多维随机变量及其分布

合集下载

多维随机变量及其分布

多维随机变量及其分布

(1) F ( x, y)
y


x
f ( x , y) d x d y
y x ( 2 x y ) d x d y , x 0, y 0, 0 0 2e 其它. 0,
(1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x , y) 其它. 0,
8 3 2 14 , 13/102
§3.1 二维随机变量
3 2 P{ X 1,Y 1} 1 1 8 3 2 14 ,
2 8 1 P{ X 0,Y 2} 2 2 28 , 3 3 8 9 P{ X 1,Y 0} 1 1 2 28 ,
y
先在图像上画出非0区
O x
20/102
§3.1 二维随机变量
(2) 将 ( X,Y )看作是平面上随机点的坐标
即有 {Y X } {( X ,Y ) G },
P{Y X } P{( X ,Y ) G }
y
f ( x , y ) d x d y

G
YX
2e 0 y


具有同二维类似的性质。
§3.1 二维随机变量

二维离散型的随机变量:

定义:若二维随机变量(X,Y)全部可能取到的不相同的值 是有限对或可列无限多对,则称(X,Y)是离散型随机变量

二维离散型随机变量的分布律:

设二维离散型随机变量(X,Y)所有可能取的值为(xi,yj),i, j=1,2,…, 记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有: pij≥0,

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

多维随机变量及其分布的概念

多维随机变量及其分布的概念

多维随机变量及其分布对于多维随机变量应理解其概念及其性质,在多位随机变量中,二维随机变量是基础,很多结论都是可以从二维随机变量推广到多维的。

对于二维随机变量,不仅要理解联合分布的概念与性质,还要理解二维离散型随机变量的联合概率分布、边缘分布、条件分布和二维连续型随机变量的联合概率密度、边缘密度、和条件密度。

一、多维随机变量的联合分布函数、边缘分布函数 [1]多维随机变量的及其分布的概念:如果N 维向量12{,}n X X X ⋅⋅⋅的每个分量都是随机变量,则,称之为N 维随机变量,并称函数121122(,){,,}n n n F x x x P X x X x X x ⋅⋅⋅=≤≤⋅⋅⋅≤是N 维随机变量12{,}n X X X ⋅⋅⋅的联合分布函数。

称函数(){}(,,,,i i ii F x P X x F x =≤=+∞+∞⋅⋅⋅+∞+∞为N 维向量12{,}n X X X ⋅⋅⋅关于i X 的边缘分布,或为12(,)n F x x x ⋅⋅⋅的边缘分布函数。

[2]二维随机变量的联合分布函数的概念和性质a) 二维随机变量的联合分布函数的概念:二维随机变量的联合分布函数定义如下:(,)(,)F x y P X x Y y =≤≤b) 二维随机变量的联合分布函数的性质:① 对于任意x,y, 0(,)1F x y ≤≤② (,)F x y 为关于x 或y 均为单调非降、右连续的函数。

③ (,)(,)(,)F F y F x -∞+∞=-∞=-∞=④ (,)1F +∞+∞=⑤ 发生在矩形区域上的概率:(,)(,P a X b c Y d F a<≤<≤=[3]二维随机变量的边缘分布的概念二维随机变量(,)X Y 关于X 与Y 的边缘分布函数分别定义为: ①(){}{,}(,)x F x P X x P X x Y F x =≤=≤<+∞=+∞ ②(){}{,}(,)y F y P Y y P X Y y F Y =≤=<+∞≤=+∞二、二维离散型随机变量[1]二维离散型随机变量的联合概率分布的概念:二维离散型随机变量(,)X Y 是只能去有限个或可列个值,其相应的概率表示为:(,)i i ij P X x Y y p === (,1,2,3i j =⋅⋅⋅并称为联合概率分布或联合分布律: [2] 二维离散型随机变量的联合概率分布的性质:(a,d )①(,)0i i ij P Xx Y y p ===≥ (,1,2,3i j =⋅⋅⋅②1ijijp=∑∑③(,)i j ij x x y yF x y p ≤≤=∑∑[3]二维离散型随机变量的边缘分布:二维离散型随机变量(,)X Y 关于X 和Y 的边缘概率分布(或边缘分布律)分别定义为:{}{,}i i ij i jjjp P X x P X x Y y p ∙======∑∑ {}{,}j i ij i jiip P Y y P X x Y y p ∙======∑∑ 依据边缘分布函数的定义:(){}{}i i x i i x xx xF x P X x p X x p ∙≤≤=≤===∑∑(){}{}j j y ijy yy yF x P Y y p Y y p∙≤≤=≤===∑∑[4]二维离散型随机变量的条件分布① 定义:设{}0j j p P Y y ∙==>,在事件“j Y y =”发生的条件下,事件“i X x =”发生的条件概率为:{,}{}()i j iji j j jP X x Y y p P X x Y y P Y y p ∙=======(,1,2,3)i j =⋅⋅⋅称为在“j Y y =”条件下,X 的条件分布律。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第3章多维随机变量及其分布

第3章多维随机变量及其分布

f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)

(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn

PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0

0)
... ... ... ... ... ...

