图的深度优先遍历
深度优先遍历例题
深度优先遍历例题摘要:一、深度优先遍历概念介绍1.定义2.特点二、深度优先遍历算法应用1.图形遍历2.搜索算法三、深度优先遍历例题解析1.题目一:二叉树的深度优先遍历1.分析2.算法实现3.答案解析2.题目二:链式广度优先遍历1.分析2.算法实现3.答案解析四、深度优先遍历实战技巧与优化1.避免回溯2.提高效率正文:一、深度优先遍历概念介绍1.定义深度优先遍历(Depth-First Traversal,简称DFT)是一种遍历树或图的算法。
它沿着一个路径一直向前,直到达到最深的节点,然后回溯到上一个节点,继续沿着另一个路径遍历。
2.特点深度优先遍历的特点是访问一个节点后,会沿着该节点的子节点继续遍历,直到没有未访问的子节点为止。
此时,遍历过程会回溯到上一个节点,继续访问其未访问的子节点。
二、深度优先遍历算法应用1.图形遍历深度优先遍历在图形处理领域有广泛应用,如图像处理中的边缘检测、图像分割等。
通过遍历图像像素点,可以发现像素点之间的关系,从而实现图像处理任务。
2.搜索算法深度优先搜索(DFS)是一种经典的搜索算法,它采用深度优先策略在树或图中寻找目标节点。
DFS算法常用于解决迷宫问题、八皇后问题等。
三、深度优先遍历例题解析1.题目一:二叉树的深度优先遍历1.分析二叉树的深度优先遍历通常采用递归或栈实现。
递归方法简单,但效率较低;栈方法效率较高,但实现较复杂。
2.算法实现(递归)```def dfs(root):if not root:returnprint(root.val, end=" ")dfs(root.left)dfs(root.right)```3.答案解析按照题目给定的二叉树,进行深度优先遍历,得到的序列为:1 2 4 5 3 6 8。
2.题目二:链式广度优先遍历1.分析链式广度优先遍历与树的同层遍历类似,采用队列实现。
队列中的元素依次为当前层的节点,每次遍历时,取出队首节点,将其相邻节点加入队列,并将其标记为已访问。
第7章图的深度和广度优先搜索遍历算法
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
图的深度优先遍历详解
图的深度优先遍历详解图的深度优先遍历详解说明1. 深度优先遍历,即先向纵深处挖掘遍历,等这条路⾛不通再回溯2. 设置要开始遍历的第⼀个顶点,然后寻找该顶点的第⼀个邻接顶点,如果第⼀个邻接顶点存在,则从第⼀个邻接顶点⼜重新开始深度优先,寻找它的第⼀个邻接顶点,直到他们的第⼀个邻接顶点不存在或者第⼀个邻接顶点已经被访问,那么寻找它的下⼀个邻接顶点,直到寻找完所有的顶点3. 很明显需要使⽤递归4. 当没有通路的最后⼀个邻接顶点相连的所有顶点全部遍历完时,则回溯判断上⼀个顶点的下⼀个邻接顶点,直到遍历完然后再回溯5. 直到遍历完所有的顶点6. 说明:当当前顶点的第⼀个邻接顶点已经被访问过时,才遍历它的下⼀个邻接顶点7. 源码见下源码及分析深度优先核⼼代码//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过* @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->");//将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}深度优先遍历代码实现package algorithm.datastructor.graph;import java.util.ArrayList;import java.util.Arrays;/*** @author AIMX_INFO* @version 1.0*/public class Graph {//使⽤邻接矩阵表⽰图//使⽤集合存储图的顶点private ArrayList<String> vertexList;//使⽤⼆维数组即矩阵描述顶点之间的关系private int[][] edges;//边的个数private int numOfEdges;//定义变量判断是否访问过private boolean[] isVisited;//测试public static void main(String[] args) {int n = 5;String[] vertexs = {"A", "B", "C", "D", "E"};//创建图Graph graph = new Graph(n);//添加顶点for (String vertex : vertexs) {graph.insertVertex(vertex);}//连接顶点graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);//显⽰图graph.showGraph();System.out.println("深度优先遍历");graph.dfs();}//n为顶点的个数public Graph(int n) {edges = new int[n][n];vertexList = new ArrayList<>(n);numOfEdges = 0;isVisited = new boolean[n];}//插⼊顶点public