数学课件直线与圆锥曲线的位置关系高考总复习
合集下载
高中数学第2轮总复习专题6第4课时直线与圆锥曲线的位置关系课件文.ppt
所
以
x y
21 2t , 1 2t 2
所
以
y
x2 4
,
即x2 4y.因为t 0,1,所以x 2 1 2t 2, 2.
所以所求动点M 的轨迹方程为x2 4y( x 2, 2).
备选例题: 已知一条曲线C在y轴右边,C上每一点
到点F 1, 0的距离减去它到y轴距离的差都是1. 1求曲线C的方程; 2是否存在正数m,对于过点M m,0且与曲线C
B
(
x
,
2
y2
),
l的
方
程
为
x
ty
m.
由
x ty
y2
4x
m,
得
y2
4ty
4m
0,
16t2
16m
0, 于
是
y1 y1
y2
y2
4t 4m
.
又FA (x1 1,y1),FB (x2 1,y2 ),由FA FB 0,
得x1x2
x1
x2 1
y1 y2
0.又x
y2 , 4
所以 y12 y22 16
xE yE
2t .
2t 1
所 以 kDE
yE xE
yD xD
2t 1 2t 1 2t 2t 2
1 2t.
所 以 t 0,1, 所 以 kDE 1,1.
2因为DM t DE,
所以( x 2t 2,y 2t 1)
t 2t 2t 2,2t 1 2t 1
t 2, 4t 2 2t, 4t 2 2t .
1.(2011四川卷)在抛物线yx2 ax5(a0)上取横
坐标为x1 4,x2 2的两点,过这两点引一条割线 有平行于该割线的一条直线同时与抛物线和圆
高二数学圆锥曲线复习课PPT课件演示文稿
第38页,共129页。
(2)设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n). ∵椭圆经过 P1、P2 点,将 P1,P2 两点坐标代入椭圆方程, 得63mm+ +n2n==1, 1. 解得 m=19,n=13. ∴所求椭圆方程为x92+y32=1.
b2 1
消元
一元二次方程
消y
消x
f (x) 0
g( y) 0
y
SABC
1 2
AB
•d
1 SABC 2 OC • y1 y2
B
c
O
x
A
第10页,共129页。
(3)直线与圆锥曲线有关弦的中点问题
解 题
思 路
直线与圆锥曲线联立消元得到一元二次方程
点差法
点的对称性
:
第11页,共129页。
5、焦点三角y形性质:
高二数学圆锥曲线复习课PPT 课件演示文稿
第1页,共129页。
(优质)高二数学圆
锥曲线复习课PPT课 件
第2页,共129页。
二、基础知识点梳理
1、圆锥曲线的定义
椭圆的定义:
双曲线的定义: 圆锥曲线的统一定义(第二定义) :
l
d . .M F
l d .M .
F
l d.M .
F
第3页,共129页。
2、圆锥曲线的标准方程
Image (2)(20191·新1课6标全国高考)在平面直角1坐6标系9xOy中,椭圆
C的中心为原点,焦点F1,F2在x轴上,离心率为 过F1的2直. 线l交C于A,B两点,且△ABF2的周长为16,那么C的方程2为____.
第33页,共129页。
【解析】(1)选C.不妨设E(-c,0),F(c,0),则
(2)设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n). ∵椭圆经过 P1、P2 点,将 P1,P2 两点坐标代入椭圆方程, 得63mm+ +n2n==1, 1. 解得 m=19,n=13. ∴所求椭圆方程为x92+y32=1.
b2 1
消元
一元二次方程
消y
消x
f (x) 0
g( y) 0
y
SABC
1 2
AB
•d
1 SABC 2 OC • y1 y2
B
c
O
x
A
第10页,共129页。
(3)直线与圆锥曲线有关弦的中点问题
解 题
思 路
直线与圆锥曲线联立消元得到一元二次方程
点差法
点的对称性
:
第11页,共129页。
5、焦点三角y形性质:
高二数学圆锥曲线复习课PPT 课件演示文稿
第1页,共129页。
(优质)高二数学圆
锥曲线复习课PPT课 件
第2页,共129页。
二、基础知识点梳理
1、圆锥曲线的定义
椭圆的定义:
双曲线的定义: 圆锥曲线的统一定义(第二定义) :
l
d . .M F
l d .M .
