奥数速算与巧算专题四年级

合集下载

(完整版)四年级奥数速算与巧算

(完整版)四年级奥数速算与巧算

四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。

四年级奥数思维训练专题-速算与巧算

四年级奥数思维训练专题-速算与巧算

四年级奥数思维训练专题-速算与巧算专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,使计算简便.例1:计算325÷25分析:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.利用这一性质,可以使这道计算题简便.325÷25=(325×4)÷(25×4)=1300÷100=13试一试1:计算下面各题.450÷25 3500÷125例2:计算25×125×4×8分析:先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了.这就启发我们运用乘法交换律和结合律使计算简便.25×125×4×8=(25×4)×(125×8)=100×1000=100000试一试:计算下面各题.125×25×32 75×16例3:计算(360+108)÷36 (450-75)÷15分析:两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(或差).利用这一性质,可以使这道题计算简便.(360+108)÷36 (450-75)÷15=360÷36+108÷36 =450÷15-75÷15=10+3 =30-5=13 =25试一试3:计算下面各题.(720+96)÷24 (4500-90)÷45例4:计算158×61÷79×3分析:在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置.158×61÷79×3=158÷79×61×3=2×61×3=366试一试4:计算下面各题.624×48÷312÷8 406×312÷104÷203速算与巧算专题简析:有些题看似不能巧算,如果把已知数适当分解或转化就可以使计算简便.例1:计算236×37×27分析:将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了.236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764试一试1:计算下面各题:315×77×13 6666×6666例2:计算333×334+999×222解析:333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000试一试2:计算下面各题:9999×2222+3333×3334 46×28+24×63例3:计算20012001×2002-20022002×2001分析:大数化小:20012001=2001×10001,20022002=2002×10001:20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0试一试3:计算19931993×1994-19941994×1993例4:不用笔算,请你指出下面哪个得数大.163×167 164×166分析1:两个因数和相等,差越小积越大,所以163×167<164×166分析2:把题中的数据作适当变形,再利用乘法分配律,再比较就方便了.163×167 164×166=163×(166+1)=(163+1)×166=163×166+163 =163×166+166所以,163×167<164×166试一试4:计算:8353×363-8354×362。

四年级奥数第一讲-速算与巧算含答案

四年级奥数第一讲-速算与巧算含答案

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。

二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。

解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。

解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

四年级奥数 速算与巧算,带答案

四年级奥数 速算与巧算,带答案

1.。

A.B.C.D.答案:B解析:2.计算:,结果是( )。

A.B.C.D.答案:C解析:通过观察都是接近的数,所以把这些数都表⽰为加减⼀个数:3.计算,结果是( )。

A.B.C.D.答案:C解析:计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=66000109+91+97+101+99+107+102700690706696100100109+91+97+101+99+107+102=100+9+100−9+100−3+100+1+100−1+100+7+100+2=100+100+100+100+100+100+100+9−9−3+1−1+7+2=100×7+6=700+6=70698+101+797+298+199−305128812001188110098+101+797+298+199−305=100+100+800+300+200−300−2+1−3−2−1−5=1200−12=11884.简便计算:。

A.B.C.答案:A解析:加括号时注意除号变乘号。

5.计算:。

A.B.C.答案:C解析:6.计算:。

A.B.C.D.答案:C 解析:7.计算A.B.C.答案:C5000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=30000098+998+9998+99998=99999811111211109211100298+998+9998+99998=(100−2)+(1000−2)+(10000−2)+(100000−2)=111100−8=111092125×64×25×5100001000001000000解析:8.计算:,结果是。

完整版)四年级奥数简算、速算与巧算

完整版)四年级奥数简算、速算与巧算

完整版)四年级奥数简算、速算与巧算本讲将研究用凑整法和分解法等方法进行乘除的巧算。

通过适当分解或转化已知数,可以使计算变得简单。

对于较复杂的计算题,要善于从整体上把握特征,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,简化计算过程。

