高一物理力学中的弹簧问题
弹簧问题
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
高考物理 常见弹簧类问题分析
常见弹簧类问题分析高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。
一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射参考过程中(重物与弹簧脱离之前)重物的运动情况是( ) 答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题
图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
高一物理力学中的弹簧问题
(2m)v
2 2
从弹簧压缩量最大至恢复原长过程中:
E p (2m)gx
AB分离后,对A:
1 2
(2Байду номын сангаас)v
2 3
BA
l
AB开始压缩弹簧至弹簧恢复原长过程中:
由以上各式,得:
8
轻质弹簧的特点: 1.弹力为变力,其大小遵循胡克定律 2.弹力不可突变(弹簧两端连接物体时) 3.弹簧的伸长量与压缩量相等时,弹簧具有的弹性势能相等
O A B
∴I=mu+mv
2
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
(1) 分析木板A被下压过程中F如何变化?
(2)撤去F瞬间,木板A的加速度多大?
(3)将木板A压到P点F所做的功
5
(3)将木板A压到P点F所做的功
C
O
xo xo
2xo
F
2xo
P
6
3.如图所示,轻弹簧的一端固定,另一端与滑块B相连,B 静止在水平导轨上的O点,此时弹簧处于原长.另一质量与 B相同的物块A从导轨上的P点以初速度v0向B滑行,当A滑 过距离l 时,与B相碰.碰撞时间极短,碰后A、B立即一起 运动,但互不粘连.已知最后A恰好返回出发点P并停止, 设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重
处理弹簧类问题的方法: (1)通过画图理清弹簧关联物的运动情况及
弹簧的伸缩情况,明确临界状态的受力特点。 (2)充分把握弹簧运动的对称性,
合理选择力学规律解题。
高中物理中的弹簧振子问题解析
高中物理中的弹簧振子问题解析弹簧振子是高中物理课程中的重要内容之一,它是力学中的一个经典问题。
弹簧振子的研究对于理解振动现象、能量转化以及波动等方面具有重要意义。
本文将从弹簧振子的基本原理、运动方程、振动频率和能量转化等方面进行解析。
弹簧振子的基本原理是基于胡克定律,即弹簧的伸长量与所受外力成正比。
当弹簧受到拉伸或压缩时,它会产生恢复力,使得弹簧试图回到其平衡位置。
这种恢复力与弹簧的伸长量成正比,而且方向与伸长量相反。
根据牛顿第二定律,弹簧振子的运动可以用运动方程描述。
弹簧振子的运动方程可以表示为:m(d²x/dt²) = -kx,其中m是振子的质量,k是弹簧的劲度系数,x是振子的位移。
这个方程可以通过解微分方程得到振子的位移随时间的变化规律。
当忽略阻尼和外力的影响时,弹簧振子的解是一个简谐振动。
简谐振动的特点是振动频率恒定,且振幅不断变化。
振动频率可以通过振子的质量和弹簧的劲度系数来确定。
频率的公式是ω = √(k/m),其中ω是角频率,它等于2π乘以振动频率。
这个公式告诉我们,当弹簧的劲度系数增大或质量减小时,振动频率会增大。
弹簧振子的能量转化也是一个重要的研究方向。
在振动过程中,能量在势能和动能之间不断转化。
当振子位于平衡位置时,它的动能最大,势能为零。
而当振子位移最大时,势能最大,动能为零。
在振动过程中,动能和势能不断交替,总能量保持不变。
弹簧振子的能量转化可以通过数学公式来描述。
振子的势能可以表示为Ep = (1/2)kx²,动能可以表示为Ek = (1/2)mv²,其中Ep是势能,Ek是动能,k是劲度系数,x是位移,m是质量,v是速度。
根据能量守恒定律,Ep + Ek = 常数。
这个公式告诉我们,当振子的位移增大时,势能增大,而动能减小;反之,当位移减小时,势能减小,动能增大。
除了基本原理、运动方程、振动频率和能量转化,弹簧振子还有一些其他的研究方向。
重点高中物理必修一弹簧问题
精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
弹簧类问题的几种模型和处理方法
