.14.每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A、B、C三种水稻,为了获得最大利润,批发商需要统计数据,更好地货.7月份某粮食批发商统计销量后发现,A、B、C三种水稻销量之比为3:4:5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C种水稻增加的销量占总增加的销量的,则C种水稻销量将达到8月份总销量的,为使A、B两种水稻8月份的销量相等,则8月份B种水稻还需要增加的销量与8月份总销量之比为.15.对于实数a,b,定义运算“◆”:a◆b=,例如3◆2,因为3>2,所以3◆2==,若x,y满足方程组,则(x◆y)◆x=.三.解答题16.[阅读感悟]一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数x,y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题的常规思路是将①②两式联立组成方程组,解得x,y的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.[解决问题](1)已知二元一次方程组,则x﹣y=,x+y=.(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数x,y,定义新运算:x※y=ax+by+c,其中a,b,c是常数,等式右边是通常的加法和乘法运算.已知1※4=16,1※5=21,求1※1的值.17.为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知在某商店购买4个A品牌的足球和2个B品牌的足球共需680元,购买2个A品牌的足球和3个B品牌的足球共需540元.(1)求A,B两种品牌的足球的单价;(2)“五一”期间,该商店对足球进行打折促销,其中A品牌打八折,B品牌打九折,学校打算购买15个A品牌的足球和4个B品牌的足球,问学校购买这批打折后的足球所花的费用比打折前节省了多少钱?18.(1)计算:;(2)解方程组:.19.据国际田联《田径场地设施标准手册》,400米标准跑道由两个平行的直道和两个半径相等的弯道组成,有8条跑道,每条跑道宽1.2米,直道长87米;跑道的弯道是半圆形,环形跑道第一圈(最内圈)弯道半径为35.00米到38.00米之间.某校据国际田联标准和学校场地实际,建成第一圈弯道半径为36米的标准跑道.小王同学计算了各圈的长:第一圈长:87×2+2π(36+1.2×0)≈400(米);第二圈长:87×2+2π(36+1.2×1)≈408(米);第三圈长:87×2+2π(36+1.2×2)≈415(米);……请问:(1)第三圈半圆形弯道长比第一圈半圆形弯道长多多少米?小王计算的第八圈长是多少?(2)小王紧靠第一圈边线逆时针跑步、邓教练紧靠第三圈边线顺时针骑自行车(均以所靠边线长计路程),在如图的起跑线同时出发,经过20秒两人在直道第一次相遇.若邓教练平均速度是小王平均速度的2倍,求他们的平均速度各是多少?(注:在同侧直道,过两人所在点的直线与跑道边线垂直时,称两人直道相遇)20.如图,四条街围成边长为1000m的正方形ABCD,显然家住在东西方向DA街道的点P 处,他的学校在东西方向CB街道的点Q处.已知显然爷爷骑电动车在东西方向的街道的速度是400m/min,在南北方向的街道的速度是500m/min.已知爷爷骑电动车沿P﹣A﹣B﹣Q 送显然上学花了5min,沿Q﹣B﹣C﹣D﹣P(在B处遇堵车立即掉头)回家花了6min.(1)爷爷骑电动车跑一圈需要多少min?(2)求P A,QB的长度;(3)如果爷爷和显然同时出发,爷爷骑电动车沿P﹣A﹣B﹣Q骑行,显然沿Q﹣B步行,且在BQ上互相看见,求显然步行的速度的取值范围.。

二元一次方程组》 培优训练(含答案)

二元一次方程组》 培优训练(含答案)

二元一次方程组》培优训练(含答案) 期末复:二元一次方程组培优训练一、选择题1.方程组的解是()。

A。

(1.2) B。

(2.1) C。

(2.2) D。

(1.1)2.若二元一次方程组3a + b = 7a + 2b = 4的解为 (a。

b) = (-1.5),则 a + b 的值为()。

A。

2 B。

3 C。

4 D。

54.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种。

A。

3 B。

6 C。

9 D。

125.我们知道方程组:3x + 2y = 74x + 5y = 11的解是 (x。

y) = (-3.4),则方程组2x + y = 1x + 3y = k的解是()。

A。

(-2.3) B。

(-1.2) C。

(0.1) D。

(1.0)6.为了丰富学生课外小组活动,培养学生动手操作能力,XXX让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()。