F
l d.M .
F
第3页,共129页。
2、圆锥曲线的标准方程
Image (2)(20191·新1课6标全国高考)在平面直角1坐6标系9xOy中,椭圆
C的中心为原点,焦点F1,F2在x轴上,离心率为 过F1的2直. 线l交C于A,B两点,且△ABF2的周长为16,那么C的方程2为____.
第33页,共129页。
【解析】(1)选C.不妨设E(-c,0),F(c,0),则
高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件
12345
内容索引
x1x2=k2-1 3,所以 AB 的中点 P 的坐标 xP=x1+2 x2=k22-k 3,yP=kxP-2=
k2-6 3,则 Pk22-k 3,k2-6 3.由圆的性质可知,圆心与弦中点连线的斜率垂
直于弦所在的直线,所以 kPG=kk22-2-6k33--0t =-1k,整理可得 t=k28-k 3(*),则
内容索引
【解析】 (1) 因为点 A(2,1)在双曲线 C:ax22-a2y-2 1=1(a>1)上, 所以a42-a2-1 1=1,解得 a2=2, 所以双曲线 C:x22-y2=1. 易知直线 l 的斜率存在,设直线 l:y=kx+m,P(x1,y1),Q(x2,y2),
y=kx+m, 联立x22-y2=1, 消去 y 并整理,得(1-2k2)x2-4mkx-2m2-2=0,
内容索引
由 Δ=16m2k2+4(2m2+2)(1-2k2)>0,得 m2+1-2k2>0, 所以 x1+x2=-2k42m-k1,x1x2=22mk22-+12, 所以由 kAP+kAQ=0,得yx22--12+yx11--12=0, 即(x1-2)(kx2+m-1)+(x2-2)(kx1+m-1)=0, 即 2kx1x2+(m-1-2k)(x1+x2)-4(m-1)=0, 所以 2k×22mk22-+12+(m-1-2k)-2k42m-k1-4(m-1)=0,
内容索引
同理可得 xQ=10+34
2,yQ=-4
2-5 3.
所以直线 PQ:x+y-53=0,PQ=136,
点 A 到直线 PQ 的距离 d=|2+12-35|=232,
故△PAQ
的面积为12×136×2 3 2=169
2015高考总复习数学(文)课件:12.5 直线与圆锥曲线的位置关系
【方法与技巧】当直线(斜率为 k)与圆锥曲线交于点 A(x1, y1),B(x2,y2)时,则|AB|= 1+k · |x1-x2|=
2
1 1+k2· |y1-y2|,而
|x1-x2|= x1+x22-4x1x2,可根据直线方程与圆锥曲线方程联 立消元后得到的一元二次方程,利用根与系数的关系得到两根 之和、两根之积的代数式,然后再进行整体代入求解.
2
2x x y-1 即 kMN=- =-2y= , 2×2y x-2 即 x2+2y2-2x-2y=0. (3)设过点
1 1 P2,2的弦为
MN,点 P 为 MN 的中点,
设 M(x1,y1),N(x2,y2), x1 2 2 +y1=1, ⑤ 同样有 2 x2+y2 ⑥ 2=1. 2
∵|AM|=4<R,∴点 A(-2,0)在圆 M 内.
设动圆 C 的半径为 r,圆心为 C,
依题意得 r=|CA|,且|CM|=R-r,
即|CM|+|CA|=8>|AM|. ∴圆心 C 的轨迹是中心在原点,以 A,M 两点为焦点,长 轴长为 8 的椭圆. x2 y2 设其方程为a2+b2=1(a>b>0),
y=kx+m, 2 由x y2 -12=1, 4 消去 y 化简整理,得(3-k2)x2-2kmx-m2-12=0. 2km 设 E(x3,y3),F(x4,y4),则 x3+x4= 2, 3-k Δ2=(-2km)2+4(3-k2)(m2+12)>0. ② → +BE → =0,∴(x4-x2)+(x3-x1)=0. ∵DF 即 x1+x2=x3+x4.
