直线与方程练习题

合集下载

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

直线与方程练习题

直线与方程练习题

直线与方程测试题1. 已知点A (1,3)关于直线l 的对称点为B (-5,1),则直线l 的方程为2. 已知两直线1130a x b y ++=和2230a x b y ++=的交点是(2,3),则过两点1122(,),(,)P a b Q a b 的直线方程是 。

3. .直线340x y k -+=在两坐标轴上的截距之和为2,则k =_______4. 若正方形三条边所在直线方程是:2x+y ﹣1=0,2x+y+1=0,x ﹣2y ﹣1=0,则第四条边直线所在方程是 .5. 直线0632=-+y x 关于直线02=++y x 对称的直线方程为 .6. 若直线x+(a ﹣1)y+1=0与直线ax+2y+2=0垂直,则实数a 的值为 .7. 若三条直线4x+y+4=0,mx+y+1=0,x ﹣y+1=0不能围成三角形,则实数m 取值范围是 .8. 已知点(,)P x y 在经过点(3,0),(1,1)A B 两点的直线上,则39x y +的最小值为_____ 9. 已知点A (1,﹣2),B (m ,2),且线段AB 的垂直平分线的方程是x+2y ﹣2=0,则实数m 的值是10. 经过点(-2,3)且与直线2x+y-5=0垂直的直线方程为______11. 直线1:1l x y +=与直线2:2230l x y +-=之间的距离为______________12. 经过直线0123=+-y x 和直线043=++y x 的交点,且垂直于直线043=++y x 的直线方程为____________13. 设直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.14.已知直线l经过点A)3,1(,求:(1)直线l在两坐标轴上的截距相等的直线方程;(2)直线l与两坐标轴的正半轴围成三角形面积最小时的直线方程;15.在平面直角坐标系xOy中,设直线:l1:kx﹣y=0,直线:l2:(2k﹣1)x+(k﹣1)y﹣7k+4=0.(1)若直线:l1∥:l2,求实数k的值;(2)求证:直线:l2过定点C,并求出点C的坐标;(3)当k=2时,设直线:l1,:l2交点为A,过A作x轴的垂线,垂足为B,求点A到直线BC的距离d.16.(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.。

直线与方程(练习题)

直线与方程(练习题)

直线与方程课堂训练1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x8.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.29.直线x a y b 221-=在y 轴上的截距是( ) A .b B .2b - C .b 2D .±b 10.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)11.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与,,a b θ的值有关课后练习1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

必修2---直线与圆

必修2---直线与圆

《直线与方程》练习题一、选择题1、若直线1=x 的倾斜角为α,则=α( )A 、ο0B 、ο45C 、ο90D 、不存在2、经过两点)3,2(),12,4(-+B y A 的直线的倾斜角为ο135,则y 的值等于( )A 、1-B 、3-C 、0D 、23、过点(1-,4)作直线l 使点M (1,2)到直线l 距离最大,则直线l 的方程为( )A 、03=-+y xB 、05=++y xC 、01=+-y xD 、05=+-y x4、如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限5、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( )A 、1条B 、2条C 、3条D 、4条6、已知直线012)4()4(2=++++--m y m x m m 的倾斜角为ο135,则m 的值是( )A 、2-或4B 、4-或2C 、4或0D 、0或2-7、直线l 与直线0632=-+y x 关于点)1,1(-对称,则直线l 的方程是( )A 、0223=+-y xB 、0732=++y xC 、01223=--y xD 、0832=++y x8、方程2240x y -=表示的图形是( )A 、两条相交而不垂直的直线B 、一个点C 、两条垂直直线D 、两条平行直线9、下列说法正确的是A 、 若直线1l 与2l 的斜率相等,则1l ∥2l ;B 、若直线1l ∥2l ,则1l 与2l 的斜率相等;C 、若一条直线的斜率存在,另一条直线的斜率不存在,则它们一定相交;D 、若直线1l 与2l 的斜率都不存在,则1l ∥2l10、到直线0143=+-y x 的距离为3,且与此直线平行的直线方程为 ( )A 、0443=+-y xB 、02430443=--=+-y x y x 或C 、01643=+-y xD 、0144301643=--=+-y x y x 或11、若直线y x k =+与曲线21y x -=恰有一个公共点,则k 的取值范围是( )A 、;2±=kB 、;22-≤≥k k 或C 、;22<<-kD 、;112≤<--=k k 或12、若直线0ax by c ++=过第一、二、三象限,则a 、b 、c 应满足的条件是A、0,0ab bc >> B 、0,0ab bc <> C 、 0,0ab bc >< D 、0,0ab bc <<二、填空题13、如果直线l 与直线x +y -1=0关于y 轴对称,则直线l 的方程是 。

直线与方程基础练习题1

直线与方程基础练习题1

直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( )A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限D. 直线不经过第四象限 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =. -3 D .37.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D .8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( )A .2 B .3 C .5 D .1 9.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( ) A 、0 B 、2 C 、-2 D 、0或-210.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A 3x-y-8=0 B 3x+y+4=0C C 3x-y+6=0 D 3x+y+2=011.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( ) A.(–2, –3) B.(2, 3) C.(2, 1) D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13与直线320x y --=平行,那么系数a 等于( ).A. 6 B 14.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( )A.1-或B.1或 或1- 115.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、116.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ( )A .3 B .7 C .10 D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18在y 轴上的截距是( )A B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 A .-2 B.2 C.-8 D.-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值范围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是A.(1,0)B.(0,3)-C.(6,3)- 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --=33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对35.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x 39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 ( )40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( )A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-=44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为( ) A .2 ,7 B .0,8 C .-1,2 D .0,-8 46.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 . 50.与直线5247=+y x 平行,并且距离等于3的直线方程是____________三、解答题52. ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.53.直线x+m2y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m 的值.圆与圆的方程一、选择题1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( )A 、(1,-1)B 、-1)C 、(-1,2)D 、(-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( )A .(x -3)2+(y+1)2=4B .(x -1)2+(y -1)2=4C .(x+3)2+(y -1)2=4D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b)4.两圆x 2+y 2-4x+6y=0和x 2+y 2-6x=0的连心线方程为( )A .x+y+3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y+7=0 5.方程052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<<m B .141><m m 或 C .41<m D .1>m7.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 9.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1<a <1 B . 0<a <1 C .–1<a <51 D .-51<a <1 10.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( )A.|a |<1B.a |a D .|a 二、填空、解答题11.若方程x 2+y 2+Dx+Ey+F=0,表示以(2,-4)为圆心,4为半径的圆,则F=_____ 15.求过点A (2,0)、B (6,0)和C (0,-2)的圆的方程。