A。

1 B。

2 C。

3 D。

47.如果关于 x,y 的二元一次方程组2x + 3y = 54x + ky = 10的解为 (x。

y) = (2.-1),则 k 的值为()。

A。

-2 B。

-1 C。

0 D。

18.关于 x,y 的方程组x + 2y = 32x - y = 1的解满足 x = -1,则 k 的值是()。

A。

-1 B。

0 C。

1 D。

2二、填空题11.若 a + 2b = 8,3a + 4b = 18,则 a + b 的值为 ____。

12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了 ____ 道题。

13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 ____ 块。

二元一次方程培优50题含答案

二元一次方程培优50题含答案

二元一次方程培优50题含答案一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.32.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.323.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣164.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.345.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣16.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.28.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()第1页(共40页)A .16cm 2B .21cm 2C .24cm 2D .32 cm 2 9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种10.某商店将巧克力包装成方形、圆形礼盒出售,.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( )A .360B .480C .600D .72011.二元一次方程x +3y =10的非负整数解共有( )对.A .1B .2C .3D .412.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张14.若2x +5y +4z =0,4x +y +2z =0,则x +y +z 的值等于( )A .0B .1C .2D .不能求出15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )A .150米B .200米C .300米D .400米16.已知m 为正整数,且关于x ,y 的二元一次方程组有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .1818.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种19.若(a ﹣2)x|a |﹣1+3y =1是关于x ,y 的二元一次方程,则a =( ) A .2 B .﹣2 C .2或﹣2 D .020.若关于x ,y 的方程组有非负整数解,则正整数m 为( ) A .0,1 B .1,3,7C .0,1,3D .1,3 二.填空题(共21小题)21.“驴友”小明分三次从M 地出发沿着不同的线路(A 线,B 线,C 线)去N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B 线、C 线路程相等,都比A 线路程多32%,A 线总时间等于C 线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A 线,在B 线中穿越丛林、涉水行走和攀登所用时间分别比A 线上升了20%,50%,50%,若他用了x 小时穿越丛林、y 小时涉水行走和z 小时攀登走完C 线,且x ,y ,z 都为正整数,则= .22.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x 名(其中x >5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,名机器人,且将机器人每天工作时间延长至且将机器人每天工作时间延长至12小时,小时,并对每名机器人并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x 个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.23.定义一种新的运算“※”,规定:x ※y =mx +ny 2,其中m 、n 为常数,已知2※3=﹣1,328m n24.已知方程组,当m时,x+y>0.25.方程组:的解是.26.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.27.解方程组时,甲同学正确解得,乙同学因把c写错而得到,则a=,b=,c=.28.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.29.有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.30.三轮摩托车的轮胎安装在前轮上行驶12000公里后报废,安装在左后轮和右后轮则分别只能行驶7500公里和5000公里.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3条轮胎最多可行驶公里.31.五羊公园门票规定为:每人20元;30人以上的团体购票,每人18元,每30人优惠1人免票(不足30人的余数不优惠).今有花城旅行社、穗城旅行社、羊城旅行社的三支旅游团前来参观:如果花城团、穗城团合起来作为一个团体购票,应购门票3834元;如果穗城团、羊城团合起来购票,应购门票4770元;如果羊城团、花城团合起来购票,应购门票5220元,那么三个团共有人.32.在一条街AB 上,甲由A 向B 步行,乙骑车由B 向A 行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A 开出向B 行进,且每隔x 分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,分有一辆公共汽车追上他,而乙感到每隔而乙感到每隔5分就碰到一辆公共汽车,分就碰到一辆公共汽车,那么在那么在始发站公共汽车发车的间隔时间x = 分钟.33.某校运动会在400米环形跑道上进行10000米比赛,米比赛,甲、甲、甲、乙两运动员同时起跑后,乙两运动员同时起跑后,乙两运动员同时起跑后,乙速乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是 分钟.34.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是 元,所住的三人间、双人间、单人间的间数依次是 .35.“雪龙”号科学考察船到南极锦绣科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间.该船以16节的速度从上海出发,若干天后,顺利抵达目的地.在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海.那么,“雪龙”号在南极工作了 天.36.怡荣号渡轮时速40千米,单数日由A 地顺流航行到B 地,双数日由B 地逆流航行到A地.(水速为每小时24千米)有一单数日渡轮航行到途中的C 地时,失去动力,只能任船漂流到B 地,船长计得该日所用的时间为原单数日的倍.另一双数日渡轮航行到途中的C 地时,又失去动力,船在漂流过程中,维修人员全力抢修了1小时后船以2倍时速前进到A 地,地,结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问A 、B 两地的距离为多少千米?37.一个工厂得到任务,需要加工A 零件6000个和B 零件2000个,该厂共有工人214名,每个人加工A 零件5个的时间可以加工B 零件3个.现将工人分成两组,分别加工一种零件,同时开始,应怎样分组才能使任务最快完成 .38.若是方程组的解,则a +b = .39.设甲数为x ,乙数为y ,则甲数增加10%与乙数增加到原来的3倍后的和比甲、乙两数的和多8,则方程为 .40.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔分钟从起点开出一辆.41.某车间每天能生产甲种零件300个,或者乙种零件500个,或者丙种零件600个,甲、乙、丙三种零件各一个配一套.现在要用63天使产品成套,那么生产甲种零件应当用天,生产乙种零件应当用天,生产丙种零件应当用天.三.解答题(共9小题)42.