山东省2018届高三上学期第四次月考数学(理)试卷 Word版
湖南师大附中2025届高三月考数学(三)试卷及答案
大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
湖南省湖南师范大学附属中学2025届高三上学期月考(二)语文+答案
炎德·英才大联考长郡中学2025届高三月考试卷(二)语文本试卷共四道大题,23道小题。
时量150分钟,满分150分。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:我们要理解中国传统的山水眼光,进而用这种眼光观看我们周围的真山真水。
什么是山水的眼光? 中国画家画一座山,通常先在山脚下住一段时间,在山腰又住一段时间,山前山后来回跑,又无数次登上山岭远望,最后整座山了然于心,待要画时,和盘托出。
一画之中,山脚与山体俱见,山前和山后齐观,巅顶与群峦并立,这就是所谓的“高远、深远、平远”。
不为透视所拘,不受视域所限,山水草木一例相看,烟云山壑腾挪反转。
古人把这种方法称为饱游而饫看,游目而骋怀。
山水眼光是一种不唯一时一侧的观看,更是将观看化入胸壑,化成天地综观的感性方式。
山止川行,风禾尽起。
中国人的内心始终有一种根深蒂固的山水依恋。
何谓“山”?山者,宣也。
宣气散,万物生。
山代表着大地之气的宣散,代表着宇宙生机的根源,故而山主生,呈现为一种升势。
何谓“水”? 水者,准也。
“上善若水,水善利万物而不争。
”相对山,水主德,呈现为平势、和势。
正是这种山水之势在开散与聚合之中,在提按与起落之中,起承转合,趋背相异,从而演练与展现出万物的不同情态、不同气韵。
山水非一物,山水是万物,它本质上是一个世界观,是一种关于世界的综合性的“谛视”。
所谓“谛视”,就是超越一个人瞬间感受的意念,依照生命经验之总体而构成的完整世界图景。
这种图景是山水的人文世界,是山水的“谛视”者将其一生的历练与胸怀置入山水云霭的聚散之中,将现实的起落、冷暖、抑扬、明暗纳入内心的观照之中,形成“心与物游”的存在。
多年前,我曾在台北故宫博物院欣赏北宋郭熙的《早春图》。
我在这里看到一片奇幻的山壑被一层层的烟云包裹着,宁静而悠远,峻拔而生机勃勃。
这是早春即将来临之时的山中景象——冬去春来,大地苏醒,山间浮动着淡淡的雾气,传出春天的消息。
届高三数学(理)第一次月考模拟试卷及答案
届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案
数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
湖南2023-2024学年高三上学期月考卷(四)数学试题含答案
湖南2024届高三月考试卷(四)数学(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12z i =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为()A.()4,5- B.()4,3 C.()3,4- D.()5,4【答案】C 【解析】【分析】根据题意得234i z =-+,再分析求解即可.【详解】根据题意得:()22212i 14i 4i 34i z =+=++=-+,所以复数2z 在复平面内对应的点的坐标为:()3,4-.故选:C.2.若随机事件A ,B 满足()13P A =,()12P B =,()34P A B ⋃=,则()P A B =()A.29B.23C.14D.16【答案】D 【解析】【分析】先由题意计算出()P AB ,再根据条件概率求出()P A B 即可.【详解】由题意知:()3()()()4P A B P A P B P AB ==+- ,可得1131()32412P AB =+-=,故()1()1121()62P AB P A B P B ===.故选:D.3.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】解:因为{}n a 是公比不为1的无穷等比数列,若{}n a 为递减数列,当11a >,则01q <<,所以11n n a a q -=,令111n n a a q -=<,则111n qa -<,所以1111log log qq n a a ->=-,所以11log q n a >-时1n a <,当101a <<,则01q <<,所以111n n a a q -=<恒成立,当11a =,则01q <<,所以11n n a a q -=,当2n ≥时1n a <,当10a <,则1q >,此时110n n a a q -=<恒成立,对任意N*n ∈均有1n a <,故充分性成立;若存在正整数0N ,当0n N >时,1n a <,当10a <且01q <<,则110n n a a q -=<恒成立,所以对任意N*n ∈均有1n a <,但是{}n a 为递增数列,故必要性不成立,故“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的充分不必要条件;故选:A4.设π(0,2α∈,π(0,)2β∈,且1tan tan cos αβα+=,则()A.π22αβ+=B.π22αβ-=C.π22βα-= D.π22βα+=【答案】D 【解析】【分析】根据给定等式,利用同角公式及和角的正弦公式化简变形,再利用正弦函数性质推理即得.【详解】由1tan tan cos αβα+=,得sin sin 1cos cos cos αβαβα+=,于是sin cos cos sin cos αβαββ+=,即πsin()sin()2αββ+=-,由π(0,)2α∈,π(0,2β∈,得20π,0<ππ2αββ<+-<<,则π2αββ+=-或ππ2αββ++-=,即π22βα+=或π2α=(不符合题意,舍去),所以π22βα+=.故选:D5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是()A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=【答案】C 【解析】【分析】利用二项式定理,求指定项的系数,各项系数和,奇次项系数和与偶数项系数和.【详解】由()52345012345(12)1(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,对于A 中,令1x =,可得01a =-,所以A 错误;对于B 中,[]55(12)12(1)x x -=---,由二项展开式的通项得44145C (2)(1)80a =⋅-⋅-=-,所以B 错误;对于C 中,012345a a a a a a +++++与5(12(1))x +-的系数之和相等,令11x -=即50123453a a a a a a +++++=,所以C 正确;对于D 中,令2x =,则50123453a a a a a a +++++=-,令0x =,则0123451a a a a a a -+-+-=,解得5024312a a a -+++=,5135312a a a --++=,可得()()10024135314a a a a a a -++++=,所以D 错误.故选:C.6.函数()()12cos 2023π1f x x x ⎡⎤=++⎣⎦-在区间[3,5]-上所有零点的和等于()A.2B.4C.6D.8【答案】D【分析】根据()y f x =在[]3,5-的零点,转化为11y x =-的图象和函数2cosπy x =的图象在[]3,5-交点的横坐标,画出函数图象,可得到两图象关于直线1x =对称,且()y f x =在[]3,5-上有8个交点,即可求出.【详解】因为()()112cos 2023π2cosπ11f x x x x x ⎡⎤=++=-⎣⎦--,令()0f x =,则12cosπ1x x =-,则函数的零点就是函数11y x =-的图象和函数2cosπy x =的图象在[]3,5-交点的横坐标,可得11y x =-和2cosπy x =的函数图象都关于直线1x =对称,则交点也关于直线1x =对称,画出两个函数的图象,如图所示.观察图象可知,函数11y x =-的图象和函数2cosπy x =的图象在[]3,5-上有8个交点,即()f x 有8个零点,且关于直线1x =对称,故所有零点的和为428⨯=.故选:D7.点M 是椭圆()222210x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM 是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.0,2⎛⎫⎪ ⎪⎝⎭ C.,12⎛⎫⎪ ⎪⎝⎭D.(2-【解析】【分析】依据题目条件可知圆的半径为2b a ,画出图形由PQMc >,即可求得椭圆离心率的取值范围.【详解】依题意,不妨设F 为右焦点,则(),M c y ,由圆M与x 轴相切于焦点F ,M 在椭圆上,易得2b y a =或2b y a =-,则圆的半径为2b a.过M 作MN y ⊥轴垂足为N ,则PN NQ =,MN c =,如下图所示:PM ,MQ 均为半径,则PQM为等腰三角形,∴PN NQ ==∵PMQ ∠为钝角,∴45PMN QMN ∠=∠> ,即PN NQ MN c =>=c >,即4222b c c a ->,得()222222a a c c ->,得22a c ->,故有210e -<,从而解得6202e <<.故选:B8.已知函数22,0,()414,0,x x f x x x ⎧⎪=⎨-++<⎪⎩ 若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为()A.{2,1,0,1}--B.{2,1,0}--C.{1,0,1}-D.{2,1}-【答案】A 【解析】【分析】作出()f x 的图象,由不等式的几何意义:曲线上一点与(,1)a 连线的直线斜率小于0,结合图象即可求得a 范围.【详解】作出()f x 的函数图象如图所示:()10f x x a-<-表示点()(),x f x 与点(),1a 所在直线的斜率,可得曲线()f x 上只有一个点()(),x f x (x 为整数)和点(),1a 所在直线的斜率小于0,而点(),1a 在动直线1y =上运动,由()20f -=,()14f -=,()00f =,可得当21a -≤≤-时,只有点()0,0满足()10f x x a -<-;当01a ≤≤时,只有点()1,4-满足()10f x x a-<-.又a 为整数,可得a 的取值集合为{}2,1,0,1--.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已知双曲线C过点(,且渐近线方程为3y x =±,则下列结论正确的是()A.C 的方程为2213x y -= B.CC.曲线21x y e -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点【答案】AC 【解析】【分析】由双曲线的渐近线为3y x =±,设出双曲线方程,代入已知点的坐标,求出双曲线方程判断A ;再求出双曲线的焦点坐标判断B ,C ;联立方程组判断D .【详解】解:由双曲线的渐近线方程为33y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确;由23a =,21b =,得2c ==,∴双曲线C3=,故B 错误;取20x -=,得2x =,0y =,曲线21x y e -=-过定点(2,0),故C 正确;联立221013x x y ⎧-=⎪⎨-=⎪⎩,化简得220,0y -+-=∆=,所以直线10x -=与C 只有一个公共点,故D 不正确.故选:AC .10.已知向量a ,b 满足2a b a += ,20a b a ⋅+= 且2= a ,则()A.2b =B.0a b +=C.26a b -= D.4a b ⋅=【答案】ABC 【解析】【分析】由2a b a += ,得20a b b ⋅+= ,又20a b a ⋅+= 且2= a ,得2b = ,4a b ⋅=- ,可得cos ,1a b a b a b⋅==- ,,πa b = ,有0a b += ,26a b -= ,可判断各选项.【详解】因为2a b a += ,所以222a b a += ,即22244a a b b a +⋅+= ,整理可得20a b b ⋅+= ,再由20a b a ⋅+= ,且2= a ,可得224a b == ,所以2b = ,4a b ⋅=- ,A 选项正确,D 选项错误;cos ,1a b a b a b⋅==- ,即向量a ,b 的夹角,πa b = ,故向量a ,b 共线且方向相反,所以0a b += ,B 选项正确;26a b -=,C 选项正确.故选:ABC11.如图,正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P是线段1CC 上的动点,则下列结论正确的是()A.存在点,P M ,使得二面角--M DC P 大小为23πB.存在点,P M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD-外接球的体积为3【答案】BC 【解析】【分析】由题意,证得1,CD MD CD DD ⊥⊥,得到二面角--M DC P 的平面角1π0,2MDD ⎡∠∈⎤⎢⎥⎣⎦,可得判定A 错误;利用线面平行的判定定理分别证得11//B D 平面BDP ,1//MB 平面BDP ,结合面面平行的判定定理,证得平面//BDP 平面11MB D ,可判定B 正确;取1DD 中点E ,证得PE ME ⊥,得到2ME ==,得到点M 在侧面11ADD A 内运动轨迹是以E 为圆心、半径为2的劣弧,可判定C 正确;当M 为1AD 中点时,连接AC 与BD 交于点O ,求得OM OA OB OC OD ====,得到四棱锥M ABCD -外接球的球心为O ,进而可判定D 错误.【详解】在正方体1111ABCD A B C D -中,可得CD ⊥平面11ADD A,因为MD ⊂平面11ADD A ,1DD ⊂平面11ADD A ,所以1,CD MD CD DD ⊥⊥,所以二面角--M DC P 的平面角为1∠MDD ,其中1π0,2MDD ⎡∠∈⎤⎢⎥⎣⎦,所以A 错误;如图所示,当M 为1AA 中点,P 为1CC 中点时,在正方体1111ABCD A B C D -中,可得11//B D BD ,因为11B D ⊄平面BDP ,且BD ⊂平面BDP ,所以11//B D 平面BDP ,又因为1//MB DP ,且1MB ⊄平面BDP ,且DP ⊂平面BDP ,所以1//MB 平面BDP ,因为1111B D MB B = ,且111,B D MB ⊂平面11MB D ,所以平面//BDP 平面11MB D ,所以B 正确;如图所示,取1DD 中点E ,连接PE ,ME ,PM ,在正方体1111ABCD A B C D -中,CD ⊥平面11ADD A ,且//CD PE ,所以PE ⊥平面11ADD A ,因为ME ⊂平面11ADD A ,可得PE ME ⊥,则2==ME ,则点M 在侧面11ADD A 内运动轨迹是以E 为圆心、半径为2的劣弧,分别交AD ,11A D 于2M ,1M ,如图所示,则121π3D E D M M E ∠=∠=,则21π3M M E ∠=,劣弧12M M 的长为π3π223⨯=,所以C 正确当M 为1A D 中点时,可得AMD 为等腰直角三角形,且平面ABCD ⊥平面11ADD A ,连接AC 与BD 交于点O ,可得OM OA OB OC OD =====,所以四棱锥M ABCD -外接球的球心即为AC 与BD 的交点O ,所以四棱锥M ABCD -,其外接球的体积为348233π⨯=,所以D 错误.故选:BC.12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2ln h x e x =(e 为自然对数的底数),则()A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-;D.()f x 和()h x 之间存在唯一的“隔离直线”y e =-.