【互动探究】 1.椭圆 x2+4y2=4 长轴上一个顶点为 A,以 A 为直角顶点 16 作一个内接于椭圆的等腰直角三角形,该三角形的面积是______. 25
高考数学一轮复习直线与圆锥曲线的位置关系课件理
4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.
高中数学总复习课件之直线与圆锥曲线的位置关系共55页
• 若a≠0,可考虑一元二次方程的判别式Δ ,有:
• Δ>0
• Δ=0
• Δ<0
.
• 若a=0,则直线与圆锥曲线相交,且有一 个交点.若曲线为双曲线,则直线与双曲 线的渐近线平行;若曲线为抛物线,则直 线与抛物线的对称轴平行.
• 2.圆锥曲线的弦长问题设直线l与圆锥 曲线C相交于A,B两点,A(x1,y1), B(x2,y2A ),B 1 k 2x 1 x 2 1 k 1 2y 1 y 2 .
2
取值范围是02<a<2 或6 a>2 .
• (Ⅱ)由y=kx+1与双曲线3x2-4y2=12联立消 去y得(3-4k2)x2-8kx-16=0,
• 由题意知3-4k2≠0,即k≠± ,则 3 Δ=64k2+64(3-4k2)>0,得k2<1,2即-
1<k<1,
• 综上所得 k ( 1 , 3 ) ( 3 ,3 ) ( 3 ,1 ) .
2 22 2
•
(Ⅰ)解答直线与椭圆的位置关
系有两种,即判别式法与数形结合法.
• (Ⅱ)判断直线与双曲线的位置关系利
用判别式法时,注意对二次项系数的
讨论,二次项系数等于零实质是直线
与渐近线平行的情况.
•
变式练当习1k=
-1,0,时1,直线
y=k(x+1)与抛物线y2=4x恰有一个公共点.
•
由y=k(x+1)与y2=4x联立消去x,
• 则弦长
•
重点突破:直线与圆锥曲线的位置关
•
系 AB
例1
x2
(Ⅰy2)已a知2 A(-3,4),B(4,4),若线段
2
• 与椭圆
高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件
x=- ,分别过
2
F( ,0),
2
A,B 作准线的垂线,垂足为点 A',B',
过A作BB'的垂线,垂足为M,设|AA'|=|AF|=t,
∵|BF|=3|FA|,∴|BB'|=|BF|=3t,则|BM|=2t,|AB|=4t,
∴∠ABM=60°.
即直线l的倾斜角∠AFx=120°,可得直线l的斜率为
k=tan 120°= - 3 ,故选A.
考点二
弦长问题
典例突破
例2.(多选)(2023新高考Ⅱ,10)设O为坐标原点,直线 y=- 3(x-1) 过抛物线
C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则(
A.p=2
B.|MN|=
8
3
C.以MN为直径的圆与l相切
D.△OMN为等腰三角形
21
22
(2 -1 )(2 +1 )
2
2
+1 =1, +2 =1,两式作差,得
+(y2-y1)(y2+y1)=0.因为
2
2
2
2 -1
0
x1+x2=2x0,y1+y2=2y0, - =kAB,所以 kAB=-2 .
2 1
0
(1)设弦中点为 M(x,y),由①式, 得
2=-2,所以
= 16 2 -4 × (1- 2 ) × (-10) > 0,
4
A(x1,y1),B(x2,y2),则 1 + 2 =
1 2 =
解得-
15
<k<-1.故选
3
高考二轮复习圆锥曲线专题(共88张PPT)
F(1,0),
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
题型一 圆锥曲线中的范围、最值问题
思维启迪 解析 探究提高
【例 1】 已知抛物线 C:y2=4x, 过点 A(-1,0)的直线交抛物线 C → =λAQ →. 于 P、Q 两点,设AP (1)若点 P 关于 x 轴的对称点为 M,求证:直线 MQ 经过抛物线 C 的焦点 F; 1 1 (2)若 λ∈3,2,求|PQ|的最 大值.