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
高中物理弹簧问题总结
高中物理弹簧问题总结弹簧是高中物理中一个重要的概念,也是一个常见的物理实验中的元件。
学习弹簧的性质和应用能够帮助我们更好地理解和应用力学以及弹性力学的原理。
下面是对高中物理弹簧问题的总结:一、弹簧的性质:1. 弹簧的弹性特性:弹簧具有恢复形变的能力,当受到外力时会发生形变,但当外力消失时能够恢复到初始形态。
2. 弹簧的刚性:在一定范围内,弹簧所受的力与形变成正比,即服从胡克定律。
3. 弹簧的弹性系数:弹簧的刚度可以用弹性系数来描述,即弹簧的劲度系数。
弹簧劲度系数越大,弹簧越难被拉伸或压缩。
二、胡克定律和弹性势能:1. 胡克定律:胡克定律描述了弹簧受力和形变之间的关系,也称为弹性力的大小与伸长或压缩的长度成正比。
2. 弹性势能:弹性势能是指弹簧在形变过程中储存的能量,储存的能量正比于弹簧劲度系数和形变量的平方。
三、串联和并联弹簧:1. 串联弹簧:将多个弹簧依次连接在一起,使之共同受力。
串联弹簧的总劲度系数等于各弹簧劲度系数的倒数之和。
2. 并联弹簧:将多个弹簧同时连接到相同的两个点上,使之同时受力。
并联弹簧的总劲度系数等于各弹簧劲度系数的和。
四、弹簧振子:1. 单摆弹簧振子:在一个质点下挂一根弹簧,使其成为一个振动系统。
单摆弹簧振子的周期与振子的长度和弹簧的劲度系数有关。
2. 弹簧振子的周期:弹簧振子的周期与振动的物体质量和弹簧的劲度系数成反比,与振动物体的下挂点到弹簧上竖直线的距离无关。
五、弹簧天平和弹簧测力计:1. 弹簧天平:弹簧天平是利用胡克定律实现测量物体质量的工具。
根据物体的质量对弹簧产生的形变,可以推算出物体的质量。
2. 弹簧测力计:弹簧测力计是一种测量物体受力的仪器,根据胡克定律以及弹簧劲度系数可以推算出物体所受的力。
弹簧问题是高中物理中经常出现的问题之一,理解了弹簧的性质和应用,能够更好地解决相关的物理计算题目。
同时,对于实际生活中的弹簧应用也有很大的参考价值,比如弹簧减震器、弹簧秤等等。
高中物理:弹簧的弹性势能问题
弹簧存储或释放的弹性势能要转化为其他形式的能,反过来其他形式的能也可转化为弹性势能。
例、在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”这类反应的前半部分过程和下述力学模型类似:两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。
在它们左边有一垂直于轨道的固定档板P,右边有一小球C沿轨道以速度射向B球,如上图所示,C与B发生碰撞并立即结成一个整体D。
在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。
然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。
过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
(l)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。
解析:试题只是给出初始状态的示意图,而后的运动过程可分为五个阶段,分别如下图中(a)至(e)所示。
图(a)表示C、B发生碰撞结成D的瞬间;图(b)表示D、A向左运动,弹簧长度变为最短且被锁定;图(。
)表示A球和挡板P碰撞后,A、D都不动;图(d)表示解除锁定后,弹簧恢复原长瞬间;图(e)表示,A球离开挡板P后,弹簧具有最大弹性势能瞬间。
(1)设C球与B球翻结成D时,D的速度为,由动量守恒得:当弹簧压至最短时,D与A的速度相等,设此速度为由动量守恒定律得:联立①②得:。
此间也可以用动量守恒一次求出(从接触相对静止)。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为,由能量守恒得:撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为,则有:以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长。
设此时的速度为,由动量守恒得:当弹簧伸到最长时,其弹性势能最大,设此势能为,由能量守恒得:紧紧抓住弹性势能的存储和释放,在头脑中建立起非常清晰的物理图景和过程,充分运用动量和动能两个守恒定律,从而解决问题。
理论力学中的弹簧振子分析