【答案】ABD 【解析】【分析】令()()()m x f x g x =-,利用导数可确定()m x 单调性,得到A 正确;设()f x ,()g x 的隔离直线为y kx b =+,根据隔离直线定义可得不等式组22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意(),0x ∈-∞恒成立;分别在0k =和0k <两种情况下讨论b 满足的条件,进而求得,k b 的范围,得到B 正确,C 错误;根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为y kx e =-;分别讨论0k =、0k <和0k >时,是否满足()()e 0f x kx x ≥->恒成立,从而确定k =,再令()()e G x h x =--,利用导数可证得()0G x ≥恒成立,由此可确定隔离直线,则D 正确.【详解】对于A ,()()()21m x f x g x x x=-=-,()212m x x x '∴=+,()3321221m x x x ⎛⎫''=-=- ⎪⎝⎭,当x ⎛⎫∈ ⎪⎝⎭时,()0m x ''>,()m x '∴单调递增,()2233220m x m ⎛'∴>-=--+= ⎝,()m x ∴在x ⎛⎫∈ ⎪⎝⎭内单调递增,A 正确;对于,B C ,设()f x ,()g x 的隔离直线为y kx b =+,则21x kx bkx bx ⎧≥+⎪⎨≤+⎪⎩对任意(),0x ∈-∞恒成立,即22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意(),0x ∈-∞恒成立.由210kx bx +-≤对任意(),0x ∈-∞恒成立得:0k ≤.⑴若0k =,则有0b =符合题意;⑵若0k <则有20x kx b --≥对任意(),0x ∈-∞恒成立,2y x kx b =-- 的对称轴为02kx =<,2140k b ∆+∴=≤,0b ∴≤;又21y kx bx =+-的对称轴为02bx k =-≤,2240b k ∴∆=+≤;即2244k b b k⎧≤-⎨≤-⎩,421664k b k ∴≤≤-,40k ∴-≤<;同理可得:421664b k b ≤≤-,40b ∴-≤<;综上所述:40k -≤≤,40b -≤≤,B 正确,C 错误;对于D , 函数()f x 和()h x 的图象在x =处有公共点,∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点.设隔离直线的斜率为k,则隔离直线方程为(y e k x -=,即y kx e =-+,则()()e 0f x kx x ≥->恒成立,若0k =,则()2e 00x x -≥>不恒成立.若0k <,令()()20u x x kx e x =-+>,对称轴为02k x =<()2u x x kx e ∴=-+在(上单调递增,又0ue e =--=,故0k <时,()()e 0f x kx x ≥->不恒成立.若0k >,()u x 对称轴为02kx =>,若()0u x ≥恒成立,则()(22340k e k ∆=-=-≤,解得:k =.此时直线方程为:y e =-,下面证明()h x e ≤-,令()()2ln G x e h x e e x =--=--,则()x G x x-'=,当x =时,()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()min 0G x G==,()()0G x e h x ∴=--≥,即()h x e ≤-,∴函数()f x 和()h x 存在唯一的隔离直线y e =-,D 正确.故选:ABD .【点睛】本题考查导数中的新定义问题的求解;解题关键是能够充分理解隔离直线的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题;难点在于能够对直线斜率范围进行准确的分类讨论,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图像在点()()11M f ,处的切线方程是122y x =+,则()()11f f '+=______.【答案】3【解析】【分析】根据导数的几何意义,可得'(1)f 的值,根据点M 在切线上,可求得(1)f 的值,即可得答案.【详解】由导数的几何意义可得,'1(1)2k f ==,又()()11M f ,在切线上,所以15(1)1222f =⨯+=,则()()11f f '+=3,故答案为:3【点睛】本题考查导数的几何意义的应用,考查分析理解的能力,属基础题.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,33sin 14ACF ∠=,则DEF 的面积为________.【解析】【分析】利用正弦定理以及余弦定理求得钝角三角形的三边长,根据等边三角形的性质以及面积公式,可得答案.【详解】因为EFD △为等边三角形,所以60EFD ∠= ,则120EFA ∠= ,在AFC △中,由正弦定理,则sin sin AF ACACF AFC=∠∠,解得sin 7sin 23314AF AC AFC ACF =⋅∠==∠,由余弦定理,则2222cos AC AF FC AF FC AFC =+-⋅⋅∠,整理可得:21499232FC FC ⎛⎫=+-⨯⋅⋅- ⎪⎝⎭,则23400FC FC +-=,解得5FC =或8-(舍去),等边EFD △边长为532-=,其面积为122sin 602⨯⨯⋅=o .15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a +++⋅⋅⋅+<,则n 的最大值为______.【答案】15【解析】【分析】应用等差数列定义得出等差数列,根据差数列通项公式及求和公式求解计算即得.【详解】因为12312133n n n n a a a a ++==+,所以1112,3n n a a +=+,即11123n n a a +-=,且1123a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为23,公差为23的等差数列.可求得()12221333n nn a =+-=,所以()()1232211111212222333n n n n n n a a a a ++⨯+⨯++⨯+++⋅⋅⋅+===,即()()181,12433n n n n +<+<且()*1,N n n n +∈单调递增,1516240,1617272⨯=⨯=.则n 的最大值为15.故答案为:15.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.【答案】6【解析】【分析】以点D 为原点,建立空间直角坐标系,由线面垂直的判定定理,证得1A C ⊥平面1BC D ,记1AC 与平面1BC D 交于点H ,连接11A C ,1,C O ,AC ,得到12A H HC =,结合点()13,0,3A 关于平面1BC D 对称的点为()1,4,1G --,进而求得1A F EF +的最小值.【详解】以点D 为原点,1,,DA DC DD所在直线分别为,,x y z 轴,建立空间直角坐标系D xyz -,如图所示,则()13,0,3A ,()3,2,3E ,()0,3,0C,因为BD AC ⊥,1BD A A ⊥,且1AC A A A ⋂=,则BD ⊥平面1A AC ,又因为1AC ⊂平面1A AC ,所以1BD A C ⊥,同理得1BC ⊥平面11A B C ,因为1AC ⊂平面11A B C ,所以11BC A C ^,因为1BD BC B = ,且1,BD BC ⊂平面1BC D ,所以1A C ⊥平面1BC D ,记1AC 与平面1BC D 交于点H ,连接11A C ,1C O ,AC ,且AC BD O = ,则11121A H A C HC OC ==,可得12A H HC =,由得点()13,0,3A 关于平面1BC D 对称的点为()1,4,1G --,所以1A F EF +的最小值为6EG ==.故答案为:6.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()23sin 2cos 2xf x x m ωω=++的最小值为2-.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上为增函数,求ω的最大值.【答案】(1)2(2)4【解析】【分析】(1)化简函数为()2sin 16f x x m πω⎛⎫=+++ ⎪⎝⎭,再根据函数()f x 的最小值为2-求解;(2)利用平移变换得到()2sin g x x ω=的图象,再由()y g x =在0,8π⎡⎤⎢⎥⎣⎦上为增函数求解.【小问1详解】解:()23sin 2cos 2xf x x m ωω=++,3sin cos 1x x m ωω=+++,2sin 16x m πω⎛⎫=+++ ⎪⎝⎭,函数()f x 的最小值为2-212m ∴-++=-,解得1m =-,则()2sin 6f x x πω⎛⎫=+⎪⎝⎭,∴函数()f x 的最大值为2.【小问2详解】由(1)可知:把函数()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭向右平移6πω个单位,可得函数()2sin y g x x ω==的图象.()y g x = 在0,8π⎡⎤⎢⎥⎣⎦上为增函数,∴函数()g x 的周期22T ππω=4ω∴ ,即ω的最大值为4.18.为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。
2025届永州市祁阳县高三数学上学期8月第一次月考试卷
2025届永州市祁阳县高三数学上学期8月第一次月考试卷考试时间:120分钟总分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=()A.{}43x x -<< B.{}11x x -<≤C.{}0,1,2 D.{}14x x -<<2.已知i 1iz=-,则z =().A.1i- B.i - C.1i-- D.13.已知等比数列{}n a 中,1241,9a a a ==,则7a =()A.3B.3或-3C.27D.27或-274.已知向量(1,2),(1,1),(4,5)a b c ==-= .若a 与b c λ+平行,则实数λ的值为()A.114 B.114-C.1D.1-5.某圆环的内外半径分别为2和4,将其绕对称轴旋转一周后得到的几何体体积为()A.32π3B.124π3C.224π3D.256π36.已知π,π2α⎛⎫∈⎪⎝⎭,3π1tan 43α⎛⎫-= ⎪⎝⎭,则sin α=()A.5 B.5C.3D.37.已知函数()1ln f x a x x=+,在点()()1,1f 处的切线方程为0x y -=,则a =()A.1eB.eC.D.28.已知12,F F 分别是双曲线22:1412x y E -=的左、右焦点,M 是E 的左支上一点,过2F 作12F MF ∠角平分线的垂线,垂足为,N O 为坐标原点,则||ON =()A .4B.2C.3D.1二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.两个选项的,部分选对的每一个得3分.三个选项的,部分选对的每一个得2分,有选错的得0分.)9.下列说法中,正确的是()A.数据40,27,32,30,38,54,31,50的第50百分位数为32B.已知随机变量ξ服从正态分布2(2,)N δ,()40.84P ξ<=;则()240.34P ξ<<=C.已知两个变量具有线性相关关系,其回归直线方程ˆˆˆy a bx=+,若1ˆ2,,3b x y ===,则ˆ1a =D.若样本数据1210,,,x x x ⋯的方差为2,则数据121021,21,,21x x x --- 的方差为410.若,a b 为正实数,且a b >,则下列不等式成立的是()A.11a b> B.ln ln a b >C.ln ln a a b b> D.e e -<-a ba b 11.平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的.已知在平面直角坐标系xOy 中,()2,0M -,()2,0N ,动点P 满足5PM PN ⋅=,其轨迹为一条连续的封闭曲线C.则下列结论正确的是()A.曲线C 与y 轴的交点为()0,1-,()0,1B.曲线C 关于x 轴对称C.PMN 面积的最大值为2D.OP 的取值范围是[]1,3三、填空题:本大题共3个小题,每小题5分,共15分.12.二项式521x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为______.13.函数()f x 是定义在R 上的偶函数,且()()11f x f x +=-,若[]0,1x ∈,()2xf x =,则()2023f =_______.14.现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有i ,j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有________种.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 的对边分别是,,a b c ,且4cos cos cos a B b C c B -=.(1)求cos B 的值;(2)若ABC V 的面积为,2b =,求ABC V 的周长.16.已知直线l 过椭圆2222:1(0,0)x y C a b a b +=>>的右焦点(1,0)F ,且交C 于41,,33A B ⎛⎫ ⎪⎝⎭两点.(1)求C 的离心率;(2)设点(3,1)P ,求ABP 的面积.17.如图所示,圆台12O O 的轴截面11A ACC 为等腰梯形,111224,AC AA AC B ===为底面圆周上异于,A C 的点,且,AB BC P =是线段BC 的中点.(1)求证:1C P //平面1A AB.(2)求平面1A AB 与平面1C CB 夹角的余弦值.18.已知函数()e 1,xf x ax a =--∈R .(1)讨论的单调性;(2)已知函数()()()1ln 1g x x x a =---,若()()f x g x ≥恒成立,求a 的取值范围.19.设n 次多项式()121210()0n n n n n n P t a t a ta t a t a a --=+++++≠ ,若其满足(cos )cos n P x nx =,则称这些多项式()n P t 为切比雪夫多项式.例如:由cos cos θθ=可得切比雪夫多项式1()P x x =,由2cos 22cos 1θθ=-可得切比雪夫多项式22()21P x x =-.(1)若切比雪夫多项式323()P x ax bx cx d =+++,求实数a ,b ,c ,d 的值;(2)对于正整数3n 时,是否有()()()122n n n P x x P x P x --=⋅-成立?(3)已知函数3()861f x x x =--在区间()1,1-上有3个不同的零点,分别记为123,,x x x ,证明:1230x x x ++=.。
高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题
2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)
天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。
24-25七年级数学第一次月考卷(广州专用,人教版七上第1~2章:有理数+有理数的运算)(全解全析)
2024-2025学年七年级数学上学期第一次月考卷(广州专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章:有理数、第二章:有理数的运算。