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)


f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=0, X2=1) = P(|Y|≥1, |Y|<2) = P(1≤|Y|<2) = 2[Φ(2) Φ(1)] = 0.2719
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021

多维随机变量及其分布

多维随机变量及其分布

x−
µ1 )( y− σ1σ 2
µ2
)
+
(
y−µ2 σ 22
)2
− ∞ < x < +∞,−∞ < y < +∞
则称( X ,Y ) 服从参数为µ1,σ12,µ2,σ22,ρ 的 正态分布, 记作( X ,Y ) ~ N(µ1,σ12;µ2,σ22;ρ )
其中σ1,σ2>0, -1< ρ < 1 .
一 . 离散型随机变量的条件分布律
设 ( X ,Y ) 是离散型随机变量,其分布律为
( ) 例 设二维随机变量 (X, Y )~ N µ1, µ2, σ12, σ 22, ρ
试求 X 及Y 的边缘密度函数.
解:(X, Y )的联合密度函数为
f (x, y) =
1
2πσ1σ 2 1− ρ 2
( ) ⋅
exp−
2
1 1−
ρ
2
(x
− µ1 )2
σ
2 1

2ρ(x
− µ1)(y
σ1σ 2
5.3 条件分布
• 条件分布律 • 条件分布函数 • 条件概率密度
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的概率
P(A | B) = P(AB) P(B) 推广到随机变量
设有两个随机变量 X, Y , 在给定 Y 取 某个值的条件下,求 X 的概率分布.
这个分布就是条件分布.
F(x, y) = P(X ≤ x,Y ≤ y)
分布函数的几何意义
如果用平面上的点 (x, y) 表示二维r.v. (X , Y )的一组可能的取值,则 F (x, y) 表示 (X , Y ) 的取值落入图所示角形区域的概率.

多维随机变量及其分布

多维随机变量及其分布

多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

多维随机变量及其分布

多维随机变量及其分布

第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性1. 各种分布(1)一般二维随机变量 F (x , y )=P { X ≤ x , Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x , y )为联合分布函数 ⇔ 1) 0 ≤F (x , y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x , −∞)=0, F (+∞,+∞)=1;3) F (x , y )关于x , y 均为单调不减函数; 4) F (x , y )关于x , y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P {X = x i , Y = y j } = p i j , i , j =1, 2 ,⋅⋅⋅ , p i j0,1=∑∑ijji p.边缘分布律 p i= P {X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ , pj = P { Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P {X = x i |Y = y j } =jj i p p •, P { Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x , y )为联合概率密度 ⇔ 1︒ f (x , y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X , Y )~ f (x , y )则 分布函数:⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度: ⎰∞+∞-=),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度: )(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x , y )= F X (x )F Y (y );⇔ p i j = p ip j (离散型)⇔ f (x , y )= f X (x )f Y (y ) (连续型)【注】 1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立.3 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X , Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X , Y )~ N (μ1 , μ2, σ12 ,σ22,), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0,| | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22 ) ( b ) X 与Y 相互独立ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X +C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12 σ12 + C 22σ22 +2C 1C 2 σ1 σ2 ).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B |A )=21, P (A |B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X , Y )的联合分布律; (2)计算Cov ( X , Y ); (3) 计算 22(2,43)Cov X Y +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X , Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U ,m in ,,m ax ==.(I )求(U , V )的概率分布;(II )求(U , V )的协方差C ov (U , V ). 【详解】(I )易知U , V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U , V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E .故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov .【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y X P .二、 二维(或两个)随机变量函数的分布1.分布的可加性(1)若X ~B (m, p ), Y ~B (n, p ), 且X 与Y 相互独立,则 X +Y ~ B (m +n , p ). (2)若X ~P (λ1), Y ~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X ~N (211,μσ), Y ~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n , 且X 1,X 2,…,X n 相互独立,则Y =C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X与Y相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X , Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z . 【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=1221)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z <0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 0)2(3231z z -=; 当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=;当2≥z 时, 1)(=z F Z . 故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二: ⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ; 当01z <<时, ⎰-=zZ dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4 相互独立的随机变量
引言
若(X, Y) ~N(m1, m2, s12, s22, r),则X ~ N(m1, s12), Y ~ N(m2, s22) .
结论:
二维正态分布的两个边缘分布都是一维正态分布 ,并且不依 赖于参数 r . 对于给定的 m1, m2, s12, s22,不同的 r 对应不同的二维正态分 布,但它们的边缘分布都是一样的.
关于多维随机变量
定理:设 (X1, X2, …, Xm) 和 (Y1, Y2, …, Yn) 相互独立,则 Xi ( i = 1, 2, …, m ) 和 Yj ( j = 1, 2, …, n ) 相互独立. 若 h,g 是连续函数,则 h (X1, X2, …, Xm) 和 g (Y1, Y2, …, Yn) 相互独立.
返回主目录
第三章
随机变量及其分布
§4随机变量的独立性
例 5
甲、乙两人约定在某地 相会,假定每人的到达 时间 是相互独立的,且均服 从中午 12时到下午 1时的均匀 分布.试求先到者需等 待10分钟以内的概率.
y
60
x y 10
x y 10
10
O
10
60
x
例:设二维正态随机变量 (X, Y) 的概率密度为
则称X,Y相互独立 .
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
第三章
随机变量及其分布
§4随机变量的独立性
例 3
将两个球等可能地放入 编号为1 , 2, 3的三个盒子中.
令:X:放入1号盒中的球数; Y:放入2 号盒中的球数.
试判断随机变量X 与Y 是否相互独立? 解: X 的可能取值为0, 1, 2;Y 的可能取值为0, 1, 2.
1
其中 m1, m2, s12, s22, r 都是常数,且 s1 > 0, s2 > 0, 0<| r |<1.
f X ( x) 1 2s 1 e
( x m1 )2
2 2s 1
fY ( y )
1 2s 2
e

