七年级数学上册4.4角的比较练习题新北师大版
北师大版七年级数学(上册)4.4 角的比较 同步练习
4.4 角的比较1. 比较两条线段的大小关系有哪几种方法?2.下图中有那些角?你能比较它们的大小吗?还有什么方法?阅读教材完成下列问题:1. ①完成课本提出的4个问题②和线段的比较一样,比较两个角的大小的方法是:____________________.00⎧∂⎪⎪⎪⎨⎪⎪⎪⎩锐角(0<<90)直角 ( )2.角的分类钝角 ( )平角 ( )周角 ( )3.这些角还有哪些等量关系呢?4.______________________叫做这个角的角平分线。
①角平分线是一条______,不是一条直线,也不是一条线段.②当一个角有角平分线时,可以产生几个数学表达式.可写成:因为 OC 是∠AOB 的角平分线,所以∠AOB=2____=2_____,1_____,或∠___=∠____=2反之,若∠AOC=∠COB,可得到OC是∠AOB的角平分线。
1.选择题:①两个锐角α、β,则α+β满足( )。
A.0°<α+β<90°B.0°<α+β<180°C.α+β=90°D.90°<α+β<180°②时钟2时整,时针与分针所夹的锐角度为数为( )A.10°B.30°C.40°D.60°2.如下图所示,O是直线AB上一点,如果∠AOC=80°,∠BOD=27°,求∠COD的度数。
3.如图所示,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=30°.求∠AOB的度数。
解:因为OD平分∠AOC(已知)所以∠AOC=2∠AOD= °(角平分线定义)又因为OE平分∠BOC(已知)所以∠BOC=2∠ = °(角平分线定义)∠AOB=∠AOC+∠BOC= °+°=°。
4.如图,OE是∠AOB的平分线,OD是∠BOC的平分线,若∠AOB=90o, ∠EOD=70°,求:∠BOC的度数.自我检测参考答案1.①B ②D2.∠COD=73°3.80 BOE 60 80 60 1404.50°。
新北师大版七年级上《4.4角的比较》课后作业含答案
4.4 角的比较1.已知∠AOB=90°,∠BOC=100°,则射线OC( )A.在∠AOB内B.在∠AOB外C.在∠AOB的内或外D.有可能与OA重合2.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为( )A.120° B.130°C.135° D.140°3.如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是( )度.A.40 B.60C.20 D.304.如图,∠1+∠2等于( )A.60° B.90°C.110° D.180°5.(1)23周角=________,(2)14平角=________.(3)把一个周角16等分,每份是________度的角.6.如图所示,直线AB ,CD 相交于点O ,OA 平分∠EOC,若∠EOC=130°,则∠EOD=________,∠AOD=________.7.若射线OC 是∠AOB 的平分线.(1)当∠AOB 是44°22′时,∠AOC 是多大? (2)如果∠BOC 是21°17′时,∠AOB 是多大?(3)如果∠AOC 与∠AOB 的和是69°36′,那么∠BOC 是多大?∠BOC的度数.9.如图所示,∠AOC=30°,∠BOC=50°,OD是∠AOB的平分线,求∠AOB和∠COD的度数.(2015·邵阳)如图所示,已知点O是直线AB上一点,∠1=60°,则∠2的度数是( )A .20°B .70°C .120°D .130°课后作业1.B ∠BOC>∠AOB,故射线OC 在∠AOB 外. 2.C ∠BOD=∠AOC=∠EOC+∠AOE =90°+45° =135°3.D ∠BOD=∠AOB-∠AOD =90°-12∠AOC=90°-60° =30°4.B ∠1+∠2=180°-90°=90°. 5.(1)240° (2)45° (3)22.56.50°,115° ∵∠EOC=130°,∴∠EOD=180°-∠EOC=180°-130°=50°, ∵OA 平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∴∠AOD=∠AOE+∠DOE=65°+50°=115°.7.解:(1)∵∠AOC=12∠AOB=12×44°22′=22°11′;(2)∵∠BOC=12∠AOB,∴∠AOB=2∠BOC=2×21°17′=42°34′;(3)23°12′ 设∠AOC 为x°,则∠AOB 为2x°,∴x+2x =69°36′,∴x=23°12′,∴∠BO C =∠AOC=23°12′. 8.解:∵OD 平分∠COE,OB 平分∠AOC, ∴∠COD=12∠COE,∠BOC=12∠AOC.∵∠AOE 是平角,∴∠COD+∠BOC=12(∠COE+∠AOC)=12∠AOE=12×180°=90°.设∠COD 为2x°,则∠BOC 为3x°, 2x +3x =90, ∴5x=90,x =18.∴∠COD=2x =36°,∠BOC=3x =54°.9.解:∠AOB=∠AOC+∠BO C =30°+50°=80°.因为OD 是∠AOB 的平分线,所以∠AOD=12∠AOB=12×80°=40°,∠COD=∠AOD-∠AOC=40°-30°=10°中考链接C ∠2=180°-∠1=180°-60°=120°.。
北师大版初中数学七年级上册《4.4 角的比较》同步练习卷
北师大新版七年级上学期《4.4 角的比较》同步练习卷一.选择题(共22小题)1.如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.70°D.80°2.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°3.已知∠AOB=70°,∠AOC=40°且OD平分∠BOC,则∠AOD的度数为()A.60°B.15°或55°C.30°或60°D.30°4.如图,点O在直线AB上,OC平分∠AOD,若∠COD=∠BOD,则∠COB的度数为()A.115°B.105°C.95°D.85°5.如图,点O在直线AB上,若∠AOD=160°,∠BOC=60°,则∠COD的度数为()A.20°B.30°C.40°D.50°6.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.如图,已知∠BOD=2∠AOB,OC平分∠AOD,且∠BOC=18°,则∠AOD=()A.108°B.98°C.72°D.135°9.如图,若∠AOB是直角,∠AOC=38°,∠COD:∠COB=1:2,则∠BOD等于()A.38°B.52°C.26°D.64°10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′11.已知∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数等于()A.50°B.20°C.20°或50°D.40°或50°12.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°13.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.50°B.20°或50°C.30°或50°D.30°14.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为()A.15°B.20°C.30°D.45°15.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.16.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD =()A.l10°B.115°C.120°D.135°17.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC 的度数是()A.113°B.134°C.136°D.144°18.如图,OC⊥AB,OE为∠COB的角平分线,∠AOE的度数为()A.130°B.125°C.135°D.145°19.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°20.已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC的度数是()A.10°B.40°或30°C.70°D.10°或70°21.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是()A.70°B.80°C.100°D.110°22.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为()A.14°B.28°C.32°D.40°二.填空题(共1小题)23.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是.(填序号)三.解答题(共27小题)24.如图,∠AOB=180°,∠COD=40°,OD平分∠COB,OE平分∠AOC,求∠AOE和∠EOD的度数.25.如图,∠AOB=42゜,∠BOC=86゜,OD为∠AOC的平分线,求∠BOD的度数.26.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.27.如图,点O是直线AB上一点,∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ 平分∠BOF,求∠POQ的度数.28.如图所示,已知∠AOB=90°,∠BOC=28°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?29.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.30.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.31.如图,以直线AB上的点O为端点作射线OC、OD,满足∠AOC=54°,∠BOD=∠BOC,求∠BOD的度数.32.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.33.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.34.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.35.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.36.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.37.如图,∠BOA=90°,OC平分∠BOA,OA平分∠COD,求∠BOD的大小?38.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE =60°,则∠BOD的度数为多少度?39.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.40.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.41.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.42.如图,OD是∠AOB的平分线,OE是∠BOC的平分线.(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度数;(2)若∠AOC=150°,求∠DOE的度数;(3)你发现∠DOE与∠AOC有什么等量关系?给出结论并说明.43.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB,∠AOD=50°,且∠AOB=90°,求∠EOC的度数.44.已知:如图,OM是∠AOC的角平分线,ON是∠BOC的角平分线,(1)当∠AOB=90°,∠BOC=40°时,求∠MON的度数.(2)若∠AOB的度数不变,∠BOC的度数为α时,求∠MON的度数.45.已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.46.如图,点O为直线CA上一点,∠BOC=46°,OD平分∠AOB,∠EOB=90°,求∠AOE和∠DOE的度数.47.如图,OC平分∠BOD,∠AOD=110°,∠BOC=35°,求∠AOC的度数.48.如图OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=∠AOB.49.如图,已知∠BOC=2∠AOC,OD平分∠AOB且∠AOC=50°,求∠COD的度数.50.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.北师大新版七年级上学期《4.4 角的比较》2019年同步练习卷参考答案与试题解析一.选择题(共22小题)1.如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.70°D.80°【分析】利用角平分线的性质和角与角的和差关系计算即可.【解答】解:∵OB是∠AOC的平分线,OD是∠COE的平分线,∴∠COD=∠COE,∠BOC=∠AOC,又∵∠AOB=40°,∠COE=60°,∴,∠BOC=40°,∠COD=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选:C.【点评】本题考查角与角之间的运算和角平分线的知识点,注意结合图形,发现角与角之间的关系,进而求解.2.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°【分析】根据条件可求出∠COD的度数,利用角平分线的性质可求出∠MOC与∠DON的度数,最后根据∠MON=∠MOC+∠COD+∠DON即可求出答案.【解答】解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°﹣∠AOC﹣∠COD=70°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=25°,∠DON=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C.【点评】本题考查角度计算,解题的关键是熟练利用角分线的性质,本题属于基础题型.3.已知∠AOB=70°,∠AOC=40°且OD平分∠BOC,则∠AOD的度数为()A.60°B.15°或55°C.30°或60°D.30°【分析】利用角的和差关系计算.根据题意可得此题要分两种情况,一种是OC在∠AOB 内部,另一种是OC∠AOB外部.【解答】解:分两种情况进行讨论:①如图1,射线OC在∠AOB的内部.∵∠BOC=∠AOB﹣∠BOC,∠AOB=70°,∠AOC=40°,∴∠BOC=70°﹣40°=30°.又∵OD平分∠BOC,∴∠COD=15°,∴∠AOD=∠COD+∠AOC=55°;②如图2,射线OC在∠AOB的外部.∵∠BOC=∠AOB+∠BOC,∠AOB=70°,∠AOC=40°,∴∠BOC=70°+40°=110°.又∵0D平分∠BOC,∴∠COD=55°,∴∠AOD=∠COD﹣∠AOC=15°.综上所述,∠AOD=55°或15°.故选:B.【点评】本题考查了角的计算,角平分线的定义.要根据射线OC的位置不同,分类讨论,分别求出∠AOD的度数.4.如图,点O在直线AB上,OC平分∠AOD,若∠COD=∠BOD,则∠COB的度数为()A.115°B.105°C.95°D.85°【分析】根据角平分线的定义得到∠AOC=∠COD,根据平角的定义列方程即可得到结论.【解答】解:∵OC平分∠AOD,∴∠AOC=∠COD,∵∠COD=∠BOD,∴∠AOC=∠COD=∠BOD,∵∠AOC+∠COD+∠BOD=180°,∴∠BOD+∠BOD+∠BOD=180°,∴∠BOD=30°,∠COD=75°,∴∠COB=∠COD+∠BOD=105°,故选:B.【点评】本题考查了角的计算,角平分线的定义,平角的定义,求得∠BOD=30°是解题的关键.5.如图,点O在直线AB上,若∠AOD=160°,∠BOC=60°,则∠COD的度数为()A.20°B.30°C.40°D.50°【分析】将∠AOD代入∠COD=∠AOD+∠BOC﹣∠AOB中,即可求出结论.【解答】解:∵∠AOD=160°,∠BOC=60°,∴∠COD=∠AOD+∠BOC﹣∠AOB=160°+60°﹣180°=40°.故选:C.【点评】本题考查了角的计算,将∠AOD代入∠COD=∠AOD+∠BOC﹣∠AOB是解题的关键.6.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.【点评】本题是对角的平分线的性质的考查,解题时注意:角平分线将角分成相等的两部分.7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【分析】根据角平分线的定义求出∠AOC,根据邻补角的定义求出∠BOC,根据角平分线的定义计算即可.【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.【点评】本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.8.如图,已知∠BOD=2∠AOB,OC平分∠AOD,且∠BOC=18°,则∠AOD=()A.108°B.98°C.72°D.135°【分析】设∠AOD=6x,根据题意得到∠BOD=4x,∠AOB=2x,根据角平分线的定义得到∠AOC=∠DOC=3x,根据题意列方程,解方程即可.【解答】解:设∠AOD=6x,∵∠BOD=2∠AOB,∴∠BOD=4x,∠AOB=2x,∵OC平分∠AOD,∴∠AOC=∠DOC=3x,由题意得,3x﹣2x=18°,解答,x=18°,∴∠AOD=6x=108°,故选:A.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.9.