20-2华东师大数学分析的练习和(历史上最好的-最全面的)学习的最好资料PPT课件

合集下载

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。

最新20-2华东师大数学分析的练习和课件(历史上最好的-最全面的)学习的最好资料课件PPT

最新20-2华东师大数学分析的练习和课件(历史上最好的-最全面的)学习的最好资料课件PPT
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
M i 1 M i ( x i ) i ( y i ) j .
取 F ( i , i ) P ( i , i ) i Q ( i , i ) j , y F(i,i)M

华东师大数学分析答案完整版

华东师大数学分析答案完整版

!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&&#0+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!#&#3#$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。

15-1(Fourier级数)华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料

15-1(Fourier级数)华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料
例3
f ( x )可逐项积分, a 2 f ( x )dx 0 f ( x )dx 2 [ an f ( x ) cos nxdx bn f ( x ) sin nxdx ]
a0 a0 f ( x )dx 2
第一节 傅里叶(Fourier)级数
• • • • • 一 二 三 四 五 问题的提出 三角级数 正交函数系 以2 为周期的函数的Fourier级数 收敛定理 小结
一、问题的提出
1, 当 t 0 非正弦周期函数:矩形波 u( t ) 当0 t 1, u
1 1 2 1 1 2 2 ( ), 8 3 5
1 1 1 2 2 2 2 , 2 4 6 1 1 1 3 1 2 2 2 , 2 3 4
2

4

1 2
4
,
1 2 2 , 3 24
2 1 2 , 6
上述三角函数系为正交函数系
三、函数展开成傅里叶级数
问题: 1.若能展开, ai , bi 是什么? 2.展开的条件是什么? 1.傅里叶系数
a0 若有 f ( x ) (ak cos kx bk sin kx) 2 k 1 (1) 求a0 . a0 f ( x )dx dx [ (ak cos kx bk sin kx)]dx 2 k 1
周期延拓(T 2) F ( x ) f ( x ) ( , )
1 端点处收敛于 [ f ( 0) f ( 0)] 2
x , x 0 展开为傅立叶 例 2 将函数 f ( x ) x, 0 x

数学分析课本(华师大三版)-习题及答案20+22

数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练华东师范大学《数学分析》第四第五版上下册是数学系研究生必修课程之一,也是大学本科高等数学课程的进阶版,内容极为丰富,涉及微积分、级数、常微分方程等多个方面,是一门集分析和代数为一体的课程。

下面,我将对该课程进行精讲精练,以帮助学生更好地掌握和理解课程内容。

一、微积分微积分是数学分析的重要组成部分,是研究微小变化的一种数学方法。

在微积分中,常见的概念包括导数、积分、极限等。

1.导数导数是函数在某一点的变化率,表示为$f'(x)$。

导数的计算可以通过极限的方法得到,有如下公式:$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$ 2.积分积分是函数与坐标轴所围成的面积,表示为$\int_a^bf(x)dx$。

积分的计算可以通过求解定积分的方法得到,有如下公式:$$\int_a^bf(x)dx=\lim_{n\to\infty}\sum_{i=1}^nf(x_i)\Delta x$$其中,$\Delta x=\frac{b-a}{n}$,$x_i=a+i\Delta x$。

3.微积分的应用微积分在自然科学、社会科学和工程技术等领域都有广泛的应用。

例如,在物理学中,可以通过微积分计算对象的运动、速度、加速度等,从而研究物体的物理性质;在经济学中,可以通过微积分分析经济学模型中的生产函数、消费函数等,从而研究经济模型的特性。

二、级数级数也是数学分析中的重要组成部分,是相加无限项的数列。

在级数中,常见的概念包括收敛、发散、绝对收敛、条件收敛等。

1.收敛和发散级数是收敛的,当且仅当它的部分和有界,表示为$\sum_{n=1}^\infty a_n$,其中$a_n$是级数的第$n$项。

级数是发散的,当且仅当它的部分和无界。

2.绝对收敛和条件收敛级数是绝对收敛的,当且仅当它的绝对值数列是收敛的,表示为$\sum_{n=1}^\infty|a_n|$。

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(微分中值定理及其应用)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(微分中值定理及其应用)

则存在 ξ∈(a,b),使得
(6-4)
2.丌定式极限
(1) 型丌定式极限
若函数 f 和 g 满足:

②在点 的某空心邻域
上两者都可导,且

(A 可为实数,也可为
);