直线与方程练习题

直线与方程练习题

直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。

2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。

3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。

4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。

5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。

二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。

2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。

3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。

4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。

5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。

1直线与方程练习题及答案详解(可编辑修改word版)

1直线与方程练习题及答案详解(可编辑修改word版)

直线与方程练习题及答案详解一、选择题1.设直线ax +by +c = 0 的倾斜角为,且sin+ cos= 0 ,则a, b 满足()A. a +b = 1 C. a +b =0B. a -b =1 D.a -b = 02.过点 P(-1, 3) 且垂直于直线 x - 2 y + 3 = 0 的直线方程为()A.2x +y -1= 0 C.x + 2 y - 5 = 0B.2x +y - 5 = 0 D.x - 2 y + 7 = 03.已知过点A(-2, m) 和B(m, 4) 的直线与直线2x +y -1= 0 平行,则m 的值为()A.0B.- 8C. 2 D.104.已知ab < 0, bc < 0 ,则直线ax +by =c 通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x =1 的倾斜角和斜率分别是()A.450,1 B.1350, -1C.900,不存在D.1800,不存在6.若方程(2m2+m -3)x + (m2-m) y -4m +1= 0 表示一条直线,则实数m 满足()A.m ≠ 0 C.m ≠ 1B.m ≠-32D.m ≠ 1,m ≠-3,m ≠ 02二、填空题1.点 P(1, -1) 到直线x -y +1 = 0 的距离是.2.已知直线l1 : y = 2x + 3, 若l2 与l1 关于y 轴对称,则l2 的方程为; 若l3 与l1 关于x 轴对称,则l3 的方程为;若l4 与l1 关于y =x 对称,则l4 的方程为;1 3.若原点在直线l 上的射影为(2,-1) ,则l 的方程为。

4. 点 P (x , y ) 在直线 x + y - 4 = 0 上,则 x 2 + y 2 的最小值是.5. 直线l 过原点且平分 ABCD 的面积,若平行四边形的两个顶点为B (1, 4), D (5, 0) ,则直线l 的方程为。

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题A 组——基础对点练1.直线x +3y +a =0(a 为实常数)的倾斜角的大小是( ) A .30° B .60° C .120°D .150°解析:直线x +3y +a =0(a 为实常数)的斜率为-33,令其倾斜角为θ,则tan θ=-33,解得θ=150°,故选D. 答案:D2.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:直线Ax +By +C =0可化为y =-A B x -C B ,∵AB <0,BC <0,∴-A B >0,-CB >0.∴直线过第一、二、三象限,不过第四象限,故选D. 答案:D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4] B .[3π4,π) C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是[3π4,π). 答案:B4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0 C .m ≠0且m ≠1D .m ≠1解析:由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.答案:D5.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C. 答案:C6.设直线l 的方程为x +y cos θ+3=0(θ∈R),则直线l 的倾斜角α的取值范围是( ) A .[0,π) B .⎝ ⎛⎭⎪⎫π4,π2C.⎣⎢⎡⎦⎥⎤π4,3π4 D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C7.(2018·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .4x +3y +6=0 C .3x +y +6=0D .3x -4y +10=0解析:设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:A8.直线(2m +1)x +(m +1)y -7m -4=0过定点( ) A .(1,-3) B .(4,3) C .(3,1)D .(2,3)解析:2mx +x +my +y -7m -4=0,即(2x +y -7)m +(x +y -4)=0,由⎩⎪⎨⎪⎧ 2x +y =7,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1.则直线过定点(3,1),故选C. 答案:C9.(2018·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( ) A .0≤α≤π4 B .π2<α<π C.π4≤α<π2D .π2<α≤3π4解析:直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.答案:C10.已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0B .2 C.2 D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D11.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12,∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B.答案:B12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 解析:如图,因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:(-∞,-3]∪[1,+∞)13.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴上的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2. 答案:1或-214.(2018·武汉市模拟)若直线2x +y +m =0过圆x 2+y 2-2x +4y =0的圆心,则m 的值为________.解析:圆x 2+y 2-2x +4y =0可化为(x -1)2+(y +2)2=5,圆心为(1,-2),则直线2x +y +m =0过圆心(1,-2),故2-2+m =0,m =0. 答案:015.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,求b 的取值范围. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].B 组——能力提升练1.已知f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( ) A.π3 B .π6 C.π4D .3π4解析:令x =π4,则f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,则直线ax -by +c =0的斜率k =a b =-1,其倾斜角为3π4.故选D. 答案:D2.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=0解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0. 答案:A3.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,而这两点连线所在直线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2,故选A. 答案:A4.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .(1-22,12) C .(1-22,13]D .[13,12)解析:由⎩⎪⎨⎪⎧x +y =1y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点(-b a ,0),结合图形(图略)知12×a +b a +1×(1+b a )=12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b=1-22,故选B. 答案:B5.已知p :“直线l 的倾斜角α>π4”;q :“直线l 的斜率k >1”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当π2<α≤π时,tan α≤0,即k ≤0,而当k >1时,即tan α>1,则π4<α<π2,所以p 是q 的必要不充分条件,故选B.6.若经过点(1,0)的直线l 的倾斜角是直线x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -4=0 B .3x -4y -3=0 C .3x +4y -3=0D .4x +3y -4=0解析:设直线x -2y -2=0的倾斜角为α,则其斜率tan α=12,直线l 的斜率tan 2α=2tan α1-tan 2α=43.又因为l 经过点(1,0),所以其方程为4x -3y -4=0,故选A. 答案:A7.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A .-53或-35 B .-32或-23 C .-54或-45D .-43或-34解析:由题知,反射光线所在直线过点(2,-3),设反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.∵圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径为1,且反射光线与该圆相切, ∴|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或k =-34.答案:D8.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( )A.103 B .-103 C.1013D .-1013解析:依题意,tan θ=-3(θ∈[0,π)),所以23sin 2θ-cos 2θ=2(sin 2θ+cos 2θ)3sin 2θ-cos 2θ=2(tan 2θ+1)3tan 2θ-1=1013,故选C. 答案:C9.(2018·天津模拟)已知m ,n 为正整数,且直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,则2m +n 的最小值为( ) A .7 B .9 C .11 D .16解析:∵直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,∴2n =m (n -1),∴m +2n =mn ,两边同除以mn 可得2m +1n =1,∵m ,n 为正整数, ∴2m +n =(2m +n )⎝ ⎛⎭⎪⎫2m +1n =5+2n m +2m n ≥5+22n m ·2m n =9.当且仅当2n m =2mn 时取等号.故选B. 答案:B10.直线x cos θ-y -1=0(θ∈R)的倾斜角α的取值范围为________.解析:直线的斜率为k =cos θ∈[-1,1],即tan α∈[-1,1],所以α∈[0,π4]∪[34π,π).答案:[0,π4]∪[34π,π)11.过点A (1,2)且与直线x -2y +3=0垂直的直线方程为________.解析:直线x -2y +3=0的斜率为12,所以由垂直关系可得要求直线的斜率为-2,所以所求方程为y -2=-2(x -1),即2x +y -4=0. 答案:2x +y -4=012.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5.答案:513.已知直线x =π4是函数f (x )=a sin x -b cos x (ab ≠0)图象的一条对称轴,求直线ax +by +c =0的倾斜角. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z.所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.高中语文《椭圆》练习题 A 组——基础对点练1.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2 B .3 C .4 D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B.答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k =1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1 C.x 22+y 2=1D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55 C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12. 答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( )A.12 B .22 C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e 22=4,又2-2e 21+2+2e 22≥22-2e 21·2+2e 22=22e 1·e 2,∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________. 解析:将椭圆的方程化为标准形式得y 22k +x 22=1,因为x 2+ky 2=2表示焦点在y轴上的椭圆,所以2k >2,解得0<k <1. 答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3. 答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c , 代入椭圆,得c 2a 2+y 2b 2=1. 解得|y |=b 2a =|AF 2|,即b 2a =36c , ∴a 2-c 2=36ac .∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b .令y =0,得点R 的横坐标为bx 0b -y 0.直线NP 的方程为y =y 0+bx 0x -b .令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎨⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0. 则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6)B .(1,5)C .(3,6)D .(3,5)解析:由于椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a 2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22)D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c ,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=ac .①又M 是椭圆x 2a 2+y 2b 2=1上一点, F 1,F 2是该椭圆的焦点, ∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a 2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a 2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1,∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,②①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, ∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值. 解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,① 把①代入x 24+y 2=1, 解得P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.② ①与②联立解得M ⎝ ⎛⎭⎪⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝ ⎛⎭⎪⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).。