5.难度系数:0.68。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米【答案】C【详解】解:若向东走60米记作60+米,则向西走100米可记作100-米,故选:C .2.下列各组数中,值相等的一组是( )A .()3-+和()3++B .()3+-和3+-C .()3--和3--D .()3+-和3--3.当a 比b 小22,c 比b 小18时,下面正确的是( )A .b 比c 小4B .b 最大C .c 比a 小4D .a b c<<【答案】B【详解】解:22a b =-,18c b =-,∴a c b <<,4c a -=,∴b 最大,故选B .4.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ).A .822.9310´B .922.9310´C .82.29310´D .92.29310´A .a b >-B .0a b +>C .0b <D .0ab <6.如果()2a b-+-=,则b a的值为()120A.1B.2C.1-D.2-7.数轴上点A表示的数是1-,数轴上的另一点B与点A距离3个单位长度,则点B表示的数是()A.4-B.2或4-C.4D.2-或48.下列说法正确的个数为( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④两个无理数的和不一定是无理数;⑤无理数分为正无理数、零、负无理数.A.2个B.3个C.4个D.5个9.如图,圆的直径为2个单位长度,该圆上的点A 与数轴上表示1-的点重合,将圆沿数轴向左无滑动地滚动一周,点A 到达点A ¢的位置,则点A ¢表示的数是( )A .21p -B .21p --C .1p -D .1p --A .74B .104C .126D .144【答案】D 【详解】分析前三个正方形中的数据发现其包含两点规律:(1)从左上到左下到右上是三个连续的偶数;(2)右下的数等于左下的数与右上的数的积加上左上数的3倍.由此可知101283144m =´+´=.故选D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.比较大小:347-- 347æö--ç÷(填“<”或“>”或“=”).12.在数轴上,把表示1的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是.【答案】4-【详解】解:根据题意,作出数轴如图:则与此位置相对应的数是;4-,故答案为:4-.13.若m 、n 互为相反数,a 、b 互为倒数,则4ab m n -+-= .14.有理数,,a b c 在数轴上的位置如图所示,化简11a b b a c c +------= .故答案为:2-.15.求|2||7|x x -+-的最小值是 .【答案】5【详解】解:当2x <时,原代数式2792x x x -+-=-①;当27x ££时,原代数式275x x -+-=②;当7x >时,原代数式2729x x x -+-=-③;据以上可得>①②,且>③②;所以当27x ££时,原代数式取得最小值为5,故答案为:5.16.有理数a b 、在数轴上的表示如图所示,则下列结论中:①0ab <;②0a b +<;③0a b -<;④0a b a b+=;⑤11b b -=- ,正确的有 (只要填写序号).三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)把下列各数分别填在相应的大括号里.6113,,31,0.21, 3.14,0,21%,,202073----.整数:{ …};正整数:{ …};负分数:{ …};负整数:{ …}.18.(4分)画出数轴,在数轴上表示下列各数,然后用“<”号把这些数连接起来.93,1,3, 2.5,42---. 932.51342-<-<-<<.------------(4分)19.(6分)计算.(1)3571()491236--+¸(2)2211|7|()(4)353-¸--´-20.(6分)出租车司机小李某天下午在东西走向的人民大道上开车.如果规定向东为正,向西为负,这天下午他的行车里程(单位:千米)如下:15+,―2,5+,1-,10+,3-,―2,12+,4+,5-,6+.(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为每千米耗油0.06升,这天下午小李共耗油多少升?21.(8分)小明同学在学习完有理数的运算后,对运算产生了浓厚的兴趣,她借助有理数的运算,定义了一种新运算“⊕”,运算规则为:a b a b a b Å=´--.(1)计算()22-Å的值;(2)填空:()53Å- ()35-Å(填“>”或“=”或“<”);(3)求()1342æö-ÅÅç÷的值.22.(10分)阅读以下材料,完成相关的填空和计算.(1)根据倒数的定义我们知道,若()2a b c +¸=-,则()c a b ¸+=________.(2)计算:5721129336æö-+¸ç÷èø.(3)根据以上信息可知:1572361293æöæö-¸-+=ç÷ç÷________.23.(10分)已知,a b 互为相反数,,c d 互为倒数,2x =,1y =,x y <,计算:()22221a b x cdy x y xy++++-的值【详解】解:由题意可得:0a b +=,1cd =,2x =±,1y =±,------------(2分)x y <Q ,2x \=-,1y =±,------------(4分)当2,1x y =-=时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()2222212121=-++-´--´------------(6分)4142=+++11=,------------(7分)当2,1x y =-=-时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()()()()2222212121=-+-+-´---´------------(9分)4142=+-+3=;------------(10分)24.(12分)a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a |=5,|b |=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(3)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2020次后,求P 点表示的数.25.(12分)【背景知识】数轴上A 、B 两点在对应的数为a ,b ,则A 、B 两点之间的距离定义为:AB b a =-.【问题情境】已知点A 、B 、O 在数轴上表示的数分别为4-、10和0,点M 、N 分别从O 、B 出发,同时向左匀速运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,设运动的时间为t 秒()0t >.(1)填空:①OA =_____,OB =_____;②用含t 的式子表示:AM =_____;AN =_____;(2)当t 为何值时,恰好有2AN AM =;(3)如图,直线l 上有A ,B 两点,18cm AB =,点O 是线段AB 上的一点,2OA OB =.若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s ,当点P 与点Q 重合时,P ,Q 两点停止运动.设运动时间为()s t ,求当t 为何值时,()26cm OP OQ -=?。
2024届湖南师范大学附属中学高三上学期月考卷(四)数学及答案
湖南师大附中2024届高三月考试卷(四)数学审题人:高三备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12i z =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为( )A.(4,5)- B.(4,3)C.(3,4)- D.(5,4))2.若随机事件A ,B 满足1()3P A =,1()2P B =,3()4P A B = ,则(|)P A B =( )A.29B.23C.14D.168.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且1tan tan cos αβα+=,则( )A.22παβ+=B.22παβ-=C.22πβα-=D.22πβα+=5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是( )A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=6.函数1()2cos[(2023)]|1|f x x x π=++-在区间[3,5]-上所有零点的和等于( )A.2B.4C.6D.87.点M 是椭圆22221x y a b+=(0a b >>)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM △是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.⎛ ⎝C.⎫⎪⎪⎭D.(2-8.已知函数22,0,()4|1|4,0,x x f x x x ⎧=⎨-++<⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( )A.{2,1,0,1}-- B.{2,1,0}-- C.{1,0,1}- D.{2,1}-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已.知双曲线C过点且渐近线为y x =,则下列结论正确的是( )A.C 的方程为2213x y -= B.CC.曲线2e1x y -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点10.已知向量a ,b满足|2|||a b a += ,20a b a ⋅+= 且||2a = ,则( )A.||8b = B.0a b += C.|2|6a b -=D.4a b ⋅= 11.如图、正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是()A.存在点P ,M ,使得二面角M DC P --大小为23πB.存在点P ,M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD -12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b +…和()G x kx b +…恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数2()f x x =(x ∈R ),1()g x x=(0x <),()2eln h x x =(e 2.718≈),则下列选项正确的是( )A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭时单调递增B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为–4C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[4,1]-D.()f x 和()h x之间存在唯一的“隔离直线”ey =-三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f +'=___________.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,sin ACF ∠=,则DEF △的面积为___________.15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a ++++< ,则n 的最大值为___________.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数2()2cos 2xf x x m ωω=++(0ω>)的最小值为–2.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位长度,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上单调递增,求ω的最大值.18.(12分)为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。
2025届赤峰市红山区高三数学上学期10月第二次月考试卷附答案解析
赤峰二中 2022级高三上学期第二次月考数学试题一、单项选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U =R ,集合{}50,2x A x B x x x ⎧⎫-=<=>⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A. {}25x x << B. {}25x x ≤<C. {}02x x << D. {}02x x <≤【答案】D 【解析】【分析】确定集合A ,然后根据文氏图的概念及集合的运算求解.【详解】由题意5{|0}{|05}x A x x x x-=<=<<,{|2}U B x x =≤ð阴影部分为{|02}U A B x x =<≤ ð.故选:D .2. 命题“3[0,),0x x x ∀∈+∞+≥”的否定是 ( )A. 3(,0),0x x x ∀∈-∞+< B. 3(,0),0x x x ∀∈-∞+≥C. [)30,,0x x x ∞∃∈++< D. 3[0,0x x x ∃∈+∞+≥),【答案】C 【解析】【分析】利用全称量词命题的否定判断即可.【详解】命题“3[0,),0x x x ∀∈+∞+≥”是全称量词命题,其否定是存在量词命题,所以命题“3[0,),0x x x ∀∈+∞+≥”的否定是[)30,,0x x x ∞∃∈++<.故选:C3. 已知0a b c >>>,则下列不等式正确的是( )A 2a c b+> B. 2b ac> C. ()()110a b --> D. ()()a c a b c b->-【答案】D 【解析】【分析】运用特殊值判断A,B,C,运用不等式性质推断D.【详解】取4a =,3b =,1c =,则2a c b +<,故A 错误;取5a =,2b =,1c =,则2b ac <,故B 错误;取2a =,12b =,则()()110a b --<,故C 错误;因为0a b c >>>,所以a c b c ->-,所以()()a c a b c b ->-,故D 正确.故选:D4. 设0.13592,lg ,log 210a b c ===,则( ).A. b c a >> B. b a c>> C. a c b>> D. a b c>>【答案】D 【解析】【分析】依题意可得1a >,01b <<,0c <,进而可得结果.【详解】因为0.10221a =>=,50lg lg1012b <=<=,339log log 1010c =<=,所以a b c >>.故选:D.5. 数列{}n a 满足11a =,且对于任意的n *∈N 都满足 131nn n a a a +=+,则数列{}1n n a a +的前n 项和为( )A.131n + B.31+n n C.132n - D.32n n -【答案】B 【解析】【分析】根据给定条件,利用构造法求出数列{}n a 的通项,再利用裂项相消法求和即可.【详解】依题意,由131n n n a a a +=+,得1113n n a a +=+,故数列1{}na 是首项为1,公差为3的等差数列,所以113(1)32n n n a =+-=-,则111111((32)(31)33231n n a a n n n n +==--+-+,.所以数列{}1n n a a +的前n 项和为11111111111[((()((1)31447710323133131n n n n n -+-+-++-=-=-+++ .故选:B6. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究可知:在室温25C 下,某种绿茶用85C 的水泡制,经过min x 后茶水的温度为C y ,且()0.9227250,R xy k x k =⋅+≥∈.