如图,若∠AOB是直角,∠AOC=38°,∠COD:∠COB=1:2,则∠BOD等于()A.38°B.52°C.26°D.64°【分析】设∠COD、∠COB的度数分别为x、2x,结合图形列出方程,解方程即可.【解答】解:设∠COD、∠COB的度数分别为x、2x,由题意得,2x+38°=90°,解得,x=26°,∴∠BOD=∠BOC﹣∠COD=26°,故选:C.【点评】本题考查的是角的计算,能够结合图形进行角的计算是解题的关键.10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′【分析】由射线OC平分∠DOB,∠DOC=25°35′,得∠BOC=∠DOC=25°35′,从而求得∠AOB.【解答】解:∵OC平分∠DOB,∴∠BOC=∠DOC=25°35′,∵∠AOC=90°,∴∠AOB=∠AOC﹣∠BCO=90°﹣25°35′=64°25′.故选:C.【点评】此题考查的知识点是角平分线的定义以及角的计算,关键是由已知先求出∠BOC.11.已知∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数等于()A.50°B.20°C.20°或50°D.40°或50°【分析】根据题意画出图形,利用分类讨论求出即可.【解答】解:如图1所示:∵∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,∴∠MON=∠BOM+∠BON=∠AOB+∠BOC=×(70°+30°)=50°,如图2所示:∵∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,∴∠MON=∠BOM﹣∠BON=∠AOB﹣∠BOC=×(70°﹣30°)=20°.故选:C.【点评】此题主要考查了角平分线的定义,正确利用分类讨论得出是解题关键.12.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.【解答】解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=40°;同理可得,∠COD=40°.∴∠AOD=∠AOB+∠BOC+∠COD=40°+30°+40°=110°,故选:B.【点评】本题考查角的计算,解答本题的关键是明确角之间的关系,利用数形结合的思想解答.13.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.50°B.20°或50°C.30°或50°D.30°【分析】分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM和∠AOD度数,即可求出答案.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM﹣∠AOD=40°﹣10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°.故∠MOD的度数是30°或50°.故选:C.【点评】本题考查了角平分线定义的应用,用了分类讨论思想.14.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为()A.15°B.20°C.30°D.45°【分析】先根据平角的定义求出∠BOC=140°,再由OD平分∠BOC,根据角平分线的定义求出∠COD=∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°.故选:B.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.15.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【分析】直接利用角平分线的性质分别分析得出答案.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.16.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD =()A.l10°B.115°C.120°D.135°【分析】先根据∠COE=90°,∠COD=25°,由角的和差关系求得∠DOE=90°﹣25°=65°,再根据OD平分∠AOE,由角平分线的定义得出∠AOD=∠DOE=65°,最后根据邻补角的定义得出∠BOD=180°﹣∠AOD=115°.【解答】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°﹣25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°﹣∠AOD=115°.故选:B.【点评】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD的度数,再根据邻补角进行计算.17.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC 的度数是()A.113°B.134°C.136°D.144°【分析】首先根据OE平分∠BOD,∠BOE=23°,求出∠BOD的度数是多少;然后根据∠AOB是直角,求出∠AOD的度数,再根据OA平分∠COD,求出∠COD的度数,据此求出∠BOC的度数是多少即可.【解答】解:∵OE平分∠BOD,∠BOE=23°,∴∠BOD=23°×2=46°;∵∠AOB是直角,∴∠AOD=90°﹣46°=44°,又∵OA平分∠COD,∴∠COD=2∠AOD=2×44°=88°,∴∠BOC=∠BOD+∠COD=46°+88°=134°.故选:B.【点评】此题主要考查了角的计算,以及角平分线的含义和求法,要熟练掌握.18.如图,OC⊥AB,OE为∠COB的角平分线,∠AOE的度数为()A.130°B.125°C.135°D.145°【分析】由于OC⊥AB,OE为∠COB的平分线,可知∠AOC=∠BOC=90°,∠BOE=∠COE=∠BOC=×90°=45°,从而易求∠AOE.【解答】解:∵OC⊥AB,∴∠COB=∠AOC=90°,∵OE为∠COB的角平分线,∴∠COE=45°,∴∠AOE=∠AOC+∠COE=90°+45°=135°;故选:C.【点评】本题考查了角的计算、垂直定义、角平分线定义,根据角平分线的定义求出∠COE 的度数是解题的关键.19.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.【解答】解:设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x.∵∠AOD﹣∠AOC=∠COD,∴1.5x﹣x=20°,解得:x=40°.∴∠AOB=3x=120°.故选:C.【点评】本题主要考查的是角的计算,角平分线的定义,方程思想的应用是解题的关键.20.已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC的度数是()A.10°B.40°或30°C.70°D.10°或70°【分析】求出∠AOC的度数,分为两种情况:①OC和OB在OA的两侧时,②OC和OB 在OA的同侧时,求出即可.【解答】解:∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:①如图1,∠BOC=∠AOB+∠AOC=30°+40°=70°;②如图2,∠BOC=∠AOC﹣∠AOB=40°﹣30°=10°,故选:D.【点评】此题主要考查了角的计算,关键是注意此题分两种情况.21.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是()A.70°B.80°C.100°D.110°【分析】根据OE是∠COB的角平分线,则可求得∠COB的度数,然后根据∠AOB=∠AOC+∠COB即可求解.【解答】解:∵OE是∠COB的平分线,∴∠COB=2∠COE(角平分线的定义).∵∠BOE=40°,∴∠COB=80°.∵∠AOC=30°,∴∠AOB=∠AOC+∠COB=110°,故选:D.【点评】本题考查了角度的计算,角度的计算转化为角度的和或差,理解角平分线的定义是关键.22.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为()A.14°B.28°C.32°D.40°【分析】根据∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,可以得到∠AOB与∠AOD 的关系,从而与∠BOD建立关系,得到∠AOB的度数.【解答】解:∵已知∠BOC=2∠AOB,OD平分∠AOC,∴∠AOC=3∠AOB=2∠AOD,∴∠AOD=1.5∠AOB,∴∠AOD﹣∠AOB=0.5∠AOB=∠BOD=14°,∴∠AOB=28°,故选:B.【点评】本题考查角的计算、角平分线的定义,解题的关键是找出各个角之间的关系,与已知条件建立关系.二.填空题(共1小题)23.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是①③④.(填序号)【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB=90°﹣∠BOC,∠COD=90°﹣∠BOC,∴∠AOB=∠COD;故①正确.②只有当OB,OC分别为∠AOC和∠BOD的平分线时,∠AOB+∠COD=90°;故②错误.③∵∠AOC=∠BOD=90°,OB平分∠AOC,∴∠AOB=∠COB=45°,则∠COD=90°﹣45°=45°∴CB平分∠BOD;故③正确.④∵∠AOC=∠BOD=90°,∠AOB=∠COD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线.故④正确.故答案为:①③④.【点评】此题主要考查学生对角的计算,角平分线的理解和掌握,此题难度不大,属于基础题.三.解答题(共27小题)24.如图,∠AOB=180°,∠COD=40°,OD平分∠COB,OE平分∠AOC,求∠AOE 和∠EOD的度数.【分析】依据∠COD=40°,OD平分∠COB,即可得到∠BOC=2∠COD=80°,∠BOD =40°,进而得出∠AOC=100°,依据OE平分∠AOC,即可得到∠AOE和∠EOD的度数.【解答】解:∵∠COD=40°,OD平分∠COB,∴∠BOC=2∠COD=80°,∠BOD=40°,又∵∠AOB=180°,∴∠AOC=100°,∵OE平分∠AOC,∴∠AOE=∠AOC=50°,∴∠DOE=180°﹣∠AOE﹣∠BOD=180°﹣50°﹣40°=90°.【点评】本题主要考查了角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.25.如图,∠AOB=42゜,∠BOC=86゜,OD为∠AOC的平分线,求∠BOD的度数.【分析】首先求得∠AOC的度数,根据角平分线的定义求得∠AOD,然后根据∠BOD=∠AOD﹣∠AOB求解.【解答】解:∵∠AOB=42°,∠BOC=86°,∴∠AOC=∠AOB+∠BOC=42°+86°=128゜.∵OD平分∠AOC,∴∠AOD=∠AOC=×128°=64°.∴∠BOD=∠AOD﹣∠AOB=64゜﹣42゜=22°.答:∠BOD的度数是22゜.【点评】本题考查了角度的计算,正确理解角平分线的定义,求得∠AOD是关键.26.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.【分析】(1)利用角的和差定义证明即可;(2)求出∠AOC即可解决问题;(3)结论:∠AOD+∠COB=120°.利用角的和差定义证明即可;(4)不成立.猜想:∠AOD+∠BOC=240°,根据周角的性质证明即可;【解答】解:(1)结论:∠AOC=∠BOD.理由:∵∠AOB=∠COD=60°,∴∠AOC+∠BOC=∠BOD+∠BOC,∴∠AOC=∠BOD.(2)∵∠BCO=10°,∠AOB=60°,∴∠AOC=50°,∴∠AOD=∠AOC+∠COD=50°+60°=110°.(3)猜想:∠AOD+∠COB=120°.理由:∵∠AOB=∠COD=60°.∴∠AOD=∠AOB+∠COD﹣∠COB=120°﹣∠COB,∴∠AOD+∠COB=120°.(4)不成立.猜想:∠AOD+∠BOC=240°,理由:∵∠AOB=∠COD=60°.∴∠AOD+∠BOC=360°﹣60°﹣60°=240°.【点评】本题考查角的计算,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.27.如图,点O是直线AB上一点,∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ 平分∠BOF,求∠POQ的度数.【分析】依据角平分线的定义即可得到∠POE的度数,再根据邻补角的定义即可得到∠BOE 的度数,进而得出∠BOF的度数,再根据角平分线的定义,即可得到∠BOQ的度数,最后依据∠POQ=∠POE+∠BOE+∠BOQ进行计算即可.【解答】解:∵OP平分∠AOE,∴∠POE=∠AOE=×130°=65°,∵∠BOE=180°﹣∠AOE=180°﹣130°=50°,∴∠BOF=∠EOF﹣∠BOE=90°﹣50°=40°,∵OQ平分∠BOF,∴∠BOQ=∠BOF=×40°=20°,∴∠POQ=∠POE+∠BOE+∠BOQ=65°+50°+20°=135°.【点评】本题主要考查了角的计算,解决问题的关键是利用角平分线的定义以及角的和差关系进行计算.28.如图所示,已知∠AOB=90°,∠BOC=28°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?【分析】先根据角平分线定义得:∠AOM=59°,∠CON=14°,最后利用角的差关系可得结论.【解答】解:∵∠AOB=90°,∠BOC=28°,∴∠AOC=90°+28°=118°,∵OM平分∠AOC,∴∠AOM=∠AOC=×118°=59°,∵ON平分∠BOC,∴∠CON=∠BOC=,∴∠MON=∠AOC﹣∠AOM﹣∠CON=118°﹣59°﹣14°=45°.【点评】本题考查了角平分线的定义和角的和与差,熟练掌握角平分线的定义是关键.29.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点,∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠COB=35°,∠COD=∠AOC=10°,∴∠DOE=∠COE+∠COD=45°;(2)∠DOE的大小不变等于45°,理由:∠DOE=∠DOC+∠COE=∠COB+∠AOC=(∠COB+∠AOC)=∠AOB=45°.【点评】此题考查角的计算与角平分线的意义,熟记角的特点与角平分线的定义是解决此题的关键.30.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【分析】(1)根据角平分线定义得到∠AOC=∠EOC=×70°=35°,然后根据对顶角相等得到∠BOD=∠AOC=35°;(2)先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.【点评】考查了角的计算:1直角=90°;1平角=180°.也考查了角平分线的定义和对顶角的性质.31.如图,以直线AB上的点O为端点作射线OC、OD,满足∠AOC=54°,∠BOD=∠BOC,求∠BOD的度数.【分析】依据邻补角的定义,即可得到∠BOC的度数,再根据∠BOD=∠BOC,即可得到∠BOD的度数.【解答】解:∵∠AOC=54°,∴∠BOC=180°﹣∠AOC=126°,又∵∠BOD=∠BOC,∴∠BOD=×126°=42°.【点评】本题主要考查了角的计算,解决问题的关键是利用邻补角的定义求得∠BOC的度数.32.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【分析】根据角平分线定义求出∠1+∠2=90°,根据∠1:∠2=1:2即可求出答案.【解答】解:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=∠BOC,∠2=∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是求出∠1+∠2=90°.33.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【分析】(1)根据角平分线的定义得:∠AOM=∠AOB=65°,∠AON=40°,相减可得∠MON的度数;(2)①根据角的和差定义计算即可;②构建方程求出n即可;(3)根据角的和差定义计算即可;【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点评】本题考查角的计算、角平分线的定义、旋转变换等知识,解题的关键是熟练掌握角的和差定义,属于中考常考题型.34.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.【解答】解:(1)如图,∵OD是∠AOC的平分线,∴∠COD=∠AOC.∵OE是∠BOC的平分线,∴∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知:∠BOE=∠COE=90°﹣∠COD=25°.所以∠AOE=180°﹣∠BOE=155°.【点评】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.35.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.36.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点评】本题考查了角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解决此类问题的一般方法.37.如图,∠BOA=90°,OC平分∠BOA,OA平分∠COD,求∠BOD的大小?【分析】先根据角平分线的定义得出∠COA的度数,再根据角平分线的定义得出∠AOD的度数,再根据∠BOD=∠AOB+∠AOD即可得出结论.【解答】解:∵∠BOA=90°,OC平分∠BOA,∴∠COA=45°,又∵OA平分∠COD,∴∠AOD=∠COA=45°,∴∠BOD=90°+45°=135°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.38.