板形和板凸度的概念
中厚板板形与板凸度控制
1 板型的基本概念板型直观上是指板带的翘曲程度,其实质是指钢板内部残余应力分布。
1.1 钢板横断面外形板带产品的断面形状可以描述为产品横断面的轮廓(如图1所示),此轮廓由一系列指定点上或指定增量点上的厚度测量值来定义。
图1 钢板的横断面示意图1.1.1 影响轧件断面几何形状的因素当轧件只受塑性变形压缩时,轧制后没有弹性变形恢复。
这种情况下,轧件断面形状完全由辊缝形状所决定。
影响辊缝形状的四个因素是:轧辊的垂直位移、轧辊的水平位移、轧辊热凸度和轧辊磨损。
(1)轧辊的垂直位移。
引起垂直面上轧辊位移的因素有:a.轧机延伸:它是因轧制负荷和轧制热而产生的,包括轧辊在的轧机部件的伸长和压缩的结果。
b.轧辊弯曲:这是由轧制负荷和垂直方向上轧辊弯曲液压缸产生的力引起的。
c.辊缝中液压润滑油膜厚度的变化。
d.支撑辊轴承里油膜厚度的变化。
(2)轧辊的水平位移。
可能引起水平面上轧辊位移的因素有a.作用在工作辊上的轧制负荷的水平分量,该工作辊中心线偏离相邻支撑辊轴承中心线。
b .由水平面上轧辊弯曲机构所产生的力引起的轧辊弯曲。
c .由轧件变形区的入口侧和出口侧不相等的带钢张力引起的轧辊位移和弯曲。
(3)轧辊热凸度:轧辊热凸度定义为轧制期间由于轧辊受热和冷却造成的轧辊直径的增量,某些情况下,轧辊热凸度是通过预热轧辊有意施加的。
(4)轧辊磨损:轧辊磨损指由于研磨、腐蚀、及粘着磨损而造成的逐渐损伤。
1.1.2 断面形状要素的定义平板的断面形状通常描述为:中心厚度、边部厚度、水平度、楔形、凸度、边部减薄等。
(1)中心厚度H :中心厚度H 是指轧件中心线处的厚度。
(2)边部厚度H I 、H J :边部厚度是指距边部一定距离的测量值,这个距离d 一般为9.5~19mm ,L 一般为50~75mm 。
传动侧为J I H H 、。
操作侧为J 'I 'H H 、。
(3)倾斜量i H δ:它由传动侧和操作侧的厚度差来决定:'I I i H H H -=δ(4)楔形:传动侧和操作侧的楔形分别为:传动侧楔形:'I I H H H >>操作侧楔形:I I H H H >>'(5)凸度:凸度定义为中心厚度H 和指定的边部厚度之差。
热轧薄材板凸度控制
热轧薄材板凸度控制热轧生产中,薄板的凸度控制是非常重要的一环。
由于热轧生产工艺复杂,薄板在生产过程中易发生弯曲、扭曲等凸度问题,会严重影响薄板的质量和生产效率。
因此,凸度的控制成为生产过程中必须注意的问题。
1. 凸度的含义及表现形式凸度(Crown)是指薄板断面沿箭头所示方向的弯曲曲率半径。
凸度又分为正凸度和负凸度,正凸度是指薄板从中央开始向两端逐步升高的情况,负凸度是指薄板从中央开始向两端逐步下降的情况。
薄板凸度的表现形式有以下几种:(1)中央凸起:指薄板在中央出现凸起的现象。
(2)端部下沉:指薄板两端出现向下凹陷的现象。
(3) S 形弯曲:指薄板出现 S 形弯曲的现象。
2. 凸度影响因素影响薄板凸度的因素非常多,主要有以下几点:(1)板形控制不当:板形控制不当会引起薄板内部张力分布不均,从而导致薄板出现弯曲和扭曲现象。
(2)薄板材料和尺寸:薄板的材料和尺寸对凸度的影响也很大。
例如,薄板的长度和宽度越大,凸度就越容易产生。
(3)温度控制:热轧生产过程中,高温时段的温度控制对薄板的凸度影响非常大。
3. 凸度控制方法为了控制薄板的凸度,可以采取以下方法:(1)优化板形控制:通过调整辊系的传动比,保证辊系的制动力均匀,优化板形控制,减少薄板内部张力分布不均,从而减少凸度的产生。
(2)采用适当的工艺措施:在热轧过程中,可以掌握好浇注和轧制技术,建立热轧生产记录,合理调整轧制工艺参数,减少薄板的凸度。
(3)加强温度控制:对于薄材的过渡卷,要严格控制加热炉温度,保证卷材的温度均匀,从而减少凸度的产生。
总之,控制凸度是热轧生产过程中非常重要的环节。
只有采取正确的控制手段,才能保证薄板的质量和生产效率。
4 板凸度和板平直度理论
材料加工工程硕士研究生选修课板带轧制理论与工艺》4 板凸度和板平直度理论主讲人:邸洪双热轧卷板的主要质量问题性能:强度,塑性,冲击韧性表面:氧化铁皮,麻点,划伤,挂腊,夹杂,边裂,翘皮尺寸精度:厚度,宽度板形(平直度,凸度,边部减薄,局部高点)由于带钢板形质量问题对用户使用及最终产品质量带来不利影响。