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.43.若方程组和方程组有相同的解,求a,b的值.44.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.45.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.46.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.47.某水果店购进苹果与橙子共50kg,这两种水果的进价、标价如下表所示,店主将这些水果按8折全部售出后,其获利258元,那么该水果点购进苹果和橙子分别多少kg?进价(元/kg)标价(元/kg)苹果615橙子51248.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?49.某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?50.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.二元一次方程培优50题含答案参考答案与试题解析一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.3【分析】方程组利用代入消元法求出解,然后把a、b的值代入即可求解.【解答】解:,由①得,y=1﹣2x③,把③代入②得,﹣x+3(1﹣2x)=2,解得,把代入③得,,∴,∴a+4b=.故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣16【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a﹣b)的值.【解答】解:∵是关于x、y的方程组的解,∴,解得,∴(a+b)(a﹣b)=(﹣1+4)×(﹣1﹣4)=﹣15.故选:B.【点评】本题主要考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.4.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.5.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣1【分析】把x、y的值代入方程,看看方程两边是否相等即可.【解答】解:A、把代入方程y=x+1,左边≠右边,所以不是方程y=x+1的解,故本选项不符合题意;B、把代入方程y=x﹣1,左边=右边,所以是方程y=x﹣1的解,故本选项符合题意;C、把代入方程y=﹣x+1,左边≠右边,所以不是方程y=﹣x+1的解,故本选项不符合题意;D、把代入方程y=﹣x﹣1,左边=右边,所以不是方程y=﹣x﹣1的解,故本选项不符合题意.故选:B.【点评】本题考查了二元一次方程的解,能理解二元一次方程的解的意义是解此题的关键.6.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【分析】先解关于x,y二元一次方程组,求出x,y的值后,再代入x﹣y=m﹣1,建立关于m的方程,解方程求出m的值即可.【解答】解:方法1:,解得,∵满足x﹣y=m﹣1,∴﹣﹣=m﹣1,解得m=﹣1;方法2:方程两边分别相减就可以得到36x﹣36y=﹣72则x﹣y=﹣2所以m﹣1=﹣2所以m=﹣1.故选:A.【点评】考查了解二元一次方程组,解关于x,y二元一次方程组,求出x,y的值后,再求解关于m的方程,解方程组关键是消元.8.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【解答】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积=3×7=21(cm 2).故选:B.【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A.6种B.7种C.8种D.9种【分析】本题可设大绳买了x条,小绳买了y条,毽子买了z个.根据这三种体育用品的总价为30元,列出关于x、y、z的三元一次方程,根据x≤2,且x、y、z都是正整数,可求出x、y、z的取值,根据自变量的取值,可求出买法有多少种.【解答】解:设大绳买了x条,小绳买了y条,毽子买了z个.则有:10x+3y+z=30,根据已知,得x=1或2,当x=1时,有z=20﹣3y,此时有:y值可取1,2,3,4,5,6;共六种;当x=2时,有z=10﹣3y,此时有:y值可取1,2,3;共三种.所以共有9种买法.故选:D.【点评】此题主要考查了二元一次方程的应用,解决本题的关键能够根据题意列出三元一次方程,根据未知数应是正整数和x小于等于2这些条件,进行分析求解.10.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).C【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.11.二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.4【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.12.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A.8张和16张B.8张和15张C.9张和16张D.9张和15张【分析】仔细读题,发现题中有一个等量关系:2×2元人民币的张数+5×5元人民币的张数=33,如果设2元和5元的人民币分别有x张和y张,则根据等量关系可得一个二元一次方程,此方程有无穷多组解,再根据x,y是正整数,则可以得出符合条件的有限几组解.【解答】解:设2元和5元的人民币分别有x张和y张,根据题意,得2x+5y=33,则x=,即x=16﹣2y+,又x,y是正整数,则有或或三种.因为14+1=15,9+3=12,4+5=9,15>12>9,所以最少和张数之和最多的方式分别是9和15.故选:D.【点评】考查了二元一次方程的应用,注意:根据未知数应是正整数进行讨论.14.若2x+5y+4z=0,4x+y+2z=0,则x+y+z的值等于()A.0B.1C.2D.不能求出【分析】由2x+5y+4z=0 ①,4x+y+2z=0 ②,利用整体的思想①+②即可解决问题.【解答】解:2x+5y+4z=0 ①,4x+y+2z=0 ②,①+②得到:6x+6y+6z=0,∴x+y+z=0,故选:A.【点评】本题考查三元一次方程组,解题的关键是学会利用整体的思想思考问题,属于中考常考题型.15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A.150米B.200米C.300米D.400米【分析】首先设每一块小矩形牧场的长为x米,宽为y米,根据题意可得等量关系:小矩形的1个长=2个宽,3个长+1个宽=700÷2,根据等量关系列出方程组,再解即可.【解答】解:设每一块小矩形牧场的长为x米,宽为y米,,解得,每一块小矩形牧场的周长是:100+100+50+50=300(米),故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程组.16.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4B.1,4C.1,4,49D.无法确定【分析】首先解方程组求得方程组的解是:,则3+m是10和15的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m =2,则m 2=4.故选:A .【点评】本题考查了方程组的解,正确理解3+m 是10和15的公约数是关键. 17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .18 【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、根据寒假结束开学时甲、乙两校人数相同,乙两校人数相同,可得方程1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,所以开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人),即可解答.【解答】解:设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同,∴1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人), ∴乙校开学时的人数与原有的人数相差;1028﹣1010=18(人),故选:D .【点评】本题考查了二元一次方程的应用,解决本题的关键是关键题意列出方程. 18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【解答】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得。