(2) 型丌定式极限
若函数 f 和 g 满足:
①在 的某邻域
上两者ห้องสมุดไป่ตู้导,且



lim f x lim g x
xx0
xx0

(2)拉格朗日型余项 (6-7)式称为泰勒公式,它的余项为
(6-7)
称为拉格朗日型余项,所以(6-7)式又称为带有拉格朗日型余项的泰勒公式. (3)n=0 时,泰勒公式(6-7)在 x=0 时的特殊形式为
称为(带有拉格朗日余项的)麦克劳林公式.
四、函数的极值不最大(小)值 1.极值判别 (1)极值的第一充分条件 设 f 在点 x0 连续,在某邻域 U0(x0;δ)上可导,
(2)推论
设函数在区间 I 上可微,若 f′(x)>0(f′(x)<0),则 f 在 I 上严格递增(严格递减).
(3)达布(Darboux)定理
若函数 f 在[a,b]上可导,且 f′+(a)≠f′-(b),k 为介于 f′+(a),f′-(b)乊间的
仸一实数,则至少存在一点 ξ∈(a,b),使得
5 / 78
圣才电子书 十万种考研考证电子书、题库视频学习平台

①若当
时 f′(x)≢0,当
时 f′(x)≣0,则 f 在点 x0
取得极小值.
②若当
时 f′(x)≣0,当
时 f′(x)≢0,则 f 在点
x0 取得极大值.

数学分析PPT课件第四版华东师大研制 第2章 数列极限

数学分析PPT课件第四版华东师大研制  第2章 数列极限

多只有有限项, 设这些项的最大下标为 N, 这就表
示当
n
>N
时, an U(a; ) ,

lim
n
an
a.
前页 后页 返回
以上是定义 1 的等价说法, 写成定义就是:
定义1' 任给 0 , 若在 U(a; ) 之外至多只有
{ an } 的有限多项, 则称数列 { an } 收敛于a . 这样,
前页 后页 返回
例1
证明
lim
n
1 n n!
0.
证 对任意正数 , 因为 lim (1 )n 0 ,
n n!
所以由
定理 2.4, N 0, 当 n N 时,
1 n
1, n!

1 n n!
.
这就证明了
lim
n
1 n n!
0.
前页 后页 返回
四、保不等式性
定理 2.5 设 { an }, { bn } 均为收敛数列, 如果存在正
前页 后页 返回
一、惟一性
定理 2.2 若 {an } 收敛, 则它只有一个极限. 证 设 a 是 {an} 的一个极限. 下面证明对于任何 定数 b a, b 不能是 {an} 的极限 .
若 a,b 都是 { an } 的极限,则对于任何正数 >0,
N1, 当 n N1 时,有
| an a | ;
lim
n
an
.
若 an G,改为 an G 或 an G,则称 {an } 是正无
穷大数列或负无穷大数列, 分别记作
lim
n
an

lim
n
an
.
前页 后页 返回

21(4)华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料

21(4)华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料
2
2 Ry
( 如图 )
R
O x
2 Rr sin
D : 0 ,
0 r 2 R sin
常见区域D'的确定
(3) D : x y
2 2
y R
2
R
( 如图 )
O R x
r
2
R
2
D : 0 2 ,
0 r R
③二重积分化为二次积分的公式(3)
对广义极坐标变换也有与定理21.14 相应的定理, 这
里就不再赘述了. 例8 求椭球体
x a
2 2

y b
2 2

z c
2 2
1
的体积.
解 由对称性, 椭球体的体积 V 是第一卦限部分体 积的 8 倍, 而这部分是以
z c 1 x a
2 2
2 2

y b
2 2
为曲顶,
b D ( x , y ) 0 y a

o



d

( )
0
f ( r cos , r sin ) rdr .
常见区域D'的确定
(1) D : x y
2 2
y
2 Rx
( 如图 )
O R 2R x
r
D:
2
2 Rr cos

2

2 2

2
,
0 r 2 R cos
y 2R
(2) D : x y r
y
2
dy
的难题.
三、二重积分的广义极坐标变换
当积分区域为椭圆或椭圆的一部分时, 可考虑用如 下的广义极坐标变换:

华东师范大学2020年数学分析考研试题

华东师范大学2020年数学分析考研试题

x0
2x
f '0 存在.
(3)若 f x 在a,b 可积,则 f x 在a,b 存在原函数.
(4)若
f
x
在 0,1 连续且
1 0
f
2
xdx

0
,则
f

x
在 0,1 上恒等于
0
.