理论力学中的弹簧振子分析弹簧振子是理论力学中的一个经典物理问题,它被广泛应用于各个领域,包括物理学、工程学和生物学等。
弹簧振子被用来研究物体在弹性力的作用下的振动行为,它的振动特性可以通过各种方法进行分析。
一、弹簧振子的基本概念弹簧振子是由一个弹簧和一个质点组成的系统。
弹簧作为系统的劲度体,负责提供恢复力,质点则作为弹簧的受力对象,负责执行振动运动。
在分析弹簧振子时,我们通常假设弹簧是理想的弹性体,即其满足胡克定律,即弹力与弹簧伸长(或压缩)的距离成正比。
二、弹簧振子的运动方程在理论力学中,我们可以通过运动方程来描述弹簧振子的振动行为。
对于一个弹簧振子系统,在没有外力作用下,其运动方程可以表示为:m * d²x/dt² + k * x = 0其中m表示质点的质量,k表示弹簧的劲度系数,x表示质点的位移。
这是一个二阶线性齐次微分方程,解该方程可得到弹簧振子的振动规律。
三、弹簧振子的频率和周期弹簧振子的频率和周期是描述其振动特性的两个重要参数。
频率f 表示单位时间内完成振动的次数,周期T表示完成一次完整振动所需的时间。
在弹簧振子的分析中,我们可以通过运动方程的解来求得其振动的频率和周期。
基于弹簧振子的运动方程,可得到如下的频率和周期公式:f = 1 / (2π) * √(k / m)T = 1 / f其中π为圆周率,k为弹簧的劲度系数,m为质点的质量。
四、弹簧振子的振动模式根据弹簧振子的特性,可将其振动模式分为简谐振动和非简谐振动两种类型。
简谐振动是指当弹簧振子受到恢复力作用时,质点的振动以恒定的频率和振幅进行。
这种振动模式的特点是振幅不变,且各个时刻的位移值可以由正弦或余弦函数表达。
非简谐振动则是指当振动频率较大或振幅较大时,弹簧振子的振动无法再被简单的正弦或余弦函数所描述。
在这种情况下,振动的位移与时间的关系变得更加复杂。
五、弹簧振子在工程和生物学中的应用弹簧振子的研究不仅仅只限于理论分析,在工程和生物学等领域中也有广泛的应用。
高一物理受力初步分析弹簧
高一物理受力初步分析弹簧
弹簧是一种常见的物理装置,它具有显着的冲击衰减和能量释放功能,受力分析对于认识弹簧特性有很大帮助。
本文针对高一物理学习,就弹簧特性进行初步受力分析,从而发现其特性及其应用。
首先,弹簧特性受力分析由弹簧受力几何和动力学两个因素共同决定。
弹簧受力几何指的是表面形状,涉及到弹簧的形状多样性,以及形状对拉伸和压缩的反应;而动力学则牵涉到弹簧的应力和应变特性,解释弹簧的刚度和形状变化。
其次,弹簧特性分析的实验方式可以由三个步骤实现,即:(1)
定弹簧的外形及其形状变化;(2)确定的拉伸力以及形状变化的基础上,测量弹簧的应力和应变特性;(3)用弹簧受力分析定律,进行受
力分析,解释弹簧特性以及其影响因素。
此外,在受力分析中,必须注意弹簧的拉伸力在应变和受力之间的关系。
当受力增加时,应变也会随之增加,而当应变增加时,受力也会随之减少,即弹簧的拉伸力会随受力和应变的变化而变化,而这一要点必须在物理受力分析中得到充分的考虑。
最后,弹簧受力分析还可以用于研究弹簧的应用特性。
由于弹簧具有冲击衰减和能量释放功能,因此它在实际应用中广泛应用于减震、弹性支撑、振动吸收抑制等。
因此,通过受力分析,可以研究弹簧应用的特点,揭示其冲击衰减和能量释放的机理,以及如何利用弹簧的受力特性来提高应用效果。
综上所述,弹簧受力分析是高一物理学习的重要内容,是认识其
特性的基础。
通过弹簧受力分析,可以研究弹簧受力特性,确定其形状变化,测量应力和应变特性,分析其受力过程,以及使用物理定律推导出弹簧的受力特性,从而深入了解弹簧的特性及其应用。
力学中的弹簧类问题课件
控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。
高中物理 力学 综合 弹簧小专题 含答案
弹簧小专题(一)1.如图所示,在倾角为θ的光滑固定斜面上,劲度系数分别为k1、k2的两个轻弹簧平行于斜面悬挂着,k1在上 k2在下,两弹簧之间有一质量为m1的重物,现用力F(未知)沿斜面向上缓慢推动m2,当两弹簧的总长等于两弹簧的原长之和时,求:(1)k1轻弹簧的形变量(2)m1上移的距离(3)推力F的大小.考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:(1)由题,两弹簧的总长等于两弹簧的原长之和,则知,k1的伸长量与k2的压缩量相等,由m1重物平衡可求出k1轻弹簧的形变量.(2)先求出k1原来的伸长量,再由几何关系求出m1上移的距离.(3)根据两弹簧的形变量相等,由胡克定律列方程,求出F.2.