当茶水温度降至60C 时饮用口感最佳,此时茶水泡制时间大约为( )(参考数据:ln20.69,ln3 1.10,ln7 1.95,ln0.92270.08≈≈≈≈-)A. 6min B. 7minC. 8minD. 9min【答案】B 【解析】【分析】根据初始条件求得参数k ,然后利用已知函数关系求得口感最佳时泡制的时间x .【详解】由题意可知,当0x =时,85y =,则8525k =+,解得60k =,所以600.922725x y =⨯+,当60y =时,60600.922725x =⨯+,即70.922712x=,则0.92277ln7ln 7ln1212log 12ln 0.9227ln 0.9227x -===ln 72ln 2ln 3 1.9520.69 1.107ln 0.92270.08---⨯-=≈≈-,所以茶水泡制时间大的为7 min.故选:B.7.函数||()1x f x e =--的大致图象为A.B.C. D.【答案】C 【解析】分析】先研究函数的奇偶性,得到()f x 是偶函数,研究当0x ≥时函数的单调性,又(0)0f =,即得解.【详解】||||()2||12||1()x x f x e x e x f x --=---=--= 故()f x 是偶函数,当0x ≥时,()21x f x e x =--,()2x f x e '=-,令()0f x '>,解得ln 2x >;令()0f x '<,解得ln 2x <即()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,又(0)0f =,故选:C【点睛】本题考查了通过函数的奇偶性,单调性研究函数的图像和性质,考查了学生综合分析,数形结合的能力,属于中档题.8. 若定义在R 上的函数()f x 满足()()4()2f x x f f ++=,()21f x +是奇函数,11()22f =则( )A.17111(22k f k =-=-∑B. 1711()02k f k =-=∑C. 171117()22k kf k =-=-∑ D.171117()22k kf k =-=∑【答案】D 【解析】【分析】根据给定条件,求出函数()f x 的周期,及(1)(1)0f x f x -+++=和(2)()0f x f x ++=,再逐项计算判断得解.【详解】由()4(()2)f f f x x ++=,得()4((24))f x x f f +++=,则(4)()f x f x +=,即函数()f x 的周期为4,【由(21)f x +是R 上的奇函数,得(21)(21)f x f x -+=-+,即(1)(1)0f x f x -+++=,于是13()()022f f +=,5751()()(()02222f f f f +=+-=,即1357(()()()02222f f f f +++=,因此17113571()()(2()](1622222111()4[()22k f k f f f f f f =-==++++=+∑,AB 错误;由()4((24))f x x f f +++=,取0x =,得(2)0f =,则(4)(0)(2)0f f f ==-=,因此(2)()0f x f x ++=,取32x =,得37((022f f +=,于是1357135737(2(3()4()[(()]3[()()](()022********f f f f f f f f f f +++=+++++=,则17113571()2(3()4(17(162222117()4[222k k f f f f f f k =++=+-=++∑,C 错误,D 正确.故选:D【点睛】思路点睛:涉及抽象函数等式问题,利用赋值法探讨函数的性质,再借助性质即可求解.二、多项选择题(本大题共3小题,每小题6分,共18分. 在每小题给出的四个选项中,有多个选项是符合题求的,全部选对的得6分,有选错的得0分)9. 已知p :260x x +-=;q :10ax +=.若p 是q 的必要不充分条件,则实数a 的值可以是( )A. ﹣2B. 12-C.13D. 13-【答案】BC 【解析】【分析】根据集合关系将条件进行化简,利用充分条件和必要条件的定义即可得到结论.【详解】由题意得{: 3 2}p A =-,,当0a =时,q B =∅:,当0a ≠时,1q B a ⎧⎫=-⎨⎬⎩⎭:,因为p 是q 的必要不充分条件,所以B A ,所以0a =时满足题意,当13a -=-或12a -=时,也满足题意,解得13a =或12a =-,故选:BC【点睛】本题考查利用集合间的关系判断命题间充分必要条件,属于中档题.10. 已知0,0a b >>且2a b +=, 则下列不等式恒成立的是( ).A. ²²a b +的最小值为2B. 12a b+的最小值为3+C. ab 的最大值为 1D.的最大值为2【答案】ACD 【解析】【分析】配方后使用基本不等式可判断A ;利用常数代换可判断B ;直接使用基本不等式可判断C ;先利用基本不等式求2的最大值,然后可判断D .【详解】对A ,()22²²24222a b a b a b ab +⎛⎫+=+-≥-= ⎪⎝⎭,当且仅当1a b ==时等号成立,A 正确;对B ,()(1211212133222b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当21b a a b a b ⎧=⎪⎨⎪+=⎩,即1,2a b =-=-时等号成立,B 错误;对C ,212a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当1a b ==时等号成立,C 正确;对D,()224a b a b =++≤+=,当且仅当1a b ==时等号成立,2≤,D 正确故选:ACD11. 设正项等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,则下列选项正确的是( )A. 4945S S q S =+B. 若20252020T T =,则20231a =C. 若194a a =,则当2246a a +取得最小值时,1a =D. 若21()n n n a T +>,则11a <【答案】AB 【解析】【分析】由前n 项和的定义以及等比数列性质分析判断A ;由题意结合等比数列性质分析判断B ;根据题意.结合基本不等式知:当且仅当462a a ==时,2246a a +取得最小值,进而可得结果判断C ;举反例说明即可D.【详解】由数列{}n a 为正项等比数列,得10,0,0n a q T >>>,对于A ,9123456789S a a a a a a a a a =++++++++()4441234545S q a a a a a S q S =+++++=+,即4945S S q S =+,A 正确;对于B ,由20252020T T =,得5202520212022202320242025202320201T a a a a a a T =⋅⋅⋅⋅==,则20231a =,B 正确;对于C ,由19464a a a a ==,得22446628a a a a +≥=,当且仅当462a a ==时取等号,若2246a a+取得最小值,则462a a ==,即34156122a a q a a q ⎧==⎨==⎩,解得121a q =⎧⎨=⎩,C 错误;对于D ,例如11,2a q ==,则12n n a -=,()101112121222222n n n n n nT a a a --++⋅⋅⋅+-=⋅⋅⋅=⨯⨯⋅⋅⋅⨯==,得22(1)2221()(2)2,[2]2n n n n nn nnn naT --+====,而*n ∈N ,22n n n >-,则2222n n n->,即21()n n n a T +>,符合题意,但11a =,D 错误.故选:AB【点睛】关键点点睛:本题判断选项D 的真假,构造符合条件的数列,计算判断是关键.三、填空题(本大题共3小题,每小题5分,共15分. 把答案填在题中横线上)12. 若曲线e x y =在点(0,1)处的切线也是曲线()ln 1y x a =++的切线,则a =_________.【答案】1【解析】【分析】先求出曲线e x y =在(0,1)的切线方程,再设曲线()ln 1y x a =++的切点为0(x ,0ln(1))x a ++,求出y ',利用公切线斜率相等求出0x 表示出切线方程,结合两切线方程相同即可求解【详解】由e x y =,得e x y '=,001|e x y ===',故曲线e x y =在(0,1)处的切线方程为1y x =+;由()ln 1y x a =++,得11y x '=+,设切线与曲线ln(1)y x a =++相切的切点为0(x ,0ln(1))x a ++,由两曲线有公切线得0111y x '==+,解得00x =,则切点为(0,)a ,切线方程为y x a =+,根据两切线重合,解得1a =.故答案为:1.13. 已知[]x 表示不超过x 的最大整数,如[1.3]1=,[ 1.5]2-=-,[3]3=.若1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则x 的取值范围是_________.【答案】[)1,3【解析】【分析】依题意可得则112x +⎡⎤=⎢⎥⎣⎦且11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,从而得到不等式组,解得即可.【详解】解:依题意,因为1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若102x +⎡⎤≤⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若122x +⎡⎤≥⎢⎥⎣⎦,则11122x ⎡+⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若112x +⎡⎤=⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,满足条件,则1122x +≤<.解得13x ≤<,即[)1,3x ∈.故答案为:[)1,3.【点睛】本题考查新定义运算,不等式的解法,属于中档题.14. 已知实数()()1,0ln 1,0x e x f x x x x -⎧>⎪=⎨⎪-≤⎩,若关于x 的方程()()2340f x f x t -+=有四个不同的实数根,则t 的取值范围为___________.【答案】[)0,1【解析】【分析】画出f(x)的图象,根据图象特点,要想方程()()2340fx f x t -+=有四个不同的实数根,需要令()f x m =,这样2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,才会有四个交点.【详解】当0x ≤时,()()ln 1f x x =-,单调递减,当0x >时,()1x e f x x -=,()()121x e x f x x --'=,当1x >时,()0f x ¢>,()1x ef x x-=单调递增,当01x <<时,()0f x ¢<,()1x ef x x-=单调递减,在1x =时,f(x)取得最小值,()11f =画出f(x)的图象如图所示:令()f x m =,则方程为2340m m t -+=,要想方程()()2340fx f x t -+=有四个不同的实数根,结合f(x)的图象可知需要满足:2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,令()234g m m m t =-+,则()()161201000t g g ∆=->⎧⎪<⎨⎪≥⎩ ,解得:01t ≤<t 的取值范围[)0,1故答案为:[)0,1【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15.已知()sin cos 0,πθθθ+=∈.(1)求sin cos θθ-的值;(2)求()()cos 22025πtan 2025πθθ+++的值.【答案】(1)sin cos θθ-=(2)115-【解析】【分析】(1)已知式平方后,结合平方关系确定sin ,cos θθ的符号后,再利用平方关系求得sin cos θθ-;(2)(1)小题结论与已知联立方程组解得sin ,cos θθ,由商数关系得tan θ,再利用诱导公式、二倍角公式化简变形后求值.【小问1详解】因为sin cos θθ+=22(sin cos )5θθ+=,所以212sin cos 5θθ+=,即32sin cos 05θθ=-<.因为()0,πθ∈,则sin 0θ>,所以cos 0,sin cos 0θθθ<->,因为28(sin cos )12sin cos 5θθθθ-=-=,所以sin cos θθ-=【小问2详解】由sin cos sin cos θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩解得sin θθ==,所以sin tan 3cos θθθ==-;所以()()229111cos 22025πtan 2025πcos2tan sincos tan 310105θθθθθθθ+++=-+=-+=--=-.16. 已知数列{}n a 的前n 项和为{}n S ,其中11a =,且112n n a S -=.(1)求{}n a 的通项公式.(2)设n n b na =,求{}n b 的前n 项和n T .【答案】(1)21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩ (2)132(2)(2n n T n -=+-⋅【解析】【分析】(1)根据题意,得到2n ≥时,132n n a a +=,再由211122a S ==,结合等比数列的通项公式,即可求解;(2)由(1)得到21,113,222n n nb n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,结合乘公比错位法求和,即可求解.【小问1详解】由112n n a S -=,可得12n n a S -=,则12n n a S +=,两式相减,可得122n n n a a a +-=,即123n n a a +=,又由211111222a S a ===,易知0n a ≠,所以当2n ≥时,132n n a a +=,所以数列{}n a 的通项公式为21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩.【小问2详解】因为n n b na =,可得21,113,222n n n b n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,则01221313131312(3(4(()22222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,所以123133131313132(3(4((2222222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,两式相减得12321111333313[()()()()]()222222222n n n T n ---=+++++-⋅⋅212133[1()]11131331322([1()](322222222212n n n n n n -----=+⨯-⋅⋅=-⋅--⋅⋅-,所以21133313[()1]()2(2)(222n n n n T n n ---=--⋅-+⋅=+-⋅.17. 已知函数31()3x x f x a+=+为奇函数.(1)解不等式()2f x >;(2)设函数33()log log 39x x g x m =⋅+,若对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,求实数m 的取值范围.【答案】(1)(0,1);(2)94m ≥.【解析】【分析】(1)根据奇偶性的定义直接可得参数值,化简不等式,结合指数函数性质解不等式.(2)由(1)可得2()f x 的值域A ,再利用换元法设3log t x =,可得1()g x 的值域B ,根据B A ⊆,列不等式可得解.