直线与方程典型题(完)

直线与方程典型题(完)
3.若直线 与直线 垂直,则 。
4.若原点和点(4,-1)到直线 的距离相等,则a=____________;
5.直线5x+12y+3=0与直线10x+24y+5=0的距离是.
6. 过点 ,且在两坐标轴上截距相等的直线方程是_________________.
7.点 在直线 上,则 的最小值是___________。
15.一直线过点 ,并且在两坐标轴上截距之和为 ,这条直线方程是__________.
16.已知直线 与 关于直线 对称,直线 ⊥ ,则 的斜率是______.
三、解答题
1已知 ,在直线 和 上各找一点 ,使 的周长最小。
解:作点 关于直线 的对称点 ,再做点 关于 轴的对称点 ,连接 ,且 与 和 轴交于 两点,可知这样得到的 周长最小。如图
由点 及直线 ,可求得点 关于直线 的对称点 ,同样容易求得 关于 轴的对称点 。
所以直线 的方程为
令 ,得到直线 与 轴的交点 ,
解方程组 解得交点 。
综上,有 ,
2求经过点 ,并且在2个坐标轴上的截距绝对值相等的直线方程
3.。已知点 ,若直线l过点 。且与线段 相交,求直线l的斜率 的取值范围.
4.已知直线 和点A(-1,2)、B(0,3),试在 上找一点P,使得 的值最小,并求出这个最小值。
5.求经过直线 的交点且平行于直线 的直线方程.
6.求函数 的最小值
A(-2,1) B (2,1) C (1,-2) D (1,2)
15.点P(-1,2)到直线8x-6y+15=0的距离为( )
A 2 B C 1 D
16.已知 ,则直线 通过( )
A.第一、二、三象限B.第一、二、四象限