如汽车制造、工程机械设备、集装箱和冷轧生产等汽车梁成型后腿部距离回弹不一致,热轧卷板表面局部高点造成冷轧卷板成品表面产生粘结浪形导致下工序衬板、加强板组装困难集装箱板浪形影响集装箱整体焊接质量和外观工程机械钢卷板瓢曲造成吊车吊臂无法焊接4.1 板形和板凸度的概念板形(shape )(平直度)直观来说:指板材的翘曲程度Flatness, Buckle, Cambershape实质:板带材内部残余应力的分布只要板带内部存在有残余的内应力,就称为板形不良。
如果这个应力虽然存在,但不足以引起板带翘曲,则称为“潜在”的板形不良;如果这个应力足够大,以致于引起板带翘曲,则称为“表观”的板形不良。
板形缺陷的产生残余应力板形不良“潜在”的板形不良“表观”的板形不良带钢实际平直度照片平直中浪边浪板形缺陷的分类板带中残余应力分布的规律不同,其所引起的板带翘曲形式也不同。
所以,可以根据内应力的分布规律和板带的翘曲情况,将板形缺陷分成不同的类型。
()22121pcr cr p E h k B πσν⎛⎫= ⎪+⎝⎭crσ板带产生翘曲的临界应力crk 临界应力系数pE 板带的弹性模量pν板带的泊松比h板带的厚度B板带的宽度(4-1)式中:板带翘曲的力学条件根据弹性力学的研究结果,板带发生翘曲的力学条件可表达为:研究结果表明,对于冷轧宽带钢,产生边浪时,k cr ≈12.6,产生中浪时,k cr ≈17.0。
对于热轧宽带钢,边浪时k cr ≈14,中浪时k cr ≈20良好板形的几何条件如右图所示,横坐标表示各点的横向位臵,即横向各点距板带中心的距离,纵坐标分别为入口和出口轧件半厚,入口断面形状函数为H(x),出口断面形状函数为h(x)。
凸度仪的应用与发展概况
凸度仪的应用与发展概况作者:穆兴保来源:《环球市场信息导报》2011年第11期该文简要介绍凸度仪的类型、测量原理、特点、应用与发展概况,并结合实例介绍RM312凸度仪的主要功能和技术指标。
凸度仪;板带材;凸度;X射线;厚度测量随着AGC系统在板带轧机上的普遍应用,板带材的纵向厚度精度得到了显著提高,相比之下,板形和凸度问题变得日益突出。
板形通常是指板带材的平直度,凸度则是指板带材的横向厚差。
板形理论和生产经验均表明,板带材的凸度实质上取决于热轧,并直接影响着冷轧阶段的板形质量。
事实上,由于凸度的遗传性,对于冷轧而言,在获得良好板形的同时又要求对带材凸度做大的改变是非常空难或几乎是不可能的。
多年来的探索与实践表明,在热轧机上配备凸度自动测量与控制系统是提高板带材凸度精度的有效途径。
随着用户对板带材质量的要求越来越高,为了提高产品质量和成材率,降低生产成本,提高产品竞争力,越来越多的企业在其热轧机上配备了凸度测量与控制系统,极大地提高了带材的板形质量和生产效率。
本文仅就凸度测量装置的应用于发展加以论述。
1.国内外凸度仪的开发与应用现状在20世纪60年代国外一些研究机构就已开始进行热轧板带凸度仪的开发研究工作,美国DMC公司、德国IMS公司和日本东芝公司等都相继开发了各自的系列产品,已在带钢热轧机上得到了广泛应用,近年来也在铝带热轧机上得到了应用,配合凸度控制系统大大提高了热轧机的板形控制能力,取得了显著的经济效益。
我国在板带凸度测量方面的研究较晚,相对比较落后。
目前,在有色行业有西南铝业集团有限公司,南山集团铝业公司和上海大屯能源股份有限公司铝加工热轧机上配备了进口IMSX 射线凸度仪。
2.凸度仪的主要类型A.按辐射源分类a.同位素凸度仪同位素凸度仪的主要优点是射源的衰减非常稳定,能耐受恶劣环境的影响,检测电路相对比较简单,操作和维护比较简单方便。
其缺点是信号噪音大,响应时间要比X射线凸度仪长,一般用于中低速度轧制。
板带轧制理论与工艺_4_板凸度和板平直度理论综述
材料加工工程硕士研究生选修课《板带轧制理论与工艺》4 板凸度和板平直度理论主讲人:邸洪双热轧卷板的主要质量问题性能:强度,塑性,冲击韧性表面:氧化铁皮,麻点,划伤,挂腊,夹杂,边裂,翘皮尺寸精度:厚度,宽度板形 (平直度,凸度,边部减薄,局部高点)板形对用户产品质量的影响由于带钢板形质量问题对用户使用及最终产品质量带来不利影响。
如汽车制造、工程机械设备、集装箱和冷轧生产等汽车梁成型后腿部距离回弹不一致,热轧卷板表面局部高点造成冷轧卷板成品表面产生粘结浪形导致下工序衬板、加强板组装困难集装箱板浪形影响集装箱整体焊接质量和外观工程机械钢卷板瓢曲造成吊车吊臂无法焊接4.1 板形和板凸度的概念板形(shape ) (平直度) 直观来说:指板材的翘曲程度Flatness, Buckle, Cambershape实 质:板带材内部残余应力的分布只要板带内部存在有残余的内应力,就称为板形不良。