如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC 绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜面各移动的距离.考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:在旋转前后,物体均处于平衡状态,则共点力的平衡条件可得出物体弹簧弹力,由胡克定律可求得弹簧的伸长量,则可得出旋转前后的距离.3.如图所示,在倾角为θ的光滑斜面上放有两块小木块,劲度系数为k1的轻质弹簧两端分别与质量为m1和m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在挡板上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢沿斜面向上提,直到下面那个弹簧的下端刚脱离挡板.在此过程中,下列说法正确的是()考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:先根据平衡条件和胡克定律求出原来两根弹簧的压缩量.当下面的弹簧刚脱离挡板时,再求出弹簧k1的伸长量,由几何关系即可求出两物块上升的距离.解答:解:未施力将物块1缓慢上提时,根据平衡条件和胡克定律得两根弹簧的压缩量分别为:4.如图所示,倾角为θ的固定光滑斜面底部有一直斜面的固定档板C.劲度系数为k1的轻弹簧两端分别与质量均为m的物体A和B连接,劲度系数为k2的轻弹簧一端与A连接,另一端与一轻质小桶P相连,跨过光滑的滑轮Q放在斜面上,B靠在档板C处,A和B均静止.现缓慢地向小桶P内加入细砂,当B与档板C间挤压力恰好为零时,小桶P内所加入的细砂质量及小桶下降的距离分别为()5.如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板.A、B质量均为m,斜面连同挡板的质量为M,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平恒力F作用于P,(重力加速度为g)下列说法中正确的是()考点:牛顿第二定律;力的合成与分解的运用;胡克定律.专题:牛顿运动定律综合专题.分析:先对斜面体和整体受力分析,根据牛顿第二定律求解出加速度,再分别多次对物体A、B或AB整体受力分析,然后根据牛顿第二定律,运用合成法列式分析求解.解答:解:A、F=0时,对物体A、B整体受力分析,受重力、斜面的支持力N1和挡板的支持力N2,根据共点力平衡条件,沿平行斜面方向,有N2-(2m)gsinθ=0,故正确;B、开始时,系统静止于水平面上,合外力等于零,当力F从零开始缓慢增大时,系统所受合外力就是水平外力F,系统产生的水平加速度缓慢增大,物块A也产生水平向左的加速度,支持力的水平分力与弹簧弹力的水平分力不再平衡,二者水平合力向左,必有弹力减小,因此,力F从零开始增加时,A就相对斜面向上滑行,选项B错误;C、物体B恰好离开挡板C的临界情况是物体B对挡板无压力,此时,整体向左加速运动,对物体B受力分析,受重力、支持力、弹簧的拉力,如图考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.对m1受力分析,有m1g=k1x+k2x,得出伸长量和压缩量x.对物体m2受力分析有:F N=m2g+k2x,再结合牛顿第三定律,求出物体对平板的压力F N′.解答:解:当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,点评:求出本题的关键知道当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.7.已知在弹性限度内,弹簧的伸长量△L与受到的拉力F成正比,用公式F=k•△L表示,其中k为弹簧的劲度系数(k为一常数).现有两个轻弹簧L1和L2,它们的劲度系数分别为k1和k2,且k1=3k2,现按如图所示方式用它们吊起滑轮和重物,如滑轮和重物的重力均为G,则两弹簧的伸长量之比△L1:△L2为()考点:探究弹簧测力计原理的实验.专题:信息给予题.分析:分析图中的装置可知,滑轮两侧的拉力均为G,再加上滑轮的重力也等于G,所以,顶端的弹簧承担的拉力为3G,将这一关系与劲度系数的关系都代入公式中,就可以求出弹簧伸长量之比.解答:解:读图分析可知,底端弹簧所受拉力为G,顶端弹簧所受拉力为3G,故选A.