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。

等于0B。

等于π/2C。

等于πD。

不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。

k1<k2<k3B。

k3<k1<k2C。

k3<k2<k1D。

k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。

2B。

-2C。

4D。

14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。

π/3B。

2π/3C。

π/4D。

3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。

第一象限B。

第二象限C。

第三象限D。

第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。

x+y-5=0B。

2x-y-1=0C。

2y-x-4=0D。

2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。

19x-9y=0,19y=0B。

9x+19y=0C。

19x-3y=0D。

3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。

3B。

-3C。

1D。

-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。

a/(a+1)B。

-a/(a+1)C。

(a+1)/aD。

-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。

(-6,8)B。

(6,-8)C。

(-6,-8)D。

(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。

高中数学-直线与方程_练习测试题

高中数学-直线与方程_练习测试题

高中数学-直线与方程测试练习题1. 直线y=−2x+1在y轴上的截距是()A.0B.1C.−1D.122. 直线2x+y+1=0的斜率为k,在y轴上的截距为b,则()A.k=2,b=1B.k=−2,b=−1C.k=−2,b=1D.k=2,b=−13. 已知平行四边形相邻两边所在的直线方程是l1:x−2y+1=0和l2:3x−y−2=0,此四边形两条对角线的交点是(2, 3),则平行四边形另外两边所在直线的方程是()A.2x−y+7=0和x−3y−4=0 B.x−2y+7=0和3x−y−4=0C.x−2y+7=0和x−3y−4=0D.2x−y+7=0和3x−y−4=04. 若ab<0,则直线xa +yb=1的倾斜角为()A.arctg(ba ) B.π−arctg(ba) C.−arctg(ba) D.π+arctg(ba)5. 直线:,,所得到的不同直线条数是()A.22B.23C.24D.256. 设a<0,两直线x−a2y+1=0与(a2+1)x+by+3=0垂直,则ab的最大值为()A.−2B.−1C.1D.27. 已知点A(2, 0),B(−1, 1)到直线l的距离分别为1和2,则满足条件的直线l有()A.1条B.2条C.3条D.4条8. 设椭圆x24+y23=1的长轴端点为M、N,不同于M、N的点P在此椭圆上,那么PM、PN的斜率之积为( )A.−34B.−43C.34D.439. 过点P(−2, 3)且与两坐标轴围成的三角形面积为12的直线共有()条.A.1B.2C.3D.410. 已知两点A(−2, 0),B(0, 4),则线段AB的垂直平分线方程是()A.2x+y=0B.2x−y+4=0C.x+2y−3=0D.x−2y+5=011. 过点A(3, 2)、B(−1, 4)直线l的斜率k是________.12. 已知三角形的三个顶点是O(0,0),A(4,3),B(2,−1),则此三角形AB边上的中线所在直线的方程为________.13. 经过原点且经过直线I1:3x+4y−2=0,I2:2x+y+2=0交点的直线方程是________.14. 已知直线2x+y+2+λ(2−y)=0与两坐标轴围成一个三角形,该三角形的面积记为S(λ),当λ∈(1, +∞)时,S(λ)的最小值是________.15. 在△ABC中,已知角A,B,C所对的边依次为a,b,c,且2lg(sin B)=lg(sin A)+lg(sin C),则两条直线l1:x sin A+y sin B=a与l2:x sin B+y sin C=c的位置关系是________.16. 已知直线l1:ax+2y+6=0,直线l2:x+(a−1)y+a2−1=0.当a________时,l1与l2相交;当a________时,l1⊥l2;当a________时,l1与l2重合;当a________时,l1 // l2.17. 已知圆O:x2+y2=1和点A(−2, 0),若定点B(b, 0)(b≠−2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则:(Ⅰ)b=________−1;2(Ⅱ)λ=________1.218. 设点,若直线与线段有一个公共点,则的最小值为________.19. 直线x−y−4=0上有一点P,它与A( 4, −1 ),B( 3, 4 )两点的距离之差最大,则P 点坐标为________.20. 两平行直线5x+12y+3=0与10x+24y+5=0间的距离是________.21. 已知两直线l1:ax−by+4=0,l2:(a−1)x+y+b=0. 求分别满足下列条件的a,b的值.(1)直线l1过点(−3, −1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.22. 已知直线l的倾斜角为30∘,(结果化成一般式)(1)若直线l过点P(3, −4),求直线l的方程.(2)若直线l在x轴上截距为−2,求直线l的方程.(3)若直线l在y轴上截距为3,求直线l的方程.23. 过点M(2, 4)作两条互相垂直的直线,分别交x轴y轴的正半轴于A、B,若四边形OAMB的面积被直线AB平分,求直线AB的方程.24. 已知直线l经过点P(1, 2).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若A(1,−1),B(3,1)两点到直线l的距离相等,求直线l的方程.,且与x轴的正半轴交于A,与y轴的正半轴交25. 已知O为坐标原点,直线l的斜率为−34于B,三角形AOB面积等于6.(1)求直线l的方程.(2)设三角形AOB的重心为G,外心为M,内心为N,试求出它们的坐标,并判定这三点是否共线.参考答案与试题解析高中数学-直线与方程测试练习题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】确定直线位置的几何要素【解析】根据截距的定义,令x=0即可得到结论.【解答】解:当x=0时,y=1,即直线y=−2x+1在y轴上的截距是1,故选:B2.【答案】B【考点】直线的斜截式方程【解析】要求直线与x轴的截距就要令x=0求出y的值,要求直线与y轴的截距就要令y=0求出x的值即可.【解答】解:由直线方程2x+y+1=0,即y=−2x−1,故斜率为k=−2,截距为b=−1.故选B.3.【答案】B【考点】直线的一般式方程与直线的平行关系【解析】直接利用两直线平行的条件,斜率相等,得出答案.【解答】解:l1的对边与l1平行应为x−2y+c=0形式排除A、D;l2对边也与l2平行,应为3x−y+c1=0形式排除C,故选B.4.【答案】C【考点】直线的倾斜角【解析】根据题意,求出直线的斜率,再根据倾斜角的范围求出倾斜角的大小.解:直线xa +yb=1转化成y=−bax+ab直线斜率为−ba ,即直线倾斜角的正切值等于−ba,又倾斜角大于或等于0小于π,故倾斜角为−arctg(ba),故选C.5.【答案】B【考点】直线的倾斜角直线的两点式方程直线的截距式方程【解析】ry】根据排列知识求解,关键要减去重复的直线.【解答】当m,n相等时,有1种情况;当mn不相等时,有A12=6×5=30种情况,但1 2=24=36,21=42=63,23=46,13=26.重复了8条直线,因此共有1+30−8=23条直线故选B.6.【答案】A【考点】直线的一般式方程与直线的垂直关系【解析】由直线x−a2y+1=0与(a2+1)x+by+3=0互相垂直,结合两直线垂直,两斜率积为−1,我们易得到a,b的关系,结合基本不等式即可求出ab的范围.