(5)若级数 an 和 bn 均收敛,则 anbn 也收敛.
(5)已知
lim
n
an

A
,求
lim
n

an1 n 1

a2n 2n

.
三、证明下列各题(第 1 题 14 分,2-5 题 15 分,共 74 分)
Байду номын сангаас
(1)设
an

0
n
1, 2,

Sn

a1

an
,证明
n1
an

n1
an Sn
有相同
是定义在0,
上的非负函数且可导,满足

0
f

x dx

敛.证明:
xn


,使得
lim
n
f 2 xn f ' xn 2
0 .
U x0; 上无界.

(4)un x 在a,b 连续,且 un x 0 ,n 1, 2,.设 un x 在a,b 上 n1

收敛,记 f x un x .证明: f x 在a,b 上有最小值. n1
(5)设
f

12-1华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料资料

12-1华东师大数学分析的练习和课件(历史上最好的,最全面的)学习的最好资料资料

和 p0 有: | um0 1 um0 2 um0 p0 | 0
例3 讨论调和级数 1 1 1 1 的敛散性。
23 n
解:取
0
1 2
N m0 N 1 N p0 m0 有
| um0 1
um0 2
u2m0
||
1 m0 1
1 m0
2
1 2m0
|
| 1 1 1 | 1
2m0 2m0
结论: 去掉、增加或改变级数的有限项,不影响 级数的敛散性。
性质 4 收敛级数加括弧后所成的级数仍然收敛 于原来的和.
注意 收敛级数去括弧后所成的级数不一定收敛.
例如 (1 1) (1 1) 收敛
1111
发散
aqn a aq aq2 aqn
n0
解 如果q 1时
sn a aq aq2 aqn1
a aqn a aqn , 1q 1q 1q
当q 1时,
lim qn 0
n
lim
n
sn
a 1
q
收敛
当q 1时,
lim qn
n
lim
n
sn
如果 q 1时
发散
当q 1时, sn na
sn u1 u2 un ,
部分和数列
引例1:
sn
1 1 2 22
1 2n
1 2
(1
1 2n
1 1
)
1
1 2n
2
引例2:sn
1 (1)
(1)n
1 0
n为奇数 n为偶数
③级数的收敛与发散
当n无限增大时,如果级数 un 的部分和
n1
数列 sn 有极限 s ,

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练

【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练华东师范大学的《数学分析》是大多数数学专业学生必修的一门课程,也是数学基础很重要的一门课程。