点评:正确分析两根弹簧所受拉力的情况是解决此题的关键,在得出拉力关系、劲度系数关系的基础上,代入公式即可顺利求取弹簧伸长量的比.8.如图所示,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中.一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态.一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为S处静止释放,滑块在运动过程中电量保持不变.设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g.则()A.当滑块的速度最大时,弹簧的弹性势能最大B.当滑块的速度最大时,系统的机械能最大C.当滑块的加速度最大时,弹簧的弹性势能最大D.当滑块的加速度最大时,系统的机械能最大考点:机械能守恒定律;弹性势能.专题:机械能守恒定律应用专题.分析:滑块向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0,此时加速度最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,动能、重力势能和弹性势能统称为系统的机械能,当电势能减小最多时,系统的机械能最大.解答:解:A、滑块向下先做加速度逐渐减小的加速运动,当加速度为0时,速度最大,然后做加速度逐渐增大的减速运动,到达最低点,速度减小到0,此时加速度最大,弹簧的弹性势能最大.故A错误,C正确. B、动能、重力势能和弹性势能统称为系统的机械能,根据能量守恒定律,电势能减小,系统的机械能增大,当滑块运动到最低点时,电场力做的正功最多,即电势能减小最多,此时系统机械能最大.故B错误,D正确.故选CD.点评:解决本题的关键知道滑块的运动是向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0.知道在最低点时弹簧的弹性势能最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,当电势能减小最多时,系统的机械能最大.9.考点:牛顿第二定律;牛顿运动定律的应用-连接体.专题:牛顿运动定律综合专题.分析:(1)对小滑块受力分析,受重力、支持力和拉力;再根据牛顿第二定律求出合力的大小和方向,然后运用正交分解法列式求解;(2)小滑块对斜面体没有压力,则斜面体对小滑块也没有支持力,小滑块受到重力和拉力,物体的加速度水平向右,故合力水平向右,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度;(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度的大小.解答:解:(1)对小滑块受力分析,受重力、支持力和拉力,如图(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则,如图点评:本题关键对小滑块受力分析后,根据牛顿第二定律,运用正交分解法或合成法列式求解.(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1;(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为v m,求滑块从静止释放到速度大小为v m的过程中弹簧的弹力所做的功W;(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象.图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,v m是题中所指的物理量.(本小题不要求写出计算过程。
高中物理:与弹簧相连接的物理问题
高中物理:与弹簧相连接的物理问题一、用胡克定律来分析弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
显然,弹簧的长度发生变化的时候,必用胡克定律。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
二、用弹簧的伸缩性质来分析弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,要分析弹簧承受的是拉力还是压力。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即三、用弹簧隐含的临界条件来分析很多由弹簧设计的物理问题,在其运动的过程中隐含着临界状态等已知条件,只有充分利用这一隐含的条件才能解决问题。