void insertVertex(String vertex) {vertexList.add(vertex);}/*** 添加边** @param v1 顶点在集合中存储的下标* @param v2 顶点在集合中的下标* @param weight 两个顶点之间的权值,0或者1,表⽰是否相连 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}//返回节点的个数public int getNumOfVertex() {return vertexList.size();}//返回边的个数public int getNumOfEdges() {return numOfEdges;}//返回下标 i 对应的数public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeigh(int v1, int v2) {return edges[v1][v2];}//显⽰矩阵public void showGraph() {for (int[] link : edges) {System.out.println(Arrays.toString(link));}}//获取与当前顶点连接的第⼀个邻接顶点public int getFirstNeighbor(int v) {for (int i = 0; i < vertexList.size(); i++) {if (edges[v][i] > 0) {return i;}}return -1;}//根据前⼀个邻接顶点获取下⼀个邻接节点的下标 /*** @param v1 当前顶点* @param v2 当前顶点的第⼀个顶点* @return 返回下⼀个邻接顶点*/public int getNextNeighbor(int v1, int v2) {for (int i = v2 + 1; i < vertexList.size(); i++) { if (edges[v1][i] > 0) {return i;}}return -1;}//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过 * @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->"); //将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}。
图的两种遍历
输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.
图的各种算法(深度、广度等)
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3
算法设计:深度优先遍历和广度优先遍历
算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。
它们对无向图和有向图均适用。
注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。
2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。
在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。
为了避免重复访问同一个顶点,必须记住每个已访问的顶点。
为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。
--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。
若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。
浅析深度优先和广度优先遍历实现过程、区别及使用场景
浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
深度优先和广度优先算法
深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。
它们的策略不同,各有优缺点,可以在不同的场景中使用。
一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。
该算法使用栈来实现。
1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。
2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。
以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。
由于该算法使用栈来实现,因此空间复杂度为O(V)。
二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。
该算法使用队列来实现。
1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。
