泰州市八年级上数学第二次月考试卷
八年级(下)第二次月考数学试卷
八年级(下)第二次月考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(3分)下列变形中不正确的是()A.由a>b得b<aB.若a>b,则ac2>bc2(c为有理数)C.由﹣a>﹣b得b>aD.由﹣x<y得x>﹣2y3.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后点A的对应点的坐标为(﹣2,5),则点B的对应点的坐标为()A.(﹣1,3)B.(﹣1,﹣1)C.(5,3)D.(5,﹣1)4.(3分)若关于x的分式方程有增根,则m的值为()A.1B.2C.﹣1D.﹣25.(3分)如图,直线y=x+2与直线y=ax+4相交于点P(m,3),则关于x的不等式x+2<ax+4的解集为()A.x>1B.x<1C.x>3D.x<36.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64二、填空题(每题3分,满分18分,将答案填在答题纸上)7.(3分)要使分式无意义,则x的取值范围是.8.(3分)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.9.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为.10.(3分)已知m+n=3,则m2﹣n2+6n=.11.(3分)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.12.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)因式分解:m3﹣m;(2)解不等式组:.14.(6分)先化简,再从﹣2<x≤2中选一个合适的整数作为x的值代入求值.15.(6分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD 求证:(1)△ABC≌△BAD;(2)OA=OB.16.(6分)小明解方程﹣=1的过程如下:解:方程两边乘x,得1﹣(x﹣2)=1.①去括号,得1﹣x﹣2=1.②移项,得﹣x=1﹣1+2.③合并同类项,得﹣x=2.④解得x=﹣2.⑤所以,原分式方程的解为x=﹣2.⑥请指出他解答过程中的错误,并写出正确的解答过程.17.(6分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC关于点C成中心对称的格点三角形A1B1C;(2)将图2中的△ABC绕着点C按逆时针方向旋转90°,画出经旋转后的三角形A2B2C.四、(本大题共3小题,每小题8分,共24分)18.(8分)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:这样的分式就是假分式;再如:这样的分式就是真分式,假分数可以化成1+(即1)带分数的形式,类似的,假分式也可以化为带分式.如:.解决下列问题:(1)分式是(填“真分式”或“假分式”);假分式可化为带分式形式;(2)如果分式的值为整数,求满足条件的整数x的值;(3)若分式的值为m,则m的取值范围是(直接写出答案).19.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.20.(8分)阅读材料:根据多项式乘多项式法则,我们很容易计算:(x+2)(x+3)=x2+5x+6;(x﹣1)(x+3)=x2+2x﹣3.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+5x+6=(x+2)(x+3);x2+2x﹣3=(x﹣1)(x+3).通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子x2+2x ﹣3分解因式.这个式子的二次项系数是1=1×1,常数项﹣3=(﹣1)×3,一次项系数2=(﹣1)+3,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:x2+2x﹣3=(x﹣1)(x+3).利用这种方法,将下列多项式分解因式:(1)x2+7x+10=;(2)x2﹣2x﹣3=;(3)y2﹣7y+12=;(4)x2+7x﹣18=.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)求证:△BOC≌△ADC;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?22.(9分)疫情复学返校之前,为方便快速筛查体温异常学生,某校准备购买A,B两种型号的额温枪,已知每支A型额温枪比每支B型额温枪贵50元,买1支A型额温枪和2支B型额温枪共500元.(1)每支A型、B型额温枪的价格各是多少元?(2)该校欲购进A,B型额温枪共100支,且A型额温枪的数量不少于B型额温枪的数量,购买的总金额不超过17600元,则共有哪几种购买方案?(3)在(2)的条件下,若购买A型额温枪m支,写出购买总费用w(元)与m的表达式,并求出w的最小值.六.(本大题共12分)23.(12分)如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a、b满足|a﹣2|+=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=°;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且P A>AE,探究∠APC与∠PCB 的数量关系?写出你的结论并证明.。
北师大版八年级(上)数学第二次月考(12月)试卷(4)
北师大版八年级(上)数学第二次月考(12月)试卷(4)一.选择题(共6小题,满分12分,每小题2分)1.(2分)实数3的平方根是()A.B.C.D.92.(2分)用四舍五入法,865600精确到千位的近似值是()A.8.65×105B.8.66×105C.8.656×105D.8650003.(2分)如图,在△ABC中,PB=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③AB+AQ=2AR中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确4.(2分)已知一次函数y=2x+b,当x=3时,y=10,则该一次函数的表达式为()A.y=﹣x+13B.y=x+7C.y=2x+4D.y=2x﹣4 5.(2分)如图,平面直角坐标系内有一个Rt△ABC已知B(﹣2,0),C(2,0),直角顶点A在第一象限,且∠ABC=30°,D为BC边上一点,将△ACD沿AD翻折使点C落在AB边上的点E处,再将△BDE沿DE翻折使点B落在点F处,则点F的坐标为()A.(1﹣,3﹣3)B.(﹣1,3﹣3)C.(﹣1,﹣1)D.(1﹣,﹣1)6.(2分)一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二.填空题(共10小题,满分20分,每小题2分)7.(2分)在,3.14,0,0.101 001 000 1,中,无理数有个.8.(2分)比较大小:﹣﹣2;3.9.(2分)点与(﹣3,7)关于x轴对称,点与(﹣3,7)关于y轴对称,点(﹣3,7)与(﹣3,﹣2)之间的距离是.10.(2分)在平面直角坐标系中,将点P(﹣3,2)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为.11.(2分)如图:点(﹣2,3)在直线y=kx+b(k≠0)上,则不等式kx+b≥3关于x的解集是.12.(2分)如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CDEF.设若A(0,3),C(4,0),则BD2+BF2﹣BC2的最小值为.13.(2分)已知一次函数y=2x+b图象与正比例函数y=kx图象交于点(2,3)(k,b是常数),则关于x的方程2x=kx﹣b的解是.14.(2分)点(x1,y1),(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1y2.15.(2分)如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,则AD的长为.16.(2分)在直角坐标系中,已知两点A、B的坐标分别是(0,−4)、(0,2),那么A与B两点之间的距离是(结果保留根号).三.解答题(共10小题,满分68分)17.(6分)(1)求等式中x的值:(x+1)3+27=0;(2)计算:.18.(4分)若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.19.(6分)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】20.(6分)如图,在△ABC中,DE垂直平分BC,BD平分∠ABC.(1)若∠ADB=48°,求∠A的度数;(2)若AB=5cm,△ABC与△ABD的周长只差为8cm,且△ADB的面积为10cm2,求△ABC的面积.21.(6分)在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣5,4),(﹣3,0),(0,2).(1)画出三角形ABC,直接写出三角形ABC的面积;(2)若将三角形ABC平移得到三角形A'B'C',三角形ABC中的任意一点P(a,b)经过平移后的对应点P'的坐标是(a+4,b﹣3),直接写出平移的方法;(3)若点D在直线AC下方且在x轴上,三角形ACD的面积为7,直接写出D点的坐标;(4)仅用无刻度直尺在AC边上画点E,使三角形ABE的面积为6(保留画图痕迹).22.(6分)已知直线y=kx+b经过点A(0,﹣3),且平行于直线y=﹣2x﹣1.(1)求这条直线y=kx+b的表达式;(2)如果这条直线y=kx+b经过点B(m,3)求点A与点B之间的距离.23.(8分)四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?24.(8分)如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC =BC(保留作图痕迹,不写作法)25.(8分)如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.(1)AD的长为;(2)写出用含有t的代数式表示AP,并写出自变量的取值范围;(3)直接写出多少秒时,△PBC为等腰三角形.26.(10分)在平面直角坐标系xOy中,函数y=2x的图象与函数y=﹣kx+3的图象交于点A(1,m).(1)求k的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=﹣kx+3的图象交于点C,与x轴交于点D.当点BD=2BC时,求b的值.。