例1:计算236×37×27.可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=-236=.练一:计算132×37×27、315×77×136、6666×6666.例2:计算333×334+999×222.只要对数据作适当变形即可简算。

333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=.练二:计算9999×2222+3333×3334、37×18+27×42、46×28+24×63.例3:计算xxxxxxxx×2002-xxxxxxxx×2001.将xxxxxxxx变形为2001×,把xxxxxxxx变形为2002×,计算起来就非常方便。

xxxxxxxx×2002-xxxxxxxx×2001=2001××2002-2002××2001=0.练三:计算×368-×1922、xxxxxxxx×1994-xxxxxxxx×、xxxxxxx×3998-xxxxxxxx×666.例4:不用笔算,请指出下面哪个得数大:163×167或164×166.可以将163乘以166,得到,将164乘以167,得到,因此164×166得数大。

四年级奥数第一讲_速算与巧算含答案

四年级奥数第一讲_速算与巧算含答案

四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。

⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。

解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。

解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

(完整版)四年级奥数专题速算与巧算

(完整版)四年级奥数专题速算与巧算

四年级奥数专题:速算与巧算【试题1】计算9+99+999+9999+99999【试题2】计算199999+19999+1999+199+19【试题3】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【试题4】计算9999×2222+3333×3334【试题5】56×3+56×27+56×96-56×57+56【试题6】计算98766×98768-98765×98769四年级奥数专题:速算与巧算答案【解析1】在涉及所有数字都是9的计算中,常使用凑整法。

例如将999化成1000—1去计算。

这是小学数学中常用的一种技巧。

9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105【解析2】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225【分析3】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500【分析4】此题如果直接乘,数字较大,容易出错。

(完整版)四年级奥数速算、巧算方法及习题

(完整版)四年级奥数速算、巧算方法及习题

四年级奥数速算、巧算方法及习题知识集锦行乘法、除法以及乘除法混淆运算,可利用以下性行巧算:①乘法交律: a b b a②乘法合律: a b c a (b c)③乘法分派律: (a b) c a c b c由此能够推出: a b a c a(b c)(a b) c a c b c④除法的性: a b c a c b a (b c)利用乘法、除法的些性,先凑整得10、100、 1000⋯⋯会使算更便 .例题会合例 1 算:(1) 25 564 125 ;( 2) 56 165 7 11.1 算:(1) 2596 125;(2) 77777 99999 11111 11111.例2 算:(1) 4000 1258 ;(2) 9999 2222 3333 3334 .2 算:(1) 60000 125 2 5 8 ;(2) 99999 7 11111 37 .例3 算: 218 730 7820 73 .3 算: 375 480 2750 48.例 4 不用计算结果,请你指出下边哪道题得数大.452 458453457练习 4 不用计算结果,比较下边两个积的大小.A 54321 12345B 54322 12344例 5 求1 (23)(34)(45) (56) 的值.练习 5 求5(711)(1116)(1635) 的值.讲堂练习一、选择题。

1、以下各式中没有反应出简易运算的是() .( A) 19 19919991999920200200020000 4( B) 45005464500 (546)( C) 8 240125 48 192012548( D) 10000 2 4 5 25 10000 (2 4 5 25)二、简算以下各题 .2、4500(25 90) ;3、 18000 12518 ;4、 42 35 61 35 3 5 ;5、(12599 125)16 ;6、 75 16 ;7、9815 9810 49981;8、1000(25 4) ;9、623763 ;10、 20102010 2011 20112011 2010;11、(975579 198) (578 976 199) .13、不用笔算,请你指出下边哪个积大?242 24824324714、计算: 36 34 , 27 23 , 69 61, 5258 , 18 12 .(1)你能从上边的计算中,总结出个位数字的和等于 10 、十位数同样的两位数相乘的简易算法吗 ?(2)72 7885 5891 99家庭作业一、计算题 .1、124 25 ;2、91000125;3、125 5 32 5 ;4、4444 99981111;5、 90000 125 2 5 8 ;6、 ( 48 75 81) (24 25 27);7、计算: 230 54 540 77 ;8、计算:123456 789 456 789 123.。