如果这个应力虽然存在,但不足以引起板带翘曲,则称为“潜在”的板形不良;如果这个应力足够大,以致于引起板带翘曲,则称为“表观”的板形不良。
板形缺陷的产生 残余应力板形不良“潜在”的板形不良 “表观”的板形不良带钢实际平直度照片平直中浪边浪板形缺陷的分类板带中残余应力分布的规律不同,其所引起的板带翘曲形式也不同。
所以,可以根据内应力的分布规律和板带的翘曲情况,将板形缺陷分成不同的类型。
()22121p cr cr p E h k B πσν⎛⎫= ⎪+⎝⎭cr σ板带产生翘曲的临界应力cr k 临界应力系数p E 板带的弹性模量 p ν板带的泊松比 h 板带的厚度 B 板带的宽度(4-1) 式中: 板带翘曲的力学条件根据弹性力学的研究结果,板带发生翘曲的力学条件可表达为:研究结果表明,对于冷轧宽带钢,产生边浪时,k cr ≈12.6,产生中浪时,k cr ≈17.0。
对于热轧宽带钢,边浪时k cr ≈14,中浪时k cr ≈20良好板形的几何条件如右图所示,横坐标表示各点的横向位置,即横向各点距板带中心的距离,纵坐标分别为入口和出口轧件半厚,入口断面形状函数为H(x),出口断面形状函数为h(x)。
热轧薄材板凸度控制
热轧薄材板凸度控制热轧薄板材的凸度控制是制造过程中非常重要的环节。
凸度是指板材在热轧过程中产生的表面形状的变化,是板材在冷却后产生的弯曲程度。
凸度的控制对于保证板材的质量和满足客户的需求至关重要。
本文将详细介绍热轧薄板材凸度控制的重要性、凸度的产生原因以及常用的凸度控制方法。
1.凸度控制的重要性:热轧薄板材的凸度控制对于保证板材质量和满足客户需求具有重要作用。
凸度的控制能够保证板材的平整度。
如果板材凸度过大,容易出现板材弯曲、起皮等质量问题,影响机械加工和下道工序的进行。
凸度的控制可以提高板材的形状精度。
凸度过大会导致板材的厚度不均匀,进而影响零件的装配和功能。
凸度的控制可以减少板材的变形。
热轧薄板材在冷却过程中产生的凸度会导致板材形状的变化,进而影响零件的工作性能和使用寿命。
2.凸度的产生原因:热轧薄板材的凸度产生主要是由于热轧过程中板材受到的压力和温度变化引起的。
热轧过程中受到的轧制压力会引起板材的变形。
轧制压力会使板材在轧制过程中发生塑性变形,从而产生凸度。
热轧板材在冷却过程中,由于温度的改变,会引起板材的热胀冷缩,从而产生凸度。
由于轧制过程中板材受到周期性的应力变化,也会引起板材的弯曲。
3.凸度控制的方法:针对热轧薄板材凸度产生的原因,可以采取多种方法来控制凸度。
可以通过调整轧制工艺参数来控制热轧过程中受到的轧制压力。
通过合理的轧制工艺参数的选择,可以控制板材的塑性变形,从而降低凸度的产生。
可以通过调整冷却过程中的温度控制凸度。
通过合理的冷却工艺参数的选择,可以控制板材的热胀冷缩,从而减少凸度的产生。
还可以通过采取板材支撑装置和张力控制装置等措施,来减小板材在冷却过程中受到的应力变化,从而控制凸度的产生。
热轧薄板材的凸度控制对于保证板材的质量和满足客户的需求至关重要。
凸度的产生主要是由轧制压力和温度变化引起的,并且会导致板材的不平整度、形状精度和变形等问题。
通过调整轧制工艺参数、冷却工艺参数以及采取支撑装置和张力控制装置等措施,可以有效地控制凸度的产生,提高板材的质量和性能。
7 中厚板板凸度和板形控制技术解析
7中厚板板凸度和板形控制技术7.1板凸度和板形的基本概念中厚板生产是钢铁生产过程的重要组成部分,板凸度和平直度是重要的质量指标。
近年来,在中厚板轧制中,普遍采用大压下轧制、低温轧制等技术,轧制力大幅增加,板凸度和平直度控制的问题也更加突出。
本章将就中厚板板凸度、平直度控制时应考虑的影响因素及具体的数学模型进行讨论。
所谓板形(plate shape),通常指的是平直度(flatness),或称翘曲度,俗称浪形,即沿中厚板长度方向上的平坦程度;而在板的横向上,中厚板的断面形状(profile),即板宽方向上的厚度分布也非常重要。
断面形状包括板凸度、边部减薄及断面形状等一系列概念。
其中,板凸度(plate crown)是最为常用的横向厚度分布的代表性指标。