(人教版)深圳七年级数学下册第八单元《二元一次方程组》(培优)

(人教版)深圳七年级数学下册第八单元《二元一次方程组》(培优)

一、选择题1.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A .958220x y x y +=⎧⎨-=⎩B .954220x y x y +=⎧⎨-=⎩C .9516220x y x y +=⎧⎨-=⎩D .9516110x y x y +=⎧⎨-=⎩C 解析:C【分析】设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可.【详解】设安排x 个工人做螺杆,y 个工人做螺母,由题意得:952822x y x y +=⎧⎨⨯=⎩,即9516220x y x y +=⎧⎨-=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.2.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,,∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( )A .2B .-2C .1D .-1B 解析:B【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解.【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-, 把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-, 故选:B .【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.4.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩ C 解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】 解:125x y x y +=⎧⎨+=⎩①② ②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 5.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3C解析:C【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】 解:根据题意,得121m n m n -=⎧⎨+-=⎩, 解得21m n =⎧⎨=⎩. 故选:C .6.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( ) A .3x-4y=16 B .1254x y += C .1382x y -+= D .2(x-y)=6y D 解析:D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】将41x y =⎧⎨=⎩依次代入,得 A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、-2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D.【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.7.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y += B .1x y +=- C .9x y += D .9x y -=- C解析:C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】 当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 9.下表为服饰店卖出的服装种类与原价对照表.某日服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,各种服装共卖200件,营业额是24000元,则外套卖出了( )A .100件B .80件C .60件D .40件B解析:B【分析】设卖出外套x 件,衬衫y 件,裤子z 件.根据题意可列三元一次方程组,即可解出x ,即可选择.【详解】设卖出外套x 件,衬衫y 件,裤子z 件.根据题意可列方程组: 2000.62500.81250.812524000x y z x y z ++=⎧⎨⨯+⨯+⨯=⎩200150100()24000x y z x y z ++=⎧⎨++=⎩ 80120x y z =⎧⎨+=⎩故卖出外套80件故选B【点睛】根据题意列出三元一次方程组是解答本题的关键,注意把y z +看作一个整体. 10.下列方程是二元一次方程的是( ).A .32x y -=B .1xy =C .2+3=x xD .153x y-= A 解析:A【分析】根据二元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】 32x y -=是二元一次方程,故选项A 正确;1xy =,含未知数的项的次数是2,故选项B 错误;2+3=x x 是一元一次方程,故选项C 错误; 153x y-=,不是整式方程,故选项D 错误; 故选:A .【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的定义,从而完成求解.二、填空题11.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.-40【分析】把甲的结果代入方程组求出c 的值得到关于a 与b 的方程将乙结果代入第一个方程得到a 与b 的方程联立求出a 与b 的值在计算abc 的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案 解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.12.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .2【分析】设小长方形的宽CE 为小长方形的长是根据长方形ABCD 的长和宽列出方程组求解【详解】解:设小长方形的宽CE 为小长方形的长是根据图形大长方形的宽可以表示为或者则大长方形的长可以表示为则解得故答解析:2【分析】设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据长方形ABCD 的长和宽列出方程组52313x x y x y +=+⎧⎨+=⎩求解. 