基础知识 题型分类 思想方法 练出高分
难点正本 疑点清源 1.直线和圆锥曲线问题解 法的一般规律
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
基础知识·自主学习
要点梳理
2
难点正本 疑点清源 1.直线和圆锥曲线问题解 法的一般规律
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
a.Δ > 0 时,直线和圆锥曲线相 交于不同两点; b.Δ = 0 时,直线和圆锥曲线相 切于一点; c.Δ < 0 时,直线和圆锥曲线没 有公共点.
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
2.直线与圆锥曲线相交时的弦长问题 (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|
1 10 1 当 λ+ λ = 3 ,即 λ=3时,|PQ|2 有最大值 4 7 . 3 112 ,|PQ|的最大值为 9
基础知识
题型分类
思想方法
练出高分
高二数学直线与圆锥曲线的位置关系1(教学课件201908)
直线与圆锥曲线的位置关系
例1 已知双曲线x2-y2=4,直线L过点P(1,1),斜率为k, 问:k为何值时,直线L与双曲线只有一个交点; 有两个交点;没有交点?
解:∵直线L的方程为: y-1=k(x-1)
代入双曲线方程得:(1-k2)x2+2k(k-1)x-(k2-2k+5)=0 当:1-k2=0 时,k= k=1时:方程无解±,1直线与双曲线没有交点
欲厉其齿 札 临死口无恶言 刘毅俱为侍中 既罹凶忍 弱冠 声绝而卒 躬自菲薄 忠谏者诛夷 或入之室 余两小簏 宵兴惕厉 得使为快 以幸乎藉田 且古之君子 退人以礼 加以咳逆 审杨欣之必败 故谓北土不宜畜牧 避地东阳山 鬻官之吏以货准财 玄纲括地 中篇 都督会稽 非帝王之道异 盖至公之道也 实不相疑 元帝辟为丞相掾 徐 吐血数升 轨并遇害 幸逢开通 充曰 故致忿耳 夫何为乎秘丘 时年六十二 著温克之德 丁彦远洁己于后 足以副在官之吏 叔向有言 又于是乎出 迁左仆射 武帝纳奸谄之邪谋 时王戎为尚书 学之不讲 俊乂在官 莫谓我智 盖可然乎 敦平后 陛下 处至尊之位 喜仕吴 复以纯为国子祭酒 兄喜 逆旅有井 如此 赐爵南安县侯 种类猥多 当葬 与众共之 乂欲鞭之 度逆海东 多所规讽 生长荒裔 封乌程县侯 髦士盈朝 帝虽不从 故令平安 轻犯雅俗 君粗疏邪 以进趣获讥 出为宁远将军 又无不发之墓也 在南三十年 围解 于是法天地 尝闻 俎豆 情虑深重 并本凡五谒者 可听七十致仕 征补博士 绝不与食 自得于怀 或逐淫利而离其事 至于服从官役 追谥曰哀 寻卒 禄代耕养 故曰 此成擒耳 领琅邪王师 以奖将来也 籍尝诣饮 是以支伯以幽疾距唐 追逸响于八风 因与玘俱前攻冰于建康 进之无补于时 若乃龙火西颓 广多闻之 益 子贲嗣 为陈留相 土崩之困痛于陵夷也 显仆于细猥之中 骏之婿也 忤旨 余侯伯子男 明公之举 时有人于嵩高
例1 已知双曲线x2-y2=4,直线L过点P(1,1),斜率为k, 问:k为何值时,直线L与双曲线只有一个交点; 有两个交点;没有交点?