【小问1详解】函数31()3x x f x a+=+中,30x a +≠,由()f x 是奇函数,得()()0f x f x +-=,即3131033x x x x a a--+++=++,整理得(1)(332)0x x a -+++=,解得1a =-,函数312()13131x x x f x +==+--定义域为(,0)(0,)-∞+∞ ,由()2f x >,得21231x +>-,即2131x >-,整理得0312x <-<,解得01x <<,所以不等式()2f x >的解集为(0,1).【小问2详解】因为函数31x y =-在(]0,1上单调递增,故当01x <≤时,0312x <-≤,由(1)得31()31+=-x x f x 在(0,1]x ∈的值域[2,)A =+∞,又3333g 39()log log (log 1)(lo 2)x x g x m x x m =⋅+=--+,[3,27]x ∈设3log t x =,则[]1,3t ∈,2(1)(2)32y t t m t t m =--+=-++,当32t =时,min 14y m =-+,当3x =时,max 2y m =+,因此函数()g x 在[3,27]x ∈上的值域1[,2]4B m m =-++,由对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,得B A ⊆,于是124m -+≥,解得94m ≥,所以实数m 的取值范围是94m ≥.18. 已知函数()2ln f x x mx =-,()212g x mx x =+,R m ∈,令()()()F x f x g x =+.(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1F x mx ≤-恒成立,求整数m 的最小值.【答案】(1)答案见解析(2)2【解析】【分析】(1)求导,分0m ≤与0m >分类讨论,然后利用导函数的正负来确定单调性即可;(2)构造函数()()()()211ln 112G x F x mx x mx m x =--=-+-+,利用导数求函数()G x 的最大值,然后将恒成立问题转化为最值问题即可;【小问1详解】因为()()2ln 0f x x mx x =->,所以()21122mx f x mx x x -='=-,当0m ≤时,()0f x '>,所以()f x 在区间(0,+∞)上单调递增;当0m >时,令()0f x '>,即2120mx ->,又0x >,解得0x <<令()0f x '<,即2120mx -<,又0x >,解得x >,综上,当0m ≤时,()f x 的增区间为(0,+∞),无减区间;当0m >时,()f x的增区间为⎛⎝,减区间为∞⎫+⎪⎪⎭【小问2详解】令()()()()211ln 112G x F x mx x mx m x =--=-+-+,所以()()()21111mx m x G x mx m x x-+-+=-+-='.当0m ≤时,因为x >0,所以()0G x '>.所以()G x 在()0,∞+上是单调递增函数,又因为()()2131ln11112022G m m m =-⨯+-+=-+>,所以关于x 不等式()0G x ≤不能恒成立,即关于x 的不等式()1F x mx ≤-不能恒成立.当m >0时,()()()21111m x x mx m x m G x x x ⎛⎫--+ ⎪-+-+⎝⎭=='.令()0G x '=,得1x m =,所以当10,x m ⎛⎫∈ ⎪⎝⎭时,()0G x '>;当1,x m ∞⎛⎫∈+ ⎪⎝⎭时,()0G x '<.因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭是增函数,在1,x m ∞⎛⎫∈+ ⎪⎝⎭是减函数.故函数()G x 的最大值为()2111111ln 11ln 22G m m m m m m m m ⎛⎫⎛⎫=-⨯+-⨯+=- ⎪ ⎪⎝⎭⎝⎭.令()1ln 2h m m m =-,()2112h m m m=-'-,当()0,m ∞∈+时,()0h m '<所以()h m 在()0,m ∞∈+上是减函数,又因为()1102h =>,()12ln204h =-<,所以当2m ≥时,()0h m <,所以()0G x <恒成立,即()1F x mx ≤-恒成立所以整数m 的最小值为2.的【点睛】关键点点睛:第(1)小问的关键是分0m ≤与0m >进行分类讨论,第(2)的关键是通过移项构造函数()()21=ln 112G x x mx m x -+-+,把恒成立问题转化为求函数()G x 的最值问题.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.【答案】(1)2和5为两个质数“理想数”(2)m 的值为12或18(3)证明见解析【解析】【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道9m a m =-必为奇数,则m 必为偶数,结合整除知识得解;(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】20以内的质数为2,3,5,7,11,13,17,19,212=,故21a =,所以2为“理想数”;33110⨯+=,而1052=,故3不是“理想数”;35116⨯+=,而41612=,故5是“理想数”;37122⨯+=,而22112=,故7不是“理想数”;311134⨯+=,而34172=,故11不是“理想数”;313140⨯+=,而4058=,故13不是“理想数”;317152⨯+=,而52134=,故17不是“理想数”;319158⨯+=,而58292=,故19不是“理想数”;2∴和5为两个质数“理想数”;【小问2详解】由题设可知9m a m =-必为奇数,m ∴必为偶数,∴存在正整数p ,使得92p m m =-,即9921p m =+-:921p ∈-Z ,且211p -≥,211p ∴-=,或213p -=,或219p -=,解得1p =,或2p =,1991821m ∴=+=-,或2991221m =+=-,即m 的值为12或18.【小问3详解】显然偶数"理想数"必为形如()*2k k ∈N 的整数,下面探究奇数"理想数",不妨设置如下区间:((((022*******,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦ ,若奇数1m >,不妨设(2222,2k k m -⎤∈⎦,若m 为"理想数",则(*3112s m s +=∈N ,且)2s >,即(*213s m s -=∈N ,且)2s >,①当(*2s t t =∈N ,且)1t >时,41(31)133t t m -+-==∈Z ;②当()*21s t t =+∈N 时,2412(31)133t t m ⨯-⨯+-==∉Z ;(*413t m t -∴=∈N ,且)1t >,又22241223t k k --<<,即1344134k t k -⨯<-≤⨯,易知t k =为上述不等式的唯一整数解,区间(2222,2k k -]存在唯一的奇数"理想数"(*413k m k -=∈N ,且)1k >,显然1为奇数"理想数",所有的奇数"理想数"为()*413k m k -=∈N ,∴所有的奇数"理想数"的倒数为()*341k k ∈-N ,1133134144441k k k ++<=⨯--- 1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭21111171111124431124⎛⎫<⨯++++<+⨯= ⎪⎝⎭-- ,即()*73n S n <∈N .【点睛】知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
长郡中学2025届高三上学期月考(二)数学试卷(原卷版)
长郡中学2025届高三月考试卷(二)数学得分__________.本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}(){}2,128t A x x B t t ==∈Z ∣∣ ,则A B = ( ) A. []1,3− B. {}0,1 C. []0,2 D. {}0,1,22. 已知复数z 满足i 1z −=,则z 的取值范围是( ) A. []0,1 B. [)0,1 C. [)0,2 D. []0,23. 已知()2:ln (11)1p f x a x x =+−<< − 是奇函数,:1q a =−,则p 是q 成立( ) A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4. 若锐角α满足sin cos αα−sin 22πα +=( ) A. 35 B. 35 C. 35 或35 D. 45−或455. 某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生6. 如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且,AP BP O =为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )的的A. 2B. 12 C. D. 7. 在平面直角坐标系xOy 中,已知直线1:2l y kx =+与圆22:1C x y +=交于,A B 两点,则AOB 的面积的最大值为( )A. 1B. 12C.D. 8. 设函数()()2ln f x x ax b x =++,若()0f x ≥,则a 的最小值为( ) A. 2− B. 1− C. 2 D. 1 二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.) 9. 已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( )A. 若1(,)3X B n ,则(22113E X n ++ B. 若1(,)3X B n ,则()4219D X n +=C. 若1(,)3X B n ,则()()11P X P X n ===−D. 当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布10. 已知函数()sin cos (,0)f x x a x x ωωω=+∈>R 的最大值为2,其部分图象如图所示,则( )A. 0a >B. 函数π6f x−为偶函数 C. 满足条件的正实数ω存在且唯一D. ()f x 是周期函数,且最小正周期为π11. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线交x 轴于点D ,直线l 经过F 且与C 交于,A B 两点,其中点A 在第一象限,线段AF 的中点M 在y 轴上的射影为点N .若MN NF =,则( )A. lB. ABD △是锐角三角形C. 四边形MNDF2 D. 2||BF FA FD ⋅> 三、填空题(本大题共3小题,每小题5分,共15分.)12. 在ABC 中,AD 是边BC 上的高,若()()1,3,6,3AB BC== ,则AD = ______. 13. 已知定义在RR 上的函数()f x 满足()()23e x f x f x =−+,则曲线yy =ff (xx )在点()()0,0f 处的切线方程为_____________.14. 小澄玩一个游戏:一开始她在2个盒子,A B 中分别放入3颗糖,然后在游戏的每一轮她投掷一个质地均匀的骰子,如果结果小于3她就将B 中的1颗糖放入A 中,否则将A 中的1颗糖放入B 中,直到无法继续游戏.那么游戏结束时B 中没有糖的概率是__________. 四、解答题(本大题共5小题,共77分,解签应写出文字说明、证明过程或演算步骤.) 15. 已知数列{}n a 中,11a =,且0,n n a S ≠为数列{}n a 的前nn a =. (1)求数列{}n a 的通项公式;(2)若1(1)n n n n n c a a +−=,求数列{}n c 的前n 项和. 16. 如图,在以,,,,,A B C D E F 为顶点五面体中,四边形ABCD 与四边形CDEF 均为等腰梯形,AB∥,CD EF ∥,224CD CD AB EF ===,AD DE AE ===.的的(1)证明:平面ABCD ⊥平面CDEF ; (2)若M 为线段CD 上一点,且1CM =,求二面角A EM B −−的余弦值. 17. 已知函数2()e 2,R x f x ax a =−∈. (1)求函数()f x 的单调区间;(2)若对于任意的0x >,都有()1f x ≥恒成立,求a 的取值范围.18. 已知双曲线()2222:10,0x y E a b a b−=>>的左、右焦点分别为12,,F F E的一条渐近线方程为y =,过1F 且与x 轴垂直的直线与E 交于P ,Q 两点,且2PQF 的周长为16. (1)求E 的方程;(2),A B 为双曲线E 右支上两个不同的点,线段AB 的中垂线过点()0,4C ,求ACB ∠的取值范围. 19. 对于集合,A B ,定义运算符“Δ”:Δ{,A B x x A x B =∈∈∣两式恰有一式成立},A 表示集合A 中元素的个数.(1)设][1,1,0,2A B =−=,求ΔA B ; (2)对于有限集,,A B C ,证明ΔΔΔA B B C A C +≥,并求出固定,A C 后使该式取等号B 的数量;(用含,A C 的式子表示)(3)若有限集,,A B C 满足ΔΔΔA B B C A C +=,则称有序三元组(),,A B C 为“联合对”,定义{}*1,2,,,I n n ∈N ,(){},,,,u A B C A B C I ⊆∣. ①设m I ∈,求满足ΔA C m =的“联合对”(),,A B C u ⊆的数量;(用含m 的式子表示) ②根据(2)及(3)①的结果,求u 中“联合对”的数量.的。
四川省绵阳市2024届高三数学上学期第四次月考理试题含解析