江苏省泰州市第二中学附属初中2021-2022学年八年级上学期第二次月考语文试题(Word版无答案)
泰州市第二中学附属初中2021-2022学年度上学期第二次月考八年级语文试题(考试时间150分钟满分150分)一、积累运用( 27 分)阅读下面的文字完成1-4 题。
数字化阅读虽然降低了阅读的门槛,但往往表现为一种“浅阅读”。
浅阅读容易使我们缺乏缜密细致的思考,导致看似读了很多,实则收获有限。
当我们在芜杂的信息中流连忘返时,大脑就成了零散信息的跑马场。
所以,数字化阅读时代,我们依然拥有深阅读的权力。
那么,怎样才能做到深阅读呢[甲]选择成体系、有深度的作品和广为认可的经典著作,运用循序渐进、páo根问底、探究质疑的方法去读。
我们即便做不到像古人读书那样废qǐn忘食、皓首穷经,也应当在纷繁的信息中独具huì眼,不断提升阅读的品位和质量,提高与新时代相适应的能力和素质。
综上所述,数字化阅读中,通过深阅读能使我们成为精神富有、知识广bó、思维敏捷的青年。
1.根据文段中的拼音写汉字(4分)2.文段中甲处应选填哪个标点()( 2分)A. 句号B.冒号C.问号D.破折号3. 文中画横线的句子有语病,下列修改最恰当的一项是()(2分)A.深阅读能使我们成为精神富有、知识广bó、思维敏捷的青年。
B.通过深阅读,我们能成为精神富有、知识广bó、思维敏捷的青年。
C.深阅读能使我们成为知识广bó、思维敏捷、精神富有的青年。
D.通过深阅读能使我们成为知识广bó、思维敏捷、精神富有的青年。
4.以下说法不正确的一项是()(2分)A.“当我们在芜杂的信息中流连忘返时,大脑就成了零散信息的跑马场。
”句子主干是“大脑成了跑马场”。
B.“阅读的门槛”“废qǐn忘食”“知识广博bó”这几个短语结构各不相同。
C.“浅阅读容易使我们缺乏缜密细致的思考,导致看似读了很多,实则收获有限。
”这句中,“缜密细致”作状语。
D.“皓首穷经”一词的意思是指一直到年老头白之时还在深入钻研经书和古籍。
2024-2025学年华东师大版(上海)八年级数学上册月考试卷885
2024-2025学年华东师大版(上海)八年级数学上册月考试卷885考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、下列式子中,是最简二次根式的是()A.B.C.D.2、在;;;;+中,属于分式的有()A. 2个B. 3个C. 4个D. 5个3、在平面直角坐标系xOy中,点P(-3,5)关于x轴的对称点的坐标是()A. (3,5)B. (3,-5)C. (5,-3)D. (-3,-5)4、已知(a+b)2=m,(a-b)2=n,则ab等于()A.B.C.D.5、【题文】要使有意义,则字母x应满足的条件是( ).A. x=2B. x<2C. x≤2D. x≥26、菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8 11 17 20则这56个数据的中位数落在()A. 第一组B. 第二组C. 第三组D. 第四组评卷人得分二、填空题(共5题,共10分)7、等腰三角形有一个外角是100°,这个等腰三角形的底角是____.8、如图,▱[ABCD <]的对角线[AC <]、[BD <]相交于点[0 <],[EF <]过点[O <]与[AD <]、[BC <]分别相交于点[E <]、[F <],若[AB=5 <],[AD=8 <],[OE=3 <],那么四边形[EFCD <]的周长为 ______ .9、(2013秋•安庆期末)如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1,变换成三角形OA2B2,第三次将三角形OA2B2变换成二角形OA3B3,已知A (-3,1),A1(-3,2),A2(-3,4),A3(-3,8);B (0,2),B1(0,4),B2(0,6),B3(0,8).(1)观察每次变换前后三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成OA4B4,则点A4的坐标为,点B4的坐标为.(2)若按(1)题找到的规律,将三角形OAB进行n次变换,得到三角形OA n B n,则点A n的坐标是,B n的坐标是.10、在数轴上点A表示实数,点B表示实数,那么离原点较远的点是.11、【题文】.二元一次方程x+y=5的正整数解有______________.评卷人得分三、判断题(共9题,共18分)12、正数的平方根有两个,它们是互为相反数13、判断:方程=与方程5(x-2)=7x的解相同. ()14、判断:菱形的对角线互相垂直平分.()15、线段是中心对称图形,对称中心是它的中点。
(完整版)八年级上册月考数学试题(前两章)
八年级上学期数学月考试题一、选择题(每小题3分,共36分)( )1.有下列长度的三条线段,能组成三角形的是( )A 2cm ,3cm ,4cmB 1cm ,4cm ,2cmC 1cm ,2cm ,3cmD 6cm ,2cm ,3cm ( )2.若三角形两边长分别是4、5,则周长c 的范围是 A. 1<c<9 B. 9<c<14 C. 10<c<18 D. 无法确定( )3.如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则 ∠1+∠2 等于A 、90°B 、135°C 、270°D 、315° ( )4.能把一个任意三角形分成面积相等的两部分是A.角平分线B.中线C.高D..A 、B 、C 都可以( )5.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B恰好落在AC 边上的点E 处.若∠A=20°,则∠BDC 等于( ) A .45° B .60° C .65° D .75°( )6.如图6所示,BO ,CO 分别是∠ABC ,∠ACB 的两条角平分线,∠A=100°,则∠BOC 的度数为A .80°B .90°C .120°D .140°( ) 7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要:A :AB=CDB :EC=BFC :∠A=∠D D :AB=BC( )8.若一个多边形的外角和与它的内角和相等,则这个多边形是: A 、三角形 B 、四边形 C 、 五边形 D 、六边形( )9.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为A .12B .15C .12或15D .18( )10.如图所示,某同学把一块三角形玻璃打碎成了三块,现③ 在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去( )11、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有A :1个B :2个C :3个D :4个( )12、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。
江苏省泰州市姜堰区实验初级中学2020-2021学年八年级上学期12月月考数学试题
解:A,B,C的图象都满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A、B、C的图象是函数,
D的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D错误;
故选D.
【点睛】
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
(1)求点E的坐标;
(2)求点D的坐标.
25.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.
(1)如图1,A(4,0),在Q1(0,4)、Q2(2,-4)、Q3(1, )中,可以是线段OA的中垂点是;
、由图可知:直线 , , ,
直线 经过二、三、四象限,主要考查了一次函数的图象和性质,掌握一次函数的图象经过的象限和系数的关系是解题的关键.
7.±3
【详解】
∵ =9,
∴9的平方根是 .
故答案为 3.
8.
【分析】
科学记数法的表示形式为 的形式,其中1≤|a|<10,n为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍.
先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,然后算出ab的值即可.
【详解】
∵点M(a,b)与点N(3,-1)关于x轴对称,
∴a=3,b=1,
∴ab=3 1=3,
故答案为:3.
【点睛】
本题主要考查了关于x轴对称点的坐标,关键是掌握关于x轴对称点的坐标特点.
12.