【解答】解:∵直线x−a2y+1=0与直线(a2+1)x+by+3=0互相垂直∴1a2×(−a2+1b)=−1∴b=a2+1a2∵a<0ab=a⋅a2+1a2=a+1a=−[−a+(−1a)]≤−2∴ab的最大值是−2.故选:A.7.【答案】D点到直线的距离公式确定直线位置的几何要素【解析】由已知得直线l与圆A:(x−2)2+y2=1相切,且直线l与圆B:(x+1)2+(y−1)2= 4相切,即直线l是圆A与圆B的公切线,由圆心距离d=|AB|=√(2+1)2+(0−1)2=√10>1+2=3,得两圆相离,从而求出满足条件的直线l有4条.【解答】解:点A(2, 0)到直线l的距离为1,则直线l是以A为圆心,1为半径的圆的切线,即直线l与圆A:(x−2)2+y2=1相切,点B(−1, 1)到直线l的距离为2,则直线l是以B为圆心,2为半径的圆的切线,即直线l与圆B:(x+1)2+(y−1)2=4相切,∴直线l是圆A与圆B的公切线,圆心距离d=|AB|=√(2+1)2+(0−1)2=√10>1+2=3,∴两圆相离,∴满足条件的直线l有4条.故选:D.8.【答案】A【考点】直线的斜率【解析】根据椭圆方程求得M,N的坐标,设P的坐标为(2cos w, √3sin w),进而表示出PM、PN 的斜率,二者相乘整理可求得答案.【解答】解:依题意可知M(2, 0),N(−2, 0),P是椭圆上任意一点,设坐标为P(2cos w, √3sin w),PM、PN的斜率分别是K1=√3sin w2(cos w−1),K2=√3b sin w 2(cos w+1)于是K1×K2=√3sin w2(cos w−1)⋅√3b sin w2(cos w+1)=34×sin2wcos2w−1=−3 4故选A.9.【答案】 C【考点】直线的截距式方程 【解析】设直线的斜率为k ,则有直线的方程为y −3=k(x +2),由直线过点P(−2, 3)且与两坐标轴围成的三角形面积为12求出k 的值有3个,从而得出结论. 【解答】解:过点P(−2, 3)且与两坐标轴围成的三角形面积为12的直线的斜率为k ,则有直线的方程为y −3=k(x +2),即kx −y +2k +3=0,它与坐标轴的交点分别为M(0, 2k +3)、N(−2−3k , 0). 再由12=12OM ⋅ON =12|2k +3|×|−2−3k|,可得|4k +9k+12|=24,4k +9k+12=24,或4k +9k +12=−24. 解得k =32,或 k =−9−6√22或 k =−9+6√22, 故满足条件的直线有3条, 故选C . 10. 【答案】 C【考点】与直线关于点、直线对称的直线方程 中点坐标公式两条直线垂直与倾斜角、斜率的关系【解析】求出AB 的中点坐标,直线AB 的斜率,然后求出AB 垂线的斜率,利用点斜式方程求出线段AB 的垂直平分线方程. 【解答】解:两点A(−2, 0),B(0, 4),它的中点坐标为:(−1, 2), 直线AB 的斜率为:4−00+2=2,AB 垂线的斜率为:−12, 线段AB 的垂直平分线方程是:y −2=−12(x +1),即:x +2y −3=0. 故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】 −12【考点】斜率的计算公式根据题意,由直线l 过点A 、B 的坐标,代入直线斜率的公式,计算可得答案. 【解答】解:根据题意,直线l 过点A(3, 2)、B(−1, 4), 则其斜率k =4−2−1−3=−12;故答案为:−12. 12.【答案】 x −3y =0 【考点】 中点坐标公式 直线的两点式方程【解析】因为AB 边上的中线所在直线经过点O 与AB 的中点,所以先求出AB 的中点坐标,写出直线方程,化成一般式即可. 【解答】解:∵ A (4,3),B (2,−1), ∴ AB 的中点坐标为C(4+22,3−12),即C(3,1). 又O(0,0),∴ 直线OC 方程为y =13x ,即x −3y =0,∴ 此三角形AB 边上的中线所在直线的方程为x −3y =0. 故答案为:x −3y =0. 13.【答案】 y =−x 【考点】两条直线的交点坐标 【解析】联立{3x +4y −2=02x +y +2=0,解得交点(−2, 2),再利用点斜式即可得出.【解答】解:联立{3x +4y −2=02x +y +2=0,解得{x =−2y =2.∴ 交点(−2, 2).∴ 要求的直线斜率k =2−2=−1. ∴ 要求的直线方程为y =−x .14. 【答案】 8直线的图象特征与倾斜角、斜率的关系【解析】求出直线2x+y+2+λ(2−y)=0与坐标轴的交点A、B的坐标,计算△AOB的面积,求出最小值即可.【解答】直线2x+y+2+λ(2−y)=0中,令x=0,得y=,令y=0,得x=−λ−1,所以直线2x+y+2+λ(2−y)=0与坐标轴的交点为A(−λ−1, 0),B(0,),其中λ∈(1, +∞),所以△AOB的面积为S(λ)=×|−λ−1|×||==λ−1+ +4≥2×+4=8,当且仅当λ−1=,即λ=3时取等号.所以S(λ)的最小值是8.15.【答案】平行或重合【考点】直线的一般式方程【解析】由对数的运算性质可知sin2B=sin A⋅sin C,再利用比例关系sin Asin B =sin Bsin C≠ac即可判断两直线的位置关系.【解答】解:依题意,sin2B=sin A⋅sin C,∴sin Asin B =sin Bsin C,即两直线方程中x的系数之比与y的系数之比相等,∴两条直线l1:x sin A+y sin B=a与l2:x sin B+y sin C=c平行或重合.故答案为:平行或重合.16.【答案】a≠−1且a≠2,=23,a=2,a=−1【考点】方程组解的个数与两直线的位置关系【解析】由a(a−1)−2×1=0可解得a=−1或a=2,验证可得两直线平行,重合,相交的条件,由a ×1+2(a −1)=0可解得垂直的条件. 【解答】解:由a(a −1)−2×1=0可解得a =−1或a =2,当a =−1时,l 1:−x +2y +6=0,l 2:x +2y =0,显然l 1 // l 2. 当a =2时,l 1:x +y +3=0,l 2:x +y +3=0,显然l 1与l 2重合, ∴ 当a ≠−1且a ≠2时,l 1与l 2相交,由a ×1+2(a −1)=0可解得a =23,此时l 1⊥l 2; 故答案为:a ≠−1且a ≠2;=23;a =2;a =−1 17. 【答案】 ,【考点】 三点共线 【解析】(Ⅰ)利用|MB|=λ|MA|,可得(x −b)2+y 2=λ2(x +2)2+λ2y 2,由题意,取(1, 0)、(−1, 0)分别代入,即可求得b ;(Ⅱ)取(1, 0)、(−1, 0)分别代入,即可求得λ. 【解答】解法一:设点M(cos θ, sin θ),则由|MB|=λ|MA|得(cos θ−b)2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],即−2b cos θ+b 2+1=4λ2cos θ+5λ2对任意θ都成立,所以{−2b =4λ2b 2+1=5λ2.又由|MB|=λ|MA|得λ>0,且b ≠−2,解得{b =−12λ=12.解法二:(Ⅰ)设M(x, y),则 ∵ |MB|=λ|MA|,∴ (x −b)2+y 2=λ2(x +2)2+λ2y 2,由题意,取(1, 0)、(−1, 0)分别代入可得(1−b)2=λ2(1+2)2,(−1−b)2=λ2(−1+2)2,∴ b =−12,λ=12.(2)由(Ⅰ)知λ=12.18. 【答案】15【考点】待定系数法求直线方程 点到直线的距离公式 【解析】 tb +P试题分析:一…直线ax+b=1与线段AB有一个公共点,2)…点A(1,0),B(2,1)在直线ax+by=1的两侧,(a−1)(2a+b−1)≤0即a−1≤0,2a+b−1≥0或a−1≥0,2a+b−1≤0画出它们表示的平面区域,如图所示.a2+b2表示原点到区域内的点的距离的平方,由图可知,当原点O到直线2x+y−1=0的距离为原点到区域内的点的距离的最小值,d=|−1|√4+1那么a2+b2的最小值为:d2=15【解答】此题暂无解答19.【答案】(3, −1)【考点】两点间的距离公式与直线关于点、直线对称的直线方程【解析】判断A,B与直线的位置关系,求出A关于直线的对称点A1的坐标,求出直线A1B的方程,与直线x−y−4=0联立,求出P的坐标.【解答】解:易知A(4, −1)、B(3, 4)在直线l:x−y−4=0的两侧.作A关于直线l的对称点A1(3, 0),当A1、B、P共线时距离之差最大,A1B的方程为:x=3…①直线x−y−4=0…②解①②得P点的坐标是(3, −1)故答案为:(3, −1).20.