人教版勾股定理说课稿

合集下载

有关勾股定理说课稿五篇

有关勾股定理说课稿五篇

有关勾股定理说课稿五篇勾股定理说课稿篇1各位专家领导,上午好:今天我说课的课题是《勾股定理》一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(二)三维教学目标:1.【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2. 【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

【突破措施】⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

关于勾股定理说课稿范文集合6篇

关于勾股定理说课稿范文集合6篇

关于勾股定理说课稿范文集合6篇勾股定理说课稿篇1课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是中学数学中一个非常重要的定理。

勾股定理揭示了直角三角形三边之间的数量关系,即直角边的平方和等于斜边的平方。

这一定理在我国古代就已经被发现,并有详细的证明。

在本节课中,学生将通过探究和证明来理解和掌握勾股定理,并能够运用它解决实际问题。

二. 学情分析在进入本节课的学习之前,学生已经学习了平面几何的基本概念,对三角形、直角三角形等有一定的了解。

同时,他们已经学习了平方根的概念,能够进行简单的平方运算。

但是,对于勾股定理的证明和应用,他们可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,引导他们通过探究和思考来理解和掌握勾股定理。

三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的内容,并能够进行简单的证明。

2.过程与方法目标:学生通过探究和证明,培养逻辑思维能力和空间想象能力。

3.情感态度与价值观目标:学生体验到数学的趣味性和魅力,增强对数学学习的兴趣。

四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的内容。

2.教学难点:学生能够进行勾股定理的证明,并能够运用它解决实际问题。

五.说教学方法与手段在本节课的教学中,我将采用探究式教学法和启发式教学法。

通过引导学生进行自主探究和思考,激发他们的学习兴趣和动力。

同时,我将运用多媒体教学手段,如PPT、几何画板等,为学生提供直观的学习材料,帮助他们更好地理解和掌握勾股定理。

六.说教学过程1.导入:通过一个实际问题,引导学生思考直角三角形三边之间的关系。

2.探究:引导学生进行小组讨论,鼓励他们用自己的方法来证明勾股定理。

3.讲解:对学生的探究结果进行点评,并给出标准的证明过程。

4.练习:为学生提供一些练习题,帮助他们巩固所学内容。

5.应用:引导学生运用勾股定理解决实际问题,如测量物体的高度等。

七.说板书设计板书设计如下:直角三角形两直角边的平方和等于斜边的平方。

勾股定理说课稿范文7篇

勾股定理说课稿范文7篇

勾股定理说课稿范文7篇勾股定理说课稿范文7篇作为一位优秀的人民教师,通常会被要求编写说课稿,借助说课稿我们可以快速提升自己的教学能力。

说课稿要怎么写呢?下面是小编为大家收集的勾股定理说课稿范文7篇,仅供参考,欢迎大家阅读。

勾股定理说课稿范文7篇1各位专家领导:上午好,今天我说课的课题是《勾股定理》一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(二)三维教学目标:1.【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2. 【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

【突破措施】⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。

《勾股定理》说课稿(通用6篇)

《勾股定理》说课稿(通用6篇)

《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。

今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。

”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇篇一:勾股定理的引入大家好!今天我要给大家讲解的是数学中的一个重要定理——勾股定理。