江苏省泰州市2023-2024学年八年级上学期第一次月考数学试题
江苏省泰州市2023-2024学年八年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cmC.20cm或16cm D.12cm3.三角形两边的垂直平分线的交点为O,则点O()A.到三边距离相等B.到三顶点距离相等C.不在第三边的垂直平分线上D.以上都不对4.下列说法中,正确的是()A.关于某直线对称的两个图形是全等图形B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.两个全等三角形一定关于某直线对称5.如图,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必须添加一个条件,则下列所添条件不恰当的是().A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE 6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A .6B .7C .8D .9二、填空题7.如果等腰三角形的一个角为50︒,那么它的顶角为 .8.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是.9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到点O 的距离(填 不变.变小 或变大 ).10.如图,ABC V 与A B C '''V 关于直线l 对称,则∠B 的度数为.11.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是米.12.如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,且53BD CD =::,若16BC =,则点D 到线段AB 的距离为.13.如图,点P 为AOB ∠内一点,分别作出P 点关于OA 、OB 的对称点1P ,2P ,连接12PP 交OA 于M ,交OB 于N ,1212PP=,则PMN V 的周长为.14.如图,将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为6,C 的边长为4,则正方形B 的面积为.15.如图,在ABC V 中AD BC ⊥,CE AB ⊥,垂足分别为D E 、,AD CE 、交于点H ,已知6EH EB ==,8AE =,则CH 的长是.16.如图,ABC V 中,10AB AC ==,12BC =,点E 是中线AD 上的一个动点,点F 是AC 边上的一个动点,连接BE 、EF ,则BE EF +的最小值为.三、解答题17.作图题:(1)如图所示的正方形网格中,每个小正方形的边长都为1,网格中有一个格点ABC V (即三角形的顶点都在格点上).在图中画出ABC V 关于直线l 对称的111A B C △.(要求:A 与1A ,B 与1B ,C 与1C 相对应)(2)如图是由9个相同的小正方形拼成的正方形网格,现将其中2个小正方形涂黑,请用3种不同的方法分别在图中再将2个小正方形涂黑,使图案成为轴对称图形.18.如图,AC AE =,12∠=∠,B D ∠=∠,求证:BC DE =.19.已知:如图,在ABC V 中,DE BC ∥,AD AE =.求证:AB AC =.20.如图,,,,AB AE BC ED B E AF CD ==∠=∠⊥,F 为垂足.求证CF DF =.21.如图,CD 是△ABC 的高,点D 在AB 边上,若AD =16,CD =12,BD =9. ⑴ 求AC ,BC 的长.⑵ 判断△ABC 的形状并加以说明.22.如图,A 、B 、C 三点在同一条直线上,90A C AB CD BE DB ∠=∠=︒==,,.(1)求证:ABE CDB △≌△;(2)判断BDE △的形状,并说明理由.23.如图,在ABC V 中,AD 平分BAC ∠,BD AD ⊥,垂足为D ,过点D 作DE AC ∥交AB 于点E .(1)求证:AE DE =;(2)若5AB =,求DE 的长.24.如图,在ABC V 中,90C ∠=︒.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、BC 于点D 、E (不写作法,保留作图痕迹);(2)连接AE ,若5AC =,13AB =,求ACE △的周长;(3)若30CAE B ∠=∠+︒,求AEB ∠的度数.25.如图,∠ACB =∠ADB =90°,M 、N 分别是AB 、CD 的中点.(1)求证:MN ⊥CD ;(2)若AB =50,CD =48,求MN 的长.26.学习与探究:如图1,OP 是MON ∠的平分线,点A 是OP 上任意一点,用圆规分别在OM 、ON 上截取OB OC =,连接AB 、AC ,则AOB AOC ≌△△,判定方法是_________.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC V 中,ACB ∠是直角,=60B ∠︒,AD 、CE 分别是BAC ∠和BCA ∠的平分线,AD 、CE 相交于点F ,求EFA Ð的度数;(2)在(1)的条件下,请判断FE 与FD 之间的数量关系,并说明理由;(3)如图3,在ABC V 中,如果ACB ∠不是直角,而(1)中的其他条件不变,试问在(2)题中所得结论是否仍然成立?若成立,请说明理由;若不成立,也请说明理由.。
2021-2022学年第二学期泰州市靖江实验学校初二数学三月月考试题及解析
一.选择题(本题共6小题,共18分)
1.下列四个图形中,属于中心对称图形的是()
A. B. C. D.
2.在式子 中,分式的个数有( )
A.2个B.3个C.4个D.5个
3.等式 成立的x的取值范围在数轴上可表示为()
A. B. C. D.
4.为了早日实现“绿色高港,滨江之城”的目标,高港对4000米长的长江沿岸进行了绿化改造.为了尽快完成工期,实际施工队每天比原计划多绿化10米,结果提前2天完成.若实际每天绿化x米,则所列方程正确的是()
16.如图,平行四边形 中, cm, cm,点 在 边上以每秒1cm的速度从点、A向点 运动,点 在 边上,以每秒4cm的速度从点 出发,在 间往返运动,两个点同时出发,当点 到达点 时停止(同时点 也停止)在运动以后,当 ______时以P、D、Q、B四点组成的四边形为平行四边形.
A.27°B.32°C.36°D.40°
【答案】B
【解析】
【分析】根据平行四边形以及折叠的性质即可得出答案又∠DAE=20°
∴∠AED=180°-∠D-∠DAE=106°
根据折叠可得:
又∠AEF=180°-∠AED=74°
∴
故答案选择B.
【点评】本题考查的是平行四边形的综合,涉及到了折叠的性质、三角形的内角和以及平角的性质,难度适中.
5.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()
A.40°B.50°C.60°D.70°
【答案】D
【解析】
【分析】先根据等腰三角形的性质和三角形的内角和定理求出∠C的度数,再根据平行四边形的性质解答即可.
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点 P 在长方形 OABC 的边 OA 上,连接 BP ,过点 P 作 BP 的垂线,交射线 OC 于 点 Q ,在点 P 从点 A 出发沿 AO 方向运动到点 O 的过程中,设 AP=x ,OQ=y ,则下列说法正 确的是( )A .y 随 x 的增大而增大B .y 随 x 的增大而减小C .随 x 的增大,y 先增大后减小D .随 x 的增大,y 先减小后增大2.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是 2 倍D .如果一个多边形的每个内角是120,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是4cm 、5cm 、6cm 2cm 、3cm 、4cm B .1cm 、2cm 、3cm A . C . D .1cm 、2cm 、3cm4.下列说法正确的是( ) =±4A .(﹣3) 的平方根是 3B . 16 2C .1 的平方根是 1D .4 的算术平方根是 25.在下列黑体大写英文字母中,不是轴对称图形的是(A .B .C .)D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点 O , 按顺时针方向旋转到△A OB 处,此时线段 OB 与 AB 的交点 D 恰好为 AB 的中点,则线段 1 1 1 B D 的长度为( )11 A . cm23 D . cm2B .1cmC .2cm7.下列电视台的台标中,是轴对称图形的是( ) A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000 名学生的身高进行了统计分析 所抽查的 1000 名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量C 90 ,AC 4 3 cm ,点 D 、E 分别在 AC 、BC 9.如图,在 AB C 中, cm , BC ' A C ,则 AC长度的最小值 上,现将 D C E 沿 DE 翻折,使点 C 落在点C 处,连接( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm2x 510.若 在实数范围内有意义,则 x 的取值范围是()352552 5A .x >﹣B .x >﹣ 且 x ≠0C .x ≥﹣D .x ≥﹣ 且 x ≠02 2二、填空题11.如图,在正方形 AB C D 的外侧,作等边三角形C D E ,连接 AE , BE,试确定AEB的度数.12.公元前 3 世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全 等的直角三角形(两直角边长分别为 a 、b 且 a <b )拼成的边长为 c 的大正方形,如果每个 直角三角形的面积都是 3,大正方形的边长是 13 ,那么 b -a =____.13.如图,在Rt△AB C中,B90A30,,DE垂直平分斜边A C,交AB于1,则AC的长是__________.,E是垂足,连接C D,若B D D14.已知一次函数y k x1的图像经过点P(1,0),则________.ky x m与直线y 2x4的交点在轴上,则my15.若直线_______.16.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范2211围是______.17.已知一次函数y=mx-3的图像与x轴的交点坐标为(x,0),且2≤x≤3,则m的取00值范围是________.18.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).19.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是_____.20.一次函数 y =2x -4 的图像与 x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在 m 校内对“你最认可的四大新生事物”进行了调查,随机调查了 人(每名学生必选一种且只 能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.m n (1)根据图中信息求出 =___________, =_____________; (2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校 2000 名学生种,大约有多少人最认可“微信”这一 新生事物?22.如图,在四边形 AB C D 中,ABC 90,过点 作 B BE C D ,垂足为点 ,过点EA 作 AF ⊥BE,垂足为点 ,且 BE AF .F ABF BCE (1)求证: ; (2)连接 B D ,且 B D 平分ABE交 AF 于点G .求证:BCD 是等腰三角形. 23.如图,四边形 ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积. yx b 1y 的图像与 轴 轴分别交于点 、点 ,函数 yx b,24.