【详解】解:设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据图形,大长方形的宽可以表示为52x +,或者x y +,则52x x y +=+,大长方形的长可以表示为3x y +,则313x y +=,52313x x y x y +=+⎧⎨+=⎩,解得27x y =⎧⎨=⎩. 故答案是:2.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 13.若2(321)4330x y x y -++--=,则x y -=_____.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可.【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②, ①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=,解得13y =-,∴9134x y -=-+=.故答案为:4.【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.14.已知37m m n x y +-与653x y 是同类项,则m n -=_______.【分析】先根据同类项的定义可得mn 的值再代入计算即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了同类项二元一次方程组的应用熟练掌握同类项的定义是解题关键解析:1-【分析】先根据同类项的定义可得m 、n 的值,再代入计算即可得.【详解】由题意得:365m m n =⎧⎨+=⎩, 解得23m n =⎧⎨=⎩, 则231m n -=-=-,故答案为:1-.【点睛】本题考查了同类项、二元一次方程组的应用,熟练掌握同类项的定义是解题关键. 15.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)02575或41878或81181或12484【分析】设公鸡有x 只母鸡有y 只则小鸡有(100−x−y )只由题意得到5x +3y +=100求出符合题意的方程的解即可【详解】设公鸡有x 只母鸡有y 只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84.【分析】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,由题意得到5x +3y +1003x y -- =100,求出符合题意的方程的解即可.【详解】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,根据题意得: 5x +3y +1003x y -- =100, 化简得:y =25−74x , 当x =0时,y =25,100−x−y =75;当x =4时,y =18,100−x−y =78;当x =8时,y =11,100−x−y =81;当x =12时,y =4,100−x−y =84;当x =16时,y =−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x 、y 均为整数求出二元一次方程的解.16.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若3213,218==※※.则12※的值是_______7【分析】根据新定义运算得到关于m 和n 的二元一次方程组求解得到新运算的法则代入求解即可【详解】解:∵且∴解得∴故答案为:7【点睛】本题考查二元一次方程组的应用根据新运算得到关于m 和n 的二元一次方程组解析:7【分析】根据新定义运算得到关于m 和n 的二元一次方程组,求解得到新运算的法则,代入求解即可.【详解】解:∵x y mx ny =+※,且3213,218==※※, ∴321328m n m n +=⎧⎨+=⎩, 解得32m n =⎧⎨=⎩, ∴1231227=⨯+⨯=※,故答案为:7.【点睛】本题考查二元一次方程组的应用,根据新运算得到关于m 和n 的二元一次方程组是解题的关键.17.某公园的门票是10元/人,团体购票有如下优惠:分别购票,两个班一共应付598元.如果两个班作为一个团体购票,一共应付545元,则甲班有_____人,乙班有_____人.25【分析】设甲班有人乙班有人根据①超出60人的的费用=545-(300+30×10×08)②甲班费用+乙班费用=598列方程组求解即可【详解】设甲班有人乙班有人根据题意可得:解得:即甲班有36人乙 解析:25【分析】设甲班有x 人,乙班有y 人,根据“①超出60人的的费用=545-(300+30×10×0.8),②甲班费用+乙班费用=598”列方程组求解即可.【详解】设甲班有x 人,乙班有y 人,根据题意可得:()()60554554010300308598x y y x ⎧+-⨯=-⎪⎨++-⨯=⎪⎩, 解得:3625x y =⎧⎨=⎩, 即甲班有36人,乙班有25人.故答案为:36;25【点睛】本题主要考查二元一次方程组的应用,弄清表格中分段收费标准,根据费用确定其中蕴含的相等关系:①超出60人的的费用=545-(300+30×10×0.8)、②甲班费用+乙班费用=598是解题的关键.18.若方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m=________,n=________.3【分析】把xy 的值代入原方程组即可装化成关于mn 的二元一次方程组进而求出mn 的值【详解】解:把代入方程组得①×2+②得5m=10∴m=2将m=2代入②得n=3故答案为:2;3【点睛】本题考查二元一解析:3【分析】把x 、y 的值代入原方程组,即可装化成关于m 、n 的二元一次方程组,进而求出m 、n 的值.【详解】解:把21x y =⎧⎨=⎩代入方程组18mx ny nx my -=⎧⎨+=⎩得 2128m n n m -=⎧⎨+=⎩①② ①×2+②得5m=10∴m=2将m=2代入②得n=3故答案为:2;3.【点睛】本题考查二元一次方程组的定义及解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当方程中相同的未知数的系数相等或者互为相反数时用加减消元法解方程组比较简单,灵活选择合适的方法是解题的关键.19.