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE =60°,则∠BOD的度数为多少度?【分析】先根据OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.【解答】解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE =60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.【点评】本题考查的是角平分线的定义和角的和差计算,熟知角平分线的定义是解答此题的关键.39.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.【分析】本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;根据前两个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前两问的解决思路得出证明.【解答】解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.【点评】记忆三角板各角的度数,把所求的角转化为已知角的和与差.40.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.【分析】(1)根据互余和角平分线的定义解答即可;(2)根据角平分线的定义和平角的定义解答即可.【解答】解:(1)∠AOD=∠DOE﹣∠AOE=90°﹣32°=58°∠BOD=∠AOB﹣∠AOD=180°﹣58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE﹣∠AOD=90°﹣60°=30°【点评】本题考查角度计算,解题的关键是熟练利用角分线的性质,本题属于基础题型.41.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.【分析】(1)根据平角的定义即可得到结论;(2)根据余角的性质得到∠COD=48°,根据角平分线的定义即可得到结论.【解答】解:(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=180°﹣42°=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=∠BOD=69°,∴∠COE=69°﹣48°=21°.【点评】本题考查了余角和补角的知识,属于基础题,互余的两角之和为90°,互补的两角之和为180°是需要同学们熟练掌握的内容.42.如图,OD是∠AOB的平分线,OE是∠BOC的平分线.(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度数;(2)若∠AOC=150°,求∠DOE的度数;(3)你发现∠DOE与∠AOC有什么等量关系?给出结论并说明.【分析】(1)利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数;(2)根据角平分线的定义求出∠DOB和∠EOB的度数,代入∠DOE=∠DOB+∠EOB求出即可;(3)根据角的和差关系求出∠AOC度数,再根据角平分线的定义求出∠DOB和∠EOB,代入∠DOE=∠BOC+∠AOB得出关系即可.【解答】解:(1)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC=75°;(3)∠DOE=∠AOC;理由是:∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC.【点评】本题考查了角的计算以及角平分线的定义,掌握角平分线的定义是解题的关键.43.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB,∠AOD=50°,且∠AOB=90°,求∠EOC的度数.【分析】(1)根据角平分线的定义以及角的和差定义计算即可;(2)利用(1)中结论计算即可;(3)分别求出∠EOD,∠DOC即可解决问题;【解答】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°.(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α.(3)∵∠AOB=90°,∠AOD=50°,∴∠DOB=40°,∵∠EOA=∠AOD,∠DOC=∠DOB,∴∠DOE=∠AOD=40°,∠DOC=∠DOB=30°,∴∠EOC=∠EOD+∠DOC=70°.【点评】本题考查角的计算、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.44.已知:如图,OM是∠AOC的角平分线,ON是∠BOC的角平分线,(1)当∠AOB=90°,∠BOC=40°时,求∠MON的度数.(2)若∠AOB的度数不变,∠BOC的度数为α时,求∠MON的度数.。
北师大版七年级上册 4.4 角的比较 同步练习题
4.4 角的比较(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是( )A.∠α=∠βB.∠α<∠βC.∠α=∠γD.∠β>∠γ2.如图,OC平分∠AOB,则∠AOC与∠BOD的大小关系是()A.∠AOC >∠BOD B.∠AOC <∠BOD C.∠AOC=∠BOD D.不能确定3.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A.145° B.110° C.70° D.35°4.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°5.借助一副三角尺,能画出的角度是()A.65° B.75° C.85° D.95°6.借助一副三角尺,不能画出的角度是()A.15° B.135° C.160° D.105°7.点P在∠AOB内部,连结OP,现在有四个等式:①∠POA=∠BOP;②∠POA=12∠BOA;③∠AOB=2∠BOP;④∠AOB=12∠AOP;其中,能表示OP为角平分线的有()A.1个B.2个C.3个D.4个8.已知点O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC 的大小关系是()A.∠AOC >∠BOC B.∠AOC <∠BOC C.∠AOC=∠BOC D.不能确定9.如图,∠AOE=∠BOC,OD平分∠COE;则图中除∠AOE=∠BOC 外,相等的角共有()A.1对B.2对C.3对D.4对10.已知∠AOB=50°,∠BOC=30°,OD平分∠AOC,则∠AOD的度数为()A.20° B.80° C.10°或40° D.20°或80°二.填空题:(将正确答案填在题目的横线上)11.OC是∠AOB内部的一条射线,若∠AOC=1________,则OC2平分∠AOB;若OC是∠AOB的角平分线,则_________=2∠AOC;12.如图,AB,CD相交于点O,∠AOE=90°,∠COE=44°,则∠AOD= ____ ;13.如图,∠AOB=125°,∠AOC=∠BOD=90°,则∠COD=________;14.如图,∠AOB=90°,若∠BOC=30°,OD平分∠AOC,则∠BOD= ;15.如图,若CD平分∠ACE,BD平分∠ABC,∠A=46°,则∠D=______°;三.解答题:(写出必要的说明过程,解答步骤)16.如图,OB平分∠COD,∠AOB=90°,∠AOC=125°,求∠DOC 的度数;17.如图,点O在直线AB上,∠BOC=40°,OD平分∠AOC,求∠BOD的度数;18.如图,直线AB,CD相交于点O,OE是∠AOC的角平分线,∠DOE=5∠AOE,求∠BOD的度数;19.已知一条射线OA,如果从点O再引两条射线OB、OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度数;20.如图,AC是一条直线,O为AC上一点,∠AOB=120°,OE,OF分别平分∠AOB,∠BOC;(1)求∠EOF的大小;(2)当OB绕点O向OA或OC旋转时(但不与OA,OC重合),OE,OF仍为∠AOB,∠BOC的平分线,问:∠EOF的大小是否改变?说明理由;21.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON的度数;(2)若∠AOB=α,∠BOC=β(∠BOC为锐角),其他条件不变,求∠MON 的度数(用α,β表示);(3)写出从(1),(2)得出的规律;4.4 角的比较参考答案:1~10 CABDB CCDCC11.∠AOB ,∠AOB ;12.134°;13.55°;14.30°;15.23°;16.70°;17.110°;18.60°;19.40°或80°;20.(1)90°;(2)∠EOF 的度数不变,仍是90°;理由:21.(1)∵0009030120AOC AOB BOC ∠=∠+∠=+=(2)1122MON COM CON AOC BOC ∠=∠-∠=∠-∠(3)12MON AOB ∠=∠;。
北师大版初中数学七年级上册《4.4 角的比较》同步练习卷(含答案解析
北师大新版七年级上学期《4.4 角的比较》同步练习卷一.选择题(共47小题)1.用一副三角板可以画出的最大锐角的度数是()A.85°B.75°C.60°D.45°2.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°3.用一副三角板不能画出下列那组角()A.45°,30°,90°B.75°,15°,135°C.60°,105°,150°D.45°,80°,120°4.如图,点O在直线AB上,若∠AOD=160°,∠BOC=60°,则∠COD的度数为()A.20°B.30°C.40°D.50°5.已知∠AOB=60°,∠BOC=30°,则∠AOC等于()A.90°B.45°或30°C.30°D.90°或30°6.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.用一副三角尺不可能拼出的角是()A.15°B.40°C.135°D.150°9.将一副直角三角板如图放置,那么∠AOB的大小为()A.150°B.135°C.120°D.90°10.如图,已知∠BOD=2∠AOB,OC平分∠AOD,且∠BOC=18°,则∠AOD=()A.108°B.98°C.72°D.135°11.如图,若∠AOB是直角,∠AOC=38°,∠COD:∠COB=1:2,则∠BOD等于()A.38°B.52°C.26°D.64°12.只用一副三角尺,不能画出度数是()的角.A.15°B.65°C.75°D.105°13.如图,O是直线AB上一点,OD是∠AOC的角平分线,OE是∠BOC的角平分线,则∠DOE等于()A.80°B.90°C.100°D.105°14.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′15.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°16.如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC 17.将一副直角三角尺按如图所示摆放,则图中∠ABC的度数是()A.120°B.135°C.145°D.150°18.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=∠AOD,则∠BOC的度数为()A.22.5°B.30°C.45°D.60°19.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.120.把一副直角三角板如图所示拼在一起,则∠ABC的度数等于()A.70°B.90°C.105°D.120°21.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化22.已知∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°23.若两个角的和与这两个角的差之和是一个平角的度数,则这两个角()A.一个是锐角,一个是钝角B.都是钝角C.必有一个是直角D.两个都是直角24.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°25.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°26.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个27.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°28.如图,∠AOB的大小可由量角器测得,作∠AOB的角平分线OC,则∠AOC 的大小为()A.70°B.20°C.25°D.65°29.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.50°B.20°或50°C.30°或50°D.30°30.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为()A.15°B.20°C.30°D.45°31.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.32.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.l10°B.115°C.120°D.135°33.已知∠AOB=4∠BOC,若∠BOC=20°,则∠AOC=()A.60°B.80°或60°C.80°D.100°或60°34.如图,点O在直线AB上,∠COD=105°,∠2=2∠1,则∠1的度数是()A.60°B.50°C.35°D.25°35.在同一平面内,若∠BOA=50.3°,∠BOC=10°30′,则∠AOC的度数是()A.60.6°B.40°C.60.8°或39.8D.60.6°或40°36.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°37.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°38.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,若∠AOB=120°,则∠AOD的度数为()A.30°B.60°C.50°D.90°39.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是()A.18°B.55°C.63°D.117°40.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,∠2的度数是()A.20B.25C.40D.7041.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()A.55°B.56°C.58°D.62°42.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°43.如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD 等于()A.35°B.70°C.110°D.145°44.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°45.在平面内过O点作三条射线OA、OB、OC,已知∠AOB=50°,∠BOC=20°,则∠AOC的度数为()A.70°B.30°C.70°或30°D.无法确定46.已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC的度数是()A.10°B.40°或30°C.70°D.10°或70°47.如图,已知点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD的度数为()A.100°B.115°C.65°D.130°二.填空题(共1小题)48.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,∠C′EB=40°,则∠EDC′=度.三.解答题(共2小题)49.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.(3)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t 的值为多少?(直接写出答案)50.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE 的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE 的度数.北师大新版七年级上学期《4.4 角的比较》同步练习卷参考答案与试题解析一.选择题(共47小题)1.用一副三角板可以画出的最大锐角的度数是()A.85°B.75°C.60°D.45°【分析】根据三角板原有的30°、45°、60°、90°四种角,依据可以直接画出的角和利用和或差画出的角,即可得到结论.【解答】解:用一副三角板可以画出:30°、45°、60°、75°、15°,五个锐角,其中最大的锐角为75°.故选:B.【点评】本题主要考查了角的计算,按照直接画出和通过角的求和或求差作出的角即可得出所有情况.2.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°【分析】根据题意画出图形,利用分类讨论思想求解即可.【解答】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.【点评】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.3.