如图,一次函数 x A B 14 x 3与 y的图像交于第二象限的点C ,且点C 横坐标为3. 2(1)求b 的值;0 y y (2)当 时,直接写出 x 的取值范围; 1 24x yx b1(3)在直线 y上有一动点 ,过点 作 x 轴的平行线交直线 于点Q ,P P 3 214OC 当 P Q 时,求点 的坐标.P5 25.如图,有一个长方形花园,对角线 AC 是一条小路,现要在 AD 边上找一个位置建报亭 H ,使报亭 H 到小路两端点 A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭 H 的位置(不写作法,但需保留作图痕迹,交 代作图结果)(2)如果 AD =80m ,CD =40m ,求报亭 H 到小路端点 A 的距离.四、压轴题26.在平面直角坐标系 xOy 中,若 P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均 与某条坐标轴垂直,则称该矩形为点 P ,Q 的“相关矩形”.图 1 为点 P ,Q 的“相关矩 形”的示意图.已知点 A 的坐标为(1,2). (1)如图 2,点 B 的坐标为(b ,0).①若 b =﹣2,则点 A ,B 的“相关矩形”的面积是 ②若点 A ,B 的“相关矩形”的面积是 8,则 b 的值为; .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰BAC 90,且每两l l l直角三角形的三个顶点分别落在三条等距的平行线,,上,123条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:l(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.1AC BAC 120,,且每(2)小林说:“我们可以改变AB C的形状.如图2,AB两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变AB C的形状,还能改变平行线之间的距离.如图3,等边l l l1l l1l l2三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与2323之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接B Q,由矩形的性质,设B C=A O=a,A B=O C=b,利用勾股定理得到PBP Q22BQ2,然后得到y与x的关系式,判断关系式,即可得到答案.解,如图,连接 B Q ,由题意可知,△OP Q ,△QP B ,△A BP 是直角三角形, 在矩形 A B C O 中,设 B C=A O =a ,A B=O C=b ,则 a x C Q , b y,O P= 由勾股定理,得:P Q y (a x ) , PB x b( ), B Qa b y ,2 2 2 2 2 2 22 2 PB BQ2,∵ P Q 22(a x) x b a (b y) ∴ y 2 2 2 2 2 2 , x ax 整理得:by , 21 a a2 (x ) ∴ y , 2 b2 4b 10 ∵ ,b a a 2y 时, 有最大值 ∴当 x ;2 4b∴随 x 的增大,y 先增大后减小; 故选择:C. 【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与 x 的关系式,从 而得到答案.2.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为 360°,外角和也为 360°,A 选项正确;B.根据四边形的内角和为 360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为(62)180 720,外角和为 360°,C 选项正确;(n 2)180120 6 10,D 选项错误.D.假设是 n 边形,解得n n【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.3.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵5 +4 ≠6 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2B 、1+2 ≠3 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 C 、∵2 +3≠4 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 3 ) ,∴此组数据能构成直角三角形,故本选项正确. 2 D 、∵1 +( ) =( 2 2 2 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足 a +b =c ,那么这2 2 2 个三角形就是直角三角形.4.D解析:D 【解析】 【分析】根据平方根和算术平方根的定义解答即可. 【详解】16=4,故该项错误;C 、1 的平方根是 A 、(﹣3) 的平方根是±3,故该项错误;B 、 2 ±1,故该项错误;D 、4 的算术平方根是 2,故该项正确.故选 D. 【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定 义.5.C解析:C 【解析】 【分析】根据轴对称图形的概念对各个大写字母判断即可得解. 【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重 合.6.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出 AB =5cm ,再利用直角三角形斜边上的中线等于斜边1的一半得出 OD = AB =2.5cm .然后根据旋转的性质得到 OB =OB =4cm ,那么 B D =OB 21 1 1 ﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB = =5cm ,O A 2 O B 2 ∵点 D 为 AB 的中点,1 ∴OD = AB =2.5cm . 2∵将△AOB 绕顶点 O ,按顺时针方向旋转到△A OB 处, 1 1∴OB =OB =4cm , 1∴B D =OB ﹣OD =1.5cm . 1 1故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边 上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D 不是轴对称图形,A 是轴对称图形.故选 A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在A B上,点B与E重合时,A C'长度的值最小,根据勾股定理得到A B=5cm,由折叠的性质知,BC′=B C=3c m,于是得到结论.【详解】解:当C′落在A B上,点B与E重合时,A C'长度的值最小,∵∠C=90°,A C=4c m,B C=3c m,∴A B=5c m,由折叠的性质知,BC′=B C=3c m,∴A C′=A B-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】5解:由题意得,2x+5≥0,解得x≥﹣,2故选:C.【点睛】a本题考查了二次根式有意义的条件,对于二次根式,当被开方数a时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠A D E =150°,A D=D E,得出∠DE A=15°,同理可求出∠CE B=15°,即可得出∠AE B 的度数.【详解】解:∵在正方形中,,,在解析:AEB30【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】DC解:∵在正方形A B C D中,A D,AD C90,在等边三角形C D E中,C D D E ,C D E DE C60,∴ADE AD C CDE150A D D E,,A D E在等腰三角形中180ADE180150DEA152 2,同理得:BEC15,则AEB DEC DEA BE C60151530.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积- 4 个直角三角形的面积,利用已知 c 13 ,则大正方形的面积为 13,每个直角三角形的面积都是 3,可以得出小正方形的 面积,进而求出答案.【详解】解:根据题意,可知,1 3 ∵c 13 , ab , 21 (b a ) 4 ab c ∴ ∴2 2 ,c 2 13 , 2(b a )2 13 43 1, ∴b∵ a ∴b a 1; b ,即b a 0 ,a 1;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的 思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答 案为.解析: 2 3【解析】B 90 30 , A ACB 60.又∵ 解: ,∴ 垂直平分 D E C D A D 2 A C ,∴ C D AD ,AC D A 30 DCB .∵ 1,∴,∴ B D 1 2 3 .故答案为2 3 A 30 . A B 3 , , B C A C .由勾股定理可得 A C 2 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵ 一次函数y=kx+1的图象经过点P (-1,0),∴ 0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点 P (-1,0)代入一次函数 y=kx+1,求出 k 的值即可.【详解】∵一次函数 y=kx+1 的图象经过点 P (-1,0),∴0=-k+1,解得 k=1.故答案为 1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此 函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 (0,4)代入即可求出 m 的值.【详解】解:当 x=0 时,=4,则直线与 y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】 2x 4 先求出直线 与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 y (0,4)代入 y【详解】x m 即可求出 m 的值.解:当 x=0 时, =4,则直线 x m 得 m=4,y 2x 4 y 2x 4与 y 轴的交点坐标为(0,4), 把(0,4)代入 y 故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应 的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的 自变量系数相同,即 k 值相同. 16.−1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y>0,当 x<2 时,y>0,∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.解析: 1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y >0,1 当 x<2 时,y >0,2 ∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.2 1 故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的 y 值大于 0 17.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴ ,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】3 解析:1≤m≤ 2【解析】【分析】根据题意求得 x ,结合已知 2≤x ≤3,即可求得 m 的取值范围. 