已知关于,x y的方程组231x aybx y-=⎧⎨+=-⎩的解是13xy=⎧⎨=-⎩,则a b+=___________.【分析】把方程组的解代入可得得到a和b的值即可求解【详解】解:把方程组的解代入可得:解得∴故答案为:【点睛】本题考查二元一次方程组的解掌握二元一次方程组的解的定义是解题的关键解析:7 3【分析】把方程组的解13xy=⎧⎨=-⎩代入可得23331ab+=⎧⎨-=-⎩,得到a和b的值即可求解.【详解】解:把方程组的解13xy=⎧⎨=-⎩代入可得:23331ab+=⎧⎨-=-⎩,解得13a=,2b=,∴a b+=73,故答案为:73.【点睛】本题考查二元一次方程组的解,掌握二元一次方程组的解的定义是解题的关键.20.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.21【分析】设这个两位数十位数字为x个位数字为y根据题意可得:据此列方程组求解【详解】解:设这个两位数十位数字为x个位数字为y由题意得:解得:则这个两位数为21故答案为:21【点睛】本题主要考查了二解析:21【分析】设这个两位数十位数字为x,个位数字为y,根据题意可得:10(10)93x y y xx y+-+=⎧⎨+=⎩据此列方程组求解.【详解】解:设这个两位数十位数字为x,个位数字为y,由题意得:10(10)93x y y x x y +-+=⎧⎨+=⎩解得:21x y =⎧⎨=⎩则这个两位数为21.故答案为:21.【点睛】本题主要考查了二元一次方程的应用,理解题意从中找出相应的等量关系列出二元一次方程组是解题的关键.三、解答题21.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量解析:(1)a=0.6,b=0.7;(2)415度【分析】(1)根据各档的电费价格和所用的电数以及所缴纳电费,列出方程组,进行求解即可; (2)根据题意先判断出小明家所用的电所在的档,再设小明家五月份用电量为m 度,根据价格表列出等式,求出m 的值即可.【详解】解:(1)由题意可得:{180(252180)158.4180(340180)220a b a b +-=+-=解得:a=0.6,b=0.7(2)若一个月用电量为350度,电费为180×0.6+(350-180)×0.7=227,∵285.5>227,∴小明家7月份用电量超过350度;设小明家7月份用电量为m 度,则有:180×0.6+(350-180)×0.7+(m-350)×0.9=285.5;解得:m=415;∴小明家7月份用电量为415度;【点睛】此题考查了二元一次方程组的应用和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.22.解方程(组)(1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩解析:(1)x =-7;(2)12x y =⎧⎨=⎩【分析】(1)根据去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可; (2)方程整理后,利用加减消元法解方程即可.【详解】解:(1)去分母得 ()()622133x x x --=+去括号得 64239x x x -+=+移项得 64392x x x --=-合并同类项得 7x -=系数化为1得 7x =-(2)方程组整理得345529x y x y -=-⎧⎨+=⎩①②②×2+①得1313x =解得1x =把1x =代入②得529y +=解得2y =∴方程组的解为12x y =⎧⎨=⎩ 【点睛】本题考查了解一元一次方程及解二元一次方程组.解二元一次方程组的思想是消元思想,常用方法是代入法和加减法.23.解方程组: (1)2328x y x y =⎧⎨-=⎩(2)3224()5()2x y x y x y +=⎧⎨+--=⎩解析:(1)42x y =⎧⎨=⎩;(2)71x y =⎧⎨=⎩. 【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2328x y x y =⎧⎨-=⎩①②, 把①代入②得:3x-x=8,解得:x=4,把x=4代入①得:y=2,则方程组的解为42x y =⎧⎨=⎩; (2)方程组整理得:32292x y x y +=⎧⎨-+=⎩①②, ①+②×3得:28y=28,即y=1,把y=1代入②得:x=7,则方程组的解为71x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组23173213x y x y +=⎧⎨+=⎩,则x y -= ,x y += ;(2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=-+,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,求11*的值.解析:(1)﹣4;6;(2)购买这批防疫物资共需6700元;(3)11=11*-.【分析】(1)直接把两个方程相加或相减,即可求出答案;(2)根据题意,列出方程组,然后利用整体思想代入计算,即可得到答案;(3)根据题意,利用新定义进行计算,然后利用整体的思想即可求出11*的值.【详解】解:(1)23173213x y x y +=⎧⎨+=⎩①② 由①+②,得5530x y +=,∴6x y +=;由②-①,得4x y -=-;故答案为:﹣4;6.(2)设的消毒液单价为m 元,测温枪的单价为n 元,防护服的单价为p 元,依题意,得: 2032118030282170m n p m n p ++=⎧⎨++=⎩①②, 由①+②可得505103350m n p ++=,∴1001020335026700m n p ++=⨯=.答:购买这批防疫物资共需6700元.(3)依题意,得: 35154728a b c a b c -+=⎧⎨-+=⎩①②, 由3×①﹣2×②可得:11a b c -+=-,∴1111a b c *=-+=-.【点睛】本题考查了二元一次方程组的应用,解二元一次方程的方法,以及利用整体的思想进行解题,解题的关键是熟练掌握利用整体思想进行解题.25.(1)22839x y x y +=⎧⎨+=⎩ (2)4143314312x y x y +=⎧⎪--⎨-=⎪⎩解析:(1)321x y ⎧=⎪⎨⎪=-⎩;(2)3114x y =⎧⎪⎨=⎪⎩. 【分析】(1)利用加减消元法解二元一次方程组,即可得到答案;(2)先把方程组进行整理,然后利用加减消元法解方程组,即可得到答案.