高中2021级高三第四学月测试理科数学本试卷分为试题卷和答题卡两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卡共6页.满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的学校、班级、姓名用0.5毫米黑色签字笔填写清楚,同时用2B 铅笔将考号准确填涂在“考号”栏目内.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后再选涂其它答案;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后将答题卡收回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知集合{}*2450M x x x =∈--≤N ,{}04N x x =≤≤,则M N ⋂=()A.{0,1,2,3,4}B.{1,2,3,4}C.{}04x x ≤≤ D.{}14x x ≤≤【答案】B 【解析】【分析】解不等式求出集合M ,根据集合的交集运算,即可得答案.【详解】解2450x x --≤,得:15x -≤≤,所以{}{}*151,2,3,4,5M x x =∈-≤≤=N ,{}04N x x =≤≤,所以{1,2,3,4}M N ⋂=.故选:B.2.在复平面内,复数342i i++对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】通过复数的运算求出复数的代数形式,然后再进行判断即可.【详解】由题意得()()()5234522222i ii i i i i -+===-+++-,所以复数342i i++在复平面内对应的点为()2,1-,在第四象限.故选D .【点睛】解题的关键是将复数化为代数形式,然后再根据复数的几何意义进行判断,属于基础题.3.设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于()A.1 B.-1C.2D.12【答案】A 【解析】【分析】利用等差数列的求和公式计算即可.【详解】95S S =19159()25()2a a a a ++=5395a a =1.故选:A.4.已知向量a,b不共线,向量3c a b =+,2d a kb =+,且c d ∥,则k =()A.-3 B.3C.-6D.6【答案】D 【解析】【分析】设d c λ=,从而得到23a kb a b λλ+=+ ,得到方程,求出k 的值.【详解】设d c λ=,则()233a kb a b a b λλλ+=+=+ ,故2,36k λλ===.故选:D5.南山中学某学习小组有5名男同学,4名女同学,现从该学习小组选出3名同学参加数学知识比赛,则选出的3名同学中男女生均有的概率是()A.45B.56C.67D.78【答案】B 【解析】【分析】首先计算出基本事件总数,依题意选出的3名同学中男女生均有,分为两种情况:①1名男同学,2名女同学;②2名男同学,1名女同学,计算出所有可能情况,再根据古典概型的概率公式计算可得;【详解】解:从有5名男同学,4名女同学,现从该学习小组选出3名同学参加数学知识比赛,则有3998784321C ⨯⨯==⨯⨯;依题意选出的3名同学中男女生均有,分为两种情况:①1名男同学,2名女同学,有1254C C 30=(种);②2名男同学,1名女同学,215440C C =(种);故概率为30405846P +==故选:B【点睛】本题考查简单的组合问题,古典概型的概率问题,属于基础题.6.已知1sin cos 3αβ-=,1cos sin 2αβ+=,则()sin αβ-=()A.572B.572- C.5972D.5972-【答案】C 【解析】【分析】将已知等式平方后相加,结合同角的三角函数关系以及两角和的正弦公式,即可求得答案.【详解】由题意得()2221sin cos sin cos 2sin cos 9αβαβαβ-=+-=,()2221cos sin cos sin 2cos sin 4αβαβαβ+=++=,两式相加得()1322sin cos cos sin 36αβαβ--=,得()59sin 72αβ-=,故选:C7.在2022年某省普通高中学业水平考试(合格考)中,对全省所有考生的数学成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[)[)[)[)[]40,50,50,60,60,70,80,90,90,100,90分以上为优秀,则下列说法中不正确的是()A.该省考生数学成绩的中位数为75分B.若要全省的合格考通过率达到96%,则合格分数线约为44分C.从全体考生中随机抽取1000人,则其中得优秀考试约有100人D.若同一组中数据用该组区间中间值作代表值,可得考试数学成绩的平均分约为70.5.【答案】A 【解析】【分析】根据频率分布直方图计算中位数、平均分,由不合格率为4%求得合格线,利用优秀率估算抽取的1000人中的优秀从数,从而判断各选项.【详解】由频率分布直方图知中位数在[70,80]上,设其为x ,则700.5(0.10.150.2)80700.3x --++=-,解得71.67x ≈,A 错;要全省的合格考通过率达到96%,设合格分数线为y ,则4010.96100.1y --=,44y =,B 正确;由频率分布直方图优秀的频率为0.1,因此人数为10000.1100⨯=,C 正确;由频率分布直方图得平均分为450.1550.15650.2750.3850.15950.170.5⨯+⨯+⨯+⨯+⨯+⨯=,考试数学成绩的平均分约为70.5,D 正确.故选:A.8.在[2,3]-上随机取一个数k ,则事件“直线3y kx =+与圆22(2)9x y ++=有公共点”发生的概率为()A.715B.815C.25D.35【答案】A 【解析】【分析】根据直线与圆有公共点,求出k 的范围,再根据几何概型的概率公式计算即可.【详解】若直线3y kx =+,即30kx y -+=与圆22(2)9x y ++=有公共点,则圆心到直线距离3d =≤,故5≥解得43k ≥或43k ≤-,由几何概型的概率公式,得事件“直线3y kx =+与圆22(2)9x y ++=有公共点”发生的概率为()()44323373215P ⎡⎤⎛⎫⎛⎫-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==--.故选:A.9.已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,且3x π=时,函数()f x 取最小值,若函数()f x 在[]0,a 上单调递减,则a 的最大值是()A.6πB.56π C.23π D.3π【答案】D 【解析】【分析】由周期求得ω,再由最小值求得ϕ函数解析式,然后由单调性可得a 的范围,从而得最大值.【详解】由题意22πωπ==,cos(2)13πϕ⨯+=-,22,Z 3k k πϕππ+=+∈,又2πϕ<,∴3πϕ=,()cos(2)3f x x π=+,[0,]x a ∈时,2[,2]333x a πππ+∈+,又()f x 在[0,]a 上单调递减,所以23a ππ+≤,3a π≤,即03a π<≤,a 的最大值是3π.故选:D .10.点P 是以12,F F 为焦点的的椭圆上一点,过焦点作12F PF ∠外角平分线的垂线,垂足为M ,则点M 的轨迹是()A.圆 B.椭圆 C.双曲线 D.抛物线【答案】A 【解析】【分析】P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,延长2F M 交1F 延长线于Q ,可证得2PQ PF =,且M 是2PF 的中点,由此可求得OM 的长度是定值,即可求点M 的轨迹的几何特征.【详解】解:由题意,P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,延长2F M 交1F P 延长线于Q ,得2PQ PF =,由椭圆的定义知122PF PF a +=,故有112PF PQ QF a +==,连接OM ,知OM 是三角形12F F Q 的中位线OM a ∴=,即点M 到原点的距离是定值,由此知点M 的轨迹是圆故选:A .【点睛】本题在椭圆中求动点Q 的轨迹,着重考查了椭圆的定义、等腰三角形的判定和三角形中位线定理等知识,属于中档题.11.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=A.13B.3C.23D.223【答案】D 【解析】【详解】将y=k(x+2)代入y 2=8x,得k 2x 2+(4k 2-8)x+4k 2=0.设交点的横坐标分别为x A ,x B ,则x A +x B =28k-4,①x A ·x B =4.又|FA|=x A +2,|FB|=x B +2,|FA|=2|FB|,∴2x B +4=x A +2.∴x A =2x B +2.②∴将②代入①得x B =283k -2,x A =283k -4+2=283k -2.故x A ·x B =228162233k k ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭=4.解之得k 2=89.而k>0,∴k=3,满足Δ>0.故选D.12.已知函数()22e1xf x ax bx =-+-,其中a 、b ∈R ,e 为自然对数的底数,若()10f =,()f x '是()f x 的导函数,函数()f x '在区间()0,1内有两个零点,则a 的取值范围是()A.()22e3,e 1-+ B.()2e3,-+∞C.()2,2e2-∞+ D.()222e6,2e 2-+【答案】A 【解析】【分析】由()0f x '=可得222e 21e x ax a =--+,作出函数函数22e x y =与221e y ax a =--+的图象在()0,1上有两个交点,数形结合可得出实数a 的取值范围.【详解】因为()22e1xf x ax bx =-+-,则()21e 10f a b =-+-=,可得21e b a =+-,所以,()()222e 1e1xf x ax a x =-++--,则()222e21e xf x ax a '=-++-,由()0f x '=可得222e 21e x ax a =--+,因为函数()f x '在区间()0,1内有两个零点,所以,函数22e xy =与221e y ax a =--+的图象在()0,1上有两个交点,作出22e xy =与()2221e 211e y ax a a x =--+=--+的函数图象,如图所示:若直线221e y ax a =--+经过点()21,2e,则2e1a =+,若直线221e y ax a =--+经过点()0,2,则2e 3a =-,结合图形可知,实数a 的取值范围是()22e 3,e 1-+.故选:A .第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案直接填答题卷的横线上.13.若一组数据123,,,,n x x x x ⋯的方差为10,则另一组数据1221,21,,21n x x x --⋯-的方差为______.【答案】40【解析】【分析】由题意先设出两组数据的平均数,然后根据已知方差、方差公式运算即可得解.【详解】由题意设123,,,,n x x x x ⋯的平均数为x ,则1221,21,,21n x x x --⋯-的平均数为21x -,由题意123,,,,n x x x x ⋯的方差为()()()222212110n s x x x x x x n ⎡⎤=-+-++-=⎢⎥⎣⎦ ,从而1221,21,,21n x x x --⋯-的方差为()()()222221121222222441040n s x x x x x x s n ⎡⎤=-+-++-==⨯=⎢⎥⎣⎦ .故答案为:40.14.若二项式2nx的展开式中第5项是常数项,则展开式中各项系数的和为__________.【答案】1【解析】【分析】利用二项展开式的通项公式求出展开式的第五项,令x 的指数为0,求出n 的值,令1x =,可得展开式中各项系数的和.【详解】解:2nx ⎫⎪⎭展开式的第5项为44452()n n T C x -=-二项式2nx ⎫-⎪⎭的展开式中第5项是常数项,∴4402n --=,12n ∴=∴二项式为122x ⎫-⎪⎭令1x =,可得展开式中各项系数的和()12121n T =-=故答案为:1.【点睛】本题考查展开式的特殊项,正确运用二项展开式是关键,属于基础题.15.在平面直角坐标系中,A,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为___.【答案】45π【解析】【详解】由题意,圆心C 到原点的距离与到直线的距离相等,所以面积最小时,圆心在原点到直线的垂线中点上,则d =r =,45S π=.点睛:本题考查直线和圆的位置关系.本题中,由,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆,则半径就是圆心C 到原点的距离,所以圆心C 到原点的距离与到直线的距离相等,得到解答情况.16.过双曲线22221(0)x y b a a b -=>>的左焦点(,0)(0)F c c ->作圆222x y a +=的切线,切点为E ,延长FE 交抛物线24y cx =于点P ,O 为坐标原点,若1()2OE OF OP =+,则双曲线的离心率为_________.【答案】152【解析】【详解】试题分析:因为,,OF c OE a OE EF ==⊥,所以EF b =,因为1()2OE OF OP =+,所以E为PF 的中点,2PF b =,又因为O 为FF '的中点,所以//PF EO ',所以2PF a '=,因为抛物线的方程为24y cx =,所以抛物线的焦点坐标为(,0)c ,即抛物线和双曲线的右焦点相同,过F 点作x 的垂线l ,过P 点作PD l ⊥,则l 为抛物线的准线,所以2PD PF a '==,所以点P 的横坐标为2a c -,设(,)P x y ,在Rt PDF ∆中,222PD DF PF +=,即22222244,44(2)4()a y b a c a c c b +=+-=-,解得12e =.考点:双曲线的简单的几何性质.【方法点晴】本题主要考查了双曲线的标准方程、以及谁去下的简单的几何性质的应用,同时考查了双曲线的定义及性质,着重考查了学生推理与运算能力、数形结合思想、转化与化归思想的应用,属于中档试题,本题的解答中,根据题意得到抛物线和双曲线的右焦点相同,得出点P 的横坐标为2a c -,再根据在Rt PDF ∆中,得出22244(2)4()a c a c c b +-=-是解答的关键.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{}n a 的前n 项和为n S ,且21n n S a =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log ,,n n na nb a n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .【答案】(1)12n n a -=(2)212212233n n T n n +=⨯+--【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a .(2)根据分组求和法求得正确答案.【小问1详解】依题意,21n n S a =-,当1n =时,11121,1a a a =-=,当2n ≥时,1121n n S a --=-,所以()11122,22n n n n n n n a S S a a a a n ---=-=-=≥,所以数列{}n a 是首项为1,公比为2的等比数列,所以12n n a -=,1a 也符合.所以12n n a -=.【小问2详解】由(1)得11,2,n n n n b n --⎧=⎨⎩为奇数为偶数,所以()()321202422222n n T n -=++++-++++ ()214022214n n n -+-=⨯+-222433n n n =⨯+--21212233n n n +=⨯+--.18.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价x (元)789111213销量y (kg )120118112110108104(1)已知销量与单价之间存在线性相关关系求y 关于x 的线性回归方程;(2)若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间[110,118]内的单价种数ξ的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b =()121((ni i i n i i x x y y x x ==---∑∑,a y bx =-$$.【答案】(1) 2.5137y x =-+;(2)见解析【解析】【分析】(1)由已知表格中数据求得ˆa与ˆb ,则可求得线性回归方程;(2)求出ξ的所有可能取值为0,1,2,3,求出概率,可得分布列与期望.【详解】解:(1)()1789111213106x =+++++=,()11201181121101081046y =+++++=112.ˆb =()121()()ni i i ni i x x y y x x ==---∑∑═70 2.528-=-,()112 2.510137ˆˆa y bx =-=--⨯=.∴y 关于x 的线性回归方程为 2.5137ˆyx =-+;(2)6种单价中销售量在[110,118]内的单价种数有3种.∴销量恰在区间[110,118]内的单价种数ξ的取值为0,1,2,3,P (ξ=0)=0336120C C =,P (ξ=1)=123336920C C C ⋅=,P (ξ=2)=213336920C C C ⋅=,P (ξ=3)=3336120C C =.∴ξ的分布列为:ξ0123P120920920120期望为E (ξ)=199130123202020202⨯+⨯+⨯+⨯=.【点睛】本题考查线性回归方程的求法,考查离散型随机变量的期望,考查计算能力,求离散型随机变量ξ的分布列与均值的方法:(1)理解离散型随机变量ξ的意义,写出ξ的所有可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)根据均值的定义求E()ξ19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin 2sin sin b B c C a A b B C +-=且π2C ≠.