用一副三角板不能画出下列那组角()A.45°,30°,90°B.75°,15°,135°C.60°,105°,150°D.45°,80°,120°【分析】A、45°30°90°,可以,B、75°15°135,可以,C、60°105°150,可以,D、45°80°120°,其中80°、120°不能.【解答】解:A、45°,30°,90°,可以,B、75°,15°,135,可以,C、60°,105°,150,可以,D、45°,80°,120°,其中80°、120°不能.故选:D.【点评】本题考查的是角的计算,根据题意提供的角度,画出图形即可解答.4.如图,点O在直线AB上,若∠AOD=160°,∠BOC=60°,则∠COD的度数为()A.20°B.30°C.40°D.50°【分析】将∠AOD代入∠COD=∠AOD+∠BOC﹣∠AOB中,即可求出结论.【解答】解:∵∠AOD=160°,∠BOC=60°,∴∠COD=∠AOD+∠BOC﹣∠AOB=160°+60°﹣180°=40°.故选:C.【点评】本题考查了角的计算,将∠AOD代入∠COD=∠AOD+∠BOC﹣∠AOB是解题的关键.5.已知∠AOB=60°,∠BOC=30°,则∠AOC等于()A.90°B.45°或30°C.30°D.90°或30°【分析】分∠BOC的边OC在∠AOB的内部和外部两种情况作出图形并讨论求解即可.【解答】解:如图1,∠BOC的边OC在∠AOB的内部时,∠AOC=∠AOB﹣∠BOC=60°﹣30°=30°,如图2,∠BOC的边OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=60°+30°=90°,综上所述,∠AOC等于90°或30°.故选:D.【点评】本题考查了角的计算,难点在于分情况讨论,作出图形更形象直观.6.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.【点评】本题是对角的平分线的性质的考查,解题时注意:角平分线将角分成相等的两部分.7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【分析】根据角平分线的定义求出∠AOC,根据邻补角的定义求出∠BOC,根据角平分线的定义计算即可.【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.【点评】本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.8.用一副三角尺不可能拼出的角是()A.15°B.40°C.135°D.150°【分析】根据一副三角尺含有的角的度数进行计算,判断即可.【解答】解:一副三角尺包含30°、45°、60°、90°四种角度,A、15°=45°﹣30°,可以拼出;B、40°,不可能拼出;C、135°=45°+90°,可以拼出;D、150°=60°+90°,可以拼出;故选:B.【点评】本题考查的是角的计算,了解一副三角尺含有的角的度数、正确进行角的计算是解题的关键.9.将一副直角三角板如图放置,那么∠AOB的大小为()A.150°B.135°C.120°D.90°【分析】根据题意列式计算即可.【解答】解:由题意得,∠AOB=45°+90°=135°,故选:B.【点评】本题考查的是角的计算,正确进行角的计算是解题的关键.10.如图,已知∠BOD=2∠AOB,OC平分∠AOD,且∠BOC=18°,则∠AOD=()A.108°B.98°C.72°D.135°【分析】设∠AOD=6x,根据题意得到∠BOD=4x,∠AOB=2x,根据角平分线的定义得到∠AOC=∠DOC=3x,根据题意列方程,解方程即可.【解答】解:设∠AOD=6x,∵∠BOD=2∠AOB,∴∠BOD=4x,∠AOB=2x,∵OC平分∠AOD,∴∠AOC=∠DOC=3x,由题意得,3x﹣2x=18°,解答,x=18°,∴∠AOD=6x=108°,故选:A.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.11.如图,若∠AOB是直角,∠AOC=38°,∠COD:∠COB=1:2,则∠BOD等于()A.38°B.52°C.26°D.64°【分析】设∠COD、∠COB的度数分别为x、2x,结合图形列出方程,解方程即可.【解答】解:设∠COD、∠COB的度数分别为x、2x,由题意得,2x+38°=90°,解得,x=26°,∴∠BOD=∠BOC﹣∠COD=26°,故选:C.【点评】本题考查的是角的计算,能够结合图形进行角的计算是解题的关键.12.只用一副三角尺,不能画出度数是()的角.A.15°B.65°C.75°D.105°【分析】根据三角形的特点,计算即可.【解答】解:60°﹣45°=15°,30°+45°=75°,60°+45°=105°,∴15°、75°、105°只用一副三角尺可以画出,65°只用一副三角尺,不能画出,故选:B.【点评】本题考查的是角的计算,掌握角的计算公式是解题的关键.13.如图,O是直线AB上一点,OD是∠AOC的角平分线,OE是∠BOC的角平分线,则∠DOE等于()A.80°B.90°C.100°D.105°【分析】根据角平分线的定义,即可得到∠DOE=∠AOB=90°.【解答】解:如图,∵OD是∠AOC的角平分线,OE是∠BOC的角平分线,∴∠COD=∠AOC,∠COE=∠BOC,∴∠COD+∠COE=(∠AOC+∠BOC),即∠DOE=∠AOB=90°.故选:B.【点评】本题考查了角平分线的定义,关键是根据角平分线定义得出所求角与已知角的关系.14.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′【分析】由射线OC平分∠DOB,∠DOC=25°35′,得∠BOC=∠DOC=25°35′,从而求得∠AOB.【解答】解:∵OC平分∠DOB,∴∠BOC=∠DOC=25°35′,∵∠AOC=90°,∴∠AOB=∠AOC﹣∠BCO=90°﹣25°35′=64°25′.故选:C.【点评】此题考查的知识点是角平分线的定义以及角的计算,关键是由已知先求出∠BOC.15.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.16.如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC【分析】由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.【解答】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.【点评】本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.17.将一副直角三角尺按如图所示摆放,则图中∠ABC的度数是()A.120°B.135°C.145°D.150°【分析】根据直角三角板的度数,再根据角的和差关系可得∠ABC的度数.【解答】解:∵∠ABD=45°,∠CBD=90°∴∠ABC=45°+90°=135°故选:B.【点评】此题主要考查了三角形内角和定理,以及角的计算,关键是掌握三角形内角和为180°.18.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=∠AOD,则∠BOC的度数为()A.22.5°B.30°C.45°D.60°【分析】此题由“两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=7x°,结合图形列方程即可求解.【解答】解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°,∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,∴∠DOB=∠AOC,设∠BOC=x°,则∠AOD=7x°,∴∠DOB+∠AOC=∠AOD﹣∠BOC=6x°,∴∠DOB=3x°,∴∠DOB+∠BOC=4x°=90°,解得:x=22.5.故选:A.【点评】此题主要考查有关角的推理和运算,理清图中的角的和差关系,并结合方程求解是解题的关键.19.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.1【分析】根据角平分线定义即可判断①②;根据邻补角即可判断③,根据∠COD=90°和∠AOD=2∠AOE求出∠BOD=2∠BOD﹣2∠COE,即可判断④.【解答】解:∵OE平分∠AOD,∴∠AOE=∠EOD,故①正确;∵∠AOE=∠EOD,∠AOC<∠AOE,∴∠AOC<∠EOD,故②错误;∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,故③正确;∵∠BOD=180°﹣∠AOD=180°﹣2∠AOE=180°﹣2(∠AOC+∠COE)=2(90°﹣∠AOC)﹣2∠COE=2∠BOD﹣2∠COE,∴∠BOD=2∠BOD﹣2∠COE,∴∠BOD=2∠COE,故④正确;即正确的有3个,故选:B.【点评】本题考查了角平分线的定义,邻补角等知识点,能根据知识点进行推理是解此题的关键.20.把一副直角三角板如图所示拼在一起,则∠ABC的度数等于()A.70°B.90°C.105°D.120°【分析】根据角的和差,可得答案.【解答】解:∠ABC=30°+90°=120°,故选:D.【点评】本题考查了角的运算,利用角的和差是解题关键.21.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C 重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH 平分∠BFE即可求解.【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°.故选:B.【点评】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.22.已知∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°【分析】根据题意画出图形,利用分类讨论求出即可.【解答】解:如图1所示:∵∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,∴∠MON=∠BOM+∠BON=∠AOB+∠BOC=×(70°+30°)=50°,如图2所示:∵∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,∴∠MON=∠BOM﹣∠BON=∠AOB﹣∠BOC=×(70°﹣30°)=20°.故选:C.【点评】此题主要考查了角平分线的定义,正确利用分类讨论得出是解题关键.23.若两个角的和与这两个角的差之和是一个平角的度数,则这两个角()A.一个是锐角,一个是钝角B.都是钝角C.必有一个是直角D.两个都是直角【分析】先设两个角为α,β.则(α+β)+(α﹣β)=180°,整理得出这两个角的关系.【解答】解:设两个角为α,β,则(α+β)+(α﹣β)=180°,解得α=90°.故选:C.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.24.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.【解答】解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=40°;同理可得,∠COD=40°.∴∠AOD=∠AOB+∠BOC+∠COD=40°+30°+40°=110°,故选:B.【点评】本题考查角的计算,解答本题的关键是明确角之间的关系,利用数形结合的思想解答.25.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°【分析】先根据∠1=20°,∠AOC=90°,求出∠BOC的度数,再利用平角求出∠2的度数,即可解答.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=∠AOC﹣∠1=90°﹣20°=70°,∴∠2=180°﹣∠BOC=180°﹣70°=110°,故选:C.【点评】本题考查了角的计算,解决本题的关键是利用角的和与差进行解答.26.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个【分析】根据两点之间的距离的定义,线段的中点的定义以及角的比较即可作出判断.【解答】解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB 上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.【点评】本题考查了两点之间的距离、线段中点的定义、以及角的大小的比较,正确理解定义是关键.27.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【分析】解答此题的关键是明确此题射线OC的位置,有2种可能,然后根据图形,即可求出∠AOC的度数.【解答】解:①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选:C.【点评】此题主要考查学生对角的计算的理解和掌握.此题采用分类讨论的思想是解决问题的关键.28.如图,∠AOB的大小可由量角器测得,作∠AOB的角平分线OC,则∠AOC 的大小为()A.70°B.20°C.25°D.65°【分析】根据角平分线的定义计算即可.【解答】解:∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠AOB=25°,故选:C.【点评】本题考查角平分线的定义,认识量角器等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.29.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.50°B.20°或50°C.30°或50°D.30°【分析】分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM和∠AOD度数,即可求出答案.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM﹣∠AOD=40°﹣10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°.故∠MOD的度数是30°或50°.故选:C.【点评】本题考查了角平分线定义的应用,用了分类讨论思想.30.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为()A.15°B.20°C.30°D.45°【分析】先根据平角的定义求出∠BOC=140°,再由OD平分∠BOC,根据角平分线的定义求出∠COD=∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°.故选:B.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.31.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【分析】直接利用角平分线的性质分别分析得出答案.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.32.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.l10°B.115°C.120°D.135°【分析】先根据∠COE=90°,∠COD=25°,由角的和差关系求得∠DOE=90°﹣25°=65°,再根据OD平分∠AOE,由角平分线的定义得出∠AOD=∠DOE=65°,最后根据邻补角的定义得出∠BOD=180°﹣∠AOD=115°.【解答】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°﹣25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°﹣∠AOD=115°.故选:B.【点评】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD的度数,再根据邻补角进行计算.33.已知∠AOB=4∠BOC,若∠BOC=20°,则∠AOC=()A.60°B.80°或60°C.80°D.100°或60°【分析】先求出∠AOB=80°,再分两种情况进行讨论:①当∠BOC的一边OC在∠AOB外部时,两角相加;②当∠BOC的一边OC在∠AOB内部时,两角相减即可.【解答】解:∵∠AOB=4∠BOC,∠BOC=20°,∴∠AOB=80°.分两种情况:①当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=80°+20°=100°;②当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB﹣∠BOC=80°﹣20°=60°.故选:D.【点评】此题主要考查学生对角的计算这一知识点的理解和掌握,此题采用分类讨论的思想,难度不大,属于基础题.34.如图,点O在直线AB上,∠COD=105°,∠2=2∠1,则∠1的度数是()A.60°B.50°C.35°D.25°【分析】根据平角定义求出∠1+∠2的度数,把∠2=2∠1代入求出即可.【解答】解:∵∠COD=105°,∴∠1+∠2=180°﹣∠COD=75°,∵∠2=2∠1,∴∠1=25°,故选:D.【点评】本题考查了角的有关计算,能求出∠1+∠2的度数是解此题的关键.35.在同一平面内,若∠BOA=50.3°,∠BOC=10°30′,则∠AOC的度数是()A.60.6°B.40°C.60.8°或39.8D.60.6°或40°【分析】分OC在∠AOB内部和∠AOB外部两种情况分别求解可得.【解答】解:∠AOC=∠BOA+∠BOC=50.3°+10°30′=50.3°+10.5°=60.8°或∠AOC=∠BOA﹣∠BOC=50.3°﹣10°30′=50.3°﹣10.5°=39.8°,故选:C.【点评】本题主要考查角的计算,解题的关键是掌握分类讨论思想的运用和角度的转换.36.