勾股定理是数学中的一条基本定理,也是我们学习几何的基础。

它的发现和应用可以追溯到古代中国和古希腊时期。

勾股定理的证明方法有很多,其中一种最常见的方法是利用几何图形进行证明。

下面我将为大家介绍勾股定理的定义、历史背景以及一个简单的证明方法。

首先,我们来看一下勾股定理的定义。

勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。

换句话说,设直角三角形的两条直角边分别为a和b,斜边为c,则有a² + b² = c²。

这就是勾股定理的数学表达式。

接下来,我们了解一下勾股定理的历史背景。

勾股定理最早可以追溯到古代中国的《周髀算经》和《九章算术》中。

在中国,勾股定理被称为“勾股数学”,并被广泛应用于农业、建筑和天文学等领域。

而在古希腊,勾股定理被归功于毕达哥拉斯学派的数学家毕达哥拉斯。

他将勾股定理应用于几何学,并给出了一个简单的证明方法。

最后,我们来看一下勾股定理的证明方法。

一个简单的证明方法是通过几何图形进行证明。

我们可以画一个直角三角形,并在每条边上标出相应的长度。

然后,根据勾股定理的定义,我们可以计算出每条边的平方和,验证它们是否相等。

如果相等,那么我们就证明了勾股定理的正确性。

总结一下,勾股定理是数学中的一条基本定理,它在几何学中有着广泛的应用。

它的定义是直角三角形的直角边的平方等于另外两条边的平方和。

勾股定理的历史可以追溯到古代中国和古希腊时期。

证明勾股定理的方法有很多,其中一种常见的方法是通过几何图形进行证明。

希望通过今天的讲解,大家对勾股定理有了更深入的了解。

篇二:勾股定理的应用大家好!今天我要给大家讲解的是勾股定理的应用。

勾股定理是数学中的一条基本定理,它不仅在几何学中有着广泛的应用,还可以用于解决实际问题。

下面我将为大家介绍勾股定理在几何学和实际问题中的应用。

勾股定理说课稿范文5篇

勾股定理说课稿范文5篇

It is not difficult to make a decision, but the hard part is to put it into action and stick to it to the end.勤学乐施积极进取(页眉可删)勾股定理说课稿范文5篇勾股定理说课稿篇1一、勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用. 据此,制定教学目标如下:1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用.教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.二.说教法和学法1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力.3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用. 勾股定理说课稿篇2课题:勾股定理内容:教材分析、教法学法分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

探索《勾股定理》说课稿范文(精选5篇)

探索《勾股定理》说课稿范文(精选5篇)

探索《勾股定理》说课稿范文(精选5篇)探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。

"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

从上面低起点的问题入手,有利于学生参与探索。

学生很容易发现,在等腰三角形中存在如下关系。

人教版数学八年级下册17.1《勾股定理》说课稿4

人教版数学八年级下册17.1《勾股定理》说课稿4

人教版数学八年级下册17.1《勾股定理》说课稿4一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是初中的重要几何定理之一。

本节课的主要内容是让学生通过探究、发现并证明勾股定理,理解并掌握勾股定理的内容和应用。

教材通过丰富的情境和实例,引导学生从实际问题中发现勾股定理,并通过几何画板等工具进行验证。

教材还提供了多种证明方法,让学生了解勾股定理的不同证明思路,培养学生的逻辑思维能力和创新意识。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角形的内角和定理等知识,具备了一定的几何基础。

但是,对于证明方法的掌握和运用还需要进一步的培养。

此外,学生对于抽象的几何证明可能还存在一定的困难,因此需要教师在教学中给予适当的引导和帮助。

三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的内容和证明方法,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的几何直观能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。

四. 说教学重难点1.教学重点:让学生掌握勾股定理的内容和证明方法。

2.教学难点:让学生理解和运用勾股定理的证明方法,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、几何画板等工具,帮助学生直观地理解勾股定理的证明过程。

六. 说教学过程1.导入:通过展示直角三角形的实例,引导学生发现直角三角形边长之间的关系,激发学生的兴趣。

2.探究:让学生分组讨论,每组选择一种证明方法,利用几何画板等工具进行验证,并展示汇报。

3.证明:引导学生总结勾股定理的证明过程,理解证明方法的本质。

4.应用:让学生运用勾股定理解决实际问题,巩固所学知识。

5.总结:对本节课的内容进行总结,强调勾股定理的重要性和应用价值。

人教版数学八年级下册第十七章勾股定理说课稿

人教版数学八年级下册第十七章勾股定理说课稿
(2)将勾股定理应用于实际问题,需要学生能够灵活运用所学知识,建立数学模型。
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
2.同伴互评:组织学生相互评价,提出建议,促进同学之间的相互学习和交流。
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。

勾股定理说课稿(优秀7篇)

勾股定理说课稿(优秀7篇)