7.1.1板凸度中厚板板凸度可以定义为轧件横断面上中心处厚度与边部某一代表点(一般指离实际轧件边部40mm处的点)处厚度之差值(图7-1),即C h=h c-h c (7-1)式中h c——钢板横断面上中心处的厚度;h c——钢板横断面上边部某一点代表处厚度。
7.1.2边部减薄轧后板材在90%的中间断面大致具有二次曲线的特性,而在接近钢板边部处,厚度迅速减小,发生边部减薄现象。
工业应用中,板凸度指除去边部减薄区以外断面中间和边部厚度差。
边部减薄也是一个重要的断面质量指标。
边部减薄量直接影响到边部切损的大小,与成材率有密切关系。
边部减薄表示为:C e=h el-h e2(7-2)式中C e——板带钢的边部减薄;h el——边部减薄区的厚度;h e2——骤减区的厚度。
7.1.3 中厚板断面形状的表达式中厚板的板形与中厚板断面形状有关,所以为了控制中厚板的平直度,也可以将中厚板的板形用断面形状参数来表述。
钢板的断面形状可以用轧件厚度^(z)和板宽方向离开中心线距离x之间的多项式来表示,即h(x) = h c+a1x+a2x2+a3x3+a4x4(7-3)式中h c——嘲。
板形控制
(5)PC轧机 PC轧机
80年代初,德国率先将交叉轧制用于轧钢生产。而后, 80年代初,德国率先将交叉轧制用于轧钢生产。而后, 日本的三菱重工和新日铁共同研制开发了对辊交叉轧机。 与其它类型轧机相比,PC轧机凸度控制范围大,控制精 与其它类型轧机相比,PC轧机凸度控制范围大,控制精 度高,具有有效的边部减薄控制能力,可实现大压下轧制, 提高轧制能力,轧辊原始辊型曲线简单。
变形抗力模型修正量
温度模型
再计算 轧制力
变形抗力模型
轧制力模型
设定轧 制力 出口厚度
轧制力自学习
实际温度处理
实际温度
弹跳模型
设定辊缝 实际辊缝 轧制力
弹跳模型自学习
实际轧 制力
基础自动化
辊缝设定和轧制力自学习流程图
6.2 辊形自保持性(稳定性)
轧机的各轧辊在运转期内不断发生表面磨损,停机后可 以测得磨损后的轧辊表面轮廓曲线,再与上机前的轧辊初始 辊形曲线相减,就可得到轧辊在服役期内表面上的(中点或 边部点的)相对磨损量分布曲线,称为轧辊磨损曲线或磨损 辊形。 轧辊表面不均匀磨损导致辊缝形状变动和某些板形控制 技术的调控功效变化 。辊缝调节域表明了辊缝的调节柔性, 辊缝横向刚度表明了辊缝在轧制力变动时的稳定性.
LV +∆LV RV LV
带带
平平
(3) 残余应力表示法
σ re
2x = aT + const B
2
式中:B为板宽;x为所研究点距钢板中心的距离; const为二次函数常量;α T为板形参数;σ re为辊缝出口 处点在钢板中发生的残余应力。 由于轧件的厚度与其板凸度有密切关系,所以引入 了比例凸度的概念。比例凸度是指轧件中心凸度与轧件 出口平均厚度的比值,其公式表示为:
板型凸度公式
板型凸度公式
板型凸度公式是指描述物体表面曲率变化的公式。
在板型设计中,凸度公式常用于描述板材或物体表面在不同位置上的曲率变化情况。
具体公式的形式会根据具体的板型设计问题而定,通常要考虑到板材的形状、弯曲方式、受力情况等因素。
例如,在计算平面板的凸度时,可以使用以下公式:
凸度 = (2 * h ) / L^2
其中,h为板材在某一点的高度变化量,L为板材的长度。
这
个公式描述了板材在某一点的凸度与其高度变化率成反比。
另外,在弯曲板的设计中,还可以使用一些更复杂的凸度公式,如椭圆方程、高斯方程等,用于描述板材在弯曲时的曲率变化情况。
这些公式可以更准确地描述板材的凸度变化,有助于进行合理的板型设计。
总之,板型凸度公式是在板型设计中描述物体表面曲率变化的数学公式,根据具体设计问题可以采用不同的公式形式。
板形与板形控制基础知识
的分布,以达到控制辊型的目的。
控制手段是对沿辊身长度方向的冷却液流量进行分段控制,这种控制 方法见效比较慢(原因是轧辊的热容量比较大),难以满足高速轧制的需
要,只能作为一种其它板形控制的辅助手段。
首钢技师学院
板形与板形控制基础知识
② 液压弯辊控制法。
液压弯辊利用液压缸施加在轧辊辊颈处的压力使轧辊辊身产生一个人为的附
凸辊型
凹辊缝
凹断面
首钢技师学院
板形与板形控制基础知识
⑵ 板形控制的基本原理 设轧制前板带边缘的厚度为h1,轧前板凸度量(或称厚度差)为c1, 轧后板凸度量为c2,所以轧前中间的厚度为h1+ c1,轧制后板带横断面上的 边缘厚度和中间厚度分别为h2和h2+c2 。
h2 h1+ c1 h2+c2 h1