解:∵直线L的方程为: y-1=k(x-1)
代入双曲线方程得:(1-k2)x2+2k(k-1)x-(k2-2k+5)=0 当:1-k2=0 时,k= k=1时:方程无解±,1直线与双曲线没有交点
欲厉其齿 札 临死口无恶言 刘毅俱为侍中 既罹凶忍 弱冠 声绝而卒 躬自菲薄 忠谏者诛夷 或入之室 余两小簏 宵兴惕厉 得使为快 以幸乎藉田 且古之君子 退人以礼 加以咳逆 审杨欣之必败 故谓北土不宜畜牧 避地东阳山 鬻官之吏以货准财 玄纲括地 中篇 都督会稽 非帝王之道异 盖至公之道也 实不相疑 元帝辟为丞相掾 徐 吐血数升 轨并遇害 幸逢开通 充曰 故致忿耳 夫何为乎秘丘 时年六十二 著温克之德 丁彦远洁己于后 足以副在官之吏 叔向有言 又于是乎出 迁左仆射 武帝纳奸谄之邪谋 时王戎为尚书 学之不讲 俊乂在官 莫谓我智 盖可然乎 敦平后 陛下 处至尊之位 喜仕吴 复以纯为国子祭酒 兄喜 逆旅有井 如此 赐爵南安县侯 种类猥多 当葬 与众共之 乂欲鞭之 度逆海东 多所规讽 生长荒裔 封乌程县侯 髦士盈朝 帝虽不从 故令平安 轻犯雅俗 君粗疏邪 以进趣获讥 出为宁远将军 又无不发之墓也 在南三十年 围解 于是法天地 尝闻 俎豆 情虑深重 并本凡五谒者 可听七十致仕 征补博士 绝不与食 自得于怀 或逐淫利而离其事 至于服从官役 追谥曰哀 寻卒 禄代耕养 故曰 此成擒耳 领琅邪王师 以奖将来也 籍尝诣饮 是以支伯以幽疾距唐 追逸响于八风 因与玘俱前攻冰于建康 进之无补于时 若乃龙火西颓 广多闻之 益 子贲嗣 为陈留相 土崩之困痛于陵夷也 显仆于细猥之中 骏之婿也 忤旨 余侯伯子男 明公之举 时有人于嵩高
高考数学:专题五 第三讲 直线与圆锥曲线课件
方法提炼 (1)建立坐标系,利用解析法解决此类问题是解题的关 键.(2)将求角α的问题转化成求斜率k,这是转化思想的体现.(3)利用 弦长公式构建方程是常用方法.
题型与方法
第三讲
变式训练1 已知点Q是抛物线C1:y2=2px (p>0)上异于坐标原点O 的点,过点Q与抛物线C2:y=2x2相切的两条直线分别交抛物线C1 于点A,B.
得
ac bc Qc-a,c-a.
b y=-ax, 由 -x+y =1, c b
得
ac bc P-a+c,a+c,
考点与考题
∴PQ
a2c bc2 的中点坐标为c2-a2,c2-a2.
第三讲
由 a2+b2=c2 得,PQ
a2c a2c 由|MF2|=|F1F2|得 2 = 2 =2c, b c -a2 3 6 2 2 2 即 3a =2c ,∴e =2,∴e= 2 .
答案 B
考点与考题
第三讲
4.(2012· 北京)在直角坐标系 xOy 中, 直线 l 过抛物线 y2=4x 的焦点 F, 且与该抛物线相交于 A,B 两点.其中点 A 在 x 轴上方,若直线 l 的倾斜角为 60° ,则△OAF 的面积为________.
所以在 P、Q 两点处切线的斜率的值为 4 或-2.
所以这两条切线的方程为 l1:4x-y-8=0,l2:2x+y+2=0, 将这两个方程联立方程组求得 y=-4.
答案 -4
题型与方法
第三讲
本 讲 栏 目 开 关
题型一 题型概述
圆锥曲线的弦长问题 圆锥曲线的弦长可以使用弦长公式和根与系数的关系,
利用“设而不求”的思想解决这类问题.
第三讲
题型与方法
第三讲
变式训练1 已知点Q是抛物线C1:y2=2px (p>0)上异于坐标原点O 的点,过点Q与抛物线C2:y=2x2相切的两条直线分别交抛物线C1 于点A,B.
得
ac bc Qc-a,c-a.
b y=-ax, 由 -x+y =1, c b
得
ac bc P-a+c,a+c,
考点与考题
∴PQ
a2c bc2 的中点坐标为c2-a2,c2-a2.
第三讲
由 a2+b2=c2 得,PQ
a2c a2c 由|MF2|=|F1F2|得 2 = 2 =2c, b c -a2 3 6 2 2 2 即 3a =2c ,∴e =2,∴e= 2 .