2. 算法实现广度优先遍历算法可以使用队列来实现。
图的遍历深度优先遍历和广度优先遍历
4
5
f
^
对应的邻接表
终点2作为下次的始点, 由于1点已访问过,跳过, 找到4,记标识,送输出, 4有作为新的始点重复上 述过程
1 2 4
5
输出数组 resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。 //v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间 long nNodes, i; TGraphEdgeAL<TEdgeElem> *p; nNodes=1;
1 2
4
图 20-1有向图
5
3
1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 0 1 0 0
1 2 3 4 5
1 1 0 1 1
1 2 4 5
所示图的邻接矩阵g
访问标识数组 visited
输出数组 resu
例如从1点深度优先遍历,先把1设置访问标志,并置入输出数组resu,然后从邻接 矩阵的第一行,扫描各列,找到最近的邻接点2,将其设置访问标志,并进入输出数 组,接着从邻接矩阵的2行扫描,找到第一个构成边的点是1,检查访问标识数组, 发现1已经访问过,跳过,找第二个构成边 的点4,设置访问标识,进入输出数组, 再从邻接矩阵的第4行扫描,寻找构成边的点,除1外在无其他点,返回2行,继续 寻找,也无新点,返回1,找到5,将5置访问标志,进入输出数组,1行再无其他新 点,遍历结束,返回遍历元素个数为4 。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
图的遍历的概念
图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。
在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。
图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。
常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。
深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。
DFS通过递归或者使用栈来实现。
从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。
DFS的过程可以看作是沿着树的深度进行遍历的过程。
DFS的一个经典应用是在迷宫中找到一条路径。
广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。
BFS通过使用队列实现。
从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。
BFS的过程可以看作是树的层次遍历的过程。
BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。
在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。
在实际应用中,图的遍历可以用来解决许多问题。
比如在地图应用中,我们可以用图的遍历算法来查找最短路径。
在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。
在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。
在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。
然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。
在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。
为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。
数据结构与算法(13):深度优先搜索和广度优先搜索
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。
深度优先算法与广度优先算法
深度优先算法与⼴度优先算法深度优先搜索和⼴度优先搜索,都是图形搜索算法,它两相似,⼜却不同,在应⽤上也被⽤到不同的地⽅。
这⾥拿⼀起讨论,⽅便⽐较。
⼀、深度优先搜索深度优先搜索属于图算法的⼀种,是⼀个针对图和树的遍历算法,英⽂缩写为DFS即Depth First Search。
深度优先搜索是图论中的经典算法,利⽤深度优先搜索算法可以产⽣⽬标图的相应拓扑排序表,利⽤拓扑排序表可以⽅便的解决很多相关的图论问题,如最⼤路径问题等等。
⼀般⽤堆数据结构来辅助实现DFS算法。
其过程简要来说是对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个节点只能访问⼀次。