( x m 2 )2
2 2s 2
X ~ N(m1, s12)
2
Y ~ N(m2, s22)
例 2
X, Y )的联合分布律为 设二维离散型随机变量
Y X 1 2 1
1 6 1 3 1 9
2
3
1 18


试确定常数 , 使得随机变量X 与Y 相互独立.
返回主目录
第三章
随机变量及其分布
§4随机变量的独立性
例 4
设二维随机变量 X, Y )的密度函数为
2 1 x xy 0 x 1,0 y 2 f x, y ) 3 0 其它
r =0
2s 1s 2 对于二维正态随机变量 (X, Y) , X 和Y 相互独立的充分必要条件是 r = 0 .
f ( x, y )
1
e
x m1 y m2 1 2 s 1 s 2
2

f X ( x) fY ( y)
由§ 3.1知 X 与Y 的联合分布律及边缘分 布律为
返回主目录
例 3(续 )
第三章
随机变量及其分布
§4随机变量的独立性
Y
X
0 1 2
0
1 9 2 9 1 9 4 9
1
2 9 2 9 1 9
2
pi
4 9 4 9 1 9
0 0
1 9
0
4 9
p j
返回主目录
第三章
随机变量及其分布
§4随机变量的独立性

所以,随机变量X 的密度函数为 2 2 2 x x 0 x 1 f X x ) 3 0 其它
1 1 2 1 fY y ) f x, y )dx x xy dx y 3 3 6 0
1
所以,随机变量 Y 的密度函数为
则称 X 1, X 2, , X n 是相互独立的随机变量 .
注意

若 X,Y 独立,f(x),g(y) 是连续函数,则 f(X),g(Y) 也独立。
返回主目录
这一讲,我们由两个事件相互独立的概念 引入两个随机变量相互独立的概念. 如果两个随机变量不独立,讨论它们的关系 时,除了前面介绍的联合分布和边缘分布外,还 有必要考虑条件分布. 以上关于二维随机变量的一些概念不 难推广到n维r.v的情形.
第三章
随机变量及其分布
§4随机变量的独立性
n维随机变量的独立性
设 X 1, X 2, , X n )是 n 维随机变量,其联合 的分布函数为FX i xi ),i 1, 2, , n ).如果 对于任意的n维实数组x1, x2, , xn ) ,有 F x1, x2, , xn ) FX 1 x1 )FX 2 x2 ) FX n xn ) 分布函数为F x1, x2, , xn ) ,又随机变量X i
f ( x, y) 1 2Fra bibliotek 1s 2 1 r
2
e
2 x m 2 x m y m y m 1 1 2 2 2r 2 s s s s 2(1 r ) 1 1 2 2
P ( B | A) P ( B)
或(若 P(B) > 0) P ( A | B) P ( A)
定理2:若事件 A与B 相互独立,则下列三对事件也独立:
A与B,A与B,A与B
定义 设 X,Y是两个r.v,若对任意的x,y,有
P( X x, Y y) P( X x) P(Y y)
这个例子说明:不能由边缘分布完全确定联合分布.
在什么条件下,边缘分布可完全决定联合分布?
回顾:独立事件
定义:设 A, B 是两个事件,若 P(AB) = P(A)P(B),则称事件 A, B 相互独立,简称 A, B 独立. 定理1:若 P(A) > 0 ,则事件 A, B 独立的充要条件是
试判断随机变量X 与Y 是否相互独立? 解:
当0 x 1时,
2 1 f X x ) f x, y )dy x xy dy 2 x 2 2 x 3 3 0
返回主目录

2
例 4(续 )
第三章
随机变量及其分布
§4随机变量的独立性
当0 y 2 时,
相关文档
最新文档