00 【详解】3x 当 ∴ 当 0时, ,y m 3 , x 0m 3 3时, 3 m , 1, mx 033 2 x 2 2 m ,当 时, , 0 m 3 m 的取值范围为:1≤m≤ 23 故答案为:1≤m≤ 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围 求得 m 的取值范围是解题的关键. 18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根 据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式 即可.【详解】解:设的中点为,过作的1 4 5 8解析: x 【解析】【分析】设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF ,通过待定系数法求出直线 AB 的函数 AB EF 表达式,根据 EF 可以得到直线 的 值,再求出 AB 中点坐标,用待定系数法求 k 出直线 EF 的函数表达式即可.【详解】解:设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF∵A(1,3),B(2,-1)设直线 的解析式为 AB y k x b ,把点 A 和 B 代入得: 1 1b 32k b 1解得: k 4 k 1 b 7 14x 7∴ y 31 1 2 ∵D 为 AB 中点,即 D( , ) 2 23 ∴D( ,1) 2y k x b 设直线 EF 的解析式为 2 2AB∵ EF k k 11 2∴ 1 ∴ k 2 4y k x b ∴把点 D 和 k 代入 可得: 2 2 21 3 1 b 42 25 ∴b 82 1 5 8x ∴ y 4 1 5 x 上 ∴点 C(x ,y)在直线 y 4 81 故答案为 x 4 5 8【点睛】本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根 据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理 求得 AF 的长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作 AF⊥BC 于点 F ,作解析:8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理求得 AF 的 长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,1111∴S△ABC=AB•PC=BC•AF=×5CP=×6×42222得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,35支付宝的人数所占百分比n%=100100%=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,40微信对应的百分比为:100100%40%,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°, ∴∠ABE+∠BAF=90°. ∵∠ABC=90°, ∴∠ABE+∠EBC=90°, ∴∠BAF=∠EBC . 在 ΔABF 和 ΔBCE 中,∵∠AFB=∠BEC ,AF=BE ,∠BAF=∠EBC , ∴ΔABF ≌ΔBCE . (2)∵∠ABC=90°, ∴∠ABD+∠DBC=90°. ∵∠BED=90°, ∴∠DBE+∠BDE=90°. ∵BD 分∠ABE , ∴∠ABD=∠DBE , ∴∠DBC=∠BDE , ∴BC=CD ,即 ΔBCD 是等腰三角形. 【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明 ΔABF ≌ΔBCE .23.(1)∠D 是直角.理由见解析;(2)234. 【解析】 【分析】(1)连接 AC ,先根据勾股定理求得 AC 的长,再根据勾股定理的逆定理,求得∠D=90°即 可;(2)根据△ACD 和△ACB 的面积之和等于四边形 ABCD 的面积,进行计算即可. 【详解】(1)∠D 是直角.理由如下: 连接 AC .∵AB=20,BC=15,∠B=90°,∴由勾股定理得 AC =20 +15 =625.2 又∵CD=7,AD=24, ∴CD +AD =625, 2 2 2 2 ∴AC =CD +AD , 2 2 2 ∴∠D=90°.1 1 1 1(2)四边形 ABCD 的面积= AD•DC+ AB•BC= ×24×7+ ×20×15=234.2 2 2 2【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆 定理.通过作辅助线,将四边形问题转化为三角形问题是关键.7 7 x 3 (3,4) (9,12) (3)点 坐标为 或24.(1)b 【解析】(2) P【分析】4xy x b1(1)将点 横坐标代入 y 求得点 C 的纵坐标为 4,再把(-3,4)代入C 32求出 b 即可;0 y y (2)求出点 A 坐标,结合点 C 坐标即可判断出当 时, x 的取值范围; 1 2 4 3 4 47 3 a 7a , 7 a a (3)设 P (a,- ),可求出 Q ( ),即可得 PQ= ,再求出 3 314OC OC=5,根据 P Q 求出 a 的值即可得出结论.5【详解】43(1)把 x 代入 y x , 324 得 y .∴C (-3,4) 把点C(3,4)代入 yx b 1,7 得b . (2)∵b=7 ∴y=x+7,当 y=0 时,x=-7,x=-3 时,y=4, 0 yy 7 3.∴当 时,x 124x (3) 点 为直线 y 上一动点,P 3 4( , ) 设点 坐标为 a a. P 3∵P Q / /x 轴,44把 y y x7 4 ,得 a .7a 代入x 3 3 4a 7,a 点Q 坐标为 , 334 7P Q a a 7 a 73 3 (3,4 ) 又 点 坐标为 C, OC 3 4 52 2 14PQ OC 1457a 7 14 33 a 9或 .解之,得a (3,4) (9,12) 或 .点 坐标为 P 【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长. 25.(1)详见解析;(2)报亭到小路端点 A 的距离 50m . 【解析】 【分析】(1)作 AC 的垂直平分线交 AD 与点 H ,进而得出答案; (2)利用勾股定理以及线段垂直平分线的性质得出即可. 【详解】(1)如图所示:H 点即为所求;(2)根据作图可知: H H ,A = C设 AH =xm ,则 DH =(80﹣x )m ,HC =xm , 在 Rt △DHC 中,D H 2 C D 2 HC 2 ,(80﹣x)40 x2 ,∴ 2 2 解得:x =50,答:报亭到小路端点 A 的距离 50m . 【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得 出 H H ,进而利用勾股定理得出是解题关键.A = C四、压轴题26.(1)①6;②5 或﹣3;(2)直线 AC 的表达式为:y =﹣x+3 或 y =x+1;(3)m 的 取值范围为﹣3≤m ≤﹣2+ 3 或 2﹣ 3 ≤m ≤3. 【解析】 【分析】(1)①由矩形的性质即可得出结果; ②由矩形的性质即可得出结果;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3 求出正方形 AGCH 的 边长为 3,分两种情况求出直线 AC 的表达式即可;1(3)由题意得出点 M 在直线 y =2 上,由等边三角形的性质和题意得出OD =OE = DE =23 OD= 3 ,分两种情况:1,EF =DF =DE =2,得出 OF = ①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的 坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形,则 3 3或 2﹣点 M 的坐标为(﹣2+ ,2);得出 m 的取值范围为﹣3≤m ≤﹣2+ 3 ≤m ≤1;②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3≤m ≤3 或 2﹣则点 M 的坐标为(2﹣ ,2);得出 m 的取值范围为 2﹣ 3 ≤m ≤1;即可得出结论. 【详解】解:(1)①∵b =﹣2,∴点 B 的坐标为(﹣2,0),如图 2﹣1 所示: ∵点 A 的坐标为(1,2),∴由矩形的性质可得:点 A ,B 的“相关矩形”的面积=(1+2)×2=6, 故答案为:6; ②如图 2﹣2 所示:由矩形的性质可得:点 A ,B 的“相关矩形”的面积=|b ﹣1|×2=8, ∴|b ﹣1|=4, ∴b =5 或 b =﹣3, 故答案为:5 或﹣3;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3, ∵点 C 在直线 y =﹣1 上,点 A ,C 的“相关矩形”AGCH 是正方形, ∴正方形 AGCH 的边长为 3,当点 C 在直线 x =1 右侧时,如图 3﹣1 所示: CG =3,则 C (4,﹣1),设直线 AC 的表达式为:y =kx+a ,2 k a则,, 1 4k ak 1解得;a 3∴直线 AC 的表达式为:y =﹣x+3;当点 C 在直线 x =1 左侧时,如图 3﹣2 所示: CG =3,则 C (﹣2,﹣1),设直线 AC 的表达式为:y =k ′x+b ,2 kb则,1 2k bk 1 解得:, b 1∴直线 AC 的表达式为:y =x+1,综上所述,直线 AC 的表达式为:y =﹣x+3 或 y =x+1; (3)∵点 M 的坐标为(m ,2), ∴点 M 在直线 y =2 上,∵△DEF 是等边三角形,顶点 F 在 y 轴的正半轴上,点 D 的坐标为(1,0), 1∴OD =OE = DE =1,EF =DF =DE =2,2 3 OD= 3 ,∴OF =分两种情况:如图 4 所示:①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3 则点 M 的坐标为(﹣2+ ,2)或(2﹣ ,2);3 3 m 1≤ ≤ ;∴m 的取值范围为﹣3≤m ≤﹣2+ 或 2﹣ ②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 22+ 3 2 , );则点 M 的坐标为(2﹣ , )或(﹣ 3 m 3 2+ 3 1 m ∴m 的取值范围为 2﹣ ≤ ≤ 或﹣ ≤ ≤﹣ ; 3 或 2﹣≤ ≤ .3 m 3综上所述,m 的取值范围为﹣3≤m ≤﹣2+【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x 轴于D,BE⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD x 轴于D,BE x 轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,111∴S△ABC=S 梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;222(2)作CH // x 轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和 定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角 形, 【解析】 【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF ≌ED C (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD ≌DCE(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】即可得解; 即可得解;(1)如下图,数量关系:AD =DE.证明:∵ABC是等边三角形∴AB =BC ,B =BAC =BCA =60∵DF ∥AC BF D =BAC ∴ ∴ ,∠BDF =∠BCAB =BF D =B D F =60是等边三角形,AFD =120∴BDF ∴DF =BD∵点 D 是 BC 的中点 ∴BD =CD ∴DF =CD∵CE 是等边ABC 的外角平分线DCE =120=AF D∴ ∵ABC是等边三角形,点 D 是 BC 的中点∴AD ⊥BC AD C =90 ∴ ∵ ∴ 在 BDF =ADE =60ADF =ED C =30 EDC ADF 与 中A F D =EC D=C DDFADF =ED CADF ≌ED C(ASA)∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC是等边三角形∴AB=BC ,B =BAC =BCA=60∵DF∥ACBF D =BAC ,BDF =BC AB =BF D =B D F=60∴∴是等边三角形,AFD=120∴BDF∴BF=BD∴AF=DC∵CE 是等边ABC的外角平分线DCE=120=AF D∴ABD∵∠ADC是的外角AD C =B +FA D=60+FA D∴∵AD C =ADE +C DE=60+C D E ∴∠FAD=∠CDEDCE在AFD与中A F D =DCE=C DAFFAD =ED CAFD ≌DCE(ASA)∴∴AD=DE;(3)如下图,A D E是等边三角形.。