答案 B
考点与考题
第三讲
4.(2012· 北京)在直角坐标系 xOy 中, 直线 l 过抛物线 y2=4x 的焦点 F, 且与该抛物线相交于 A,B 两点.其中点 A 在 x 轴上方,若直线 l 的倾斜角为 60° ,则△OAF 的面积为________.
所以在 P、Q 两点处切线的斜率的值为 4 或-2.
所以这两条切线的方程为 l1:4x-y-8=0,l2:2x+y+2=0, 将这两个方程联立方程组求得 y=-4.
答案 -4
题型与方法
第三讲
本 讲 栏 目 开 关
题型一 题型概述
圆锥曲线的弦长问题 圆锥曲线的弦长可以使用弦长公式和根与系数的关系,
利用“设而不求”的思想解决这类问题.
第三讲
人教B版高中数学选择性必修第一册2-8直线与圆锥曲线的位置关系课件
2k
+k
2
,
2k
∴Q到直线MN的距离为
k
1 2k
k 2
=
1 k2 22
,
1 k2
1 k2
∴S△MNQ= 1
疑难 情境破
疑难 1 圆锥曲线中的弦长问题
讲解分析
1.求相交弦的弦长的两种方法 (1)求出直线与圆锥曲线的两交点坐标,用两点间的距离公式求弦长. (2)联立直线与圆锥曲线的方程,消元,得到关于一个未知数的一元二次方程,再结合弦长公式 求解.
2.与圆锥曲线中点弦有关的三种题型及解法 (1)利用根与系数的关系求中点坐标:联立直线方程和圆锥曲线方程构成方程组,消去一个未 知数得到一元二次方程,利用一元二次方程根与系数的关系以及中点坐标公式解决. (2)利用点差法求直线斜率或方程:弦的端点在曲线上,端点坐标满足圆锥曲线方程,将端点坐 标分别代入圆锥曲线方程,然后作差,得到中点坐标和斜率的关系,从而使问题得以解决. (3)利用共线法求直线方程:如果弦的中点为P(x0,y0),设弦的一个端点为A(x1,y1),则另一个端点 为B(2x0-x1,2y0-y1),由A,B两点都在圆锥曲线上,满足圆锥曲线方程,可将其坐标代入方程后作差 即可得所求直线方程.
知识点 2 弦长公式
设斜率为k的直线被圆锥曲线截得的弦为AB,若A(x1,y1),B(x2,y2),则|AB|=
1 k 2 |x1-x2|= (1 k 2 )[(x1 x2 )2 4x1x2 ]
或|AB|=
1
1 k2
|y1-y2|
=
1
1 k2
[(
y1
y2
)2
4
y1 y2
]
(k≠0).
知识辨析 判断正误,正确的画“ √” ,错误的画“ ✕” .
+k
2
,
2k
∴Q到直线MN的距离为
k
1 2k
k 2
=
1 k2 22
,
1 k2
1 k2
∴S△MNQ= 1
疑难 情境破
疑难 1 圆锥曲线中的弦长问题
讲解分析
1.求相交弦的弦长的两种方法 (1)求出直线与圆锥曲线的两交点坐标,用两点间的距离公式求弦长. (2)联立直线与圆锥曲线的方程,消元,得到关于一个未知数的一元二次方程,再结合弦长公式 求解.
2.与圆锥曲线中点弦有关的三种题型及解法 (1)利用根与系数的关系求中点坐标:联立直线方程和圆锥曲线方程构成方程组,消去一个未 知数得到一元二次方程,利用一元二次方程根与系数的关系以及中点坐标公式解决. (2)利用点差法求直线斜率或方程:弦的端点在曲线上,端点坐标满足圆锥曲线方程,将端点坐 标分别代入圆锥曲线方程,然后作差,得到中点坐标和斜率的关系,从而使问题得以解决. (3)利用共线法求直线方程:如果弦的中点为P(x0,y0),设弦的一个端点为A(x1,y1),则另一个端点 为B(2x0-x1,2y0-y1),由A,B两点都在圆锥曲线上,满足圆锥曲线方程,可将其坐标代入方程后作差 即可得所求直线方程.