勾股定理说课稿(优秀7篇)一、教材分析(一)教材地位与作用勾股定理它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

情感态度与价值观:激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

教学难点:用面积法(拼图法)发现勾股定理。

突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。

另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。

把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5、感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

关于勾股定理说课稿范文锦集7篇

关于勾股定理说课稿范文锦集7篇

关于勾股定理说课稿范文锦集7篇勾股定理说课稿篇1一、说教材分析本节研究的是勾股定理的探索及其应用。

它从边的角度进一步对直角三角形的特征进行了刻画。

它的主要内容是探索勾股定理,验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。

本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。

二、说教学目标教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。

一堂课的教学目标应全面、适度、明确、具体,便于检测。

因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为:1、知识技能:(1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。

(2)运用勾股定理进行简单的计算和解释生活中的实际问题。

(3)运用勾股定理会在数轴上画出表示无理数的点。

2、数学思考:在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。

3、解决问题:通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。

学会与人合作并能与他人交流思维的过程和探究的结果。

能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。

4、情感态度:(1)通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。

(2)通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(3)通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。

三、说教学重、难点教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。

重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。

关于勾股定理说课稿汇编7篇

关于勾股定理说课稿汇编7篇

关于勾股定理说课稿汇编7篇勾股定理说课稿篇1一、教材分析教材所处的地位与作用“探索勾股定理”是人教版八年级《数学》下册内容。

“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。

同时勾股定理在生产、生活中也有很大的用途。

二、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:1、知识目标知道勾股定理的由来,初步理解割补拼接的面积证法。

掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。

2、能力目标在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。

3、情感目标通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。

介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。

三、教学重难点本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。

由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。

四、教学问题诊断本节主要攻克的问题就是本节的难点:勾股定理的证明。

我打算采用面积法来讲解,但这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说,有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。

五、教法与学法分析[教学方法与手段] 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。

[学法分析] 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。

勾股定理说课稿3 人教版(精品篇)

勾股定理说课稿3 人教版(精品篇)

《勾股定理》说课稿一、说教材:1、教材的地位和作用今天我所说的课题是人教版八年级下册《勾股定理》的第一课时。

《勾股定理》和《三角形内角和定理》被誉为初等几何中的两大基本定理,它在已经学习的三角形有关概念、全等的基础上,又进一步的刻画了直角三角形的三边关系。

它对研究直角三角形、四边形、多边形、圆中都有着极为重要的意义,因此《勾股定理》为初等几何的后续学习奠定了基础。

本节课很大程度上提供了培养学生的数学思维、发展空间观念和提高实践探究能力的机会;同时勾股定理在生产生活领域中也有着很大的实用价值,通过对生活中实际问题的解决,突出人人学有价值数学的思想。

2、教学目标本节课的三维目标是:知识目标:了解勾股定理的文化背景,体验勾股定理的探索过程,能用勾股定理解决一些简单的实际问题。

能力目标:在勾股定理的探索过程中,发展合情推理能力;发展由特殊到一般的数学归纳思想;掌握面积法在几何问题中的运用;体会数形结合思想,发展空间观念。

情感目标:通过对勾股定理历史的了解,感受数学文化、激发学习热情,在探究过程中培养学生的探究能力和合作交流意识。

3、教学重点、难点由于学生数形结合思想薄弱,面积法解决问题的能力欠缺,所以勾股定理的探究过程即是本节课的重点,又是难点。

二、说教法因此,根据教材特点和学生的认知规律,在教法设计上,我提供了生动有趣的活动情景,激发学生的学习兴趣。

采用实践探究式教学方法,把学生的探究与验证活动放在首位,一方面要求学生在教师的引导下,自主探索、合作交流、挖掘内在潜能;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的。

三、说学法“学习任何东西,最好的途径是自己去发现”,在勾股定理的探索过程中以学生的动手实践、自主探索、合作交流为主要的学习方式,学生通过独立操作、观察、计算、探讨、交流发现勾股定理,并提出猜想。