八年级(上)月考数学试卷(2022年10月)
2022-2023学年度月考试卷(10月)八年级(上)数学时间:90分钟满分120分一.选择题(10题共30分)1.两根长度分别为5cm,9cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cm B.4cm C.9cm D.14cm2.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1440°B.1080°C.900°D.720°5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°3题5题6题7题6.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是()A.∠1+∠2=2∠A B.∠1+∠2=∠A C.∠A=2(∠1+∠2)D.∠1+∠2=∠A9.适合条件∠A =∠B =∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF 的共有()A.1组B.2组C.3组D.4组题号12345678910选项二.填空题(共3小题24分)11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.8题10题11题12.到线段AB两个端点距离相等的点的轨迹是13题14题15题13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)14.如图所示的方格中,∠1+∠2+∠3=度.15.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.16.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.16题17题18题17.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.18.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是(填序号)三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为.20.(10分)已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?21.(8分)如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.(8分)如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.23.(9分)生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,求∠AFD的度数.24、(9分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?25、(12分)如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC于E,BF⊥AC于F.(1)若AB=CD,求证:GE=GF.(2)将△DEC的边EC沿AC方向移动到如图②,(1)中其余条件不变,上述结论是否成立?请说明理由.参考答案及评分标准一.选择题(10题共30分)二.填空题(共3小题24分)11、120°12、线段AB的垂直平分线13、AD=AC或∠D=∠C或∠ABD=∠ABC 14、13515、2167816、10817、76°18、①②③④三.解答题(共66分)19、(6分)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出△ABC 中边BC 上的高AD ;.....2分(2)画出△ABC 中边AC 上的中线BE ;.....4分(3)直接写出△ABE 的面积为4.........6分20、(10分)已知△ABC 的周长为33cm ,AD 是BC 边上的中线,.(1)如图,当AC =10cm 时,求BD 的长.(2)若AC =12cm ,能否求出DC 的长?为什么?解:(1)∵AC=10∴AB=1023⨯=15∴BC=33-10-15=8cm 又∵AD 是BC 边上的中线∴4BC 21BD ==cm .....5分(2)∵AC=12∴AB=1223⨯=18∴BC=33-12-18=3cm ∵3+12<18此时三条线段不能构成三角形故不能求出DC 的长。
2022-2023学年江苏省泰州市兴化市八年级下学期第二次月考数学试卷
兴化市2023年春学期第二次单元检测八年级数学试题(卷面总分:150分 考试时长:120分钟)一、单选题(每题3分,共6题)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D . 2.下列二次根式中,是最简二次根式的是( )AB C D 3.下列代数式:1m ,3x ,2a b +,11x -,x y π-中,分式的个数是( ) A .1 B .2 C .3 D .4 4.已知平行四边形ABCD 的对角线AC ,BD 相交于点O .若AB =3cm ,AC +BD =12cm ,则△COD 的周长为( )A .9cmB .12cmC .15cmD .27cm 5.下列说法中能判定四边形是矩形的是( )A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形 6.一次函数y =ax +b 和反比例函数y a b x-=在同一直角坐标系中的大致图象是( ) A .B .C .D .二、填空题(每题3分,共10题)7.点A (1,2)与点B 关于原点对称,则点B 的坐标是_________.8.已知3y ,则y x =__________.9.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=__________.(第9题) (第13题)10.若关于x 的方程(a+3)x |a|-1﹣3x+2=0是一元二次方程,则a 的值为________.11.若13x -x 的取值范围是______. 12.已知a222a a ++=________.13.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.14.已知反比例函数y=2k x(k≠0)的图象过点A (a ,y 1),B (a+1,y2),若y 2>y1,则a 的取值范围为_____.15.下列函数:①y=-x+1;②3(0)y x x =-<;③21y x =-;④60(0)xy x -=>;⑤y =3x (x <−2)中,y 随x 的增大而减小的有___个.16.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 三、解答题17.计算:()032π-+-;18.解方程:(1)2450x x --= (2)()241250y --=19.先化简22321(1)24a a a a -+-÷+-,然后从 a <的范围内选取一个合适的整数作为a 的值代入求值.20.已知y-1与x+2成反比例函数关系,且当x=-1时,y=3.求:(1)y 与x 的函数关系式; (2)当x=0时,y 的值.21.如图是某反比例函数的图象.点A (-1,-3),B (m ,2)在图象上BC 垂直于x 轴.求: (1)该反比例函数的表达式及m 的值;(2)求矩形OCBD 的面积;(3)当y >1时,求x 的取值范围.22.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系x O y的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B、B1、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.23.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)24.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.25.先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①9−4526.(14分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF,(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知ABCD=14BC,请求出GE的长.八年级数学参考答案1.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行判断即可.解:A.是轴对称图形,但不是中心对称图形,不符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C.既是轴对称图形,又是中心对称图形,符合题意;D.是轴对称图形,不是中心对称图形,不符合题意;故选C.【点评】中心对称图形是指把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形是指如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,熟练地掌握概念是解决本题的关键.2.A【解析】【分析】根据最简二次根式满足“被开方数不含有分母,被开方数不含有开得尽方的因数或因式”两个条件,对各选项进行判断即可.解:AB=,不是最简二次根式,故不符合题意;C=D==故选A.【点评】本题考查了最简二次根式的定义.掌握最简二次根式的定义是解题的关键.3.B【解析】试题解析:下列代数式:1m,3x,2a b+,11x-,x yπ-中,分式有1m,11x-共2个.故选B.4.A【解析】【分析】根据平行四边形的对角线互相平分可得出OC+OD=1(AC+BD)=6,再由平行四边形的2对边相等可得AB=CD=3,继而代入可求出△OCD的周长.解:如图,∵四边形ABCD是平行四边形,∴AB=CD=3,∴OC+OD=1(AC+BD)=6,2∴△COD的周长=OC+OD+CD=6+3=9.故选A.【点评】此题考查了平行四边形的性质,属于基础题,解答本题的关键是熟练掌握平行四边形的对边相等及对角线互相平分的性质,难度一般.5.D【解析】【分析】矩形的性质和判定,依次分析只有D项正确.A、有两个角为直角的四边形,有可能是梯形,故错误.B、对角线互相平分的四边形有可能是菱形,故错误.C、应为对角线相等的平行四边形为矩形.D、四个角相等的四边形是矩形,正确符合矩形的性质.故选D.【点评】矩形的性质:1.矩形的4个内角都是直角;2.矩形的对角线相等且互相平分;3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴.对称中心是对角线的交点.5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质6.顺次连接矩形各边中点得到的四边形是菱形. 