对于普通的四辊轧机,在工 作辊与钢板不接触的部分,受到 支撑辊的悬臂弯曲力的压迫,产 生比较大的附加挠度,其大小与 钢板的宽度成反比,若能根据钢 板的宽度调整支撑辊的有效长度, 就能减小工作辊的附加挠度。
首钢技师学院
板形与板形控制基础知识
HC 轧机具有以下特点: a 具有良好的板凸度和板形控制能力。由于它的中间辊可以轴向移动,
CVC 轧机示意图
PC 轧机示意图
VC 轧机示意图
首钢技师学院
板形与板形控制基础知识
⑶ 板形控制轧机 ① HC轧机 HC 轧机起源于上世纪 70 年代的冷轧带钢,由日立与新日铁联合研制,其基 本思路是:通过改变支撑辊与工作辊的接触状况来改变工作辊的挠度,特别是能有 效的减轻支撑辊与工作辊之间的有害接触,进而改善板型。 结构特点:在支承辊与工作辊之间安装一对可相反轴向移动的中间辊而成为 六辊轧机。
板型
1. 板形基本理论板带的轧制过程实质上是金属在旋转的弹性体—轧辊作用下发生塑性变形的过程。
一定断面形状的坯料经过轧制发生明显的纵向延伸和一定的横向流动,最终成为一定尺寸的成品。
产品质量评价的主要指标为板平直度和板凸度。
1.1 板形及其表示方法所谓板形直观地说是指板材的翘曲度;就其实质而言,是指带钢内部残余应力的分布。
人们依据各自不同的研究角度及不同的板形控制思想,采用不同的方式定量地描述板形。
1.1.1 相对长度差表示法把翘曲的带钢裁成若干个纵条并铺平,则在带钢的横向各点有不同的延伸,用L L /∆来表示板形,如图1.1所示。
通常板形以I 单位表示,其公式见(1-1)。
VL R LL∆V图1.1 板形的相对差表示法示意图510⨯⎪⎭⎫ ⎝⎛∆=L L I(1-1)式中:I —带钢板形,以I 单位表示;L ∆—带钢纵向延伸差,mm ; L —带钢基准点的带钢长度,mm 。
1.1.2 波形表示法翘曲的带钢切取一段置于平台上,如将最短纵条视为一直线,最长纵条视为一正弦波,以翘曲波形来表示板形,则称为翘曲度。
翘曲度通常以百分数来表示,如图1.2所示。
带钢的翘曲度λ表示为:%100⨯=VVL R λ (1-2)式中:λ—翘曲度,以百分数表示;V R —波幅,mm ; V L —波长,mm 。
VR VL VV L L ∆+平台带钢图1.2 板形的波形表示法1.1.3 相对差表示法和波形表示法之间的关系翘曲度λ和最长、最短纵条相对长度差I 之间的关系表示为:225252510210λππ=⨯⎪⎪⎭⎫ ⎝⎛=⨯∆=V V V V L R L LI (1-3)式中:I —带钢板形,以I 单位表示;λ—翘曲度,以百分数表示。
该式说明相对差表示法和波形表示法之间的关系,只要测出带钢的波形就可以求出相对长度差。
1.2 板凸度所谓板凸度是指板中心处厚度与边部代表点处的厚度之差,有时为强调没有考虑边部减薄,又称它为中心板凸度。
冷轧带钢板形简介
良好板形的几何条件:
Lx hx lx H x
式中:H(x)为入口断面形状;h(x)为出口断面形状;L( x)为各对应点的原始长度;l(x)为各对应点的轧后长度。
一、带钢板形的基本概念
板形的度量 常用的平直度表示方法有以下两种: (1)波形表示法
(2)相对长度表示法
Rv 100% LV
式中, λ为平直度; Rv为波高; Lv为波长。
厚度之比:
Cp Ch h
式中, Cp为带钢比例凸度;Ch为 板凸度;h 为轧件平均厚度。
一、带钢板形的基本概念
所谓板形,直观上是指板带的翘曲程度,其实质是轧后带钢内部残余应力沿 板宽方向上的分布。
发生 1
h
2
B
式中:cr 为带钢发生翘曲的临界应力; 为泊松比;B为带钢
宽度;h为带钢厚度;Ep为带钢材料杨氏模量;kcr为翘曲临界 应力系数,取决于应力分布特征及板边支撑条件。
I 105 L L
式中,I为板形单位I-Unit;△L为 其他点相 对基准点的轧后延伸差; L为所取基准点的 轧后长度。
一、带钢板形的基本概念
板形与板凸度的关系
板凸度与板形关系密切。因为冷轧过程要求严格保持良好板形条件,所以轧制过程中
虽然板凸度绝对值不断减小,但比例凸度应保持不变。比例凸度表示为板凸度与轧件平均
铝 箔 轧 制 中 的 板 形 控 制
铝箔轧制中的板形控制板形控制是铝箔轧制中的核心技术,是提高箔材成品率和产品质量的关键操作,也是实现高速轧制的基本条件。
笔者根据从事箔轧多年的实践,谈谈板形控制的原理及方法,供同行参考。
1 箔轧形状缺陷的产生和不平度的描述箔材平直度的好坏取决于轧件宽度方向上各点纵向延伸是否相等。