(1)求证:π2B A =+;(2)求cos sin sin A B C ++的取值范围.【答案】(1)证明见解析(2))【解析】【分析】(1)根据正弦定理和余弦定理可把题设中的边角关系化简为cos sin A B =,结合诱导公式及π2C ≠可证π2B A =+.(2)根据π2B A =+及cos sin A B =,结合诱导公式和二倍角余弦公式将ππcos sin sin 2sin sin 2sin sin 222A B C B C A A ⎛⎫⎛⎫++=+=++- ⎪ ⎪⎝⎭⎝⎭化为2132cos 22A ⎛⎫+- ⎪⎝⎭,先求出角A 的范围,然后利用余弦函数和二次函数的性质求解即可.【小问1详解】因为sin sin sin 2sin sin b B c C a A b B C +-=,由正弦定理得,2222sin b c a bc B +-=,由余弦定理得2222cos 2sin b c a bc A bc B +-==,所以cos sin A B =,又cos sin()2A A π=-,所以πsin()sin 2A B -=.又0πA <<,0πB <<,所以π2A B -=或ππ2A B -+=,所以π2A B +=或π2B A =+,又π2C ≠,所以ππ2A B C +=-≠,所以π2B A =+,得证.【小问2详解】由(1)知π2B A =+,所以ππ22C A B A =--=-,又cos sin A B =,所以ππcos sin sin 2sin sin 2sin sin 222A B C B C A A ⎛⎫⎛⎫++=+=++- ⎪ ⎪⎝⎭⎝⎭22132cos cos 22cos 2cos 12cos 22A A A A A ⎛⎫=+=+-=+- ⎪⎝⎭,因为0ππ0π2π02π2A B A C A ⎧⎪<<⎪⎪<=+<⎨⎪⎪<=-<⎪⎩,所以π04A <<,所以2cos 12A <<,因为函数2132cos 22y A ⎛⎫=+- ⎪⎝⎭在2cos 2A ⎛⎫∈ ⎪ ⎪⎝⎭单调递增,所以22213131322cos 2132222222A ⎛⎫⎛⎫⎛⎫+-=+-<+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以cos sin sin A B C ++的取值范围为).20.椭圆有两个顶点(1,0),(1,0),A B -过其焦点(0,1)F 的直线l 与椭圆交于,C D 两点,并与x 轴交于点P ,直线AC 与BD 交于点Q.(1)当2CD =时,求直线l 的方程;(2)当P 点异于,A B 两点时,证明:OP OQ ⋅为定值.【答案】(1)1y =+;(2)证明见解析.【解析】【分析】(1)先由题意求出椭圆方程,直线l 不与两坐标轴垂直,设l 的方程为()10,1y kx k k =+≠≠±,然后将直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系,再由弦长公式列方程可求出k 的值,从而可得直线方程;(2)表示直线AC ,BD 的方程,联立方程组可得1221121211.11Q Q x kx x kx x x kx x kx x ++++=--+-而12222kx x k =--+代入化简可得Q x k =-,而1P x k =-,则可得P Q OP OQ x x ⋅= 的结果【详解】(1)由题意,椭圆的方程为2212y x +=易得直线l 不与两坐标轴垂直,故可设l 的方程为()10,1y kx k k =+≠≠±,设()()1122,,,C x y D x y ,由221,1,2y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得()222210k x kx ++-=,判别式()2Δ810.k =+>由韦达定理得12122221,22k x x x x k k +=-=-++,①故12322CD x x =-=,解得k =即直线l 的方程为1y =+.(2)证明:直线AC 的斜率为111AC y k x =+,故其方程为()1111y y x x =++,直线BD 的斜率为221BD y k x =-,故其方程为()2211y y x x =--,由()()11221,11,1y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩两式相除得()()()()()()2121121211111111y x kx x x x y x kx x ++++===--+-1221121211kx x kx x kx x kx x +++-+-即1221121211.11Q Q x kx x kx x x kx x kx x ++++=--+-由(1)知12222kx x k =--+,故()()()()()()222222222222122111222212111222Q Q k k k kkx x k x x k k k k k k k x k x x k x k k k ---+--++-++++===-+-⎛⎫----+-++ ⎪+++⎝⎭11k k -+解得Q x k =-.易得1,0P k ⎛⎫- ⎪⎝⎭,故()11P Q OP OQ x x k k⋅==-⋅-= ,所以OP OQ ⋅为定值121.已知函数2313()(4)e 32xf x x a x x ⎛⎫=---⎪⎝⎭()R a ∈.(1)若0a ≤,求()f x 在()0,∞+上的单调区间;(2)若函数()f x 在区间()0,3上存在两个极值点,求a 的取值范围.【答案】(1)单调递减区间为()0,3,单调递增区间为()3,+∞(2)3e e,3⎛⎫⎪⎝⎭【解析】【分析】(1)对函数求导得到()()()3e xf x x ax '=--,再根据导数与函数单调性间的关系即可求出结果;(2)对函数求导得()()()3e xf x x ax '=--,令()e xg x ax =-,将问题转化为()e xg x ax =-在()0,3内有两个交点,再应用导数研究的单调性并确定其区间最值及边界值,进而可得a 的范围.【小问1详解】因为2313()(4)e 32xf x x a x x ⎛⎫=--- ⎪⎝⎭,所以()()()()()()()24e e 33e 33e x x x xf x x a x x x ax x x ax '=-+--=---=--,又因为0a ≤,0x >,则e 0x ax ->,所以,当()0,3x ∈时,()0f x '<,函数()f x 单调递减;当()3,x ∈+∞时,()0f x ¢>,函数()f x 单调递增,所以()f x 在(0,)+∞上的单调递减区间为()0,3,单调递增区间为()3,+∞.【小问2详解】由(1)知,当0a ≤,函数()f x 在()0,3上单调递减,此时()f x 在()0,3上不存在极值点,不符合题意,所以0a >,设()e xg x ax =-,[0,)x ∈+∞,所以()e xg x a '=-,当01a <≤时,当()0,3x ∈时,()e 0xg x a '=->,所以()g x 在()0,3上单调递增,所以当()0,3x ∈时,()()010g x g >=>,所以当()0,3x ∈时,()0f x '<,所以()f x 在()0,3上单调递减,故()f x 在()0,3上不存在极值点,不符合题意;当1a >时,令()0g x '<,解得0ln x a <<,令()0g x '>,解得ln x a >,所以函数()g x 在()0,ln a 上单调递减,在()ln ,a ∞+上单调递增,所以函数()g x 的最小值为()()ln 1ln g a a a =-,若函数()f x 在()0,3上存在两个极值点,则()()()00,ln 0,30,0ln 3,g g a g a ⎧>⎪<⎪⎨>⎪⎪<<⎩,即()310,1ln 0,e 30,0ln 3,a a a a >⎧⎪-<⎪⎨->⎪⎪<<⎩解得3e e 3a <<.综上,a 的取值范围为3e e,3⎛⎫⎪⎝⎭.选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知曲线12,C C 的参数方程分别为11:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),222cos :2sin x C y αα=+⎧⎨=⎩(α为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点O 为极点,以x 轴的非负半轴为极轴,建立极坐标系.若射线()π06θρ=>与曲线12,C C 分别交于,A B 两点(异于极点),点()2,0P ,求PAB 的面积.【答案】(1)224x y -=;22(2)4x y -+=(2【解析】【分析】(1)利用消参法与完全平方公式求得1C 的普通方程,利用22cos sin 1θθ+=得到2C 的普通方程;(2)分别求得12,C C 的极坐标方程,联立射线,从而得到A ρ,B ρ,进而利用三角形面积公式即可得解.【小问1详解】因为曲线1C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),则22212x t t=++,22212y t t =+-,两式相减,得1C 的普通方程为:224x y -=;曲线2C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),所以2C 的普通方程为:()2224x y -+=.【小问2详解】因为cos ,sin x y ρθρθ==,所以曲线1C 的极坐标方程为2222cos sin 4ρθρθ-=ππ()42k θ≠+,即24cos 2ρθ=,联立2π64cos 2θρθ⎧=⎪⎪⎨⎪=⎪⎩,得A ρ=,所以射线π(0)6θρ=>与曲线1C 交于A π6⎛⎫ ⎪⎝⎭,而2C 的普通方程()2224x y -+=,可化为224x y x +=,所以曲线2C 的极坐标方程为24cos ρρθ=,即4cos ρθ=,联立π64cos θρθ⎧=⎪⎨⎪=⎩,得B ρ=,所以射线π(0)6θρ=>与曲线2C 交于B π6⎛⎫ ⎪⎝⎭,又点()2,0P ,所以2OP =,则1π||()sin 26POA B PAB POB A S S OP S ρρ=-=⨯⨯-= .[选修4-5:不等式选讲]23.已知函数()(),h x x m g x x n =-=+,其中00m n >>,.(1)若函数()h x 的图像关于直线1x =对称,且()()23f x h x x =+-,求不等式()2f x >的解集.(2)若函数()()()x h x g x ϕ=+的最小值为2,求11m n+的最小值及相应的m 和n 的值.【答案】(1)()2,2,3∞∞⎛⎫-⋃+ ⎪⎝⎭;(2)11m n+的最小值为2,相应的m n 1==【解析】【分析】()1先根据对称性求出1m =,对x 分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;()2根据绝对值三角不等式即可求出2m n +=,可得()11111m n m n 2m n ⎛⎫+=++ ⎪⎝⎭,再根据基本不等式即可求出.【详解】()1函数()h x 的图象关于直线x 1=对称,1m ∴=,()()f x h x 2x 3x 12x 3∴=+-=-+-,①当x 1≤时,()321432x x x x =-+-=->,解得2x 3<,②当31x 2<<时,()f x 32x x 12x 2=-+-=->,此时不等式无解,②当3x 2≥时,()f x 2x 3x 13x 42=-+-=->,解得x 2>,综上所述不等式()f x 2>的解集为()2,2,3⎛⎫-∞+∞ ⎪⎝⎭ .()()()()()2x h x g x x m x n x m x n m n m n ϕ=+=-++≥--+=+=+ ,又()()()x h x g x ϕ=+的最小值为2,2m n ∴+=,()111111n m 1m n 222m n 2m n 2m n 2⎛⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当1m n ==时取等号,故11m n+的最小值为2,其相应的1m n ==.【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;。
第1章 有理数(易错必刷30题14种题型专项训练)(原卷版)-2024-2025学年七年级数学上学期
第1章 有理数(易错必刷30题14种题型专项训练)➢ 正数和负数 ➢ 有理数 ➢ 数轴 ➢ 相反数 ➢ 绝对值 ➢ 有理数大小比较 ➢ 有理数的减法➢ 有理数的乘法 ➢ 有理数的乘方 ➢ 非负数的性质:偶次方 ➢ 有理数的混合运算 ➢ 科学记数法—表示较大的数 ➢ 实数大小比较 ➢ 规律型:数字的变化类一.正数和负数(共4小题)1.(2022秋•霍林郭勒市校级月考)如果向东走6km ,记作+6km ,那么﹣3km 表示( ) A .向西走3kmB .向北走3kmC .向南走3kmD .向东走3km2.(2022秋•桂林月考)如果零上2℃记作+2℃,那么零下3℃记作 .3.(2022秋•惠济区期中)为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km ) 第一次 第二次 第三次 第四次 第五次 第六次 第七次 ﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O 地多远? (2)在第几次记录时距O 地最远?(3)若每千米耗油0.2升,问共耗油多少升?4.(2022秋•福清市校级月考)超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5. (1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?二.有理数(共1小题)5.(2022秋•旌阳区校级月考)请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,,10,,21,6.2,4.7,﹣8.正整数:{ …};负整数:{ …};正分数:{ …};负分数:{ …}.三.数轴(共3小题)6.(2022秋•隆昌市校级月考)数轴上点P表示的数为﹣2,与点P距离为3个单位长度的点表示的数为()A.1B.5C.1或﹣5D.1或57.(2022秋•雁塔区校级月考)有理数a、b、c在数轴上的位置如图所示,则|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的值是()A.2c﹣3a B.a C.2c﹣a D.2c﹣2b8.(2022秋•广信区月考)数a,b,c在数轴上的位置如图所示:化简:|a+c|+|b﹣c|﹣|c﹣b|.四.相反数(共1小题)9.(2022秋•齐河县校级月考)的相反数是()A.2B.﹣2C.D.五.绝对值(共1小题)10.(2022秋•启东市校级月考)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2六.有理数大小比较(共3小题)11.(2022秋•连山区月考)在有理数0,2,﹣1,﹣2中,最小的数是()A.0B.2C.﹣1D.﹣212.(2022秋•高明区月考)写出一个比﹣3大的负整数为.13.(2022秋•阿图什市校级月考)在数轴上把下列各数表示出来,并用小于符号从小到大排列出来﹣2,0,|﹣4|,0.5,﹣5,﹣(﹣3).七.有理数的减法(共1小题)14.(2022秋•扬州月考)对于含绝对值的算式,在有些情况下,可以不需要计算出结果也能将绝对值符号去掉,例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;=;=.观察上述式子的特征,解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|=;②=;(2)当a>b时,|a﹣b|=a﹣b;当a<b时,|a﹣b|=;(3)计算:.八.有理数的乘法(共1小题)15.