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°【分析】根据∠AOD+∠BOC=180°,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD﹣∠COE即可解答.【解答】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.【点评】本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180°.37.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°【分析】首先根据OE平分∠BOD,∠BOE=23°,求出∠BOD的度数是多少;然后根据∠AOB是直角,求出∠AOD的度数,再根据OA平分∠COD,求出∠COD 的度数,据此求出∠BOC的度数是多少即可.【解答】解:∵OE平分∠BOD,∠BOE=23°,∴∠BOD=23°×2=46°;∵∠AOB是直角,∴∠AOD=90°﹣46°=44°,又∵OA平分∠COD,∴∠COD=2∠AOD=2×44°=88°,∴∠BOC=∠BOD+∠COD=46°+88°=134°.故选:B.【点评】此题主要考查了角的计算,以及角平分线的含义和求法,要熟练掌握.38.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,若∠AOB=120°,则∠AOD的度数为()A.30°B.60°C.50°D.90°【分析】根据角平分线的定义分别求出∠COD和∠AOC,计算即可.【解答】解:∵OC是∠AOB的平分线,∴∠COB=∠AOC=∠AOB=60°,∵OD是∠BOC的平分线,∴∠COD=∠COB=30°,∴∠AOD=∠COD+∠AOC=90°,故选:D.【点评】本题考查的是角平分线的定义,掌握从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解题的关键.39.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是()A.18°B.55°C.63°D.117°【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【解答】解:A、18°=90°﹣72°,则18°角能画出;B、55°不能写成36°、72°、45°、90°的和或差的形式,不能画出;C、63°=90°﹣72°+45°,则63°可以画出;D、117°=72°+45°,则117°角能画出.故选:B.【点评】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.40.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,∠2的度数是()A.20B.25C.40D.70【分析】先根据邻补角定义求出∠COB,再根据角平分线定义求出∠2=∠COB,代入求出即可.【解答】解:∵∠1=40°,∴∠COB=180°﹣∠1=140°,∵OD平分∠COB,∴∠2=∠COB=×140°=70°,故选:D.【点评】本题考查了邻补角和角平分线定义的应用,解此题的关键是能求出∠COB的度数和得出∠2=∠COB,注意:从角的顶点出发的一条射线,把这个角分成两个相等的角,这条射线就叫角的平分线.41.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()A.55°B.56°C.58°D.62°【分析】先根据角平分线的定义得到∠BAE=2∠BAD=124°,然后利用邻补角的定义计算∠CAE的度数.【解答】解:∵AD平分∠BAE,∴∠BAE=2∠BAD=2×62°=124°,∴∠CAE=180°﹣124°=56°.【点评】本题考查了角平分线的定义:灵活应用角平分线的定义进行角度的计算.42.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.【解答】解:设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x.∵∠AOD﹣∠AOC=∠COD,∴1.5x﹣x=20°,解得:x=40°.∴∠AOB=3x=120°.故选:C.【点评】本题主要考查的是角的计算,角平分线的定义,方程思想的应用是解题的关键.43.如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD 等于()A.35°B.70°C.110°D.145°【分析】先依据角平分线的定义求得∠BOD的度数,然后再依据∠AOD=180°﹣∠BOD求解即可.【解答】解:∵射线OC平分∠DOB,∴∠BOD=2∠BOC=2×35°=70°.∴∠AOD=180°﹣∠BOD=180°﹣70°=110°.【点评】本题主要考查的是角平分线的定义,熟练掌握角平分线的定义是解题的关键.44.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°【分析】根据角平分线的定义求出∠BOC,再根据邻补角的定义列式计算即可得解.【解答】解:∵OD平分∠BOC,∴∠BOC=2∠1=2×68°=136°,∴∠2=180°﹣∠BOC=180°﹣136°=44°.故选:C.【点评】本题考查了角平分线的定义,邻补角的定义,熟记概念并准确识图是解题的关键.45.在平面内过O点作三条射线OA、OB、OC,已知∠AOB=50°,∠BOC=20°,则∠AOC的度数为()A.70°B.30°C.70°或30°D.无法确定【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,②当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°.【解答】解:如图当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°,故答案为30°或70°,故选C.【点评】本题考查角的计算、解得的关键是学会正确画出图形,注意有两种情形,属于中考常考题型.46.已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC的度数是()A.10°B.40°或30°C.70°D.10°或70°【分析】求出∠AOC的度数,分为两种情况:①OC和OB在OA的两侧时,②OC 和OB在OA的同侧时,求出即可.【解答】解:∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:①如图1,∠BOC=∠AOB+∠AOC=30°+40°=70°;②如图2,∠BOC=∠AOC﹣∠AOB=40°﹣30°=10°,故选:D.【点评】此题主要考查了角的计算,关键是注意此题分两种情况.47.如图,已知点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD的度数为()A.100°B.115°C.65°D.130°【分析】先根据∠COE=90°,∠COD=25°,求得∠DOE=90°﹣25°=65°,再根据OD 平分∠AOE,得出∠AOD=∠DOE=65°,最后得出∠BOD=180°﹣∠AOD=115°.【解答】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°﹣25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°﹣∠AOD=115°,故选:B.【点评】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD的度数,再根据邻补角进行计算.二.填空题(共1小题)48.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,∠C′EB=40°,则∠EDC′=20度.【分析】由图形翻折变换的性质得出∠CED=∠DEC',再解答即可.【解答】解:由题意得△DEC≌△DEC',∠DC'E=∠C=90°,∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=(180°﹣40°)=70°,∴∠EDC′=90°﹣70°=20°.故答案为:20.【点评】本题考查的是角的计算,熟知矩形的性质及图形翻折不变性的性质是解答此题的关键.三.解答题(共2小题)49.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为90度;(2)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.(3)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t 的值为多少?(直接写出答案)【分析】(1)根据图形即可得到结论;(2)分两种情况:(i)当直角边ON在∠AOC外部时,(ii)当直角边ON在∠AOC 内部时,根据题意解答即可;(3)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;【解答】解:(1)90,故答案为:90;(2)(i)如图①,当直角边ON在∠AOC外部时,由直线ON平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图③,当直角边ON在∠AOC内部时,由直线ON平分∠AOC,可得∠CON=30°.。
北师大版本七上数学4.4角的比较同步练习
北师大版本七上数学4.4角的比较同步练习同步练习1判断1.O是直线AB上一点,OC是射线,(C点不在直线AB上),∠AOC和∠BOC 的平分线是OD,OE则∠DOE的大小将随OC的位置而变化.( ) 单选2.如图,OM,ON,OP分别是∠AOB,∠BOC和∠AOC的平分线,则下列各式成立的是[ ]A.∠AOP>∠MONB.∠AOP=∠MONC.∠AOP<∠MOND.以上三个结果都可能成立3.如图,已知∠AOB的平分线为OM,ON为∠MOA内一条射线,则∠MON 不等于[ ]A .21(∠AOB -∠AON ) B .∠AOB -∠AON -∠BOM C .21(∠BON -∠AON ) D .∠BON -∠BOM4.从O 点引射线OA ,OB ,OC .已知∠AOB =90°,又∠AOB 与∠BOC 的平分线所成的角 ∠EOF =60°,则∠BOC 的度数是[ ]A .30°B .45°C .15°D .20°同步练习1答案1. × 2. B 3. A 4. A同步练习2班级____ 学号____ 姓名____ 得分____单选1.如图,OD ,OE 分别是∠AOC 和∠BOC 的平分线,则下式中正确的是[ ]A .∠AOC =∠DOEB .∠AOE =∠DOBC .∠AOB =2∠DOED .∠BOC =∠DOE2.如图,OB 平分∠AOC , 且∠2:∠3:∠4=2:5:3, 则∠1等于[ ]A .30°B .36°C .40°D .60° 填空3.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做_________.4.已知∠α=60°,∠AOB =3∠α,OC 是∠AOB 的平分线,则∠α=___∠AOC .同步练习2答案1. C 2. D 3. 这个角的角平分线 4.32 同步练习31.填空:(1)60°=________平角=________周角;(2)45°=________直角=________平角=________周角.2.如图所示,已知︒=∠=∠90AOB COD ,写出∠1,∠2,∠3中存在的等量关系.3.如图所示,在平行四边形ABCD 中,用量角器度量各角的大小,哪些角相等,哪些角之和为180°?4.如图所示,∠AOD =∠BOC =90°,∠COD =42°,求∠AOC ,∠AOB 的度数.5.利用一副三角尺可以画出哪些度数的角?请你试一试,并与同伴进行交流. 参考答案 1.(1)31,61;(2)814121,,. 2.∠1=∠3.3.∠1=∠5,∠2=∠4,∠3=∠6,∠1+∠4=∠2+∠5,∠1+∠4+∠6=∠3+∠2+∠5=180°等等.4.∠AOC =132°,∠AOB =138°. 5.略.。
北师大版七年级数学上册《4.4 角的比较》同步训练题-带答案
北师大版七年级数学上册《4.4 角的比较》同步训练题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.7.56756'︒-︒''的值是( ).A .0B .2830'''C .30'D .3014'''2.在AOB ∠的内部任取一点C ,作射线OC ,则一定存在( ) A .AOB AOC ∠>∠B .AOC BOA ∠>∠ C .BOC AOC ∠>∠D .AOC BOC ∠>∠3.若2018,201530,20.25A B C ︒︒''''∠=∠=︒∠=,则( )A .ABC >>∠∠∠B .B AC ∠>∠>∠ C .A C B ∠>∠>∠D .C A B ∠>∠>∠ 4.将一副三角板按如图所示的方式放置,若140∠=︒BOC ,那么AOD ∠的度数是( ).A .50︒B .30︒C .60︒D .40︒5.十点一刻时,时针与分针所成的角是( )A .11230'︒B .12730'︒C .12750'︒D .14230'︒6.入射光线和平面镜的夹角为40°,转动平面镜,使入射角减小20°,反射光线与入射光线的夹角和原来相比较将( )A .减小40°B .增大40°C .减小20°D .不变7.如图,已知点O 为直线AB 上一点,65AOC ∠=︒和105AOD ∠=︒,OM 平分COD ∠,则BOM ∠的度数是( )A .85︒B .95︒C .105︒D .115︒8.如图,点B ,O ,C 在同一条直线上,射线OD 是AOC ∠的平分线,且50AOD ,则BOD ∠的度数为( )A .80︒B .100︒C .130︒D .150︒ 9.如图,设锐角AOB ∠的度数为α,若一条射线平分AOB ∠,则图中所有锐角的和为2α.若四条射线五等分AOB ∠,则图中所有锐角的和为( )A .7αB .6αC .5αD .4a二、填空题3三、解答题 15.已知 2.15,7200a b =︒''=,先分别写出,a b 等于多少分,再比较,a b 的大小. 16.如图,AOB ∠是直角,OC ,OD 是AOB ∠内的两条射线,其中OD 平分BOC ∠.(1)当40AOC ∠=︒时,求AOD ∠的度数;(2)当4AOC DOC ∠=∠时,求AOD ∠的度数.17.如图,直线AB 与CD 相交于点O ,90AOM ∠=︒且OM 平分NOC ∠,若4BOC NOB ∠=∠,求MON ∠的度数.参考答案:1.B2.A3.A4.D5.D6.A7.B8.C9.A10.4911.<12.15413.35或514.6015.129=a b>b'=120a'16.(1)65︒;(2)75︒.17.54︒。
北师大版七年级上册数学 4.4角的比较 同步习题(含解析)
4.4角的比较同步习题一.选择题1.如图,点O在直线AB上,OD是∠AOC的角平分线,∠COB=42°,则∠DOC的度数是()A.59°B.60°C.69°D.70°2.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()A.48°B.42°C.36°D.33°3.借助一副三角尺,你能画出下面那个度数的角()A.65°B.75°C.80°D.95°4.已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°5.如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°6.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=22.5°,则∠AOB的度数为()A.100°B.120°C.135°D.150°7.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°8.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°9.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.βB.(α﹣β)C.αD.α﹣β10.如图,点O在直线AB上,射线OC、OD在直线AB的同侧,∠AOD=40°,∠BOC =50°,OM、ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°二.填空题11.∠α=10.5°,∠β=10°20′,则∠α,∠β的大小关系是∠α∠β(在横线上填“>”,“<“或“=“).12.已知∠AOB=40°,∠BOC=3∠AOC,则∠AOC的度数是.13.如图,点O在直线AB上,OD平分∠AOE,∠COE=90°,∠COD=15°,则∠BOD 的度数为.14.如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)15.已知,在同一平面内,∠AOB=30°,射线OC在∠AOB的外部,OD平分∠AOC,若∠BOD=40°,则∠AOC度数为.三.解答题16.如图,已知,O是直线AB上一点,∠AOE=∠COD,射线OC平分∠BOE,∠EOC=50°.求∠DOE的度数.17.如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.参考答案1.解:∵∠COB=42°,∴∠AOC=180°﹣∠COB=138°,∵OD是∠AOC的角平分线,∴∠DOC===69°.故选:C.2.解:∵OB平分∠AOC,∠AOB=18°,∴∠AOC=2∠AOB=36°,又∵∠AOD=84°,∴∠COD=∠AOD﹣∠AOC=84°﹣36°=48°.故选:A.3.解:用一幅三角尺可以直接画出的角的度数有:30°、45°、60°、90°.A:65度的角不能用一副三角尺画出.B:因为75度=45度+30度,所以75度的角能用一副三角尺画出.C:80的角不能用一副三角尺画出.D:95度的角不能用一副三角尺画出.故选:B.4.解:当OC在∠AOB内时,如图1,则∠BOC=∠AOB﹣∠AOC=60°﹣,∴∠COD=∠BOC=20°;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60°+,∴∠COD=∠BOC=40°.