这门课程涉及到了微积分、实变函数、级数和微分方程等重要的数学概念和方法。

本文主要介绍华东师范大学《数学分析》第四第五版上下册的精讲精练内容。

这两册书主要讲授了微积分和实变函数的部分内容,其中包括单变量函数、多元函数、微积分的基本定理、微分学基本理论、级数理论和微分方程等内容。

一、单变量函数在单变量函数的学习中,我们先要学习函数的基本概念:定义域、取值域、函数的表示方法、函数分类、函数的有界性和函数的极限。

1.1 定义域与取值域定义域是指函数自变量可以取到的所有实数值的集合,而取值域则表示函数所有可能的实数输出值的集合。

在单变量函数中,定义域和取值域的关系是非常重要的。

根据函数定义域和取值域的不同,我们可以将单变量函数分为多种类型,例如正弦函数、余弦函数、指数函数、对数函数和多项式函数等。

1.2 函数的表示方法在学习单变量函数中,我们还需要掌握函数的表示方法。

一元函数的一般表示方法是f(x),其中x是自变量,f(x)是因变量。

在实际应用中,一元函数的式子可能会更加复杂,包括三角函数、指数函数、对数函数等。

1.3 函数分类在单变量函数中,函数可以分为几种类型。

其中最常见的包括连续函数、可导函数和可积函数。

连续函数是指在其定义域上连续的函数,可导函数则意味着函数在其某个点的导数存在,而可积函数则表示整个函数的积分收敛。

1.4 函数的有界性在学习单变量函数中,我们还需要掌握函数的有界性。

一个函数是有界的,当且仅当在其定义域上存在一个上界和下界,使得函数值在这些上下界之间。

没有上界或下界的函数被称为无界函数。

1.5 函数的极限在单变量函数中,我们还需要学习函数的极限。

在学习极限的时候,我们需要掌握极限的定义,极限的性质和相关的定理。

特别地,拉格朗日中值定理和柯西中值定理对于极限的理解具有重要的意义。

华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题考研真题详解

华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题考研真题详解

华东师范大学数学系《数学分析》(第4版)(下册)笔记和
课后习题考研真题详解
华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解完整版>精研学习wang>无偿试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
第12章数项级数
12.1复习笔记
12.2课后习题详解
12.3名校考研真题详解
第13章函数列与函数项级数
13.1复习笔记
13.2课后习题详解
13.3名校考研真题详解
第14章幂级数
14.1复习笔记
14.2课后习题详解
14.3名校考研真题详解
第15章傅里叶级数
15.1复习笔记
15.2课后习题详解
15.3名校考研真题详解
第16章多元函数的极限与连续
16.1复习笔记
16.2课后习题详解
16.3名校考研真题详解
第17章多元函数微分学
17.1复习笔记
17.2课后习题详解
17.3名校考研真题详解
第18章隐函数定理及其应用
18.1复习笔记
18.2课后习题详解
18.3名校考研真题详解
第19章含参量积分
19.1复习笔记
19.2课后习题详解
19.3名校考研真题详解
第20章曲线积分20.1复习笔记20.2课后习题详解20.3名校考研真题详解第21章重积分
21.1复习笔记21.2课后习题详解21.3名校考研真题详解第22章曲面积分22.1复习笔记22.2课后习题详解22.3名校考研真题详解第23章向量函数微分学23.1复习笔记23.2课后习题详解23.3名校考研真题详解。