【答案】126【考点】两条平行直线间的距离【解析】先把两条直线方程中对应未知数的系数化为相同的,再代入两平行直线间的距离公式进行运算.【解答】解:∵两平行直线ax+by+m=0与ax+by+n=0间的距离是√a2+b2,5x+ 12y+3=0即10x+24y+6=0,∴两平行直线5x+12y+3=0与10x+24y+5=0间的距离是√102+242=√576=126.故答案为126.三、解答题(本题共计 5 小题,每题 10 分,共计50分)21.【答案】解:(1)∵l1⊥l2,∴a(a−1)+(−b)⋅1=0,即a2−a−b=0. ①又点(−3, −1)在l1上,∴−3a+b+4=0,②由①②得a=2,b=2.(2)∵l1 // l2,∴ab =1−a,∴b=a1−a,故l1和l2的方程可分别表示为:(a−1)x+y+4(a−1)a =0,(a−1)x+y+a1−a=0.又原点到l1与l2的距离相等,∴4|a−1a |=|a1−a|,解得a=2或a=23,∴a=2,b=−2或a=23,b=2.【考点】两条直线垂直与倾斜角、斜率的关系两条直线平行与倾斜角、斜率的关系【解析】(1)利用直线l1过点(−3, −1),直线l1与l2垂直,斜率之积为−1,得到两个关系式,求出a,b的值.(2)类似(1)直线l1与直线l2平行,斜率相等,坐标原点到l1,l2的距离相等,利用点到直线的距离相等.得到关系,求出a,b的值.【解答】解:(1)∵l1⊥l2,∴a(a−1)+(−b)⋅1=0,即a2−a−b=0. ①又点(−3, −1)在l1上,∴−3a+b+4=0,②由①②得a=2,b=2.(2)∵l1 // l2,∴ab =1−a,∴b=a1−a,故l1和l2的方程可分别表示为:(a−1)x+y+4(a−1)a =0,(a−1)x+y+a1−a=0.又原点到l1与l2的距离相等,∴4|a−1a |=|a1−a|,解得a=2或a=23,∴a=2,b=−2或a=23,b=2.22.【答案】解:直线l的倾斜角为30∘,则直线的斜率为:√33.(1)过点P(3, −4),由点斜式方程得:y+4=√33(x−3),∴y=√33x−√3−4,即√3x−3y−3√3−12=0. (2)在x轴截距为−2,即直线l过点(−2, 0),由点斜式方程得y−0=√33(x+2),则y=√33x+2√33,即√3x−3y+2√3=0.(3)在y轴上截距为3,由斜截式方程得y=√33x+3.即√3x−3y+9=0.【考点】各直线方程式之间的转化直线的斜截式方程直线的点斜式方程直线的斜率【解析】(1)先求出直线的斜率,分别根据直线的点斜式和斜截式方程,代入求出即可.(2)根据直线的点斜式和斜截式方程,代入求出即可.(3)根据直线的点斜式和斜截式方程,代入求出即可.【解答】解:直线l的倾斜角为30∘,则直线的斜率为:√33.(1)过点P(3, −4),由点斜式方程得:y+4=√33(x−3),∴y=√33x−√3−4,即√3x−3y−3√3−12=0.(2)在x轴截距为−2,即直线l过点(−2, 0),由点斜式方程得y−0=√33(x+2),则y=√33x+2√33,即√3x−3y+2√3=0. (3)在y轴上截距为3,由斜截式方程得y=√33x+3.即√3x−3y+9=0.23.【答案】解:由题意,设A(a, 0)、B(0, b).则直线AB 方程为xa+yb =1(a >0, b >0)∵ MA ⊥MB ,∴4−02−a×4−b 2−0=−1,化简得a =10−2b .∵ a >0,∴ 0<b <5.直线AB 的一般式方程为bx +ay −ab =0 ∴ 点M(2, 4)到直线AB 的距离为d 1=√a 2+b 2.又∵ O 点到直线AB 的距离为d 2=√a 2+b 2,∵ 四边形OAMB 的面积被直线AB 平分,∴ d 1=d 2,∴ 2b +4a −ab =±ab . 又∵ a =10−2b .解得{a =2b =4或{a =5b =52, ∴ 所求直线为2x +y −4=0或x +2y −5=0.【考点】直线的一般式方程两条直线垂直与倾斜角、斜率的关系 点到直线的距离公式【解析】设A(a, 0)、B(0, b).得到直线AB ,由题知MA ⊥MB 即直线MA 与直线MB 的斜率乘积为−1,得到a 与b 的关系式;又因为四边形OAMB 的面积被直线AB 平分得到M 到直线AB 与O 到直线AB 的距离相等得到a 与b 的关系式,两者联立求出a 和b 即可得到直线AB 的方程. 【解答】解:由题意,设A(a, 0)、B(0, b).则直线AB 方程为xa +yb =1(a >0, b >0) ∵ MA ⊥MB ,∴ 4−02−a ×4−b2−0=−1,化简得a =10−2b .∵ a >0,∴ 0<b <5.直线AB 的一般式方程为bx +ay −ab =0 ∴ 点M(2, 4)到直线AB 的距离为d 1=√a 2+b 2.又∵ O 点到直线AB 的距离为d 2=√a 2+b 2,∵ 四边形OAMB 的面积被直线AB 平分,∴ d 1=d 2,∴ 2b +4a −ab =±ab . 又∵ a =10−2b .解得{a =2b =4或{a =5b =52,∴ 所求直线为2x +y −4=0或x +2y −5=0. 24.【答案】解:(1)当直线l 不过原点, 设直线l 的方程为:xa +yb =1, 把点P 代入可得:1a +2b =1,联立{1a +2b =1,a =b,解得{a =3,b =3,∴ 直线l 的方程为x +y =3.当直线l 过原点,则设直线l 的方程为:y =kx , 代入P 点坐标得:k =2, 此时直线l 的方程为y =2x .综上所述,直线l 的方程为x +y =3或y =2x . (2)若A ,B 两点在直线l 同侧, 则AB//l , AB 的斜率k =−1−11−3=−2−2=1,即l 的斜率为1,则l 的方程为y −2=x −1, 即y =x +1,若A ,B 两点在直线的两侧,即l 过A ,B 的中点C(2,0), 则l 的方程为y =−2x +4,综上所述,l 的方程为y =−2x +4或y =x +1. 【考点】待定系数法求直线方程 直线的截距式方程 直线的点斜式方程 【解析】 此题暂无解析 【解答】解:(1)当直线l 不过原点, 设直线l 的方程为:xa+yb =1,把点P 代入可得:1a +2b =1, 联立{1a +2b =1,a =b,解得{a =3,b =3,∴ 直线l 的方程为x +y =3.当直线l 过原点,则设直线l 的方程为:y =kx , 代入P 点坐标得:k =2, 此时直线l 的方程为y =2x .综上所述,直线l 的方程为x +y =3或y =2x . (2)若A ,B 两点在直线l 同侧, 则AB//l , AB 的斜率k =−1−11−3=−2−2=1,即l 的斜率为1,则l 的方程为y −2=x −1,即y=x+1,若A,B两点在直线的两侧,即l过A,B的中点C(2,0), 则l的方程为y=−2x+4,综上所述,l的方程为y=−2x+4或y=x+1.25.【答案】如图,设直线在y轴上的截距为m(m>0),则直线方程为y=−34x+m,取y=0,得x=43m.由S△AOB=12×43m2=6,解得m=3.∴直线l的方程为y=−34x+3;由(1)可得,A(4, 0),B(0, 3).由重心坐标公式可得G(43, 1);联立直线{x=2y=32,得M(2, 32);设∠BAO的角平分线的斜率为k,则k=−tan∠BAO2=−sin∠BAO1+cos∠BAO=−351+45=−13.∴∠BAO的角平分线方程为y=−13(x−4),联立{y=−13(x−4)y=x,解得N(1, 1).∵k MG=32−12−43=34,k MN=32−12−1=12,k MG≠k MN,∴G、M、N三点不共线.【考点】直线的一般式方程与直线的性质直线的斜率【解析】(1)设直线在y轴上的截距为m(m>0),取y=0求出直线在x轴上的截距,代入三角形面积公式求得m,则直线方程可求;(2)利用重心坐标公式求重心,利用两边垂直平分线的交点求外心,由两内角平分线的交点求内心,再由斜率的关系判断不共线.【解答】如图,设直线在y轴上的截距为m(m>0),则直线方程为y=−34x+m,取y=0,得x=43m.由S△AOB=12×43m2=6,解得m=3.∴直线l的方程为y=−34x+3;由(1)可得,A(4, 0),B(0, 3).由重心坐标公式可得G(43, 1);联立直线{x=2y=32,得M(2, 32);设∠BAO的角平分线的斜率为k,则k=−tan∠BAO2=−sin∠BAO1+cos∠BAO=−351+45=−13.∴∠BAO的角平分线方程为y=−13(x−4),联立{y=−13(x−4)y=x,解得N(1, 1).∵k MG=32−12−43=34,k MN=32−12−1=12,k MG≠k MN,∴G、M、N三点不共线.。