综上,∠COD=20°或40°.故选:D.5.解:∵OB平分平角∠AOD,∴∠AOB=∠DOB=×180°=90°,∵∠AOB:∠BOC=3:2,∴∠BOC=×90°=60°,∴∠COD=90°﹣60°=30°.故选:A.6.解:设∠AOC=x,∵∠BOC=2∠AOC,∴∠BOC=2x.∴∠AOB=3x.又∵OD平分∠AOB,∴∠AOD=1.5x.∵∠COD=∠AOD﹣∠AOC,∴1.5x﹣x=22.5°,解得x=45°,∴∠AOB=135°.故选:C.7.解:∵OD平分∠BOC,∴∠BOC=2∠1=2×68°=136°,∴∠2=180°﹣∠BOC=180°﹣136°=44°.故选:C.8.解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=(∠AOB+∠BOC﹣∠BOC)=∠AOB=45°.故选:C.9.解:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠NOC=∠BOC=,∠MOC=∠AOC=,∴∠MON=∠MOC﹣∠NOC==,故选:C.10.解:易知:∠COD=180°﹣∠AOD﹣∠BOC=90°,∵OM、ON分别平分∠BOC和∠AOD,∴∠NOD=∠AOD=20°,∠COM=∠BOC=25°,∴∠MON=20°+25°+90°=135°故选:A.11.解:∵∠α=10.5°=10°30′,∠β=10°20′,∴∠α>∠β.故答案为:>.12.解:当OC在∠AOB内部时,如图1,∵∠AOB=40°,∠BOC=3∠AOC,∴∠AOC=;当OC在∠AOB外部时,如图2,∵∠BOC﹣∠AOC=∠AOB,∠AOB=40°,∠BOC=3∠AOC,∴3∠AOC﹣∠AOC=40°,∴∠AOC=20°.综上,∠AOC=10°或20°.故答案为:10°或20°.13.解:∵∠COE=90°,∠COD=15°,∴∠DOE=90°﹣15°=75°∵OD平分∠AOE,∴∠AOD=∠DOE=75°=∠AOE,∴∠AOE=150°,∴∠BOE=180°﹣150°=30°,∴∠BOD=∠BOE+∠DOE=30°+75°=105°.14.解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.15.解:有两种情况,①如图1所示,∠AOD=∠AOB+∠BOD=30°+40°=70°,∵OD平分∠AOC,∴∠AOC=2∠AOD=2×70°=140°;②如图2所示,∠AOD=∠BOD﹣∠AOB=40°﹣30°=10°,∵OD平分∠AOC,∴∠AOC=2∠AOD=2×10°=20°.综上所述,∠AOC度数为140°或20°.故答案为:140°或20°16.解:∵∠AOE=∠COD∴∠AOE﹣∠DOE=∠COD﹣∠DOE,即∠AOD=∠EOC=50°∵射线OC平分∠BOE,∴∠EOE=∠COB=50°∴∠DOE=180°﹣3×50°=30°.17.解:(1)∵OD平分∠COA,OE平分∠BOC,∴,,∴;(2)设∠FOC=x,∵OE平分∠BOC,∠BOF=2∠COF,∴2x﹣22°=x+22°,解得x=44°.。
北师大版七年级数学上册第四章4.4角的比较 专项训练
北师大版七年级数学上册第四章4.4角的比较一.选择题1.已知OC是∠AOB的平分线,下列结论不正确的是()A.∠AOB=12∠BOC B.∠AOC=12∠AOBC.∠AOC=∠BOC D.∠AOB=2∠AOC2.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75° B.90° C.105° D.125°3.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°4.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A.∠AOD>∠BOC B.∠AOD<∠BOCC.∠AOD=∠BOC D.无法确定5.已知∠AOB=30°,∠BOC=50°,那么∠AOC=()A.20° B.80° C.20°或80° D.30°6.若射线OC在∠AOB的内部,则下列式子中:能判定射线OC是∠AOB的平分线的有()∠∠AOC=∠BOC,∠∠AOB=2∠AOC,∠∠BOC=∠AOB,∠∠AOC+∠BOC=∠AOB,A.1个B.2个C.3个D.4个7.如图用一副三角板可以画出15°的角,用它们还可以画出其它一些特殊角,不能利用这副三角板直接画出的角度是()A.55°B.75°C.105°D.135°8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对9.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD 等( )A.145° B.110° C.70° D.35°10.若∠A=20°18′,∠B=20°15′30〞,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠CC.∠A>∠C>∠B D.∠C>∠A>∠B二.填空题11.用一副三角板可以作出的角有(至少写出4个).12.如图,BD在∠ABC的内部,∠ABD=∠CBD,如果∠ABC=80°,则∠ABD=.13.如图,点O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,若∠COE 等于64°,则∠AOD等于______度.14.如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为∠AD平分∠BAF;∠AF平分∠DAC;∠AE平分∠DAF;∠AE平分∠BAC.15.已知∠α=37°50′,∠β=52°10′,则∠β-∠α=______.16.已知OC为∠AOB的三等分线,若∠AOB=150°,则∠AOC=.17.∠α=10.5°,∠β=10°20′,则∠α,∠β的大小关系是∠α∠β(在横线上填“>”,“<“或“=“).18.下列说法:∠连接两点间的线段叫这两点的距离;∠木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;∠若A、B、C三点在同一直线上,且AB=2CB,则C是线段AB的中点;∠若∠A=20°18′,∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.其中一定正确的是.(把你认为正确结论的序号都填上)三.解答题19.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:∠∠BOC=3∠,∠AOB=40°,∠∠BOC=°∠∠AOC=+∠∠AOC=160°∠OD平分∠AOC∠∠COD==°.20.如图所示,已知点A、O、B在同一条直线上,且OC、OE分别是∠AOD、∠BOD的角平分线,若∠BOD=72°,求∠COD和∠COE的度数.21.如图所示,OE,OD分别平分∠AOB和∠BOC,且∠AOB=90°;(1)如果∠BOC=40°,求∠EOD的度数;(2)如果∠EOD=70°,求∠BOC的度数.22.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时,试说明∠BOE=2∠COF;(2)当点C与点E,F在直线AB的两侧(如图2所示)时,(1)中结论是否仍然成立?请写出你的结论,并说明理由.23.如图∠,已知线段AB=14cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB的中点,则DE=7cm;若AC=6cm,则DE=7 cm;(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;(3)知识迁移:如图∠,已知∠AOB=130°,过角的内部任意一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.24.已知:如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角时,3∠AOC=∠BOD,求∠COD的度数;(2)若∠COD保持在(1)中的大小不变,它绕着点O顺时针旋转(OD与OB 重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)若∠COD从(1)中的位置开始,边OC、边OD分别绕着点O以每秒20°、每秒10°的速度顺时针旋转(当其中一边与OB重合时都停止旋转),OM、ON 分别平分∠BOC、∠BOD.求:∠运动多少秒后,∠COD=10°;∠运动多少秒后,∠COM=∠BON.答案提示1.A.2.B.3.C.4.C.5.C.6.C.7.A.8.B.9.B.10.A.11.15°、75°、105°、120°、135°、150°.12.20°.13.26°.14.2个.∠∠正确;15.14°20′.16.50°或100.17.>.18.∠.19.解:∠∠BOC=3∠AOB,∠AOB=40°,∠∠BOC=120°,∠∠AOC=∠AOB+∠BOC∠∠AOC=160°∠OD平分∠AOC∠∠COD=∠AOC=80°.故答案为AOB;120;∠AOB,∠BOC;∠AOC,80°.20.解:∠OC、OE分别是∠AOD、∠BOD的角平分线,∠BOD=72°,∠∠BOE=∠DOE=12∠BOD=36°,∠AOC=∠COD=12∠AOD,∠AOD=180°-∠BOD=108°,∠∠DOC=∠AOC=12×108°=54°,∠∠COE=∠COD+∠DOE=54°+36°=90°.21.解:(1)根据题意:∠OE,OD分别平分∠AOB和∠BOC,且∠AOB=90°,∠∠EOB=∠AOB=×90°=45°∠BOD=∠BOC=×40°=20°所以:∠EOD=∠EOB+∠BOD=65°;(2)根据题意:∠EOB=∠AOB=×90°=45°∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°所以:∠BOC=2∠BOD=50°.故答案为65°、50°.22.解:(1)设∠COF=x,则∠EOF=90°﹣x,∠OF平分∠AOE,∠∠AOF=∠EOF,∠∠AOC═∠AOF﹣∠COF=90°﹣2x,∠∠BOE=90°﹣∠AOC=2x=2∠COF;(2)设∠AOF=∠EOF=x,则∠AOC=90°﹣2x,∠∠COF=90°﹣x,∠∠BOE=180°﹣∠AOE=180°﹣2x=2∠COF.23.解:(1)∠AB=14cm,点C恰好是AB的中点,∠AC=BC=AB=14=7,∠点D、E分别是AC和BC的中点,∠DC=AC,CE=BC,∠DE=DC+CE=AC+BC=14=7;∠AC=6,∠BC=AB﹣AC=8∠点D、E分别是AC和BC的中点,∠DC=AC=3,CE=BC=4,∠DE=DC+CE=3+4=7;故答案为7,7;(2)DE的长不会改变.理由如下:因为点D是线段AC的中点,所以DC=AC.因为点E是线段BC的中点,所以CE=BC.所以DE=DC+CE=AC+BC=AB=14=7.所以DE的长不会改变.DE的长为7cm.(3)因为OD平分∠AOC,所以∠DOC=AOC.因为OE平分∠BOC,所以∠EOC=BOC.所以∠DOE=∠DOC+∠EOC=AOC+BOC=AOB.因为∠AOB=130°,所以∠DOE=AOB=130°=65°.所以∠DOE的度数与射线OC的位置无关.24.解:(1)∠∠AOD是直角,∠∠AOD=90°=∠BOD,且3∠AOC=∠BOD,∠∠AOC=30°,∠∠COD=∠AOD﹣∠AOC=60°;(2)(2)不会变化,理由如下:∠OE、OF分别平分∠AOC、∠BOD,∠∠COE=∠AOC,∠DOF=∠BOD,∠∠AOC+∠BOD=180°﹣∠COD,∠∠COE+∠DOF=(180°﹣∠COD)=90°﹣∠COD,∠∠EOF=∠COE+∠DOF+∠COD=90°﹣∠COD+∠COD=120°(3)∠设运动时间为t秒,∠∠COD=10°,∠20t+10°=10t+60°,或20t=10t+60°+10°,∠t=5或7,∠当运动5秒或7秒后,∠COD=10°;∠如图设运动时间为t秒,当OC在OB上方时,即0<t<7.5时,则∠BOC=150°﹣20t,∠BOD=90°﹣10t所以∠COM=∠BOC=(150°﹣20t)∠BON=∠BOD=(90°﹣10t)∠(150°﹣20t)=(90°﹣10t)解得t=6,所以6秒时∠COM=∠BON.。
七年级数学上册 4.4 角的比较同步练习1 (新版)北师大版
4.4 角的比较一、选择题1.如图1,∠AOB 是直角,∠AOC=38°,∠COD=∠COB=1:2,则∠BOD=( ) A.38° B.52° C.26° D.64°C BADOECB DOCB A DO(1) (2) (3) 2.用一副三角尺,可以拼出小于180°的角有n 个,则n 等于( ) A.4 B.6 C.11 D.13 3.已知α、β都是钝角,甲、乙、丙、丁四人计算16(α+β)的结果依次是50°,26°,72•°,90°,那么结果正确的可能是( )A.甲B.乙C.丙D.丁4.点P 在∠MAN 内部,现在四个等式:①∠PAM=∠MAP;②∠PAN=12∠A;•③∠MAP=12∠MAN,④∠MAN=2∠MAP,其中能表示AP 是角平分线的等式有( ) A.1个 B.2个 C.3个 D.4个 二、填空题5.如图2,OD,OE 分别是∠AOC 和∠BOC 的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.解:∵OD 平分∠AOC,OE•平分∠BOC(•已知)•,• ∴∠AOC=•2•∠AOD,•∠BOC=•2•∠_________( ), ∵∠AOD=40°,∠_______=25°(已知), ∴∠AOC=2×40°=80°(•等量代换). ∠BOC=2×( )°=( ), ∴∠AOB=________.6.270°=_______直角_______平角________周角.7.如图3,若∠AOC=∠DOB,则∠AOB=_______∠COD;•若∠AOB=•∠COD,•则∠AOC_____∠DOB. 8.已知∠AOB 和∠BOC 之和为180°,这两个角的平分线所成的角是_______. 三、解答题:9.如图所示,OE 平分∠BOC,OD 平分∠AOC,∠BOE=20°,∠AOD=40•°,•求∠DOE 的度数.ECBADO10.如图,点O 在直线AC 上,OD 平分∠AOB,∠EOC=2∠BOE,∠DOE=72°,•求∠EOC.ECB ADO11.如图,BO,CO 分别平分∠ABC 和∠ACB,•已知任何三角形的三个角的和都是180°,若∠A=60°,试求∠BOC 的度数.CBA2O112.如图,一副三角板的两个直角顶点重合在一起. (1)比较∠EOM 与∠FON 的大小,并说明为什么?(2)∠EON 与∠MOF 的和是多少度,为什么?FEM NO13.(1)如图,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分∠BOC,求∠MON 的度数. (2)如果(1)中的∠AOB=α,其它条件不变,求∠MON 的度数. (3)如果(1)中∠BOC=β(β为锐角),其它条件不变,求∠MON 的度数. (4)从(1)、(2)、(3)的结果中能得出什么结论?(“希望杯”试题)CB AM N O参考答案一、1.C(点拨:∠COD=∠BOD)2.C(点拨:拼出的角是15°的整数倍)3.A点拨:∵90°< <180°,90°< <180°)∴30°<16(α+β)<60°故甲正确 4.C二、5.EOC,角的平分线定义;BOE;25;50;130° 6.3;32;347.=;= 8.•直角或锐角。
北师大版七年级上册数学4.4角的比较优秀试题
4.4 角的比较一、研究题 :(10分 )1. 已知∠ AOB=90° , ∠ COD=90° , 则∠ AOD 与∠ BOC 之间有什么关系 ?二、开放题2.在 0时与:(10 分 )12 时之间 , 钟面上的时针与分针在什么时候成30°的角 ?请写出两个答案 .三、比赛题 :(10分 )3.(1) 如图 , 已知∠ AOB=90° , ∠ BOC=30° ,OM 均分∠ AOC,ON 均分∠ BOC, 求∠ MON 的度数 .(2) 假如 (1) 中的∠ AOB=α , 其余条件不变 , 求∠ MON 的度数 .(3) 假如 (1) 中的∠ BOC=β ( β 为锐角 ), 其余条件不变 , 求∠ MON 的度数 .(4) 从 (1) 、 (2) 、(3) 的结果中能得出什么结论 ?AMOBNC四、兴趣题 :(10分 )4. 在抗日战争期间 , 一组游击队员受命把 A 村的一批文物送往一个安全地带 , 在 A 村的南偏东 50°距离 3 千米处有一 B 村 , 他们从 A 村出发 , 以北偏东 80°方向行军 , 不知道走了多 远此后 , 他们发现 B 村出现了烟火 , 于是决定先把文物就地埋藏起来 , 而后调转方向走了7 千米的行程 , 直接赶到 B 村消灭了仇敌 , 结束战斗后 , 这组游击队员应到哪里去取文物呢?若是你在场 , 凭以上信息 , 你能预计文物藏在什么地方吗?答案 :一、 1. 解 : 如答图 (1),∠ AOD+∠ COB=∠AOC+∠ COB+∠ BOD+∠ COB=∠AOB+∠ COD=180° .如图 (2), ∠ AOD+∠ BOC=360° - ∠ AOB-∠ COD=180° . 如图 (3), ∠ AOD=∠ BOC.如图 (4), ∠ AOD=∠ BOC.BB CCDAO AO D(1)(2)BB DDCAAOO(3)C(4)二、 2.1 时和 11 时三、 3.(1) 解 : ∵ OM 均分∠ AOC,DN 均分∠ BOC,∠ AOB=90°,1 ∠ AOC,1∴∠ MOC=∠ NOC= ∠ BOC,22∴∠ MON=∠ MOC-∠NOC= 1 ∠ AOC- 1∠ BOC22= 1( ∠ AOC-∠ BOC)=1∠ AOB= 1×90° =45°22 2(2) 当∠ AOC=α, 其余条件不变时 , ∠ MON= 1 ∠ AOB= ;2 2 (3)当∠ BOC=β, 其余条件不变时 , ∠ MON= 1∠ AOB=1× 90° =45° 22(4)剖析 (1) 、(2) 、(3) 的结果和 (1) 的解答过程能够看出: ∠ MON 的大小总等于∠ AOB 的一半 , 而与锐角∠ BOC 的大小变化没关 . 四、 4. 解 : 由题意作答图 .作法以下 :(1) 在平面上任找一点为 A( 村 )(2) 作出 A 村的南偏东 50°的方向线 AM,在 AM 上截取 AB=3cm(以 1cm 表示 1 千米 ) (3) 作出 A 村的北偏东 80°的方向线 AN(4)以 B 点为圆心 , 以 7cm 为半径作圆弧交 AN 于 C.(5) 连接 BC,量出 C 点在 B 点处的方向为北偏东 62°,BC=7cm, 则从 B 处以北偏东 62°的方向出发走 7 千米抵达 C 处, 则 C 处邻近就为藏文物的地方 .北CN80西东A 5062 7cm3cmB南 M。