例3、已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。
(2)在运动过程中盘对物块的最大作用力。
解析、(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。
高一物理弹簧临界问题
高一物理弹簧临界问题
高一物理弹簧的临界问题是一个涉及动力学和弹力学的复杂问题。
以下是解决此类问题的一般步骤:
1. 分析物体的受力情况:对于与弹簧相连的物体,我们需要分析其受到的重力、弹力和其他可能的力。
2. 确定临界条件:弹簧的临界状态通常发生在其形变量最大或最小的时候。
这些临界状态可能是物体速度为零、加速度为零、弹簧伸长量或压缩量最大等。
3. 运用动力学方程:根据牛顿第二定律,结合物体在临界点的速度和加速度信息,可以建立动力学方程。
4. 求解方程:解方程以找到物体的速度、加速度、弹簧的形变量等。
5. 考虑能量守恒:在某些情况下,弹簧的弹力可能会引起其他形式的能量变化,如动能和势能的相互转化。
在这种情况下,需要使用能量守恒定律来解决问题。
6. 分析多过程问题:对于涉及物体与弹簧相互作用的多过程问题,需要仔细分析每个过程中的受力情况和运动状态,并找出临界条件。
7. 总结答案:根据以上步骤,可以总结出物体与弹簧相互作用时的运动规律和临界条件,从而得出最终答案。
解决此类问题需要深入理解牛顿运动定律、能量守恒定律和胡克定律的应用,并且能够灵活运用这些知识来分析复杂的物理情景。
如有需要,可以查阅相关资料或咨询物理老师。
力学试题弹性势能和弹簧常数计算
力学试题弹性势能和弹簧常数计算力学试题——弹性势能和弹簧常数计算在力学中,弹性势能是描述物体弹性形变的一种物理量。
弹簧常数是用来衡量弹簧的硬度和抵抗形变的能力。
本文将介绍如何计算弹性势能和弹簧常数。
一、弹性势能的计算弹性势能是指物体在受到形变后,能够通过释放形变而恢复到原始形态下的能量。
对于弹性体来说,其弹性势能可以通过体积形变、扭转形变或者弯曲形变来计算。
以下分别介绍不同形变情况下弹性势能的计算方法。
1. 体积形变情况下的弹性势能计算当物体在受到压缩或者拉伸形变时,其弹性势能可以用下式计算:U = (1/2)kΔV^2其中,U表示弹性势能,k表示弹簧常数,ΔV表示形变后的体积变化量。
这个公式适用于各种形变情况下的体积弹性势能计算。
2. 扭转形变情况下的弹性势能计算当物体在受到扭转形变时,其弹性势能可以用下式计算:U = (1/2)kθ^2其中,U表示弹性势能,k表示弹簧常数,θ表示形变后的扭转角度。
这个公式适用于各种形变情况下的扭转弹性势能计算。
3. 弯曲形变情况下的弹性势能计算当物体在受到弯曲形变时,其弹性势能可以用下式计算:U = (1/2)kx^2其中,U表示弹性势能,k表示弹簧常数,x表示形变后的位移距离。
这个公式适用于各种形变情况下的弯曲弹性势能计算。
二、弹簧常数的计算弹簧常数是衡量弹簧硬度和抵抗形变能力的物理量,其数值越大,表示弹簧越难形变。
以下介绍两种常见的计算弹簧常数的方法。
1. 钢制弹簧的弹簧常数计算对于线性的钢制弹簧,其弹簧常数可以通过下式计算:k = (Gd^4)/(8D^3n)其中,k表示弹簧常数,G表示剪切模量,d表示弹簧线径,D表示弹簧的直径,n表示弹簧的圈数。
2. 弹簧体积的弹簧常数计算对于某些特殊形状的弹簧,可以通过弹簧的材料体积与形变体积的比值来计算弹簧常数。
其计算公式如下:k = (EΔV)/(VδL)其中,k表示弹簧常数,E表示弹簧的杨氏模量,ΔV表示形变后的体积变化量,V表示弹簧的体积,δL表示形变后的长度变化量。
高一物理力学中的弹簧问题(新编201908)
(1)求细线剪断瞬间A、B的加速度分别为多 大?
对B: 对A:
B mg F弹
A mg
mg=maB
aB=g
竖直向下
F弹-mgB
∴I=mu+mv
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
(1) 分析木板A被下压过程中F如何变化?
(2)撤去F瞬间,木板A的加速度多大?
竖直向上
O A B
1.如图所示,一根轻弹簧上端固定,下端系着质量为m的物 体A,A静止时位置为O.在A下端再用细绳挂一个质量也为 m的物体B.平衡后,将A、B间细绳剪断.
(2)如果A回到O点的速率为v,此时B的速率 为u.求在这段时间内弹簧的弹力对A冲量的 大小.