(2022秋•南安市月考)如果两数之和是负数,且它们的积是负数,那么()A.这两个数都是负数B.这两个数都是正数C.这两个数中,一个是正数,一个是负数,且负数的绝对值较大D.这两个数中,一个是正数,一个是负数,且正数的绝对值较大九.有理数的乘方(共2小题)16.(2021秋•香洲区校级月考)下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身17.(2022秋•桂林月考)下列各数中,互为相反数的是()A.|﹣1|和1B.﹣3和﹣(﹣2)C.(﹣2)2和﹣22D.﹣3和一十.非负数的性质:偶次方(共1小题)18.(2022春•南岗区校级月考)已知|a﹣2|+(b+3)2=0,则b a=.一十一.有理数的混合运算(共8小题)19.(2022秋•怀柔区校级月考)如果a>0,那么下面各式计算结果最大的是()A.B.C.D.20.(2022秋•西城区校级月考)(1)﹣5+1﹣(﹣2);(2)(﹣)2+8×(﹣);(3)(+﹣)÷(﹣);(4)[﹣33×()2﹣|﹣1|]×(﹣).21.(2022秋•朝阳区校级月考)计算(能用简便方法的用简便方法):(1)(﹣3)+12+(﹣17)+(+8);(2);(3);(4).22.(2022•越秀区校级开学)39×+148×+48×.23.(2022•越秀区校级开学).24.(2022秋•宛城区校级月考)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.25.(2022秋•朝阳区校级月考)对于任意的非零有理数a,b,定义:,解决以下问题:(1)计算(﹣3)*4;(2)计算(﹣6)*2*(﹣3);(3)请你举例验证一下交换律即a*b=b*a在这一运算中是否成立.(举一个例子即可).26.(2022秋•庐江县期中)小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一十二.科学记数法—表示较大的数(共2小题)27.(2022秋•沈丘县月考)2021年末河南省常住人口9883万人,其中城镇常住人口5579万人,乡村常住人口4304万人;常住人口城镇化率为56.45%,比上年末提高1.02个百分点,数据“9883万”用科学记数法可以表示为()A.9.883×107B.9.883×108C.98.83×107D.98.83×10628.(2022秋•茅箭区校级月考)据国家航天局消息,航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星预选着陆区,距离地球320000000千米.其中320000000用科学记数法表示为.一十三.实数大小比较(共1小题)29.(2021秋•松山区期中)已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?一十四.规律型:数字的变化类(共1小题)30.(2020秋•新市区校级月考)阅读下面的解答过程.计算:.解:因为,所以原式====.根据以上解题方法计算:(1)=﹣(n为正整数);(2).(3).。
山东省临沂第一中学(本校区)2024-2025学年高一上学期学科素养水平监测(第一次月考)数学试卷
2024级普通高中学科素养水平监测(第一次月考)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则等于( )A.SB. C.RD.2.的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知命题,,若命题p 是假命题,则a 的取值范围为( )A. B. C. D.4.若关于x 的不等式在上恒成立,则a 的取值范围是( )A. B. C. D.5.已知函数,则函数的解析式为( )A. B. C. D.6.已知关于x 的一元二次不等式的解集为,且实数满足,则实数m 的取值范围是( )A.或 B.或C.或 D.或7.已知则的值等于( )A. B.0C.D.48.对于非空数集,定义表示该集合中所有元素的和,给定集合,定义集合,则集合T 中元素的个数是( )A.集合T 中有1个元素B.集合T 中有10个元素C.集合T 中有11个元素D.集合T 中有15个元素二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符{}52,Z S s s n n ==-∈{}108,Z T t t n n ==+∈S T T∅a b >>0:R p x ∃∈200(1)10x a x +-+<13a ≤≤13a -<<13a -≤≤02a ≤≤270x ax -+>27x <<8a <8a ≤a <112a <2(2)68f x x x +=++()f x 2()2f x x x=+2()68f x x x =++2()4f x x x=+2()86f x x x =++2(1)210x m x m -++-<12x x x x <<12x x 12111m x x +<-{102m m <<}2m >{0m m <2}m >2{10m m <<}5m >{0m m <5}m >2,0,()(1),0,x x f x f x x >⎧=⎨+≤⎩4433f f ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭2-73M ()f M {1,2,3,4}S ={}(),T f A A S A =⊆≠∅合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列四个命题中,正确的是( )A.若,,则 B.若,且则C.若,则D.若,则10.函数的图象如图所示(图象与t 正半轴无限接近,但永不相交),则下列说法正确的是( )A.函数的定义域为B.函数的值域为C.当时,有两个不同的值与之对应D.当时11.已知,,下列命题中错误的是( )的最小值为2B.若则的最小值为C.若,则的最小值为10D.若,则的最小值为32三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,,若,则________13.甲、乙两位消费者同时两次购买同一种物品,分别采用两种不同的策略,甲的策略是不考虑物品价格的升降,每次购买这种物品的数量一定;乙的策略是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.若两次购买这种物品的单价分别为元,元(,,)则乙两次购买这种物品的平均价格为________;购物比较经济合算的是________(填“甲”或“乙”).14.对于,两个集合,满足,且A 中元素个数不属于A ,同时中元素个数不属于.则满足题意的不同的的个数为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记不等式的解集为,不等式的解集为.a b >c d >a c b d ->-a b >11a b >0ab <0a b >>0c >b c ba c a+>+0a b <<a bb a>()s f t =()s f t =[3,)-+∞()s f t =(0,5][1,2]s ∈t ()122(0,1)t t t t ∈≠()()1212f t f t t t ⋅>-0a >0b >R x ∈111123a b +=++ab a b ++14+21a b +=24a ba b++0a b >>264()a b a b +⋅{}21,,1M a =-{}1,N a =-{}1,M N a =- a =a b 0a >0b >a b ≠A B {}16,Z A B n n n =≤≤∈ A B =∅ B B A 0(R)a x a -≤∈A 2230x x -->B(1)当时,求;(2)若,求实数a 的取值范围.16.(15分)已知关于x 的不等式的解集是.(1)求实数a ,b 的值;(2)若,,且,求的最小值.17.(15分)求下列函数的定义域.(1);(2)已知函数的定义域为,求函数的定义域.18.(17分)如图,建立平面直角坐标系,.x 轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点已知炮弹发射后的轨迹在函数的图象(弹道曲线)上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)确定的值,使炮弹恰好击中坐标为的目标,并求此时若炮弹未能击中目标的射程.(2)求炮的射程关于k 的函数解析式.,并求炮的最大射程.19.(17分)已知函数.(1)若不等式的解集为,求的取值范围(2)当时,解不等式.;(3)对任意的,不等式恒成立,求m 的取值范围.1a =A B ()R A B ≠∅ ð2250ax bx a +-+<113x x ⎧⎫⎨-<⎩<⎬⎭0m >0n >1am bn +=1n m n+()f x =(3)f x +(1,0)-(21)f x +xOy y ()2211k (0)20y kx x k =-+>k k (2,3)P ()x f k =2()(1)1(R)f x m x mx m m =+-+-∈()0f x <∅m 2m >-()f x m ≥[1,1]x ∈-2()1f x x x ≥-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
月考四数学(理)
第Ⅰ卷(选择题,共60分)
一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设全集{}
8≤∈=x N x U ,集合{}7,3,1=A ,{}8,3,2=B ,则=)()(B C A C U U ( ) A .{
}8,7,2,1 B .{}6,5,4 C .{}6,5,4,0 D .{}6,5,4,3,0 2.已知复数i z +=11,i z -=22,则=i
z z 21 ( ) A .i 31- B .i 31+- C . i 21+ D .i 21-
3.若实数数列:81,,,,1321a a a 成等比数列,则圆锥曲线122
2
=+a y x 的离心率是( ) A .10 或322 B .10 C . 3
22 D . 31或10 4.函数2)(1-=-x a x f )1,0(≠>a a 的图象恒过定点A ,若点A 在直线01=--ny mx 上,其中0,0>>n m ,则
n m 21+的最小值为( ) A .4 B .5 C .6 D .223+
5.如图为某几何体的三视图,则该几何体的表面积为( )
A .π220+
B .π320+
C .π224+
D .π324+
6.在ABC ∆中,角C B A ,,所对边的长分别为c b a ,,,若2222c b a =+,则C cos 的最小
值为( )
A .23
B .22
C .21
D .2
1- 7.已知2
1,2log ,ln 5-===e z y x π,则( ) A .z y x << B .z x y <<
C .x y z <<
D .x z y << 8.已知函数⎩⎨
⎧≤++>=m x x x m x x f ,24,2)(2的图象与直线x y =恰有三个公共点,则实数m 的
取值范围是(
)
A .]1,(--∞
B .),2[+∞
C .]2,1[-
D .)2,1[-
9.若方程1)sin 2()cos 2(22=-+-θθy x )20(πθ<≤的任意一组解),(y x 都满足不等式x y 3
3≥,则θ的取值范围是( ) A.⎥⎦⎤⎢⎣⎡67,6ππ B. ⎥⎦⎤⎢⎣⎡1213,125ππ C. ⎥⎦⎤⎢⎣⎡ππ,2 D. ⎥⎦
⎤⎢⎣⎡ππ,3 10.已知ABC ∆外接圆的圆心为O ,32=AB ,22=AC ,
A 为钝角,M 是BC 边的中点,则=⋅( )
A .3
B .4
C . 5
D .6
11.过双曲线)0,0(122
22>>=-b a b
y a x 的左焦点1F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,1PF 的中点M 在第一象限,则以下结论正确的是( )
A .MT MO a b -=-
B .MT MO a b ->-
C .MT MO a b -<-
D .MT MO a b +=-
12.函数2
2)(4
2---=x x x x f .给出函数)(x f 下列性质:①函数的定义域和值域均为[]1,1-;②函数的图像关于原点成中心对称;③函数在定义域上单调递增;④⎰=b
a dx x f 0)((其中
b a ,为
函数在定义域上的积分下限和上限);⑤N M ,为函数)(x f 图象上任意不同两点,则22≤<MN .则关于函数)(x f 性质正确描述的序号为( )
A .①②⑤
B .①③⑤
C .②③④
D .②④
第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题共4小题,每小题5分)
13
1=
2=,)2()(-⊥+,则向量与的夹角为 .
14.函数x x x f sin 22cos )(-=的值域为 .
15.设O 为坐标原点,)1,2(A ,若点),(y x B 满足⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+1
012
1122y x y x ,则OB OA ⋅的最大值是
.
16.已知集合⎭
⎬⎫⎩⎨⎧-=2,1,21,31,21P ,集合P 的所有非空子集依次记为:3121,,,M M M ,设,,21m m 31,m 分别是上述每一个子集内元素的乘积,(如果P 的子集中只有一个元素,规定其积等于该元素本身),那么=+++3121m m m .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17. (本小题满分12分)
在ABC ∆中,角A 、B 、C 的对边分别为
a 、
b 、
c ,面积为S ,已知b A c C a 2
52c o s 22c o s 222=+ (Ⅰ)求证:b c a 3)(2=+; (Ⅱ)若4
1cos =B ,15=S ,求b . 18. (本小题满分12分)
如图所示,该几何体是由一个直三棱柱BCF ADE -和一个正四棱锥ABCD P -组合而成,AF AD ⊥,2==AD AE .
(Ⅰ)证明:平面⊥PAD 平面ABFE ;
(Ⅱ)求正四棱锥ABCD P -的高h ,使得二面角P AF C --的余弦值是
3
22.
19. (本小题满分12分) 已知等差数列}{n a 满足14,2862=+=a a a .
(I )求数列}{n a 的通项公式;(II )求数列}2
{n n a 的前n 项和. 20. (本小题满分12分)
椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2
2=
e ,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22.
(Ⅰ)求椭圆1C 与2C 的方程;
(Ⅱ)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于点E ,F .
(1)求证:直线PA ,PB 斜率之积为常数;
(2)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值; 若不是,说明理由.
21. (本小题满分12分) 设函数1
ln )(-+=x a x x f ,(0>a ) (Ⅰ)当30
1=a 时,求函数)(x f 的单调区间; (Ⅱ)若)(x f 在)1
,0(e 内有极值点,当)1,0(1∈x ,),1(2+∞∈x ,求证:
3
42)()(12-
>-e x f x f .( 71828.2=e ) 23.(本题满分10分)选修4——4 坐标系与参数方程
在直角坐标系中,曲线C 的参数方程为⎩⎨⎧==ϕ
ϕsin 15cos 5y x ,(ϕ为参数),直线l 的参数方程为⎪⎪⎩
⎪⎪⎨⎧+=-=t y t x 23321,(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为)2
,3(π. (Ⅰ)求点P 的直角坐标,并求曲线C 的普通方程;
(Ⅱ)设直线l 与曲线C 的两个交点为A ,B ,求PB PA +的值
.。