高二数学直线与方程精选50题

高二数学直线与方程精选50题

直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。

高二数学直线与方程练习题

高二数学直线与方程练习题

高二数学直线与方程练习题一、选择题1. 下列四个方程中,表示直线的是:A. x^2 + y^2 = 1B. x + y = 1C. x^2 + y = 1D. x^2 + y^2 = 02. 直线y = 2x + 3与y = kx + 4平行,则k的值为:A. 1/2B. -2C. 2D. -1/23. 直线y = 3x - 2与y = kx + 1垂直,则k的值为:A. 2B. -2C. 1/2D. -1/24. 已知直线L1过点A(2, 3)且斜率为2,直线L2过点B(5, -1)且垂直于L1,那么L2的斜率为:A. 1/2B. -1/2C. -2D. 2二、填空题1. 直线y = -3x + 5与y = kx + 1平行,则k的值为__________。

2. 设点A(3, 4)和B(-2, 1)在直线y = kx + 2上,斜率k的值为__________。

3. 已知直线L过点A(1, 2)且垂直于直线y = 3x + 1,那么L的斜率为__________。

4. 直线y = x - 1与y = mx + 5垂直,则m的值为__________。

三、解答题1. 求过点A(2, 3)且与直线y = 2x + 1平行的直线方程。

2. 求过点A(-1, 3)且垂直于直线y = 4x - 2的直线方程。

3. 解直线方程组:{ y = 3x - 5{ y - 2x = 14. 求解方程组:{ 2x - 3y = 6{ 4x + 5y = 1四、综合题已知直线L1过点A(2, 5)且垂直于直线L2:y = 2x + 1,直线L2过点B(3, -4)。

1. 求过点A且平行于直线L2的直线方程。

2. 求过点B且垂直于直线L1的直线方程。

3. 求直线L1与L2的交点坐标。

4. 求解方程组:{ y - 2x = -3{ 3y + kx = 2五、应用题一辆汽车和一辆自行车从相距120km的A、B两地同时出发,汽车的速度是每小时60km,自行车的速度是每小时20km。