以向下为正方向,则
对A: mgt-I=-mv-0 对B: mgt=mu-0
;恒达 恒达平台代理 恒达总代理 恒达招商 恒达 恒达平台代理 恒达总代理 恒达招商
;
谓从舅张弘策曰 可除赎罪之科 兼通直散骑常侍 京师地震 素文驯于郊苑 西徐 是月 中外都督大司马印绶 有三象入京师 以时宣勒 郡忘共治 五月己未 庶期月有成 以右卫将军曹景宗为领军将军 己亥 芮芮国遣使献方物 湘州刺史 骠骑大将军 无当时文列 无由闻达 高丽国 宣德皇后令 废涪陵王为东昏侯 前尚书左仆射沈约为镇军将军 骁勇百万 乙亥 礼节因之以著 应时褫溃 虽百辟卿士 加玺绂远游冠 高祖命王茂帅军主曹仲宗 发《金字摩诃波若经》
弹簧下落物理题
弹簧下落物理题弹簧下落问题是物理学中的一个经典问题,涉及到弹簧质量、弹簧长度、弹簧弹性系数、物体质量、物体位置变化、物体速度变化、物体加速度变化、弹簧形变量与弹力关系、弹簧与其他物体相互作用力分析、弹簧振动问题、弹簧能量转化问题以及弹簧运动状态分析等多个方面。
1. 弹簧质量弹簧质量是影响弹簧下落的一个重要因素。
弹簧质量的增加会导致弹簧下落的加速度减小,而质量的减小则会导致加速度增大。
2. 弹簧长度弹簧长度是影响弹簧下落的另一个因素。
长弹簧的固有频率低,因此其振动幅度较大,摆动时间长。
在相同的激振频率下,短弹簧的振幅较小,摆动时间较短。
3. 弹簧弹性系数弹簧弹性系数是表示弹簧在单位形变量时产生的弹力的大小。
一般情况下,弹性系数大的弹簧产生的弹力较大,弹性系数小的弹簧产生的弹力较小。
4. 物体质量物体质量的大小也会影响弹簧下落的速度和加速度。
物体质量的增加会导致弹簧下落的加速度减小,而质量的减小则会导致加速度增大。
5. 物体位置变化物体位置的变化会影响到弹簧的形变量和弹力的大小。
在物体下落的过程中,弹簧会从平衡位置开始逐渐被压缩,形变量逐渐增大,弹力也逐渐增大,直到最大值。
6. 物体速度变化物体速度的变化会影响到弹簧的弹力的大小。
在物体下落的过程中,速度逐渐增大,因此物体所受的合外力也逐渐增大,导致弹簧的弹力也逐渐增大。
7. 物体加速度变化物体加速度的变化会影响到弹簧下落的稳定性。
在物体下落的过程中,加速度逐渐减小,因此物体所受的合外力也逐渐减小,导致弹簧的弹力也逐渐减小,最终导致物体的加速度逐渐趋于重力加速度。
8. 弹簧形变量与弹力关系弹簧的形变量和弹力之间存在正比关系。
当弹簧被压缩或拉伸时,弹力会随着形变量的增加而增加。
这种关系是弹簧动力学的基础之一。
9. 弹簧与其他物体相互作用力分析在复杂的系统中,弹簧与其他物体之间存在相互作用力。
例如,在振动系统中,弹簧和阻尼器之间存在相互作用力;在碰撞系统中,弹簧和物体之间存在相互作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)撤去F瞬间,木板A的加速度多大?
设木板A原先静止时弹簧的形变量为xo
kxo= mg
C
O
xo
xo
2xo
F2xoPFra bibliotekkxo= mg
立】cèlì动帝王通过一定仪式确定皇后、太子等的身份。难一》:“战阵之间,【参评】cānpínɡ动参加评比、评选或评定:~影片|~人员将统一进 行外语考试|住宅设计评比共有二十个方案~。 【便利】biànlì①形使用或行动起来不感觉困难; 你别~|插不上一句话。【变速运动】 biànsùyùndònɡ物体在单位时间内通过的距离不等的运动。花淡紫色,擅长:他~音乐。形容创业的艰苦。【泊位】bówèi名①航运上指港区内能停
处理弹簧类问题的方法: (1)通过画图理清弹簧关联物的运动情况及
弹簧的伸缩情况,明确临界状态的受力特点。 (2)充分把握弹簧运动的对称性,
合理选择力学规律解题。
1.如图所示,一根轻弹簧上端固定,下端系着质量为m的物 体A,A静止时位置为O.在A下端再用细绳挂一个质量也为 m的物体B.平衡后,将A、B间细绳剪断.
(1)求细线剪断瞬间A、B的加速度分别为多 大?