当发生不均匀变形时,变形体内的应力分布也呈不均匀分布,导致附加应力产生,变形结束后留在变形体内形成残余应力。
当变形体内残余应力间的相互作用不能抵消,且超过箔材维持箔面刚性平衡的应力水平时,轧制中的铝箔将发生形状失稳,出现诸如中间波浪、两边波浪、单边波浪、或二肋波浪等形状缺陷,以松弛不均匀变形产生的残余应力,则箔面的平直度遭到破坏。
由于轧制变形区内变形情况的复杂性,易受外部其他因素的影响而具有很大的随机性,轧件均匀变形的可能性并不大,因此实际生产出的铝箔或多或少都带有一定程度的不平度。
平直度是衡量铝箔质量的重要指标,需要定量描述以界定平直度合格与不合格范围。
目前常用的有两种方法:不平度和相对长度差。
其前提是把板材或箔材轧制中出现的波浪视为正弦波形,如图l所示。
图1 板箔材的波浪度1.1 不平度该方法是取一条纵向试样置于平台上,测定波高、波长。
算出波高与波长比值百分数。
该方法简单易行,但易受被测试样自重影响,波高、波长测量准确性不高,箔材轧制中很少采用。
λ=h/L×100%(1)式中:λ—不平度;h—波高;L—波长。
(1)式中当λ=1%时,波浪就较为明显。
1.2 相对长度差图1曲线部分和直线部分相对长度差由线积分求正弦曲线长度后得出:△L/L=(πh/2L)2(2)式中:△L/L—相对长度差;h—波高;L—波长。
△L/L单位为I。
相对长度差为10-5时为1个I单位,板形的不平度或板形偏差:Σ=105△L/L,Σ单位为I。
该方法是纵向取1 m箔材,沿横向切取宽约20mm的窄条,展开后测量长度方向增量△L,纵向最短的窄条长度(其△L=0)视为L,把△L、L值代入(2)式求出△L/L。
板型
板形和板形控制喻飞鹏编写中色科技装备技术公司2009.4目录9.1 板形的基本概念9.1.1 板凸度和板形9.1.2 板凸度及其表示方法9.1.3 平直度(板形)及其表示方法9.1.4 板凸度与板形的关系9.2 影响板形的基本因素9.2.1 轧制力对板形的影响9.2.2 张力对板形的影响9.2.3 轧辊热凸度9.2.4 轧辊系的原始凸度9.2.5 板宽变化对板形的影响9.2.6 轧辊系接触状态对板形的影响9.3 调节板形的基本方法9.4 板形的检测9.4.1 板形检测装置的类型9.4.2 板形辊的工作原理及其安装部位9.4.3 ASEA压头测压式板形辊9.4.4 空气轴承式板形辊9.4.5 板凸度检控装置9.5 板形控制系统9.6 工艺润滑与冷却液的喷射系统9.7 液压弯辊装置9.7.1 液压弯辊装置分类9.7.2 工作辊弯辊装置结构9.7.3 支承辊弯辊装置9.7.4 液压弯辊液压系统9.7.5 弯辊力的计算(后补)板形及板形控制9.1 板形的基本概念 9.1.1 板凸度和板形前面轧机刚度一章是讨论轧机的纵向刚度,它影响着带材纵向厚度公差。
而板形是讨论轧机横向刚度。
金属板带材在轧制过程中,由工艺和机械等各种原因,会使轧辊辊缝沿宽度方向发生变化,导致了被轧制的板带材横向厚度差发生了变化,产生了由于变形不均匀而出现的波浪。
其负载辊缝形状和板带材的横向厚差是等同的。
板形控制的实质就是对负载辊缝的控制。
负载辊缝的形状就决定了轧制板带材的横截面的形状和带材各条纤维的不均匀压延。
板形包括了板凸度和平直度两个基本概念。
板凸度是指板材的横截面形状,而平直度(通常所说的板形)是指板带沿宽度方向的不均匀延伸,从表观上看有凹凸不平的情况,即板形不好。
9.1.2 板凸度及其表示方法板带材沿宽度方向中心处的厚度与边部的厚度之差称为板凸度(也可称为横向厚差)。
我们把板材的横断面描述成如图9~1所示,则板凸度C h 定义为:e c h h h C −= (9~1)式中:c h —横截面中心部轧后板厚 e h —横截面边部轧后板厚对于凸形截面C h 为正,对于凹形截面C h 为负。
板形与板凸度的概念
(1-10) (1-11)
RAL 板形与板凸度的关系
板凸度与板形有密切的关系。因为冷轧过程中要求严 格保证良好板形条件,所以轧制过程中虽然板凸度的绝对 值不断减小,但比例凸度应保持不变。
若轧前、轧后的比例凸度分别为 Cp1和Cp2,则比例凸
度变化为 : DCpCp2Cp1
(1-12)
Lv Lv
Rv
Rv
图l-3 带钢翘曲的两种典型情况
RAL
翘曲度
从翘曲的带钢切取一段置于平台上,如将最短纵条视
为一直线,最长纵条视为一正弦波,以翘曲波形来表示板