华东师大数学分析习题解答2

华东师大数学分析习题解答2

《数学分析选论》习题解答第 二 章 连 续 性1. 设n y x ℜ∈,,证明:)||||||||(2||||||||2222y x y x y x +=-++.证 由向量模的定义,∑∑==-++=-++n i i i n i i i y x y x y x y x 121222)()(|||||||| ∑=+=+=n i i i y x y x 12222)||||||||(2)(2. □2*. 设n n x S ℜ∈ℜ⊂点,到集合S 的距离定义为),(inf ),(y x S x Sy ρ=ρ∈. 证明:(1)若S 是闭集,S x ∉,则0),(>S x ρ;(2)若d S S S ⋃=( 称为S 的闭包 ),则{}0),(|=ρℜ∈=S x x S n .证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈∃,使得 Λ,2,1,1),(=<ρn ny x n . 因 S x ∉,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ. (2)S x ∈∀.若S x ∈,则0),(=ρS x 显然成立.若S x ∉,则d S x ∈(即x 为S 的聚点),由聚点定义,∅≠⋂ε>ε∀S x U );(,0ο,因此同样有 0),(),(inf =ρ=ρ∈S x y x S y .反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正数0ε,使∅=⋂εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x Sy ,与0),(=ρS x 相矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ⊂∈d ;若x 为孤立点,则S S x ⊂∈.所以这样的点x 必定属于S .综上,证得 {}0),(|=ρℜ∈=S x x S n 成立. □3.证明:对任何n S ℜ⊂,d S 必为闭集. 证 如图所示,设0x 为d S 的任一聚点, 欲证∈0x d S ,即0x 亦为S 的聚点. 这是因为由聚点定义,y ∃>ε∀,0,使得d S x U y ⋂ε∈);(0ο. 再由y 为S 的聚点,);();(0ε⊂δ∀x U y U ο,有∅≠⋂δS y U );(ο.于是又有∅≠⋂εS x U );(0ο,所以0x 为S 的聚点,即∈0x d S ,亦即d S 为闭集. □4.证明:对任何n S ℜ⊂,S ∂必为闭集.证 如图所示,设0x 为S ∂的任一聚点,欲证S x ∂∈0,即0x 亦为S 的界点.由聚点定义,y ∃>ε∀,0,使 S x U y ∂⋂ε∈);(0ο. 再由y 为界点的定义,);();(0ε⊂δ∀x U y U , 在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ∂必为闭集. □*5.设n S ℜ⊂,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1x 的直线段必与S ∂至少有一交点.0x ο);(δy U);(0εx U οοSS∂ο);(δy U);(0εx U οοSd S 0x证 如图所示,把直线段10x x 置于一实轴上,并为叙述方便起见,约定此实轴上的点与其坐标用同一字 母表示.下面用区间套方法来证明∅≠∂⋂S x x 10. 记2,],[],[1111011b a c x x b a +==.若S c ∂∈1, 则结论成立;若1c 为S 的内点,则取],[],[1122b c b a =;若1c 为S 的外点,则取],[],[1122c a b a =.一般地,用逐次二等分法构造区间套:记2n n n b a c +=( 不妨设S c n ∂∉),并取 Λ,2,1,,],[,,],[],[11=⎩⎨⎧=++n S c c a S c b c b a n n n n n n n n 的外点为的内点为.此区间套的特征是:其中每个闭区间的左端点n a 恒为S 的内点,右端点n b 恒为S 的外点.现设y b a n n n n ==∞→∞→lim lim ,下面证明S y ∂∈. 由区间套定理的推论,0>ε∀,当n 足够大时,);(],[ε⊂y U b a n n ,因此在);(εy U 中既含有S 的内点(例如n a ),又含有S 的外点(例如n b ),所以10x x 上的点y 必是S 的界点. □ 6.证明聚点定理的推论2和推论3.(1)推论2 n ℜ中的无限点集S 为有界集的充要条件是:S 的任一无限子集必有聚点.证 [必要性] 当S 为有界集时,S 的任一无限子集亦为有界集,由聚点定理直接推知结论成立.[充分性] 用反证法来证明.倘若S 为无界集,则必能求得一个点列{}S P k ⊂,使得+∞=∞→||||lim k k P .这个{}k P 作为S 的一个无限子集不存在聚点,与条件矛盾.故S 为有界集. □(2)推论3 n ℜ中的无限点集S 为有界闭集的充要条件是:S 为列紧集,即S的任一无限子集必有属于S 的聚点.证 [必要性] 因S 有界,故S 的任一无限子集亦有界,由聚点定理,这种无限子集必有聚点.又因子集的聚点也是S 的聚点,而S 为闭集,故子集的聚点必属于S .[充分性] 由上面(1)的充分性证明,已知S 必为有界集.下面用反证法再来证明S 为闭集.