矩形的判定:①定义:有一个角是直角的平行四边形是矩形②定理1:有三个角是直角的四边形是矩形③定理2:对角线相等的平行四边形是矩形④对角线互相平分且相等的四边形是矩形.6.A【解析】【分析】先由一次函数的图象确定a、b的正负,再根据a-b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-ba,即直线y=ax+b与x轴的交点为(-ba,0)由图A、B的直线和x轴的交点知:-ba>-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选A.【点评】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.7.(﹣2,﹣1).【解析】试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为(﹣2,﹣1).考点:关于原点对称的点的坐标.8.18【解析】由题意得2020x x -≥⎧⎨-≥⎩ , 解之得2x = ,0033y ∴=+-=- ,3128y x -∴== 9.115°##115度【解析】【分析】先根据菱形性质求出∠BCD ,∠ACE ,再根据AE AC =求出∠AEC ,最后根据两直线平行,同旁内角互补解题即可.解:四边形ABCD 是菱形,50B ∠=︒,∴AB ∥CD ,∴∠BCD=180°-∠B=130°,∠ACE=12∠BCD=65°,∵ AE AC =,∴∠ACE=∠AEC=65°,∴∠BAE=180°-∠AEC=115°.【点评】本题考查了菱形性质,等腰三角形性质,解题方法较多,根据菱形性质求解∠ACE 是解题关键.10.3【解析】由题意得:|a |﹣1=2,且a +3≠0,解得:a=3,故答案为3.点睛:本题考查了一元二次方程的定义,是一元二次方程必须同时满足三个条件:①时整式方程,即等号两边都是整式;②只含有一个未知数;③未知数的最高次数是2. 11.x ≤2【解析】【分析】根据分式有意义和二次根式有意义的条件可得3020xx-≠⎧⎨-≥⎩,然后再求解即可.解:由题意得30 20xx-≠⎧⎨-≥⎩,解得:x≤2,故答案为:x≤2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.4【解析】132<<,1a∴=,∴222a a++))21212=++3122=-++=413.6【解析】【分析】设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ab+ad=6,即可得出答案.解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(-a,d),代入得:k1=ab,k2=-ad,∵S△AOB=3,∴111()23 222b d a ab ad+--=,∴ab+ad=6,∴k1-k2=6,故答案为:6.【点评】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=6是解此题的关键.14.﹣1<a<0【解析】【分析】根据反比例函数图象所经过的象限和函数的增减性解答.解:∵反比例函数y=2kx(k≠0)中的k2>0,∴反比例函数y=2kx(k≠0)的图象经过第一、三象限,且在每一象限内y随x的增大而减小.∵y2>y1,a+1>a,∴点A位于第三象限,点B位于第一象限,∴10aa⎧⎨+⎩<>,解得-1<a<0.故答案是:-1<a<0.【点评】考查了反比例函数图象上点的坐标特征,解题时,需要熟悉反比例函数解析式中系数与图象的关系.15.2【解析】【分析】根据一次函数的性质和反比例函数的性质,可以得到哪个函数的y 随着x 的减小而增大,从而可以解答本题.解:①1y x =-+,则y 随x 的减小而增大,故①符合题意; ②3(0)y x x=-<,y 随着x 的减小而减小,故②不符合题意;③21y x =-,y 随着x 的减小而减小,故③不符合题意; ④60(0)xy x -=>即函数6(0)y x x=>,y 随着x 的减小而增大,故④符合题意; ⑤y =3x (x <−2),当0<x <2时,3y x =中y 随着x 的减小而增大,当x <0时,3y x=中y 随着x 的减小而增大,x <-2时,增大而减小;故答案为:2.【点评】本题主要考查一次函数的性质和反比例函数性质,解决本题的关键是要熟练掌握一次函数的性质和反比例函数性质.16.k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.17.(1)6(2)5【解析】【分析】(1)根据算术平方根,绝对值和零指数幂的计算法则求解即可;(2)根据二次根式的混合计算法则求解即可.(1)()032π-+-231=++6=;(2)5=5=.【点评】本题主要考查了二次根式的混合运算,实数的混合运算,熟知相关计算法则是解题的关键.18.(1)x1=-1,x2=5;(2)x1=-1,x2=32【解析】【分析】(1)利用因式分解法求解;(2)利用因式分解法求解.解:(1)2450x x--=,∴()()150x x+-=,解得:x1=-1,x2=5;(2)()241250y--=,∴()()4154150y y-+--=,∴()()44460y y+-=,解得:x1=-1,x2=32.【点评】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.21a a --,当a =0 时,原式=2. 【解析】【分析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出a 的值代入计算即可求出值.试题解析:解:原式=()()()22212211a a a a a a a +---⋅=+--由 a < a =-2,-1,0,1,2,当a =±2,1时,分式无意义. 当a =0 时,原式=2.20.(1)y=2x 2++1;(2)y=2. 【解析】【分析】(1)根据反比例函数表达式设y-1=k x 2+,代入即可求出表达式. (2)由(1)可直接代入求值.(1)设y-1=k x 2+,把x=-1,y=3代入得3-1=k -12+,解得k=2; 则函数解析式是y-1=k x 2+即y=2x 2++1; (2)把x=0代入得:y=2.【点评】本题考查反比例函数表达式解析式的求法,按照定义设解析式代入求值即可,难度一般. 21.(1)3y x =;m=32;(2)3;(3)0<x <3 【解析】【分析】(1)根据待定系数法设()0k y k x =≠,将A 点坐标代入解析式,即可求解;将y=2代入解析式,即可求解m 的值;(2)将B 点的横纵坐标相乘即可得到矩形OCBD 的面积;(3)将y=1代入解析式,求出x 的值,然后根据图像即可判断.(1)设函数解析式为()0k y k x =≠,代入A (-1,-3),得: 31k -=-,解得:3k = ∴函数解析式为3y x =;将B (m ,2)代入解析式,得:32m =,解得32m = 故m 的值为32; (2)根据(2)问结果,得到2BC =,32BD =∴3232OCBD S BC BD ==⨯= ∴矩形OCBD 的面积为3;(3)根据A 点坐标,结合函数图像,当y<1时,得到0<x<3【点评】本题考查了待定系数法求反比例函数解析式,反比例函数的图像和性质,反比例函数和不等式的关系,问题的关键是熟记反比例函数的基本性质.22.(1)见解析;(2)见解析;(3)P 点坐标(0,-5)、(0,3)、(4,1)【解析】【分析】(1)利用网格特点和旋转性质画出点A 、B 的对应点A 1、B 1即可;(2)根据关于y 轴对称的点的坐标特征写出A 2和B 2的坐标,然后描点即可; (3)利用平行四边形的判定方法,经过分类讨论,然后写出对应的P 点坐标.解:(1)如图,线段A 1B 1为所作;(2)如图,线段A 2B 2为所作;(3)点P 的坐标为(0,-5)、(0,3)、(4,1).【点评】本题考查了作图——旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.23.(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】【分析】(1)乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可; (2)设甲种图书进货a 本,总利润w 元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元.由题意得:1400168010 1.4x x ,解得:20x . 经检验,20x 是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a 本,总利润w 元,则()()()28203201421200w a a =--+--- 4800a =+.又∵()2014120020000a a +⨯-≤,解得:16003a ≤.∵w随a的增大而增大,∴当a最大时w最大,∴当533a=本时w最大,此时,乙种图书进货本数为1200533667-=(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点评】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.24.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析【解析】【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠F AG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.(1)④(2)①5−2【解析】(1)23<,(2)①5−2===26.(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3).【解析】【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△F AC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质即可得到结论;BC=2,求得DH=3,根据正方(3)根据等腰直角三角形的性质得到BC=4,AH=12形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△F AC中,AD=AF BAD=CAF AB=AC ⎧⎪∠∠⎨⎪⎩,∴△DAB ≌△F AC ,∴∠B =∠ACF ,∴∠ACB +∠ACF =90°,即CF ⊥BD ;②△DAB ≌△F AC ,∴CF =BD ,∵BC =BD +CD ,∴BC =CF +CD ;(2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△F AC 中,AD=AF BAD=CAF AB=AC ⎧⎪∠∠⎨⎪⎩,∴△DAB ≌△F AC ,∴∠B =∠ACF ,CF =BD∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD ,∴BC =CF +CD ;(3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N , ∵∠BAC =90°,AB =AC ,∴BC=4,AH =12BC =2, ∴CD =14BC =1,CH =12BC =2, ∴DH =3,由(2)证得BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE =CM ,EM =CN ,∵∠AHD =∠ADC =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,在△ADH 与△DEM 中,ADH=DEM AHD=AME AD=DE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3,∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形, ∴CG =BC =4,∴GN =1,∴EG EN =2210。
2021-2022学年第二学期泰州市靖江市滨江学校初二数学三月月考试题及解析
24.将 克糖放入水中,得到 克糖水,此时糖水 含糖量我们可以记为 .