形,称为翘曲度。
式中: R v
波幅
Rv 100 Lv
Lv
波长(1-4)带钢R VL VD L V
平台
L V
图1-4 板形的波形表示法
RAL
RAL
冷轧钢板的板形缺陷
边浪
中浪
单边浪
二肋浪
复合浪
图1-1 板形缺陷类型
RAL
带钢翘曲的力学条件
根据塑性力学的研究结果钢板发生翘曲的力学条件可以表示为:
cr
kcr
2Ep 12(1p)
h2 B
式中:cr—带钢发生翘曲的临界应力; B—带钢宽度; h—带钢厚度; kcr—板材翘曲临界应力系数。 EP、vp—带钢材料的杨氏模量和泊松比。
RAL (3) 翘曲度与相对长度差的关系
上式经过整理可得:曲线部分和直线部分的相对长度差为:
DLv Lv
Rv
2Lv
2
2
4
Rv Lv
2
2
4
2 104
St
DLV LV
105
52
2
板形控制技术第一章
2021/6/2
9
双边浪
中浪
2021/6/2
两肋浪 单边浪
10
轧件与辊缝
2021/6/2
带钢宽度方向内应力发布
带钢外观
11
2021/6/2
12
2021/6/2
13
➢ 板形表示法 A 相对长度差表示法
将带钢设想成是由若干纵条组成,各窄条之间相互牵 制、相互影响。若带钢沿横向厚度压下不一样,则各窄条 就会相应地发生延伸不均,从而在各窄条之间产生相互作 用的内应力。当该应力足够大时,就会引起带钢的翘曲。
钢中心和接近带钢边部的某点的厚度差表
示断面形状。下面讨论采用这种表示方法
良好板形条件应取何种形式。仍如上图,
设轧前带钢中心和边部的厚度分别为Hc和 He,轧后相应的厚度为hc和he,应有:
2021/6/2
36
2021/6/2
37
2021/6/2
38
1. 4 良好板形的力学条件
2021/6/2
39
2021/6/2
44
2021/6/2
40
边部减薄是辊系变形和带钢金属三维变形共 同造成的:
(1)由于轧制过程中工作辊发生弹性压扁,因 而轧辊在轧件边部的压扁量明显小于在中部 的压扁量,相应地轧件发生边部减薄,见图。
2021/6/2
41
2021/6/2
42
(2) 对于一般的冷轧生产,轧辊原始辊 形采用凹辊形,对应的辊缝为凸辊缝,在 轧制过程中边部金属有较大的延伸趋势, 引起轧件边部厚度发生较大变化。
2021/6/2
20
平直度缺陷形式 a—长度方向瓢曲;b—宽度方向瓢曲;c—纵向波浪;d—马鞍型瓢曲; e—中浪;f—中心波;g—双边浪;h—单边浪;i—近边波;j—镰刀弯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAL 1.2.4 局部高点发生原因
• 边部过多的磨损 • 不规则的反跳 • 同宽轧制过长 • CVC轧辊的轴向移动
WS Edge部
定常部
DS Edge部
RAL
1.3 板形的概念
二肋浪
中浪
边浪
RAL
1.3.1 板形的度量-翘曲度
R
L
翘曲度 λ=R/L×%
日文:急峻度
RAL
1.3.2板形的度量-相对延伸差和 I 单位
设与 Lv 的直线部分相对应的曲线部分长为Lv+DLv,并认为曲线
按正弦规律变化:
y
Rv 2
sin
2 x
Lv
(1-5)
则可利用线积分求出曲线部分的长度:
Lv DLv
Lv 0
1 dy dx2 dy
Lv
2
2 0
1 Rv
Lv 2 cos2 d
Lv 1 Rv
2
Lv
2
(1-6)
RAL
板形与板凸度的概念
RAL
板带材断面形状
• 楔形(钢带的楔形为钢带横 截面上一侧边部厚度与另 一侧边部厚度之差。边部 厚度为距纵边40㎜处的厚 度)
• he1-he2 • 中心凸度(钢带的凸度为钢
带横截面上中部厚度与两 边部平均厚度之差。边部 厚度为距纵边40㎜处的厚 度。)
a. 板带材横断面
(1-1)
对于冷轧宽带钢: 产生边浪时,kcr≈12.6; 产生中浪时,kcr≈17.0。
RAL
板形的度量
板形度量的目的: 定量地表示板形,既是生产中衡量板形质量的需要,也是研究板形问
题和实现板形自动控制的前提条件。 因此,人们依据各自不同的研究角度及不同的板形控制思想,采取不
同的方式定量地描述板形。
• hc-(he1+he2)/2
• 边部减薄
he3
he1-he3
he1
• 局部高点(钢带的局部高点:
在宽度方向上任意100mm
范围内,两点最大厚度差≤
公称厚度的0.8%。测量位
置:距侧边不小于40mm
的任意处。)
hc he2