【详解】解:(1)22839x y x y +=⎧⎨+=⎩①② 由②-①3⨯,得:23x =, ∴32x =, 把32x =代入①,得:1y =-, ∴方程组的解为321x y ⎧=⎪⎨⎪=-⎩;(2)4143314312x y x y +=⎧⎪--⎨-=⎪⎩, 方程组整理得:414342x y x y +=⎧⎨-=-⎩①②, 由①+②,得:412x =,∴3x =,把3x =代入①,得:114y =, ∴方程组的解为3114x y =⎧⎪⎨=⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握运算法则进行计算.26.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.解析:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人【分析】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,根据题意列二元一次方程组解答.【详解】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,则20(130%)(120%)226x y x y -=⎧⎨+++=⎩,解得10080x y =⎧⎨=⎩答:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.27.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?解析:(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱.【分析】(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可.【详解】解:(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人.根据题意,得 45x =60(x−4)−30,解得:x =18.答:只租45座的客车,需要18辆车;(2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆.根据题意得:45x +60y =810.∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3.2500×2+3000×12=41000(元)2500×6+3000×9=42000(元)2500×10+3000×6=43000(元)2500×14+3000×3=44000(元)∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱.【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.28.解方程组:(1)1367x y x y -=⎧⎨=-⎩; (2)414531x y x y -=⎧⎨+=⎩. 解析:(1)174x y =⎧⎨=⎩;(2)56x y =⎧⎨=⎩【分析】 (1)利用代入消元法求解即可;(2)利用加减消元法求解即可.【详解】解:(1)1367x y x y -=⎧⎨=-⎩①② 把②代入①得: 6713y y --=,解得:4y =,把4y =代入②得: 64717x =⨯-=,∴原方程组的解为174.x y =⎧⎨=⎩, (2)414531x y x y -=⎧⎨+=⎩①②①+②得, 945x =,解得:5x =,将5x =代入①得,2014y -=,解得:6y =,故原方程组的解为56x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组培优训练题————————————————————————————————作者: ————————————————————————————————日期:二元一次方程组培优训练题一、二元一次方程组的解1、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; ﻩ(B )34->a ;ﻩ(C )342<<-a ;ﻩ(D )34-<a ; 2、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y=34的一组解,那么m 的值是( )(A )2;ﻩﻩﻩ(B )-1;ﻩ (C )1;ﻩﻩﻩﻩ(D )-2;3、与已知二元一次方程5x -y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y =6 (B )4x -y =7 (C )10x+2y =4 ﻩ(D )20x -4y =3 4、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b的值等于( )(A)a =-3,b=-14 ﻩ (B )a=3,b=-7 (C )a =-1,b =9ﻩ(D )a =-3,b=14 5、若5x-6y=0,且x y≠0,则yx yx 3545--的值等于( )(A )32 ﻩ (B )23ﻩﻩ (C )1 ﻩ(D )-16、若x 、y均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 ﻩﻩﻩﻩﻩ(B )有唯一一个解(C )有无数多个解 ﻩ ﻩ(D )不能确定7、若|3x+y +5|+|2x-2y -2|=0,则2x2-3xy 的值是( ) (A )14ﻩ (B )-4 (C )-12 ﻩ (D)12 8、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =k x+b 的解,则k 与b的值为( )(A )21=k ,b =-4ﻩ (B )21-=k ,b=4 (C)21=k ,b =4ﻩﻩ(D )21-=k ,b=-4 9、若4x +3y +5=0,则3(8y -x)-5(x+6y -2)的值等于_________; 10、若x+y=a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;11、已知a -3b=2a +b -15=1,则代数式a 2-4a b+b 2+3的值为__________;二、解二元一次方程组(1)()()()213464216x y x y x y x y ⎧-+-=⎪⎨⎪+=-+⎩(2280096%64%280092%x y x y +=⎧⎨+=⨯⎩22,(5)45,2250.x y z x y z x y z ++=⎧⎪-+=⎨⎪--=⎩(4)三、利用二元一次方程组求字母系数的值1、在解方程组278ax by cx y +=⎧⎨-=⎩时,一同学把c 看错而得到22x y =-⎧⎨=⎩,而正确的解是32x y =⎧⎨=-⎩,求a ,b ,c的值.2、 解方程组51542ax y x by +=⎧⎨-=-⎩时,甲由于看错系数a ,结果解得31x y =-⎧⎨=-⎩;乙由于看错系数b ,结果解得54x y =⎧⎨=⎩,则原来的a =______,b =______. 