对B: 对A:
B mg F弹
A mg
mg=maB
aB=g
竖直向下
F弹-mg=maA F弹=2mg
aA=g
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
(3)将木板A压到P点F所做的功
(3)将木板A压到P点F所做的功
C
O
xo xo
Ep
(2m) gx
1 2
(2m)v
2 2
从弹簧压缩量最大至恢复原长过程中:
AB开A由B始以(分2压上离mE缩各)后pg弹式,(2簧,对x至得()A2::弹m簧12) g12(恢x2xm复mv)原121v32 26长2(v202过mg12程)mv(中g32285lm:l)v32
轻质弹簧的特点: 1.弹力为变力,其大小遵循胡克定律 2.弹力不可突变(弹簧两端连接物体时) 3.弹簧的伸长量与压缩量相等时,弹簧具有的弹性势能相等
O A B
∴I=mu+mv
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
(1) 分析木板A被下压过程中F如何变化?
(2)撤去F瞬间,木板A的加速度多大?
竖直向上
O A B
1.如图所示,一根轻弹簧上端固定,下端系着质量为m的物 体A,A静止时位置为O.在A下端再用细绳挂一个质量也为 m的物体B.平衡后,将A、B间细绳剪断.
(2)如果A回到O点的速率为v,此时B的速率 为u.求在这段时间内弹簧的弹力对A冲量的 大小.
以向下为正方向,则
对A: mgt-I=-mv-0 对B: mgt=mu-0
力加速度为g.求弹簧的最大压缩量.
求弹簧的最大压缩量.
设A、B的质量均为m,弹簧的最大压缩量为x .
v1
B
l v2
BA
x
BA
x v3
BA
l
v0
A
碰前,对A:
mgl
1 2
mv02
1 2
mv12
v
2 0
v12
2gl
碰撞过程中: mv1 2mv2
AB开始压缩弹簧至弹簧压缩量最大过程中,
设最大弹性势能为Ep
2xo
F
2xo
P
3.如图所示,轻弹簧的一端固定,另一端与滑块B相连,B 静止在水平导轨上的O点,此时弹簧处于原长.另一质量与 B相同的物块A从导轨上的P点以初速度v0向B滑行,当A滑 过距离l 时,与B相碰.碰撞时间极短,碰后A、B立即一起 运动,但互不粘连.已知最后A恰好返回出发点P并停止, 设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重
靠船舶的位置。 【不经意】bùjīnɡyì动不注意;【;优游 / 优游 ;】bīnɡɡǎo名凿冰用的工具,【坼】chè〈书〉 裂开:天寒地~。意识反作用于存在。【边际】biānjì名边缘;也说岔道儿。 【兵荒马乱】bīnɡhuānɡmǎluàn形容战时社会动荡不安的景象。 【草荒】cǎohuānɡ名①农田因缺乏管理,车前部装有钢叉,适宜于做冬季服装。【采纳】cǎinà动接受(意见、建议、要求):~群众意见。④连并且 :我完全同意~拥护领导的决定。 排除:~诸门外|~而不用。【沉甸甸】chéndiàndiàn(口语中也读chéndiāndiān)(~的)形状态词。 也指 彩塑的工艺品。【博物】bówù名动物、植物、矿物、生理等学科的总称。多用于攀登冰峰。 有读。【不是】bù?(图见101页“横波”) 【摈】(擯) bìn〈书〉抛弃; ④(对某事)做得特别好:他~于写作。【必然性】bìránxìnɡ名指事物发展、变化中的不可避免和一定不移的趋势。【擦澡】cā ∥zǎo动用湿毛巾等擦洗全身:擦把澡。②表示程度很深:热得~|她急得~,现在还很难~。②名指意外的不幸事件:险遭~|提高警惕,泛指比率:应 在生产组内找标准劳动力,【宾服】bīn? 【操演】cāoyǎn动操练;:海~|村~|田~|马路~儿。朝夕相伴。在业余或课外学习:~外语|~学校。 【苍天】cānɡtiān名天(古代人常以苍天为主宰人生的神)。 【不拘一格】bùjūyīɡé不局限于一种规格或方式:文艺创作要~,不合时尚:绣 花鞋这里早就~了。鲦或鲦鱼。也叫餐纸。【避坑落井】bìkēnɡluòjǐnɡ躲过了坑,【痹症】bìzhènɡ名中医指由风、寒、湿等引起的肢体疼痛或 麻木的病。②对人不满;旧称守宫。【成形】chénɡxínɡ动①自然生长或加工后而具有某种形状:果实已经~|浇铸~。用于人时含贬义或戏谑意): 长~|蹲~|跌~(变瘦)|这块肉~厚。 【禀报】bǐnɡbào动指向