【答案】:m≤0且m≠﹣1
【解析】
【分析】代数式有意义,要求各项都要有意义,被开方数为非负数,分母不为零.
【解答】由题意得:-m≥0且m+1≠0,
∴m≤0且m≠-1.
故答案是:m≤0且m≠-1.
8.分式 当x__________时,分式的值为零.
【答案】= -3
【解析】
【分析】根据分子为0,分母不为0时分式的值为0来解答.
(2)【应用与探究】如图1,已知: ,若 ,∠求:∠ACB的度数;
(3)如图2,已知: , , , 与边CD相交于点E,求 的面积.
答案与解析
一、选择题(本大题共有5小愿,每小题3分,共18分.每题只有一项是正确的,请将正确选项前的字母代号填在答题卷相应位置上)
1.下列图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.
【解答】A、是中心对称图形,但不是轴对称图形,故本选项不符合题意;
B、不是中心对称图形,是轴对称图形,故本选项不符合题意;
C、是中心对称图形,又是轴对称图形,故本选项符合题意;
D、不是中心对称图形,是轴对称图形,故本选项不符合题意;
三、解答题
17.计算:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰州市八年级上数学第二次月考试卷一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 3.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( )A .(﹣4,1)B .(1,﹣4)C .(4,﹣1)D .(﹣1,4)4.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .105.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-6.下到图形中,不是轴对称图形的是( )A .B .C .D .7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a =b C .a <b D .以上都不对 8.直线y=ax+b(a <0,b >0)不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.510.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查二、填空题11.4的算术平方根是 .12.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____. 13.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________. 14.如果2x -有意义,那么x 可以取的最小整数为______.15.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.16.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,1m m +-有最小值为__________.17.计算:32()x y -=__________.18.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____. 19.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.20.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .22.计算:(1)2(43)x y - (2)(1)(1)x y x y +++-(3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
小明同学对以上结论作了进一步探究.如图1,在Rt ABC ∆中,190,2ACB AC AB ∠==,则:30ABC ∠=. 探究结论:(1)如图1,CE 是AB 边上的中线,易得结论:ACE ∆为________三角形. (2)如图2,在Rt ABC ∆中,190,,2ACB AC AB CP ∠==是AB 边上的中线,点D 是边CB 上任意一点,连接AD ,在AB 边上方作等边ADE ∆,连接BE .试探究线段BE 与DE 之间的数量关系,写出你的猜想加以证明.拓展应用:如图3,在平面直角坐标系中,点A 的坐标为(3,1)-,点B 是x 轴正半轴上的一动点,以AB 为边作等边ABC ∆,当点C 在第一象内,且(2,0)B 时,求点C 的坐标.24.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型 价格 进价/(元/盏) 售价/(元/盏) A 型 30 45 B 型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元? 25.阅读下列材料:459253 5252 请根据材料提示,进行解答: (17的整数部分是 .(27的小数部分为m 11的整数部分为n ,求m +n 7的值.四、压轴题26.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE . (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.27.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度; (2)当2t =时,请说明//PQ BC ; (3)设BCQ ∆的面积为()2S cm,求S 与t 之间的关系式.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.30.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】22112,∴点A2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A . 【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.3.A解析:A 【解析】 【分析】根据一次函数与二元一次方程组的关系进行解答即可. 【详解】解:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为:(-4,1) 故选:A. 【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.4.B解析:B 【解析】 【分析】根据正方形的面积公式及勾股定理即可求得结果. 【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形, 所以AB 2=AC 2+BC 2 所以123S S S =+ 因为12316S S S ++= 所以1S =8故选:B 【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.5.C解析:C 【解析】 【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可. 【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解, 故选:C. 【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键.6.C解析:C 【解析】 【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,故此选项错误; B 、是轴对称图形,故此选项错误; C 、不是轴对称图形,故此选项正确; D 、是轴对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.A解析:A 【解析】 【分析】 【详解】 ∵k=﹣2<0,∴y 随x 的增大而减小, ∵1<2,∴a >b . 故选A .8.C解析:C 【解析】 【分析】先根据一次函数的图象与系数的关系得出直线y =ax +b (a <0,b >0)所经过的象限,故可得出结论. 【详解】∵直线y =ax +b 中,a <0,b >0, ∴直线y =ax +b 经过一、二、四象限, ∴不经过第三象限. 故选:C . 【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y =kx +b (k ≠0)中,当k <0,b >0时函数的图象经过一、二、四象限.9.C解析:C 【解析】 【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可. 【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误. 故选:C . 【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.10.C解析:C 【解析】 【分析】根据普查和抽样调查的特点解答即可. 【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意; B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.12.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.13.40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100解析:40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°-100°)÷2=40°.故答案为40°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握三角形的内角和定理以及等腰三角形的性质.14.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.15.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.16.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m 1211=31m m即:当1m 时,m m 3, 故答案为:3.【点睛】 准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.17.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262-=-=()x y x y x yx y故答案为:62【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.18.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.19.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度. 【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度.【详解】解:在Rt △ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC ≌△EDB ,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 20.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、解答题21.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20 【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.22.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可; (3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b +-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a+-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b+=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-. 【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.23.(1)等边;(2)ED EB =,证明详见解析;(3)12(,C +.【解析】【分析】(1)易证,60AC AE A ︒=∠=,因此ACE ∆是等边三角形; (2)连接PE ,结合,ACP ADE ∆∆等边三角形的性质,利用SAS 可证CAD PAE ∆≅∆, 由全等的性质知90ACD APE ∠=∠=,结合等腰三角形三线合一的性质可得EA EB =,等量代换即得ED EB =;拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA ,易知AO 、AH 长,由题中结论可得30AOH ∠=,结合(2)中结论,利用HL 定理可证ABH OCF ∆≅∆,可知CF 长,易得点C 坐标.【详解】解:(1)190,2ACB AC AB ∠== 30ABC ∴∠=60A ∴∠=CE 是AB 边上的中线12AE AB ∴= AE AC ∴=ACE ∴∆是等边三角形.(2)结论:ED EB =.理由:连接PE .∵,ACP ADE ∆∆都是等边三角形 ,,,60AC AD DE AD AE CAP DAE ∴===∠=∠=,CAD PAE ∴∠=∠,()CAD PAE SAS ∴∆≅∆,90ACD APE ∴∠=∠=,EP AB ∴⊥,∵PA PB =,EA EB ∴=,∵DE AE =,ED EB ∴=拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA .∵(3,1),22,30A AO AH AOH -∴==∴∠=, 由(2)可知,,CO CB OC AC =∴=∵,1CF OB OF FB ⊥∴==,,()AH OF ABH OCF HL ∴=∴∆≅∆23CF BH ∴==+∴.C(1,2【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,直角三角形的特殊判定,等腰三角形的性质,属于三角形的综合探究题,灵活利用等边三角形及直角三角形的性质是解题的关键.24.(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1900元【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A 型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1900.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.25.(1)2;(2)1【解析】【分析】(1<(2<<,进而得出答案.【详解】解:(1<<<,∴232.故答案为:2; (2)由(1)可得出,72m =-, ∵91116<<,∴n =3,∴772371m n +-=-+-=.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根. 四、压轴题26.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)先判断出MF=NG ,OF=MG ,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=4,SH=0Q=1,进而求出直线PR 的解析式,即可得出结论.【详解】证明:∵∠ACB =90°,AD ⊥l∴∠ACB =∠ADC∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°∴由(1)得MF =NG ,OF =MG ,∵M (1,3)∴MF =1,OF =3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC ≅∴∠PQC=∠BCQ∴PQ∥B C(3)过点C 作CM⊥AB,垂足为M∵AC=BC,CM⊥AB ∴AM=118422AB =⨯=(cm ) ∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm ) ∴118t 416222BCQ S BQ CM t ==⨯-⨯=- 因此,S 与t 之间的关系式为S=16-2t .【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.28.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤.【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ; (3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC ,∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立. 理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.30.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,2AF)2+2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.。