倘若S 的某一聚点S P ∉,则由聚点性质,存在各项互异的点列{}S P k ⊂,使 P P k k =∞→lim .据题设条件,{}k P 的惟一聚点P 应属于S ,故又导致矛盾.所以S 的所有聚点都属于S ,即S 为闭集. □7.设X B A X f X m n ⊂ℜ→ℜ⊂,,,:.证明:(1))()()(B f A f B A f ⋃=⋃;(2))()()(B f A f B A f ⋂⊂⋂;(3)若f 为一一映射,则)()()(B f A f B A f ⋂=⋂.证 (1))(,,)(x f y B A x B A f y =⋃∈∃⋃∈∀使.若)(,A f y A x ∈∈则; 若)(,B f y B x ∈∈则.所以,当)()()(,B f A f x f y B A x ⋃∈=⋃∈时.这表示)()()(B f A f B A f ⋃⊂⋃.反之,)(,,)()(x f y X x B f A f y =∈∃⋃∈∀使.若A x A f y ∈∈则,)(;若B x B f y ∈∈则,)(,于是B A x ⋃∈.这表示)()(B A f x f y ⋃∈=,亦即)()()(B f A f B A f ⋃⊃⋃.综上,结论)()()(B f A f B A f ⋃=⋃得证.(2)y x f B A x B A f y =⋂∈∃⋂∈∀)(,,)(使.因A x ∈且B x ∈,故)()()()(B f x f A f x f ∈∈且,即 )()()(B f A f x f y ⋂∈=,亦即 )()()(B f A f B A f ⋂⊂⋂.然而此式反过来不一定成立.例如]2,1[,]1,2[,)(2-=-==B A x x f ,则有]4,0[)()()()(=⋂==B f A f B f A f ;]1,0[)(,]1,1[=⋂-=⋂B A f B A .可见在一般情形下,)()()(B A f B f A f ⋂⊄⋂.(3))()(B f A f y ⋂∈∀,B x A x ∈∈∃21,,使)()(21x f x f y ==.当f 为 一一映射时,只能是B A x x ⋂∈=21,于是)(B A f y ⋂∈,故得)()()(B A f B f A f ⋂⊂⋂.联系(2),便证得当f 为一一映射时,等式)()()(B A f B f A f ⋂=⋂成立.□8.设m n m n c b a g f ℜ∈ℜ∈ℜ→ℜ,,,,:,且c x g b x f a x a x ==→→)(lim ,)(lim .证明:(1)0||||,||||||)(||lim ==→b b x f ax 当且时可逆; (2)c b x g x f a x T ])()([lim =T →.证 设[][]T T ==)(,,)()(,)(,,)()(11x g x g x g x f x f x f m m ΛΛ,T T T ===],,[,],,[,],,[111m m n c c c b b b a a a ΛΛΛ.利用向量函数极限与其分量函数极限的等价形式,知道m i c x g b x f i i ax i i a x ,,2,1,)(lim ,)(lim Λ===→→. (1)||||)()(lim ||)(||lim 221221b b b x f x f x f m m a x a x =++=++=→→ΛΛ.当0||||=b 时,由于||)(||||||||)(||x f b x f =-,因此由0||)(||lim =→x f a x ,推知m i x f i a x ,,2,1,0)(lim 2Λ==→,即得0)(lim =→x f a x .(2)类似地有c b c b c b x g x f x g x f x g x f m m m m a x a x T →T →=+=++=ΛΛ1111])()()()([lim ])()([lim .□9.设m n D f D ℜ→ℜ⊂:,.试证:若存在证数r k ,,对任何D y x ∈,满足r y x k y f x f ||||||)()(||-≤-,则f 在D 上连续,且一致连续.证 这里只需直接证明f 在D 上一致连续即可.0,01>⎪⎭⎫ ⎝⎛ε=δ∃>ε∀rk ,对任何D y x ∈,,只要满足δ<-||||y x ,便有 ε<-≤-r y x k y f x f ||||||)()(||.由于这里的δ只与ε有关,故由一致连续的柯西准则(充分性),证得f 在D 上一致连续. □10.设m n D f D ℜ→ℜ⊂:,.试证:若f 在点D x ∈0连续,则f 在0x 近旁局部有界.证 由f 在点0x 连续的定义,对于1=ε,0>δ∃,当)(0δ∈;x U x 时,满足||)(||1||)(||1||)()(||||)(||||)(||000x f x f x f x f x f x f +≤⇒<-≤-,所以f 在0x 近旁局部有界. □11.设m n f ℜ→ℜ:为连续函数,n A ℜ⊂为任一开集,n B ℜ⊂为任一闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集?为什么?解 )(A f 不一定为开集.例如),(,sin )(ππ-∈=x x x f .这里),(ππ-=A 为开集,但]1,1[)(-=A f 却为闭集.当B 为有界闭集时,由连续函数的性质知道)(B f 必为闭集且有界.但当B 为无界 闭集时,)(B f 就不一定为闭集,例如),(,arctan )(∞+-∞∈=x x x f .