七年级数学上册第四章基本平面图形44角的比较练习(新版)北师大版
角的比较1.在∠AOB内部任取一点C,作射线OC,则一定存在( )A.∠AOB>∠AOCB.∠AOC=∠BOCC.∠BOC>∠AOCD.∠AOC>∠BOC2.用“<”“=”或“>”填空:(1)若∠α=∠β,∠β=∠γ,则∠α____∠γ;(2)若∠1+∠2=70°,∠3+∠2=100°,则∠1____∠3.3.比较两个角的大小,有以下两种方法(规则):(1)用量角器度量两个角的大小,用度数表示,则角度大的角大;(2)构造图形,如果一个角包含(或覆盖)另一个角,则这个角大。
对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小。
4.把一副三角尺如图4-4-1所示拼在一起.(1)写出图中∠A,∠B,∠ACB,∠D,∠AED的度数;(2)用“<”号将上述各角连接起来。
图4-4-1图4-4-35.把两块三角板按如图4-4-3所示那样拼在一起,则∠ABC等于。
6.借助一副三角尺,你能画出下面哪个度数的角( )A.65° B.75° C.85° D.95°7.如图4-4-2,∠AOD-∠AOC=___________。
图4-4-28.如图,下列条件中不能确定OC 平分∠AOB 的是( )A .∠AOC =∠BOCB .∠AOC =12∠AOBC .∠AOB =2∠BOCD .∠AOC +∠BOC =∠AOB9.如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是( )A .20° B.25°C .30° D.70°10.如图所示,已知∠AOC =∠COD =∠BOD ,若∠COD =14°34′,则∠AOB 的度数是( )A .28°68′ B.43°102′C .43°2′D .43°42′11.如图,∠ABC=90°,则∠DBE 的度数是__________.12.如图,OB 是∠AOC 的平分线,∠BOC =30°,∠COD =40°,求∠AOD 的度数。
【能力培优】七年级数学上册 4.4 角的比较试题 (新版)北师大版
4.4 角的比较专题一角的比较与运算、角平分线的定义1.若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3B.∠2>∠1>∠3C.∠1>∠3>∠2D.∠3>∠1>∠22.已知点P和∠MAN,现有四个等式:①∠PAM=∠NAP;②∠PAN=∠MAN;③∠MAP=∠MAN;④∠MAN=2∠MAP.其中一定能推出AP是角平分线的等式有()A.1个 B.2个 C.3个 D.4个3.如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于()A.B.45°﹣C.45°﹣αD.90°﹣α4.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°5.如图,∠ABC=90°,则∠DBE的度数是.6.已知∠AOB=40°,过点O引射线OC,若∠AOC∶∠COB=2∶3,且OD平分∠AOB,则∠COD=.7.如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系.8.如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这幅三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.状元笔记:【知识要点】1.比较角的大小.2.角的分类及角的和差倍分.3.角平分线的概念.【温馨提示】根据角平分线定义得出所求角与已知角的关系转化求解,根据题意画出图形是解题的关键.参考答案:1.A2.A3.B 解析:∵∠AOC=90°,∠COB=α,∴∠AOB=90°+α.∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+,∠COD=∠AOC﹣∠AOD=90°﹣(45°+)=45°﹣.4.C 解析:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.5.50°解析:根据图形,易得∠DBE=∠ABC﹣∠ABE﹣∠COD=90°﹣30°﹣10°=50°.6.4°或100°解析:如图(1),射线OC在∠AOB的内部,图(2)射线OC在∠AOB的外部.(1)设∠AOC、∠COB的度数分别为2x、3x,则2x+3x=40°,∴x=8°,∠AOC=2x=16°,∠AOD=×40°=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.(2)设∠AOC、∠COB的度数分别为2x、3x,则∠AOB=3x﹣2x=x=40°,∴∠AOC=2x=80°,∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.7.解:由题意知,∠C=180°﹣∠CAD﹣∠CDA,∠B=180°﹣∠DAB﹣∠ADB,∵AB>AC,AD平分∠BAC,且CD=BD,∴∠CAD=∠BAD,∠CDB<∠ADB,∴∠C>∠B.8.解:(1)①相等.理由:∵∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,∴∠AOD和∠BOC相等.②∠AOC+∠BOD=180°.理由:∵∠AOC+90°+∠BOD+90°=360°,∴∠AOC+∠BOD=180°;(2)①相等.理由:∵∠AOD=90°﹣∠BOD,∠BOC=90°﹣∠BOD,∴∠AOD和∠BOC相等.②成立.理由:∵∠AOC=90°+90°﹣∠BOD,∴∠A OC+∠BOD=180°.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
_七年级数学上册4.4角的比较练习试题(新版)北师大版【含答案】
4.4角的比较一、填空 :1. 如图 1, ∠ AOB_____∠AOC,∠ AOB_______∠ BOC(填 > ,=,<);用量角器胸怀∠ BOC=____° ,∠ AOC=______° , ∠ AOC∠ BOC.B DC A O CC B DOBO A A(3)(1)(2)2. 如图 2, ∠ AOC=______+_____=______-______; ∠ BOC=______-______= ___-_______.3.OC 是∠ AOB内部的一条射线, 若∠ AOC=1________, 则 OC均分∠ AOB;若 OC 是∠ AOB的角平2分线 , 则 _________=2∠ AOC.二、选择:4.以下说法错误的是 ( )A. 角的大小与角的边画出部分的长短没相关系;B. 角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D. 若∠ A+∠B>∠ C, 那么∠ A 必定大于∠ C。
5.用一副三角板不可以画出 ( )A.75°角B.135°角C.160°角D.105°角6. 如图 3, 若∠ AOC=∠ BOD,那么∠ AOD与∠ BOC的关系是 ( )A.∠ AOD>∠ BOCB.∠ AOD<∠ BOC;C.∠ AOD=∠ BOCD.没法确立7. 假如∠ 1- ∠ 2=∠ 3, 且∠ 4+∠2=∠ 1, 那么∠ 3 和∠ 4 间的关系是 ( )A.∠ 3>∠4B.∠ 3=∠4;C.∠ 3<∠ 4D.不确立8. OC是从∠ AOB的极点 O引出的一条射线, 若∠ AOB=90° , ∠ AOB=2∠ BOC, 求∠ AOC的度数 .9.如图 , 把∠ AOB绕着 O点按逆时针方向旋转一个角度 , 得∠ A′ OB′ , 指出图中全部相等的角 , 并简要说明原因 .B'BO A'A10. 如图 ,BD 均分∠ ABC,BE分∠ ABC分 2:5 两部分 , ∠ DBE=21° , 求∠ ABC的度数 .DEC A B11.如图 , 已知∠α、∠β , 画一个角∠γ,使∠ γ =3∠ β - 1∠ α .212. 如图 ,A 、B 两地隔着湖水 , 从 C 地测得 CA=50m,CB=60m,∠ ACB=145° , 用 1 厘米代表10 米( 就是 1:1000 的比率尺 ) 画出如图的图形. 量出 AB 的长 ( 精准到 1 毫米 ),再换算出A、B 间的实质距离.ABC13.如图 , ∠AOB是平角 ,OD、OC、OE是三条射线 ,OD 是∠ AOC的均分线 , 请你增补一个条件 ,使∠ DOE=90° , 并说明你的原因.CD EABO答案 :1.略。
北师大版七年级上册数学 4.4角的比较 同步测试(含解析)
4.4角的比较同步测试一.选择题(共10小题)1.如图,OC是∠AOB的平分线,∠BOD=∠DOC,∠BOD=18°,则∠AOD的度数为()A.72°B.80°C.90°D.108°2.已知点O是直线AB上一点,∠AOC=50°,OD平分∠AOC,∠BOE=90°,下列结果,不正确的是()A.∠BOC=130°B.∠AOD=25°C.∠BOD=155°D.∠COE=45°3.一个钝角减去一个锐角所得的差是()A.直角B.锐角C.钝角D.以上三种都有可能4.如图,带有弧线的角是用一副三角板拼成的,这个角的度数为()A.60°B.15°C.45°D.105°5.如图,∠AOB是直角,OD是∠AOB内的一条射线,OE平分∠BOD,若∠BOE=23°,则∠AOD的度数是()A.46°B.44°C.54°D.67°6.如图,∠AOC=∠BOD=80°,如果∠AOD=138°,那么∠BOC等于()A.22°B.32°C.42°D.52°7.已知如图,∠AOB=100°,∠BOC=30°,小明想过点O引一条射线OD,使∠AOD:∠BOD=1:3(∠AOD与∠BOD都小于平角),那么∠COD的度数是()A.45°B.45°或105°C.120°D.45°或120°8.如图,∠AOC和∠BOD都是直角,∠BOC=60°,则∠AOD=()A.30°B.60°C.90°D.120°9.如图,O是直线AB上一点,∠AOC=46°,OD是∠COB的角平分线,则∠DOB等于()A.46°B.60°C.67°D.76°10.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC+∠COB=∠AOB D.∠AOC=∠AOB二.填空题(共5小题)11.已知两个角分别为35°和145°,且这两个有一条公共边,则这两个角的平分线所成的角为.12.平面内,已知∠AOB=90°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF=.13.如图,点O是直线AB上一点,OC平分∠BOD,∠BOC=51°24',则∠AOD=.14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.15.如图,以O点为观测点,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC =∠AOB,则OC的方向是.三.解答题(共2小题)16.如图,O为顶点,∠AOB=60°,OC平分∠AOD,∠COD=5∠BOC.(1)在图中,以O为顶点的角有个;(2)计算∠AOD的度数.17.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.参考答案1.解:设∠DOB=k,∵∠BOD=∠DOC,∴∠BOC=2k,∵OC是∠AOB的平分线,∴∠COA=∠BOC=2k,∴∠AOD=∠DOB+∠BOC+∠COA=5k,∵∠BOD=18°,∴∠AOD=5×18°=90°,故选:C.2.解:∵∠AOC=50°,∴∠BOC=180°﹣∠AOC=130°,A选项正确;∵OD平分∠AOC,∴∠AOD=∠AOC=×50°=25°,B选项正确;∴∠BOD=180°﹣∠AOD=155°,C选项正确;∵∠BOE=90°,∠AOC=50°,∴∠COE=180°﹣∠AOC﹣∠BOE=40°,故D选项错误;故选:D.3.解:一个钝角减去一个锐角所得的差可能是直角、也可能是锐角或钝角.故选:D.4.解:这个角的度数=60°﹣45°=15°,故选:B.5.解:∵OE平分∠BOD,∠BOE=23°,∴∠BOD=23°×2=46°;∵∠AOB是直角,∴∠AOD=90°﹣46°=44°.故选:B.6.解:∵∠AOC=80°,∠AOD=138°,∴∠COD=∠AOD﹣∠AOC=58°,∵∠BOD=80°,∴∠BOC=∠BOD﹣∠COD=80°﹣58°=22°.故选:A.7.解:当OD在∠AOB的内部时,由∠AOD:∠BOD=1:3可得∠AOD=,∴∠COD=∠AOB﹣∠BOC﹣∠AOD=100°﹣30°﹣25°=45°;当OD在∠AOB的外部时,由∠AOD:∠BOD=1:3可得∠AOD=,∴∠COD=∠BOD﹣∠BOC=150°﹣30°=120°.∴∠COD的度数是45°或120°.故选:D.8.解:∵∠AOC是直角,∴∠AOD+∠DOC=90°,∵∠BOD是直角,∴∠BOC+∠DOC=90°,∴∠AOD=∠BOC=60°,故选:B.9.解:∵∠AOC=46°,∴∠BOC=180°﹣46°=134°,∵OD是∠COB的角平分线,∴∠DOB=∠COB=×134°=67°,故选:C.10.解:A.∵∠AOC=∠BOC∴OC平分∠AOB.所以A选项正确,不符合题意;B.∵∠AOB=2∠BOC∴OC平分∠AOB.所以B选项正确,不符合题意;C.∵∠AOC+∠COB=∠AOB∴OC不一定平分∠AOB.所以C选项错误,符合题意;D.∵∠AOC=∠AOB∴OC平分∠AOB.所以D选项正确,不符合题意.故选:C.11.解:因为35°+145°=180°,且这两个有一条公共边,所以互补的两个角有一条公共边,当两个角有一个公共边,另一边在“公共边”的两侧时,则这两个角的平分线所成的角为=90°;当两个角有一个公共边,另一边在“公共边”的同侧时,则这两个角的平分线所成的角为=55°.故答案为:90°或55°.12.解:当OC在∠AOB内时,如图1,∠EOF=∠BOE﹣∠BOF=;当OC在∠AOB外时,如图2,∠EOF=∠BOE+∠BOF=,故答案为:35°或55°.13.解:∵OC平分∠BOD,∠BOC=51°24',∴∠BOD=2∠BOC=2×51°24′=102°48′,∴∠AOD=180°﹣∠BOD=180°﹣102°48′=77°12′,故答案为:77°12′.14.解:(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC=,又∵∠AOB=70°,∴∠AOC==35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.15.解:∵OA的方向是北偏东15°,OB的方向是北偏西40°,∴∠AOB=40°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,∵15°+55°=70°,∴OC的方向是北偏东70°.故答案为:北偏东70°.16.解:(1)以O为顶点的角有∠AOB、∠AOC、∠AOD、∠BOC、∠BOD、∠COD共6个.故答案为:6;(2)设∠BOC的度数为x,则∠COD=5x,因为OC平分∠AOD,∠AOB=60°,所以∠COD=∠AOB+∠BOC,即5x=60+x,解得x=15,所以∠BOC=15°,∠COD=75°,所以∠AOD=2×75°=150°,所以∠AOD的度数为150度.17.解:设∠ABE=2x°,得2x+21=5x﹣21,解得x=14,∴∠ABC=14°×7=98°.∴∠ABC的度数是98°.。
初中数学北师大版七年级上册第四章4角的比较练习题-普通用卷