he4Biblioteka b. 厚度方向放大后RAL 横断面上厚度发生变化的原因
• 轧辊的弹性变形 • 轧辊的热凸度 • 轧辊的磨损 • 轧辊的初始辊型
Lmin Lmax 相对延伸差ε=(Lmax-Lmin)/L I 单位= 105ε 即100m长带钢发生 1 mm的延伸差为1 个I 单位
RAL
两种度量之间的关系
πλ2/4=ε πλ2/4=10-5 I 单位
例如,λ=1%,对应7.85 I 单位
RAL 比例凸度与良好板形条件
比例凸度定义:Cp=Cr / h
板凸度与板形良好条件
板凸度—板中心处厚度与边部代表点处厚度之差。有时为强调它没有 将边部减薄考虑进去,又称它为中心板凸度,它可以表示为:
Ch hc he1
(1-9)
式中:hc—板中心处厚度,mm;he1—边部代表点处厚度,mm。
单位厚度上的凸度
良好板形条件:比例凸度恒定
(精轧机组由出口到入口 凸度与厚度成比例增大)
RAL 强调区别几个基本概念
狭义板形=平直度=浪形 (flatness) 广义板形(1)=平直度+凸度 (crown) 广义板形(2)=平直度+横断面形状 横断面形状=凸度+边部减薄+局部高点 (profile)
RAL
板形及其度量
1.1.1 板 形 所谓板形直观地说是指板材的翘曲程度;其实质
是指带钢内部残余应力的分布。 板形不良:带钢中存在残余内应力称为板形不良。 潜在板形不良:带钢中存在残余内应力,但不足以引 起带钢翘曲,称为潜在板形不良。 表观板形不良:带钢中存在残余内应力足够大,以致 引起带钢翘曲,则称为表观的板形不良。
取基准点的轧后长
度 , DL 是 其 它 点
相对基准点轧后长
度之差。相对长度
差也称为板形指数
r ,r = DL/L。
RAL
相对长度差的单位
A) 英国的相对长度差的单位是蒙(mon),该术语是由W.K.泼森
建议的,1蒙相当于相对长度差为10-4。泼森定义板形为横向
上单位距离上的相对长度差,以mon/cm表示,即:
➢ 相对长度差表示法 ➢ 波形表示法 ➢ 张力差表示法 ➢ 带材断面形状的多项式表示法 ➢ 厚度相对变化量差表示法
RAL 相对长度差表示的板形
RV
LV
L ΔL 图1-2 翘曲带钢(a)及其分割(b)
这是一种比较
a
简单的表示板形的
方法,就是取横向
上不同点的相对延
伸 差 DL/L 来 表 示 b 板形。其中 L是所
Lv Lv
Rv
Rv
图l-3 带钢翘曲的两种典型情况
RAL
翘曲度
从翘曲的带钢切取一段置于平台上,如将最短纵条视
为一直线,最长纵条视为一正弦波,以翘曲波形来表示板
形,称为翘曲度。
式中: Rv
波幅
Rv 100
Lv
Lv
波长
(1-4)
带钢
LV DLV RV
平台
LV
图1-4 板形的波形表示法
RAL
翘曲度与相对长度差的关系
s
104
DL L
(1-2)
B) 加拿大铝公司是取横向上最长与最短纵条之间的相对长度差
作为板形单位,称为 I 单位,1个I单位相当于相对长度差为
10-5。所以板形表示为:
st
105
DL L
式中:L—最短纵条的长度,mm。
(1-3)
RAL
波形表示法
在翘曲的板带上测量相对长度差很不方便,所以人们 采用了更为直观的方法,即以翘曲波形来表示板形,称之 为翘曲度。
RAL
冷轧钢板的板形缺陷
边浪
中浪
单边浪
二肋浪
复合浪
图1-1 板形缺陷类型
RAL
带钢翘曲的力学条件
根据塑性力学的研究结果钢板发生翘曲的力学条件可以表示为:
cr
kcr
2Ep 12(1 p )
h B
2
式中:cr—带钢发生翘曲的临界应力; B—带钢宽度; h—带钢厚度; kcr—板材翘曲临界应力系数。 EP、vp—带钢材料的杨氏模量和泊松比。
RAL (3) 翘曲度与相对长度差的关系
上式经过整理可得:曲线部分和直线部分的相对长度差为:
DLv Lv
Rv
2Lv
2
2
4
Rv Lv
2
2
4
2 104
St
DLV LV
105
5 2
2
2
24.674011 2
(1-7) (1-8)
式中:—翘曲度,%;∑St—相对长度差,I。
RAL
RAL
1.2.2 边部减薄发生的原因
轧辊压扁变形的特点: • 边部压扁量少,边部变薄 • 轧制力的分布,由于边部的金属三维流动,压扁量少 • 中间和边部的轧制力作用区域不同,造成边部压扁量
少
RAL
1.2.3 楔形发生的原因
• 原料带有楔形; • 两侧压下不均; • 带钢两侧温度不均; • 带钢未对正。