基本步奏(1)对于下⾯的树⽽⾔,DFS⽅法⾸先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。
(2)从stack中访问栈顶的点;(3)找出与此点邻接的且尚未遍历的点,进⾏标记,然后放⼊stack中,依次进⾏;(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进⾏;(5)直到遍历完整个树,stack⾥的元素都将弹出,最后栈为空,DFS遍历完成。
⼆、⼴度优先搜索⼴度优先搜索(也称宽度优先搜索,缩写BFS,以下采⽤⼴度来描述)是连通图的⼀种遍历算法这⼀算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim最⼩⽣成树算法都采⽤了和宽度优先搜索类似的思想。
其别名⼜叫BFS,属于⼀种盲⽬搜寻法,⽬的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为⽌。
基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。
如果所有节点均被访问,则算法中⽌。
⼀般⽤队列数据结构来辅助实现BFS算法。
基本步奏(1)给出⼀连通图,如图,初始化全是⽩⾊(未访问);(2)搜索起点V1(灰⾊);(3)已搜索V1(⿊⾊),即将搜索V2,V3,V4(标灰);(4)对V2,V3,V4重复以上操作;(5)直到终点V7被染灰,终⽌;(6)最短路径为V1,V4,V7.作者:安然若知链接:https:///p/bff70b786bb6来源:简书简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
深度遍历和广度遍历例题
深度遍历和广度遍历例题摘要:深度遍历和广度遍历例题I.深度优先遍历A.定义和概念B.深度优先遍历的例子C.深度优先遍历的性质D.应用场景II.广度优先遍历A.定义和概念B.广度优先遍历的例子C.广度优先遍历的性质D.应用场景III.深度遍历和广度遍历的比较A.遍历策略的差异B.时间和空间复杂度C.应用场景的优劣IV.总结A.深度优先遍历和广度优先遍历的联系与区别B.在实际问题中的应用选择C.对图论算法的影响和意义正文:深度遍历和广度遍历例题深度优先遍历(Depth-First Search, DFS)和广度优先遍历(Breadth-First Search, BFS)是两种常用的图遍历算法。
在图论和计算机科学中,遍历算法是研究图的基本操作之一,它从图中的一个顶点开始,访问图中的所有顶点一次且只一次。
深度优先遍历和广度优先遍历是两种不同的遍历策略,分别有不同的性质和应用场景。
深度优先遍历是一种树形遍历策略,遵循“先深后浅”的原则。
它从起始顶点开始,沿着一条路径一直向下访问,直到无法继续向下访问为止,然后回溯到上一个节点,继续访问其邻接节点。
深度优先遍历的例子可以帮助我们更好地理解这种遍历策略,如遍历二叉树的前序遍历、中序遍历和后序遍历。
深度优先遍历具有以下性质:1.深度优先遍历可以访问到所有的顶点,没有遗漏。
2.深度优先遍历可以发现所有可达路径,但不能保证是最短路径。
3.深度优先遍历的时间复杂度为O(n),空间复杂度为O(n)。
深度优先遍历在图论和计算机科学中有广泛的应用,如寻找连通分量、拓扑排序、求解迷宫等问题。
广度优先遍历是一种层次遍历策略,遵循“先浅后深”的原则。
它从起始顶点开始,逐层访问其邻接节点,每层节点都按顺序访问。
广度优先遍历的例子可以帮助我们更好地理解这种遍历策略,如遍历二叉树的层序遍历。
广度优先遍历具有以下性质:1.广度优先遍历可以访问到所有的顶点,没有遗漏。
2.广度优先遍历可以发现所有最短路径,但不能保证是最优路径。
(转载)图的深度优先遍历非递归算法
(转载)图的深度优先遍历⾮递归算法纠结图的深度优先搜索算法好久,⾮递归算法需要⽤到栈来记录上⼀次访问的结果,但是⼤脑中反应不出来。
这⾥做⼀个记录:栈的⽤处:在这⼀步执⾏完成之后,下⼀步需要⽤到上⼀步执⾏的结果,⽤栈来实现往往是最有效的。
以下是转载的内容:深度优先遍历算法的⾮递归实现需要了解深度优先遍历的执⾏过程,设计⼀个栈来模拟递归实现中系统设置的⼯作栈,算法的伪代码描述为:假设图采⽤邻接矩阵作为存储结构,具体算法如下:[cpp]1. 深度优先遍历算法的⾮递归实现需要了解深度优先遍历的执⾏过程,设计⼀个栈来模拟递归实现中系统设置的⼯作栈,算法的伪代码描述为:2.3.4. 