初中数学北师大版七年级上册第四章4角的比较练习题一、选择题1.如图,∠AOC和∠BOD都是直角,∠BOC=60°,则∠AOD=()A. 30°B. 60°C. 90°D. 120°2.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,若∠AOC=120°,则∠BOC等于().A. 40°B. 50°C. 30°D. 20°∠AOB,射线OD平分∠BOC,则∠COD的度数为() 3.已知∠AOB=60°,∠AOC=13A. 20°B. 40°C. 20°或30°D. 20°或40°4.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A. ∠1<∠2B. ∠1=∠2C. ∠1>∠2D. 无法比较5.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A. 30°B. 45°C. 55°D. 60°6.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON的大小是().A. 45°∠AOCB. 45°+12∠AOCC. 60°−12∠AOCD. 90°−127.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠A=60°,则∠BFC=()A. 118°B. 119°C. 120°D. 121°8.如图,是直角顶点重合的一副三角尺,若∠BCD=30°,下列结论错误的是()A. ∠ACD=120°B. ∠ACD=∠BCEC. ∠ACE=120°D. ∠ACE−∠BCD=120°9.如图,在此图中小于平角的角的个数是()A. 9B. 10C. 11D. 1210.锐角加上锐角的和是()A. 锐角B. 直角C. 钝角D. 以上三种都有可能二、填空题11.如果∠AOB=55°,过O点有一条射线OC,使∠AOC=15°,那么∠BOC的度数是______.12.如图所示的网格式正方形网格,∠ABC______∠DEF(填“>”,“=”或“<”)13.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为______ .14.已知两个角分别为35°和145°,且这两个有一条公共边,则这两个角的平分线所成的角为______.三、解答题15.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.16.若∠α的度数是∠β的度数的k倍,则规定∠α是∠β的k倍角.(1)若∠M=21°17′,则∠M的5倍角的度数为______;(2)如图①,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=∠COE,请直接写出图中∠AOB的所有3倍角;(3)如图②,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互为补角,求∠AOD的度数.17.如图1,已知∠AOB的内部有一条射线OC,OM、ON分别平分∠AOC和∠BOC.(1)若∠AOB=120°,∠BOC=40°,求∠MON的度数.(2)若取掉(1)中的条件∠BOC=40°,只保留∠AOB=120°,求∠MON的度数.(3)若将∠AOB内部的射线OC旋转到∠AOB的外部,如图2,∠AOB=120°,求∠MON的度数,并请用一句话或一个式子概括你发现的∠MON与∠AOB的数量关系.答案和解析1.【答案】B【解析】解:∵∠AOC是直角,∴∠AOD+∠DOC=90°,∵∠BOD是直角,∴∠BOC+∠DOC=90°,∴∠AOD=∠BOC=60°,故选:B.根据同角的余角相等解答.本题考查的是角的计算、余角的概念,掌握角的和差计算、余角的概念是解题的关键.2.【答案】C【解析】【分析】本题主要考查了角的计算,由图得出∠BOC=∠AOC−∠AOB,∠AOB=90°即可求出.【解答】解:由图可知,∠AOB=90°,∵∠AOC=120°∴∠BOC=∠AOC−∠AOB=120°−90°=30°,故选C.3.【答案】D【解析】解:当OC在∠AOB内时,如图1,×60°=40°,则∠BOC=∠AOB−∠AOC=60°−13∴∠COD=12∠BOC=20°;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60°+13×60°=80°,∴∠COD=12∠BOC=40°.综上,∠COD=20°或40°.故选:D.分两种情况(OC在∠AOB内或外),分别首先求得∠BOC的度数,然后根据角平分线的定义求得∠COD的度数.本题考查了角平分线的定义,角的和差,正确求得∠BOC的度数是关键,因考虑不周,容易漏掉一种情况的解.4.【答案】C【解析】【分析】本题考查了角的大小比较和度分秒的换算,在比较角的大小时有时可把“分”化为“度”来进行比较.根据1°等于60′,把分化成度,比较大小可得答案.【解答】解:∵37°36′=37.6°,37.6°>37.36°,∴∠1>∠2.故选C.5.【答案】B【解析】解:∵BM为∠ABC的平分线,∴∠CBM=12∠ABC=12×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=12∠EBC=12×(60°+90°)=75°,∴∠MBN=∠CBN−∠CBM=75°−30°=45°.故选:B.由角平分线的定义可知∠CBM=12∠ABC=12×60°=30°,∠CBN=12∠EBC=12×(60°+90°)=75°,再利用角的和差关系计算可得结果.本题主要考查了角平分线的定义,利用角平分线的定义计算角的度数是解答此题的关键.6.【答案】A【解析】【分析】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=12∠BOC,∠NOC=12∠AOC,∴∠MON=∠MOC−∠NOC=12(∠BOC−∠AOC),=12(∠BOA+∠AOC−∠AOC),=12∠BOA,=45°.故选A.7.【答案】C【解析】【分析】本题主要考查了三角形内角和定理和角平分线的定义,综合运用三角形内角和定理和角平分线的定义是解答此题的关键.由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的定义得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°−60°=120°,∵BE,CD是∠ABC、∠ACB的平分线,∴∠CBE=12∠ABC,∠BCD=12∠BCA,∴∠CBE+∠BCD=12(∠ABC+∠BCA)=60°,∴∠BFC=180°−60°=120°.故选C.8.【答案】C【解析】解:A、∵∠ACB=90°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=120°,故选项A与要求不符;B、∵∠DCE=90°,∠BCD=30°,∴∠BCE=∠DCE+∠BCD=120°,∴∠ACD=∠BCE,故选项B与要求不符;C、∠ACE=360°−90°−90°−30°=150°,故选项C错误,与要求相符;D、∵∠ACE=360°−90°−90°−30°=150°,∴∠ACE−∠BCD=150°−30°=120°,故选项D与要求不符.故选:C.依据题意题意可知∠ACB=∠DCE=90°,∠BCD=30°,然后依据图形间角的和差关系求解即可.本题主要考查的是角的计算,掌握图形间角的和差关系是解题的关键.9.【答案】C【解析】【分析】根据角的定义,找出图中小于平角的角.除了注意角要小于平角外,还要注意同一顶点处的角要全部找出来.【解答】解:由图可知:∠CAB、∠CAE、∠BAE、∠AEB、∠CED、∠D、∠DCE、∠DCA、∠ECA、∠EBA、∠ABC小于平角,共11个.故选:C.10.【答案】D【解析】解:设α、β是两个锐角,那么0°<α<90°,0°<β<90°,∴0°<α+β<180°,而0°~180°之间既有锐角、也有直角、还有钝角.故选:D.先设α、β是两个锐角,根据锐角定义可得0°<α<90°,0°<β<90°,再利用不等式性质1,可得0°<α+β<180°,而0°~180°之间既有锐角、也有直角、还有钝角.所以三种可能都有.本题考查了锐角定义、角的计算、不等式的性质.11.【答案】40°或70°【解析】解:当OC在∠AOB的内部时,如图1,∠BOC=∠AOB−∠AOC=55°−15°=40°;当OC在∠AOB的外部时,如图2,∠BOC=∠AOB+∠AOC=55°+15°=70°;故答案为:40°或70°.分两种情况进行解答(1)OC在∠AOB的内部,(2)OC在∠AOB的外部,分别对应两个角的和或差.考查角的计算,分情况讨论是解答此类问题常用的方法.12.【答案】>【解析】解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.依据图形即可得到∠ABC=45°,∠DEF<45°,进而得出两个角的大小关系.本题主要考查了角的大小比较,比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.13.【答案】20°【解析】解:∵∠BOD=90°−∠AOB=90°−30°=60°∠EOC=90°−∠EOF=90°−40°=50°又∵∠1=∠BOD+∠EOC−∠BOE∴∠1=60°+50°−90°=20°故答案是:20°.根据∠1=∠BOD+EOC−∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.本题主要考查了角度的计算,正确理解∠1=∠BOD+EOC−∠BOE这一关系是解决本题的关键.14.【答案】90°或55°【解析】解:因为35°+145°=180°,且这两个有一条公共边,所以互补的两个角有一条公共边,当两个角有一个公共边,另一边在“公共边”的两侧时,则这两个角的平分线所成的角=90°;为180°2当两个角有一个公共边,另一边在“公共边”的同侧时,则这两个角的平分线所成的角=55°.为145°−35°2故答案为:90°或55°.根据互补的定义与角平分线的定义,分析计算可得答案.本题考查了互补的定义与角平分线的定义.解题的关键是掌握角平分线的定义、互补的定义及灵活运用.15.【答案】解:(1)因为∠AOC=50°,OD平分∠AOC,∠AOC=25°,∠BOC=180°−∠AOC=130°,所以∠DOC=12所以∠BOD=∠DOC+∠BOC=155°;(2)OE平分∠BOC.理由如下:∵∠DOE=90°,∠DOC=25°,∴∠COE=90°−25°=65°,∵∠BOC=130°,∴∠BOE=∠BOC−∠COE=130°−65°=65°,∴∠COE=∠BOE,∴OE平分∠BOC.【解析】(1)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(2)根据∠DOC与∠COE互余即可得出∠COE的度数,由(1)可知∠BOC=130°,那么∠BOE=∠BOC−∠COE=65°,进而可得出结论,从而求解.本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.16.【答案】106°25′【解析】解:(1)21°17′×5=106°25′;故答案为:106°25′;(2)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOC=∠COE,∴∠AOB=∠BOC=∠COD=∠DOE,∴∠AOD=∠BOE=3∠AOB.故∠AOB的3倍角有:∠AOD,∠BOE;(3)设∠AOB=x,则∠BOC=4x,∠COD=3x.由题意,得5x+7x=180°,解得x=15°,所以∠AOD=8x=120°.(1)根据题意列式计算即可;(2)根据角平分线的定义解答即可;(3)设∠AOB=x,则∠BOC=4x,∠COD=3x,根据补角的定义列方程解答即可.此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为180°为互补.17.【答案】解:(1)∵∠AOB=120°,∠BOC=40°,∴∠AOC=∠AOB−∠BOC=120°−40°=80°,∵OM、ON分别平分∠AOC和∠BOC,∴∠MOC=12∠AOC=12×80°=40°,∠NOC=12∠BOC=12×40°=20°,∴∠MON=∠MOC+∠NOC=40°+20°=60°;(2)∵OM、ON分别平分∠AOC和∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∵∠AOC+∠BOC=∠AOB,∠AOB=120°,∴∠MON=∠MOC+∠NOC=12∠AOC+12∠BOC=12∠AOB=12×120°=60°;(3)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,所以∠MON=∠COM−∠CON=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×120°=60°,∠MON=12∠AOB.【解析】(1)先利用角平分线的性质得到∠MOC=12∠AOC,∠NOC=12∠BOC,再利用∠MON=∠COM+∠CON计算;(2)根据角平分线的性质解答即可;(3)先利用角平分线的性质得到∠CON=12∠AOC,∠COM=12∠BOC,再利用∠MON=∠COM−∠CON计算,即可解答.此题考查了角的计算,以及角平分线,解决本题的关键是利用角的和与差.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的比较
班级:___________姓名:___________得分:__________
一、选择题(每小题8分,共40分)
1. 如图,∠AOC=90°,ON是锐角∠COD的平分线,OM是∠AOD•的平分线,•则∠MON的度数是()
(1题图)(2题图)
A.90°
B.45°
C.60°
D.80
2. 把两块三角板按如图所示那样拼在一起,则∠ABC等于()
A.70° B.90° C.105°D.120°
3. 如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若
∠AOM=35°,则∠CON的度数为()
A.35° B.45° C.55° D.65°
4. 如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()
A.100°B.110°C.115°D.120°
5. 如图,直线AB,CD相交于点O,OA平分∠COE,∠COE=70°,则∠BOD的度数是()A.20° B.30° C.35° D.40°
二、填空题(每小题8分,共40分)
6. 如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=______度.
(6题图)(7题图)(8题图)(9题图)
7. 如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC=______.
8. 如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF 的度数为______.
9. 如图,OC是∠AOD的平分线,OB是∠AOC的平分线,若∠COD=53°18′,则∠AOD=______,∠BOC=______.
10. 已知∠AOB=45°,从点O引一条射线OC,使∠AOC:∠AOB=4:3,则∠BOC=______.
三、解答题(共20分)
11. 已知∠AOB=90°,∠COD=30°.
(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是_______;
如图2,若OB恰好平分∠COD,则∠AOC的度数是_________;
(2)当∠COD从图1的位置开始,绕点O逆时针方向旋转180°,作射线OM平分∠AOC,射线ON平分∠BOD,在旋转过程中,发现∠MON的度数保持不变.
①∠MON的度数是____;
②请选择下列图3、图4、图5、图6四种情况中的两种予以证明.
12.如图,已知OM、ON分别是∠AOB、∠BOC的平分线,射线OP在∠AOC的内部,若要使∠AOP与∠MON相等,则OP应满足什么条件?为什么?
参考答案
一、选择题
1.B
【解析】∵ON是锐角∠COD的角平分线,
∴∠CON=∠COD,
∵ON是锐角∠COD的角平分线,
∴∠AOM=∠AOD=(∠AOC+∠COD)=45°+∠CON,
∴∠COM=∠AOC-∠AOM=90°-(45°+∠CON)=45°-∠CON,
∴∠MON=∠COM+∠CON=45°-∠CON+∠CON=45°.
故选B
2.D
【解析】左边三角形的角为30°,右边三角形的角为90°,拼在一起是120°故选D
3. C
【解析】∵射线OM平分∠AOC,∠AOM=35°,
∴∠MOC=35°,
∵ON⊥OM,
∴∠MON=90°,
∴∠CON=∠MON-∠MOC=90°-35°=55°.
故选:C.
4.C
【解析】在△ABC中,
∵∠ABC=80°,BP平分∠ABC,
∴∠CBP=∠ABC=40°.
∵∠ACB=50°,CP平分∠ACB,
∴∠BCP=∠ACB=25°.
在△BCP中∠BPC=180°-(∠CBP+∠BCP)=115°.故选C
5.C
【解析】∵∠COE=70°且OA平分∠COE,
∴∠COA=∠AOE=35°
又∠COA=∠BOD
∴∠COA=∠BOD=35°.
故选C.
二、填空题
6.34°
【解析】∠AOB=∠COD=90°,∠AOD=146°
则∠BOC=360°-2×90°-146°=34°
则∠BOC=34度.
7.120°
【解析】
∵∠AOB=90°,OM平分∠AOB,
∴∠MOB=45°,
∵∠MON=60°,ON平分∠BOC,
∴∠BON=15°,
∴∠NOC=15°,
∴∠AOC=∠AOB+∠BOC=90°+30°=120°.
故答案为:120°
8.90°
【解析】
∵∠DOE=∠BOE,∠BOE=28°,
∴∠DOB=2∠BOE=56°;
又∵∠AOD+∠BOD=180°,
∴∠AOD=124°;
∵OF平分∠AOD,
∴∠AOF=∠DOF= ∠AOD=62°,
∴∠EOF=∠DOF+∠DOE=62°+28°=90°.
故答案是:90°
9. 106°36′;26°39′
【解析】∵OC是∠AOD的平分线,
∴∠AOD=2∠COD,∠AOC=∠COD,
∵∠COD=53°18′,
∴∠AOD=2×53°18′=106°36′,∠AOC=53°18′,
∵OB是∠AOC的平分线,
∴∠BOC= ∠AOC= ×53°18′=26°39′,
故答案为:106°36′;26°39′.
10. 105°或15°
【解析】∵∠AOB=45°,∠AOC:∠AOB=4:3,
∴∠AOC=60°
当OC在OA的外侧时,∠BOC=∠AOC+∠AOB=60°+30°=105°;当OC在OB的外侧,∠BOC=∠AOC-∠AOB=60°-45°=15°.
故答案为:105°或15°.
三、解答题
11. 解:(1)∵点O、A、C在同一条直线上∴∠BOD=∠AOB-∠COD=90°-30°=60°
∵OB平分∠COD
∴∠COB=∠COD=×30°=15°
∴∠AOC=∠AOB-∠COB=90°-15°=75°
(2)①∠MON=60°
②图4证明:∵OM平分∠AOC,ON平分∠BOD ∴∠MOC=∠AOC,∠BON=∠BOD
∵∠AOD=∠AOB+∠COD-∠BOC
=∠AOC+∠BOC+∠BOD
∴∠AOC+∠BOD+2∠BOC=∠AOB+∠COD
=90°+30°=120°
∴∠MON=∠MOC+∠COB+∠BON
=∠AOC+∠BOC+∠BOD=×120°=60°
图5证明:∵OM平分∠AOC,ON平分∠BOD ∴∠MOC=∠AOC,∠BON=∠BOD
∵∠AOD=∠AOB+∠COD+∠BOC
=∠AOC+∠BOD-∠BOC
∴∠AOC+∠BOD-2∠BOC=∠AOB+∠COD
=90°+30°=120°
∴∠MON=∠MOC+∠CON
=∠MOC+∠BON-∠BOC
=∠AOC+∠BOD-∠BOC
=×120°
=60°.
12.
解:OP应满足的条件:OP是∠AOC的角平分线,因为OM、ON分别是∠AOB、∠BOC的平分线,所以∠AOM=∠BOM,∠BON=∠CON
又∠AOP=∠AOM+∠MOP,∠MON=∠BOM+∠BOIN,
当∠AOP=∠MON时,则有∠MOP=∠BON=∠NOC,
所以∠MOP+∠POB=∠BON+∠POB,即∠MOB=∠PON,
所以∠AOM=∠MOB=∠PON,又因为∠AOM+∠MOP=∠PON+∠NOC,
所以∠AOP=∠POC,即OP平分∠AOC。