3、如果关于x 、y 的方程组62x y ax y b -=⎧⎨+=⎩的解与38x ay x y +=⎧⎨+=⎩的解相同,求a 、b 的值.四、应用填空1.方程3x+y =8的正整数解是_______.2、若x +y+z≠0且k y x z z y x x z y =+=+=+222, 则k =_______.3.若2x-5y=0,且x ≠0,则y x yx 5656+-的值是___ _.4.a 与b 互为相反数,且4=-b a ,那么112+++-ab a ab a = .5.如果2006200520044321=+-+-+n m n m y x 是二元一次方程,那么32n m +的值是 . 6.如果⎩⎨⎧-==66y x ,⎩⎨⎧=-=62y x ,都能使方程1=+b ya x 成立,那么当4=x 时,=y .五、二元一次方程组的应用题1、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?2.甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.购苹果数不超过30kg30kg以下但不超过50kg50kg以上每千克价格3元2.5元2元(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?3、剃须刀由刀片和刀架组成.甲、乙两厂家分别生产老式剃须刀﹙刀片不可更换﹚和新式剃须刀﹙刀片可更换﹚.有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?4、为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C 地运往D县的赈灾物资为60t,A 地运往D 县的赈灾物资为xt (x 为整数),B地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍,其余的赈灾物资全部运往E 县,且B 地运往E县的赈灾物资数量不超过25t .则A,B•两地的赈灾物资运往D ,E 两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C 三地的赈灾物资运往D ,E 两县的费用如表所示:A地B 地C 地 运往D 县的费用/(元/t) 220200200运往E 县的费用/(元/t ) 250220210 为及时将这批赈灾物资运往D,E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?课后训练 一、填空题1.已知(k -2)x |k|-1-2y=1,则k______ 时,它是二元一次方程;k=______ 时,它是一元一次方程. 2.若|x-2|+(3y+2x)2=0,则yx的值是______ . 3.如果|21||25|0x y x y -++--=,则x y +的值为4.已知⎩⎨⎧-==1,2y x 是二元一次方程mx +ny=-2的一个解,则2m -n -6的值等于_______.5.已知二元一次方程组⎩⎨⎧=+=+②①8272,y x y x 那么x+y =______ ,x-y=______.6.若2x-5y =0,且x≠0,则yx yx 5656+-的值是____ .二、选择题1.已知二元一次方程x +y =1,下列说法不正确的是( ).(A)它有无数多组解 (B )它有无数多组整数解 (C)它只有一组非负整数解 (D)它没有正整数解2.若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y=0,则m ∶n等于( ).(A)3∶4ﻩ(B)-3∶4 (C)-1∶4 (D)-1∶123.已知x =3t +1,y=2t-1,用含x 的式子表示y,其结果是( ).(A)31-=x y (B )21+=y x (C)352-=x y ﻩ(D)312--=x y 4.若关于x ,y 的方程组⎩⎨⎧=+=-nmy x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A.1 B .3 C .5 D.25.关于x ,y的方程组⎩⎨⎧=-=+1935,023by ax by ax 的解为⎩⎨⎧-==.1,1y x 则a ,b 的值分别为( ).(A )2和3 (B)2和-3ﻩ(C)-2和3ﻩ(D)-2和-36.与方程组⎩⎨⎧=+=-+02,032y x y x 有完全相同的解的是( ).(A )x+2y -3=0ﻩ (B )2x+y=0(C)(x+2y-3)(2x +y )=0 (D )|x+2y-3|+(2x +y )2=07.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1 B.⊗ = 2,⊕ = 1 C.⊗ = 1,⊕ = 2 D.⊗ = 2,⊕ = 28.若关于x ,y的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为 ( )(A)43-ﻩ(B)43 ﻩ(C)34 ﻩ(D )34-三、解答题 1.解方程组: ⑴⎩⎨⎧=-=+.732,423t s t s ﻩﻩ⑵⎪⎪⎩⎪⎪⎨⎧=+-=-.732,143n m nm2.已知⎩⎨⎧=+-=++②①.15232,25c b a c b a 求b 的值.3.如果关于x,y 的方程组⎪⎩⎪⎨⎧-=-+=-321,734k y x k y x 的解中,x 与y 互为相反数,求k的值.4.若等式0|21|)42(2=-+-y x 中的x 、y满足方程组⎩⎨⎧=+=+,165,84n y x y mx 求2m 2-n+41mn 。

5.对于有理数x,y 定义新运算:x*y=ax+by+5,其中a,b 为常数.已知1*2=9,(-3)*3=2,求a,b 的值.6.已知使3x +5y =k +2和2x+3y=k 成立的x,y 的值的和等于2,求k 的值.7.在方程(x +2y-8)+λ(4x +3y -7)=0中,找出一对x,y 值,使得λ无论取何值,方程恒成立.8.已知方程组⎩⎨⎧=--=-+01523,0172c a b c b a 其中c ≠0,求c b a cb a -++-的值.。

相关文档
最新文档