假设图采⽤邻接矩阵作为存储结构,具体算法如下:5.6.7. <PRE class=cpp name="code">#include<iostream>8. #include <queue>9. using namespace std;10. #define MAX_NODE 1211. bool visited[MAX_NODE] ;12. int stack[ MAX_NODE] ;13. queue<int> q;14. int Matric[MAX_NODE][MAX_NODE] =15. {16. {-1,1,1,0,0,0,0,0,0,0,0,0},17. {1,-1,1,0,1,1,0,0,0,0,0,0},18. {1,1,-1,1,0,0,0,0,0,0,0,0},19. {0,0,1,-1,1,0,0,0,0,0,1,1},20. {0,1,0,1,-1,0,0,0,0,0,0,0},21. {0,1,0,0,0,-1,0,0,0,0,1,0},22. {0,0,0,0,0,0,-1,1,1,1,0,0},23. {0,0,0,0,0,0,1,-1,0,0,0,0},24. {0,0,0,0,0,0,1,0,-1,1,1,0},25. {0,0,0,0,0,0,1,0,1,-1,0,1},26. {0,0,0,1,0,1,0,0,1,0,-1,0},27. {0,0,0,1,0,0,0,0,0,1,0,-1},28. };29. void DFS( int v)30. {31. cout << " v"<< v ;32. int top = -1 ;33. visited[v] = true ;34. stack[++top] = v ;35. while ( top != -1)36. {37. v = stack[top] ;38. for (int i = 0 ; i < MAX_NODE ; i++)39. {40. if (Matric[v][i] == 1 &&!visited[i])41. {42. cout << " v" << i ;43. visited[i] = true ;44. stack[ ++top ] = i ;45. break ;46. }47. }48. if( i == MAX_NODE)49. {50. top -- ;51. }52. }53.54. }55.56.57. void BFS( int v)58. {59. int node = 0;60. q.push(v);61. visited[v] = true;62. while( !q.empty())63. {64. node = q.front();65. for ( int i = 0; i < MAX_NODE; i++ )66. {67. if ( Matric[node][i] == 1 && !visited[i])68. {69. visited[i] = true;70. q.push(i);71. }72. }73. cout <<" v" << node;74. q.pop();75. }76.77.78. }79. void Init()80. {81.82. int i = 0;83. for ( i = 0; i < MAX_NODE; i++)84. {85. visited[i] = false;86. }87. }88. int main()89. {90. Init();91. DFS( 1 ) ;92. cout << endl ;93. Init();94. BFS( 1 );95. cout << endl;96. Init();97. DFS( 6 );98. cout <<endl;99. return 0 ;100. }</PRE>101. <PRE></PRE>102. <PRE class=cpp name="code"></PRE> 深度优先遍历算法的⾮递归实现需要了解深度优先遍历的执⾏过程,设计⼀个栈来模拟递归实现中系统设置的⼯作栈,算法的伪代码描述为: 假设图采⽤邻接矩阵作为存储结构,具体算法如下:[cpp]1. #include<iostream>2. #include <queue>3. using namespace std;4. #define MAX_NODE 125. bool visited[MAX_NODE] ;6. int stack[ MAX_NODE] ;7. queue<int> q;8. int Matric[MAX_NODE][MAX_NODE] =9. {10. {-1,1,1,0,0,0,0,0,0,0,0,0},11. {1,-1,1,0,1,1,0,0,0,0,0,0},12. {1,1,-1,1,0,0,0,0,0,0,0,0},13. {0,0,1,-1,1,0,0,0,0,0,1,1},14. {0,1,0,1,-1,0,0,0,0,0,0,0},15. {0,1,0,0,0,-1,0,0,0,0,1,0},16. {0,0,0,0,0,0,-1,1,1,1,0,0},17. {0,0,0,0,0,0,1,-1,0,0,0,0},18. {0,0,0,0,0,0,1,0,-1,1,1,0},19. {0,0,0,0,0,0,1,0,1,-1,0,1},20. {0,0,0,1,0,1,0,0,1,0,-1,0},21. {0,0,0,1,0,0,0,0,0,1,0,-1},22. };23. void DFS( int v)24. {25. cout << " v"<< v ;26. int top = -1 ;27. visited[v] = true ;28. stack[++top] = v ;29. while ( top != -1)30. {31. v = stack[top] ;32. for (int i = 0 ; i < MAX_NODE ; i++)33. {34. if (Matric[v][i] == 1 &&!visited[i])35. {36. cout << " v" << i ;37. visited[i] = true ;38. stack[ ++top ] = i ;39. break ;40. }41. }42. if( i == MAX_NODE)43. {44. top -- ;45. }46. }47.48. }49.50.51. void BFS( int v)52. {53. int node = 0;54. q.push(v);55. visited[v] = true;56. while( !q.empty())57. {58. node = q.front();59. for ( int i = 0; i < MAX_NODE; i++ )60. {61. if ( Matric[node][i] == 1 && !visited[i])62. {63. visited[i] = true;64. q.push(i);65. }66. }67. cout <<" v" << node;68. q.pop();69. }70.71.72. }73. void Init()74. {75.76. int i = 0;77. for ( i = 0; i < MAX_NODE; i++)78. {79. visited[i] = false;80. }81. }82. int main()83. {84. Init();85. DFS( 1 ) ;86. cout << endl ;87. Init();88. BFS( 1 );89. cout << endl;90. Init();91. DFS( 6 );92. cout <<endl;93. return 0 ;94. }。
图的深度优先遍历(课堂PPT)
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v1 v,4
v5
v1
v2
v,8
Байду номын сангаасv4
v,5
v2
v8
v,3 v6 v7
32
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v4
v,5
v2
v8
34
0
v,1
1 v1
v2 v3
2 v2
v1 v4
v5
v,2
v,3
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5
v2 v8
v1 v,4
v5
v2
v,8
v1
v,6
v7
v3
v7
6 v6 7 v7 8 v8
v3 v7 v3 v6 v4 v5
v4
v,5
v2
v8
35
0
v,1
1 v1
v2 v3
v,1
v,2
v1 v,4
v5
v2
v,8
v4
v5
v3
17
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
深度优先遍历的算法
深度优先遍历的算法深度优先遍历(Depth-First Search,DFS)是一种用来遍历或树或图的算法。
它以一个起始节点开始,沿着路径尽可能深地,直到到达最深处或无法继续为止,然后回溯到上一个节点,继续其他路径。
DFS通过栈来实现,每次访问一个节点时,将其标记为已访问,并将其相邻的未访问节点压入栈中。
然后从栈中弹出节点,重复这个过程,直到栈为空为止。
1.创建一个栈,用来存储待访问的节点。
2.将起始节点标记为已访问,并将其压入栈中。
3.当栈不为空时,执行以下步骤:-弹出栈顶节点,并输出该节点的值。
-将该节点的未访问的相邻节点标记为已访问,并将其压入栈中。
4.重复步骤3,直到栈为空为止。
-深度优先遍历是一种先序遍历,即先访问节点本身,然后访问其子节点。
-深度优先遍历可以用来求解连通图、查找路径等问题。
-深度优先遍历的时间复杂度为O(V+E),其中V为节点数,E为边数。
1.求解连通图:深度优先遍历可以用来判断一个图是否连通,即从一个节点是否能够访问到所有其他节点。
2.查找路径:深度优先遍历可以找到两个节点之间的路径。
当遇到目标节点时,即可停止遍历,返回路径结果。
3.拓扑排序:深度优先遍历可以进行拓扑排序,即将有依赖关系的任务按一定的顺序排列。
深度优先遍历的实现可以通过递归或迭代方式来完成。
递归方式更加简洁,但在处理大规模图时可能导致栈溢出。
迭代方式则可以采用栈来避免栈溢出问题。
无论是递归方式还是迭代方式,其核心思想都是通过访问节点的相邻节点来进行深入,直至遍历完整个图或树的节点。
总而言之,深度优先遍历是一种常用的图遍历算法,它以一种深入优先的方式遍历路径。
在实际应用中,深度优先遍历可以用来求解连通图、查找路径和拓扑排序等问题,是图算法中的重要工具之一。
深度优先遍历的规则
深度优先遍历的规则深度优先遍历是一种用来遍历树形结构的算法,它会优先探索深度,直到到达底部才会返回上一层。
在这个过程中,它会把每个节点都经过且只经过一次。
深度优先遍历的规则如下:1. 从根节点开始,访问它的左子树。
2. 如果左子树存在,则重复步骤1直到访问到叶子节点。
3. 如果到达叶子节点,则返回上一层节点,访问右子树。
4. 如果右子树存在,则重复步骤1直到访问到叶子节点。