直线与方程练习题

直线与方程练习题

直线与方程练习题一、选择题1. 已知直线l1的方程为\( y = 2x + 3 \),直线l2的方程为\( x - y + 2 = 0 \),这两条直线的交点坐标为:A. (-1, 1)B. (1, 3)C. (-2, 0)D. (0, 2)2. 直线\( 3x + 4y - 5 = 0 \)在x轴上的截距为:A. 5/3B. 5C. -5/3D. 03. 直线\( ax + by + c = 0 \)与直线\( dx + ey + f = 0 \)平行,那么:A. \( a/d = b/e \) 但 \( c/f \neq a/d \)B. \( a/d = b/e = c/f \)C. \( a = d \) 且 \( b = e \)D. \( a/d \neq b/e \)二、填空题4. 若直线\( 2x - 3y + 6 = 0 \)与直线\( x + y - 2 = 0 \)平行,则两直线间的距离为______。

5. 直线\( y = kx + b \)经过点(1, 0)和点(0, -1),求k和b的值,k=______,b=______。

三、解答题6. 已知直线\( 2x - y + 4 = 0 \)与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。

7. 求直线\( 3x - 4y + 12 = 0 \)的斜率和在y轴上的截距。

8. 已知点P(2, 3)在直线\( 2x + y - 6 = 0 \)上,求直线的斜率和方程。

9. 若直线\( x + y - 2 = 0 \)绕其上的点(1, 1)旋转90度,求旋转后的直线方程。

10. 已知直线\( 2x - y + 5 = 0 \)和点M(1, 2),求点M到直线的距离。

四、证明题11. 证明:如果两条直线垂直,那么它们的斜率乘积为-1。

12. 证明:直线\( ax + by + c = 0 \)的法向量为\( (a, b) \)。

(完整版)直线与方程测试题(含答案)

(完整版)直线与方程测试题(含答案)

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

直线与方程典型基础练习题

直线与方程典型基础练习题

直线与方程典型基础练习题一、选择题1. 下列哪个方程表示一条斜率为2,经过点(-3,4)的直线?A. y = 2x - 10B. y = -2x + 10C. y = 2x + 10D. y = -2x - 102. 如果两条直线的斜率为相反数,它们是否一定垂直?A. 是B. 否3. 如何表示一条过点(4,6)且垂直于x轴的直线?A. y = 6B. y = 4C. x = 6D. x = 44. 斜率为零的直线与x轴的夹角是多少?A. 0°B. 45°C. 90°D. 180°5. 以下哪个方程表示x轴?A. x = 0B. y = 0C. x = 1D. y = 1二、填空题1. 过点(2, 5)和(4, 9)的直线的斜率是 ________。

2. 方程y = 3x - 2表示的直线与y轴的交点为 ________。

3. 方程2x + 5y = 10的斜率是 ________。

4. 过点(3, -2)且斜率为4的直线的方程为 ________。

5. 如果两条直线的斜率相等,它们是否一定平行?三、应用题1. 一辆汽车以每小时60英里的速度行驶,行驶了2小时后,汽车离起点多远?2. 通过点(1, 4)和(7, -2)的直线方程是什么?同时求出它与x轴的交点。

3. 通过点(-1, 2)且与x轴垂直的直线方程是什么?同时求出它与y轴的交点。

4. 通过点(-2, 5)和(4, -3)的直线方程是什么?同时求出它与y轴的交点。

5. 求方程3x + 2y = 10的斜率,并判断这条直线与x轴的夹角是锐角、直角还是钝角。

四、解答题1. 已知直线L1的斜率为-3,直线L2经过点(2, 5)且与L1垂直,求直线L2的方程。

2. 求过点(3, -2)且平行于直线y = 2x + 1的直线方程。

3. 通过点(1, -1)且与直线2x + 3y = 6平行的直线方程是多少?4. 求通过点(4, -3)且与直线y = -x + 2垂直的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章综合检测题
时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是()
A.30°B.45°
C.60°D.90°.
2.若三点A(3,1),B(-2, b),C(8,11)在同一直线上,则实数b 等于()
A.2B.3C.9D.-9
3.过点(1,2),且倾斜角为30°的直线方程是()
A.y+2=
3
3(x+1) B.y-2=3(x-1)
C.3x-3y+6-3=0
D.3x-y+2-3=0
4.直线3x-2y+5=0与直线x+3y+10=0的位置关系是() A.相交B.平行
C.重合D.异面
5.直线mx-y+2m+1=0经过一定点,则该定点的坐标为() A.(-2,1) B.(2,1)
C.(1,-2) D.(1,2)
6.已知ab<0,bc<0,则直线ax+by+c=0通过() A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
7.点P(2,5)到直线y=-3x的距离d等于()
A .0 B.23+5
2 C.-23+52
D.-23-52
8.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )
A .y =-2x +4
B .y =1
2x +4 C .y =-2x -8
3
D .y =12x -8
3
9.两条直线y =ax -2与y =(a +2)x +1互相垂直,则a 等于( ) A .2 B .1 C .0 D .-1
10.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角顶点是C (3,-2),则两条直角边AC ,BC 的方程是( )
A .3x -y +5=0,x +2y -7=0
B .2x +y -4=0,x -2y -7=0
C .2x -y +4=0,2x +y -7=0
D .3x -2y -2=0,2x -y +2=0
11.设点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )
A .k ≥3
4或k ≤-4 B .-4≤k ≤3
4 C .-3
4≤k ≤4
D .以上都不对
12.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()
A.1条B.2条
C.3条D.4条
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.已知点A(-1,2),B(-4,6),则|AB|等于________.
14.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于________..
15.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为________或________.
16.(2009·高考全国卷Ⅰ)若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是①15°②30°③45°④60°⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,
证明过程或演算步骤)
17.(本小题满分10分)求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.
18.(12分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y =(a2-2)x+2平行?
(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?
19.(本小题满分12分)在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
20.(本小题满分12分)过点P(3,0)作一直线,使它夹在两直线l1:
2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.
21.(本小题满分12分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求
(1)AC边上的高BD所在直线方程;
(2)BC边的垂直平分线EF所在直线方程;
(3)AB边的中线的方程.
22.(本小题满分12分)当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.
(1)倾斜角为45°;
(2)在x轴上的截距为1.。

相关文档
最新文档