这里),(∞+-∞=B 可看作一闭集,而⎪⎭⎫ ⎝⎛ππ-=2,2)(B f 却为一开集. □ 12.设n n D D ℜ→ϕℜ⊂:,.试举例说明:(1)仅有D D ⊂ϕ)(,ϕ不一定为一压缩映射; (2) 仅有存在)10(<<q q ,使对任何D x x ∈''',,满足||||||)()(||x x q x x ''-'≤''ϕ-'ϕ,此时ϕ也不一定为一压缩映射.解 (1)例如),0[,1)(∞+∈+=ϕx x x .这里),0[∞+=D 为一闭域,它虽然满足D D ⊂∞+=ϕ),1[)(,但因|||)()(|x x x x ''-'=''ϕ-'ϕ,所以ϕ不是压缩映射.(注:这也可根据压缩映射原理来说明,由x x =+1无解,即ϕ没有不动点,故ϕ不是压缩映射.)(2) 例如]1,1[,12)(-=∈+=ϕD x x x .它虽然满足 )50(||21|)()(|.=''-'=''ϕ-'ϕq x x x x , 但因D D ⊄⎥⎦⎤⎢⎣⎡=ϕ23,21)(,故此ϕ仍不是一个压缩映射. □ 13.讨论b a ,取怎样的值时,能使下列函数在指定的区间上成为一个压缩映射:(1)],[,)(1b a x x x ∈=ϕ; (2)],[,)(22a a x x x -∈=ϕ; (3)],[,)(3b a x x x ∈=ϕ; (4)],0[,)(4a x b ax x ∈+=ϕ.解 (1)由|||)()(|11x x x x ''-'=''ϕ-'ϕ,可知对任何b a ,,1ϕ在],[b a 上都不可能是压缩映射.(2)首先,只有当10≤≤a 时,才能使],[],0[)],[(22a a a a a -⊂=-ϕ.其次,由于对任何],[,a a x x -∈'''都有||2|||||)()(|22x x a x x x x x x ''-'<''-'⋅''+'=''ϕ-'ϕ,因此只要取120<=<a q ,即210<<a ,就能保证2ϕ在],[a a -上为一压缩映射. (3) 由],[],[)],[(3b a b a b a ⊂=ϕ,可知b a ≤≤≤10.再由||21||||x x a x x x x x x ''-'<''+'''-'=''-', 又可求得21>a ,即41>a .所以,当取b a ≤≤<141时,就能保证3ϕ在],[b a上为一压缩映射.(4) 由于0>a ,因此可由a b a b ax b ≤+≤+≤≤20,解出a a ≤2( 即10≤<a ),0≥b .再由||||x x a b x a b x a ''-'=-''-+',可见只要0,10≥<<b a ,就能保证4ϕ在],0[a 上为一压缩映射. □ 14.试用不动点方法证明方程0ln =+x x 在区间[]3/2,2/1上有惟一解;并用迭代法求出这个解(精确到四位有效数字).解 若直接取x x x x x ln )ln ()(-=+-=ϕ,则因 ∈>≥=ϕ'x x x ,1231|)(|[]3/2,2/1, 可知ϕ在[]3/2,2/1上不是压缩映射.为此把方程改写成x x -=e ,并设x x x x x --=--=ϕe e )()(. 由于在[]3/2,2/1上 11|||)(|<≤-=ϕ'-e e x x ,且[][]3/2,2/1],[)3/2,2/1(2/13/2⊂=ϕ--e e ,所以x x -=ϕe )(在[]3/2,2/1上为一压缩映射,且在[]3/2,2/1上有惟一不动点.取2/10=x ,按k x k x -+=e 1迭代计算如下: k k x k k x k k x所以,方程x x -=e 即0ln =+x x 的解(精确到四位有效数字)为17650.=*x . □15.设 n B f ℜ→:,其中{}r x x x B n ≤ρℜ∈=),(|0为一个n 维闭球(球心为0 1 2 3 0.5 0.6065 0.5452 0.5797 4 5 6 7 0.5601 0.5712 0.5649 0.5684 M M 15 16 17 0.5672 0.5671 0.56710x ).试证:若存在正数)10(<<q q ,使对一切B x x ∈''',,都有||||||)()(||x x q x f x f ''-'≤''-',r q x x f )1(||)(||00-≤-,则f 在B 中有惟一的不动点.证 显然,只需证得了B B f ⊂)(,连同条件便知f 在B 上为一压缩映射,从而有惟一的不动点.现证明如下:)(,x f y B x =∈∀.由r x x ≤-||||0,以及题设条件的两个不等式,得到.r r q r q rq x x q x x f x f x f x y =-+≤-+-≤-+-≤-)1()1(||||||)(||||)()(||||||00000这表示B x f y ∈=)(,即B B f ⊂)(. □。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{P[(t),(t)](t)Q[(t),(t)](t)}dt
特殊情形
( 1 ) L : y ( x ) x 起 点 为 a , 终 点 为 b .
则 P d x Q d y b { P [x ,(x ) ] Q [x ,(x ) ](x ) } d x .
L
a
( 2 ) L :x ( y ) y 起 点 为 c , 终 点 为 d .
.
4
n
n
若极限 li m 0i 1P (i, i) x i li m 0i 1Q (i, i) yi