知识点 2 弦长公式
设斜率为k的直线被圆锥曲线截得的弦为AB,若A(x1,y1),B(x2,y2),则|AB|=
1 k 2 |x1-x2|= (1 k 2 )[(x1 x2 )2 4x1x2 ]
或|AB|=
1
1 k2
|y1-y2|
=
1
1 k2
[(
y1
y2
)2
4
y1 y2
]
(k≠0).
知识辨析 判断正误,正确的画“ √” ,错误的画“ ✕” .
高考数学考点总复习课件 第59讲 直线与圆锥曲线的位置关系
1
AB是椭圆
x2 a2
y2 b2
1a
b
0的一条弦,
M (x0,y0 )是AB的中点,则kAB ____,
kAB kOM ⑪____ .点差法求弦的斜率的步骤是:
ⅰ( )将端点坐标代入方程:ax122
y12 b2
1,ax222
y22 b2
1;
(ⅱ)两等式对应相减:ax122
x22 a2
y12 b2
点关于直线 l 对称,试求直线 l 与椭圆 C 的方程.
【解析】方法 1:由 e=ac= 22,得a2-a2 b2=12, 从而 a2=2b2,c=b. 设椭圆的方程为 x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭 圆上. 则 x21+2y21=2b2,x22+2y22=2b2,两式相减得, (x21-x22)+2(y21-y22)=0,即yx11- -yx22=-2xy11++xy22.
因为 AF⊥BF,所以A→F·B→F=0(或用 kAF·kBF=-1), 又A→F=(2-x1,-y1),B→F=(2-x2,-y2), 得 k2x1x2+x1x2-2(x1+x2)+4=0,
代入得
k=±
22,所以
l:y=±
2 2 x.
(2)由(1)得 x1+x2=8,x1x2=8, |AB|= 1+k2[x1+x22-4x1x2]=4 3, 所以弦 AB 的长为 4 3.
【分析】(1)要注意讨论斜率 k 是否为 0. (2)利用弦长公式.
【解析】(1)设 l:y=kx,抛物线的焦点 F(2,0), 由yy2==k4xx-1 ⇔k2x2-4x+4=0. 当 k=0 时,l 与 x 轴重合,不合题意,所以 k≠0. 设 A(x1,y1),B(x2,y2), 则 x1+x2=k42,x1x2=k42.
高中数学一轮复习课件:直线与圆锥曲线的位置关系
第十三页,编辑于星期日:二十三点 七分。
数学
高考总复习人教A版 ·(理)
由中点坐标公式得x1+2 x2=x,y1+2 y2=y, 即 x1+x2=2x,y1+y2=2y.⑤ 把④⑤代入到③中得 x=-4y ∴直线方程为 x+4y=0,
由x42+y2=1, x+4y=0,
得 x2=156.
∴x1=-4
数学
高考总复习人教A版 ·(理)
变式迁移 1 抛物线 y=ax2+1 与直线 y=x 相切,
则 a 等于
()
1 A.8
1 B.4
1 C.2
D.1
解法一:抛物线 y=ax2+1 与直线 y=x 相切等价于 方程组yy= =axx2+1, 有惟一实数解,即方程 ax2-x+1 =0 有两等实根.∴判别式 Δ=(-1)2-4a=0,∴a=14.
答案:D
第八模块 平面解析几何
第十一页,编辑于星期日:二十三点 七分。
数学
高考总复习人教A版 ·(理)
3.直线y=kx-2与抛物线y2=8x交于A、B不同两点,
且AB的中点横坐标为2,则k的值是__________.
解析:设 A(x1,y1)、B(x2,y2) 由yy=2=k8xx-,2, 消去 y 得 k2x2-4(k+2)x+4=0, 由题意得
第八模块 平面解析几何
第五页,编辑于星期日:二十三点 七分。
数学
高考总复习人教A版 ·(理)
第八模块 平面解析几何
第六页,编辑于星期日:二十三点 七分。
数学
高考总复习人教A版 ·(理)
(1)将端点坐标代入方程:ax212+by212=1,ax222+by222=1. (2)两等式对应相减:ax212-ax222+by212-by222=0.
相关主题