在拼图过程中验证勾股定理,感受知识构建的过程,发展空间观念和数学思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理说课稿
各位评委老师,上午好:
今天我说课的题目是《勾股定理》,所选教材为人教版八年级数学下册。

我将遵循幸福课堂四步教学法,从说教材,说学情,说教法说学法,以及说流程几方面进行。

一、教材的地位和作用
勾股定理是几何中重要定理之一,在数学的发展中起着重要的作用。

一方面是对直角三角形中三边数量关系的深入和拓展,另一方面又为九年级学习三角函数奠定了基础。

鉴于这种理解,我认为本节课不仅有着广泛的实际应用,而且有着承前启后的作用。

二、说学情
八年级学生思维活跃,参与意识强,对事物充满好奇心。

经过七年级的学习,以储备相应的知识基础,初步具备基本的数形知识,归纳信息的能力;但由于生活经验少,在综合分析事物时,考虑问题可能不会很全面,需要教师引导。

根据新课标的要求和教材内容以及学生的基础认知水平,我确定以下三个维度的教学目标:
1.【知识与能力目标】
通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2.【过程与方法目标】
让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

3.【情感态度与价值观】激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

结合新课标对本课的要求,我将本节课的重点确定为:勾股定理的证明与运用难点确定为:用面积法等方法证明勾股定理
三、教法与学法分析
为了讲清教材的重难点,使学生能够达到本课设定的教学目标,我再从教法和学法上说说。

根据教学有法,教无定法的原则和郭思乐教授的生本教育理念,我决定采用“定向----自学 ----交流---提升”的模式,以倡导学生自学,增加尝试探究,强化检测提升,增强成功体验为特点的四环节幸福课堂教学模式,强化师生的课堂幸福感受。

教是手段,学是中心,学会是目的,为实现人人学有价数学的教学理念,我抓住八年级学生思维活跃注意力易分散和爱“自我表现”的心理特点,创造条件,指导学生,学会探究,学会合作,学会归纳。

四,教学流程
我按照课标要求,结合教材内容和学生的生活体验,创造性的使用教材,重新整合教学资源,将学习内容分成三大教学板块。

第一板块:我设计了“看动画、大挑战”“赏图片,知荣辱”两个环节,为突出重点,在“看动画、大挑战”环节,我利用多媒体课件演示FLASH小动画片:消防队员楼房救火,能否进入三楼灭火的问题情境,这一环节设计的目的是激发学生的探究欲望,这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

“赏图片,知荣辱”环节,安排了学生资料展示活动,展示内容是学生课前通过各种途径搜集到的有关的勾股定理资料,资料形式可以不拘一格,目的是调动学生学习的积极性和主动性,满足学生“自我表现”的欲望,培养学生搜集、整理信息的能力,体现“学习生活中有用价值的数学”的理念。

第二板块:我设计了“集广义、达共识”的环节,为了突破重难点,根据课标要求和学生的认知能力,采用学生动手操作,小组合作、探究,验证猜想,各小组班前展示的形式,教师鼓励学生产生质疑和分歧,再进一步辩论后,达成共识。

教师做总
结性的板书。

这一活动的设计,培养学生发现问题,分析问题,解决问题的能力,实现了在共建中共享,共享中共建。

第三板块学以致用拓展延伸
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:北购店庆小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.
你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
总之,本环节目的是鼓励学生运用所学知识解决生活实际问题,渗透“学习对终身发展有用数学”的理念。

四、作业超市,各显神通
以作业的巩固性和发展性为出发点,我设计了作业超市:分为必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课内容的一个延伸,目的是实现了数学应面向全体的理念。

五、课堂效果预设
各位评委,本节课,我根据八年级学生的心里特征及其认知规律,采用问题引领下的小组合作探究形式,以教师为主导,学生为主体,导学案为抓手,完成教学。

教师的导立足于学生的学,放手让学生自主探究,合作交流,使他们主动的参与到知识形成的思维过程中,在积极愉快的氛围中实现人人都能获得必需的数学,
和不同人在数学上得到不同程度的发展的教学理念。

我的说课完毕,谢谢!。

相关文档
最新文档