存在且与分割 T 与点 (i , i ) 的取法无关, 则称此极
限为函数P (x,y),Q (x,y)沿有向曲线 L 上的第二型 曲线积分, 记为
L P (x ,y)d x Q (x ,y)d y
§20-2 第二型曲线积分
一、第二型曲线积分的定义 二、第二型曲线积分的计算
.
1
一、问题的提出 y
B
实例: 变力沿曲线所作的功
M
y
i
i
Mn1
L Mi1 xi
L:A B ,
M2
A M 1
F ( x , y ) P ( x , y ) i Q ( x , y ) j o
x
常力所作的功 W F A.B
则 P d x Q d y d { P [( y ) ,y ]( y ) Q [( y ) ,y ] } d y .
L
c
.
9
x(t) (3)推广 : y(t), t起点 ,终点 .
z(t)
Pdx Qdy Rdz
{
P[
(t
),
(t
),
(t
)]
(t
)
Q[(t), (t),(t)] (t)
也可以写为
L P (x ,y )d x L Q (x ,y )d y
其中 P(x,y), Q(x,y)叫做被积 , L叫 函积数 分弧段.
.
5
2.存在条件: 当P(x,y),Q(x,y)在光滑曲 L 上连续 , 第时 二类曲线. 积分存在
4.推广
空间有向曲线弧PdxQdyRd. z
n
P (x ,y,z)d x l i0im 1P (i,i, i) x i.
解 (1) L: x y a ascions,
从0变到 ,
原式 a2si2n ( asi)n d B(a,0) 0
A(a,0)
.
13
a3 0
(1co2s)d(co)s
4 3
a
3
.
(2 ) L :y 0 ,
x从 a变 到 a,
原式
a
0dx0.
问题:被积函数相同,起点和终点也相同,但 路径不同积分结果不同.
13
x2dx
4.
0
5
.
A(1,1) 11
(2)化为对 y的定积分, x y2, y从1到 1.
xydx xydx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 4 .
1
5
.
B(1,1)
y2 x
A(1,1)
12
例2 计算y2dx,其中L为 L
(1)半径为 a、圆心为原点、针按方逆向时绕行 的上半圆 ; 周 (2)从点A(a,0)沿x轴到点 B(a,0)的直线. 段
分割 A M 0 , M 1 ( x 1 , y 1 ) , M , n 1 ( x n 1 , y n 1 ) M n , B .
M i 1 M i ( x i ) i ( y i ) j .
.
2
取 F ( i , i ) P ( i , i ) i Q ( i , i ) j , y F(i,i)M
精确值
.
3
二、第二型曲线积分的概念
1.定义 设L为 xoy 面内从点 A到点 B的一条有
向光滑曲线弧 , 函数 P ( x, y), Q( x, y)在 L
上有界 . 用 L上的点 M 1( x1 , y1 ), M 2 ( x2 , y2 ), , M n1 ( xn1 , yn1 )把 L分成 n个有向小弧段 M i1M i (i 1,2, , n; M 0 A, M n B ). 设 xi xi xi1 , yi yi yi1 , 点( i , i )为 M i1M i 上任意取定的点 . 如果当各小弧段 长度的最大值 0时 ,
R[(t), (t),(t)](t)}dt
.
10
例1 计算 xy,d 其 xL 中 为抛y物 2x上 线从 L A(1,1)到 B(1,1)的一. 段弧B(1,1)
解 (1)化为对 x的定积分y, x.
y2 x
xy dxxy dx xydx
L
AO
OB
0
1
1x(x)d x0xxdx
2
i
B
Mn1
W i F (i,i)M i 1 M i,
L yi
Mi1 x i
M2
A M1
即 W i P ( i ,i ) x i Q ( i ,i ) y i . o
x
n
求和 W Wi
近似值
i1
n
[P (i, i) x i Q (i, i) y i].
i 1
n
取极限 W l 0 ii 1 m [P (i,i) x i Q (i,i) y i] .
n
Q (x ,y,z)d y l i0im 1Q ( i, i, i) yi.
n
R (x ,y,z)d zl i0im 1R ( i, i, i) zi.
.
6
5.性质
(1)如果 L 分 把 L 1 成 和 L 2,则
LPd Q x dL y 1Pd Q x dL 2 yPd Q x.dy
续,
L的参数方程为xy
(t), (t),
当参数t单调地由变
到时,点M(x, y)从L的起点A沿L运动到终点B,
(t), (t)在以及为端点的闭区间上具一有阶连
续导数,且2(t) 2(t) 0,则曲线积分
L P(x, y)dx Q(x, y)dy存在,
.
8
且LP(x, y)dxQ(x, y)dy
(2) 设 L是有向 ,L 曲 是L 线 与 方弧 向相 有向 曲 , 则线 弧
L P ( x , y ) d Q ( x x , y ) d L y P ( x , y ) d Q ( x x , y ) d
即第二型曲线积分与曲线的方向有关.
.
7
三、第二型曲线积分的计算
定理 设P(x, y),Q(x, y)在曲线弧L上有定义且连
练习:P205 例1
.
14
例3 计算 2xydx x2dy,其中L为 L
(1)抛物线y x2上从O(0,0)到B(1,1)的一段;弧
相关文档
最新文档