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案1. 数的速算法2. 快速计算3. 小学奥数加减乘除练习4. 常见乘法口诀5. 方便的除法计算技巧6. 巧妙的加减法运算7. 优化的百分数计算方法8. 实用的几何图形计算技巧9. 实战的生活中的计算题目10. 视觉记忆的速算训练答案:1. 数的速算法答案:速算法指的是运用一些简便的技巧与方法来快速计算的方法。

例如用9段样条线来表示数字1,将数字的表达与视觉形象结合在一起,可以达到快速计算的效果。

2. 快速计算答案:快速计算技巧包括了加减乘除各个方面,如加法有凑数法、抵数法等;减法有加倍数法、分解数法等;乘法有竖式运算方法,交叉相乘计算法等;除法有竖式运算法、分解分子分母法等。

3. 小学奥数加减乘除练习答案:加减乘除是小学奥数的基础,掌握了这些基础的数学运算能力,才能在学习高阶数学知识时更加游刃有余。

可以通过刻意而有目的地训练来提高计算速度和准确度。

4. 常见乘法口诀答案:小学奥数中最为基础的技能之一就是乘法口诀,通过熟练掌握乘法口诀,可以极大地方便我们的计算。

如:1×8=8,2×8=16,3×8=24,8的下一个是9,所以 4×8=32,5×8=40,等等。

5. 方便的除法计算技巧答案:除法相对而言更为复杂一些,但我们可以通过一些简单易行的技巧来提高计算效率。

如:除法的大小关系可以和乘法相互转换,而某些数字的约数和倍数也可以有助于除法的计算。

6. 巧妙的加减法运算答案:加减法其实是一种递归的过程。

一旦我们掌握了这些技巧,就可以通过这些技巧来递归计算出较为复杂的问题。

例如,在求两个小数的相加时,我们可以把两个小数的小数位数统一,然后相加即可。

7. 优化的百分数计算方法答案:百分数在日常生活中也很常见,要精通百分数计算,通常需要对常用的百分数进行速算。

例如:50%等于1/2,25%等于1/4,10%等于1/10,更高级的百分数转化可以运用推导法来操作。

四年级奥数速算与巧算练习及答案

四年级奥数速算与巧算练习及答案

To save money is to make money.勤学乐观天天向上(页眉可删)四年级奥数速算与巧算练习及答案四年级奥数速算与巧算练习及答案一、(1+2+3+……+20XX+20XX+……+2+1)÷20XX【分析】1+2+3+……+20XX+20XX+……+2+1)÷20XX=20XX×20XX÷20XX=20XX二、123×9+82×8+41×7-20XX【分析】40123×9+82×8+41×7-20XX=41×3×9+41×2×8+41×7-20XX=41×(27+16+7)-20XX=2050-20XX=40三、(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)解答:分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500。