5. 如果右子树也不存在,则再次返回上一层节点,直到回到根节点。
这个规则可以用递归函数来实现:```function DFS(node) {if(node == null) return;console.log(node.val); //访问节点DFS(node.left); //访问左子树DFS(node.right); //访问右子树}```实际上,深度优先遍历有多种实现方式,递归算法只是其中之一。
还可以用非递归的方式来实现。
这种方式需要用到栈来储存遍历过程中访问到的节点。
具体实现方式如下:```function DFS(node) {if(node == null) return;const stack = [node]; // 初始化栈while(stack.length) { // 只要栈不为空,就继续遍历const cur = stack.pop(); // 取出栈顶节点console.log(cur.val); // 访问节点if(cur.right != null) stack.push(cur.right); // 右子树入栈if(cur.left != null) stack.push(cur.left); // 左子树入栈 }}```无论采用哪种实现方式,深度优先遍历的规则都是相同的。
在遍历过程中,每个节点都会被访问到且只被访问一次,且整个遍历的顺序是深度优先的。
这种遍历方式适用于大部分的树形结构,包括二叉树、多叉树、图等等。
DFS深度优先搜索及示意图
和树的遍历相似,若从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph)。
图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。
图的遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS)。
对每种搜索顺序,访问各顶点的顺序也不是唯一的。
1、邻接表及逆邻接表的存储方法(1)定义邻接表是图的一种链式存储结构。
类似于树的孩子链表表示法。
在邻接表中为图中每个顶点建立一个单链表,用单链表中的一个结点表示依附于该顶点的一条边(或表示以该顶点为弧尾的一条弧),称为边(或弧)结点。
特征如下:1) 为每个顶点建立一个单链表,2) 第i个单链表中包含顶点Vi的所有邻接顶点。
把同一个顶点发出的边链接在同一个边链表中,链表的每一个结点代表一条边,叫做表结点(边结点),邻接点域adjvex保存与该边相关联的另一顶点的顶点下标,链域nextarc存放指向同一链表中下一个表结点的指针,数据域info存放边的权。
边链表的表头指针存放在头结点中。
头结点以顺序结构存储,其数据域data存放顶点信息,链域firstarc指向链表中第一个顶点。
带权图的边结点中info保存该边上的权值。
顶点Vi 的边链表的头结点存放在下标为i 的顶点数组中。
在邻接表的边链表中,各个边结点的链入顺序任意,视边结点输入次序而定。
设图中有n 个顶点,e 条边,则用邻接表表示无向图时,需要n 个顶点结点,2e 个边结点;用邻接表表示有向图时,若不考虑逆邻接表,只需n 个顶点结点,e 个边结点。
建立邻接表的时间复杂度为O(n*e)。
若顶点信息即为顶点的下标,则时间复杂度为O(n+e)。
(2)邻接表的示例及逆邻接表在有向图的邻接表中,第i 个链表中结点的个数是顶点Vi的出度,表结点的adjvex存储的是以当前头结点为弧尾的弦。
在所有链表中其邻接点域的值为i的结点的个数是顶点vi的入度。
在有向图的逆邻接表中,第i 个链表中结点的个数是顶点Vi 的入度,表结点的adjvex存储的是以当前头结点为弧首的弦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八:图的深度优先遍历
一、实验内容
建立一个包含6个结点的图,并实现该图的深度优先搜索遍历。
二、知识要点
深度优先搜索遍历图的算法:首先访问指定的起始顶点V0,从V0出发,访问V o的一个未被访问过的邻接顶点W1,再从W1出发,访问W1的一个未被访问的顶点W2,然后从W2出发,访问W2的一个未被访问的邻接顶点W3,依此类推,直到一个所有邻接点都被访问过为止。
三、实现提示
图采用邻接表作存储结构,图的深度优先遍历次序为
①一②一④一⑤一⑥一③
参考程序运行过程中,深度优先遍历时指针P的移动方向示意如图5-1所示,图中P1、P2、P3、P4、P5和P6为深度优先遍历图的各结点时,指针p的移动次序。
深度优先遍历示意图
四、参考程序
实验结果验证:
输入8↙0↙1↙2↙3↙4↙5↙6↙7↙建立图的各个定点,然后输入0 1↙1 3↙1 4↙3 7↙4 7↙0 2↙2 5↙2 6↙5 6↙-1 -1↙建立各个弧,可以得到图的深度优先遍历次序为:0 2 6 5 1 4 7 3
五、思考与提高
对于一个无向连通图来说,从图中任一顶点出发,都可以访问到图中各个顶点。
而对于非连通的无向图,则需要多次调用深度优先遍历函数dfs(),每次调用得到的顶点访问序列恰好是各个连通分量中的顶点集。
试修改参考程序,使之能够求出图是否连通以及非连通图
中连通分量的个数。