四、6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+ 6839-(4843-2847)解答:原式==6472-1996+5319-1996+9354-1996+6839-1996=6472+5319+9354+6839-1996 4=6472+5319+9354+6839-7984=(6472+5319+6839)+(9200+154)-(7900+84)=(6472+5319+6839)+(9200-7900)+(154-84)=(6472+5319+6839)+1300+70=18630+1370=20000四年级奥数速算与巧算练习及答案【例题1】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:计算25×125×4×8
分析与解答:经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了。这就启发我们运用乘法交换律和结合律使计算简便。
25×125×4×8
=(25×4)×(125×8)
=100×1000
+678+2386-(336+278)-186
【例题5】计算下面各题。
(1)286+879-679 (2)812-593+193
【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
例1:计算325÷25
分析与解答:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。利用这一性质,可以使这道计算题简便。
325÷25
=(325×4)÷(25×4)
=1300÷100
=13
练 习 一
计算下面各题。
1,450÷25 2,525÷25
3,3500÷125 4,10000÷625
5,49500÷900 6,9000÷225
=100000
练 习 二
计算下面各题。
125×15×8×4 25×24 25×5×64×125
125×25×32 75×16 125×16
例3:计算(1)(360+108)÷36 (2)(450-75)÷15
分析与解答:两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(或差)。利用这一性质,可以使这道题计算简便。
6.(10000-1000-100-10)÷10
例4:计算158×61÷79×3
分析与解答:在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置。
158×61÷79×3=15 Nhomakorabea÷79×61×3
=2×61×3
=366
练 习 四
计算下面各题。
1,238×36÷119×5
我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
+(152-127)
=248+152-127
=400-127
=273
练习4:
计算下面各题
+(252-166) +(320-129)
3. 462-(262-129) 4. 662-(315-238)
-(623-289)+452-(352-211)
【例题3】计算下面各题。
(1)632-156-232 (2)128+186+72-86
【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。
练习3:
计算下面各题-569-+69--85+684,2318+625-1318+375
【例题4】计算下面各题。
5.计算1998+2997+4995+5994
6.计算19998+39996+49995+69996.
【例题2】计算489+487+483+485+484+486+488
【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488
在巧算方法里,蕴含着一种重要的解决问题的策略。转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
二、精讲精练
【例题1】 计算9+99+999+9999
【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。
1. 248+(152-127) 2. 324-(124-97) 3. 283+(358-183)
【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
(1)123×96÷16 (2)200÷(25÷4)
=123×(96÷16) =200÷25×4
=123×6 =8×4
=738 =32
练 习 五
计算下面各题。
1,612×366÷183
2,1000÷(125÷4)
3,(13×8×5×6)÷(4×5×6)
4,241×345÷678÷345×(678÷241)
课堂练习
错题回顾
学生课堂评价:优□良□中□差□
学生总结(课上完成):
教师课堂反馈(课上完成):
家庭作业:
教研组长签字:
常州知典教育一对一教案
学生:年级:学科:数学授课时间:月日 授课老师:赵鹏飞
课 题
奥数巧算与速算专题
教学目标(通过本节课学生需掌握的知识点及达到程度)
掌握基本的运算规律,学会利用运算规律来巧妙计算,提升对数字的敏感度,加强对数字的使用效率。
本节课考点及单元测试中所占分值比例
奥数计算中提升精华部分。
学生薄弱点,需重点讲解内容
练习5:
计算下面各题。
+1859-859 +393-293
-385+285 -2748+1748+244
-375+275+(388+286) +1478+346-(256+278)-246
第2讲 速算与巧算(2)
专题简析:
乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
(1)(360+108)÷36 (2)(450-75)÷15
=360÷36+108÷36 =450÷15-75÷15
=10+3 =30-5
=13 =25
练 习 三
计算下面各题。
1.(720+96)÷24
2.(4500-90)÷45
3.6342÷21
4.8811÷89
5.73÷36+105÷36+146÷36
=490×7-1-3-7-5-6-4-2
=3430-28
=3402
想一想:如果选480为基准数,可以怎样计算.
练习2:
+52+53+54+51 +266+270+268+264
+94+92+95+93+94+88+96+87 +378+382+383+379
+1028+1033+1029+1031+1030 +2452+2446+2453.
运算律记忆的错误,计算的粗心,数字的遗漏。
课前检查
上次作业完成情况: 优□良□中□差□
建 议:










第1讲 速算与巧算(1)
一、知识要点
速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)
=10+100+1000+10000-4
=11106
练习1:
1.计算99999+9999+999+99+9 2.计算9+98+996+9997
3.计算1999+2998+396+497 4.计算198+297+396+495
2,624×48÷312÷8
3,138×27÷69×50
4,406×312÷104÷203
例5:计算下面各题。
(1)123×96÷16 (2)200÷(25÷4)
分析与解答:这两道题都是乘除混合运算式题,我们可以根据这两道题的特点,采用加括号或去括号的方法,使计算简便。其方法与加减混合运算添、去括号的方法类似,可以概括为:括号前是乘号,添、去括号不变号;括号前是除号,添、去括号要变号。
相关文档
最新文档