《电力拖动控制系统》PPT课件

合集下载

电力拖动自动控制系统PPT课件

电力拖动自动控制系统PPT课件

晶闸管整流器是毫秒级,这将大大提高系统的
动态性能。
2021/3/8
42
• V-M系统的问题
– 由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
– 晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
– 由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
本章提要11直流调速系统用的可控直流电源12晶闸管电动机系统vm系统的主要问题13直流脉宽调速系统的主要问题14反馈控制闭环直流调速系统的稳态分析和设计15反馈控制闭环直流调速系统的动态分析和设计16比例积分控制规律和无静差调速系统11直流调速系统用的可控直流电源根据前面分析调压调速是直流调速系统的主要方法而调节电枢电压需要有专门向电动机供电的可控直流电源
电力拖动自动控制系统
电气信息学院
2021/3/8
1
绪论
自动控制系统的几个概念 自动控制系统的分类 自动控制系统的组成 自动控制系统的性能指标 研究自动控制系统的方法 本课程与其它课程的连接本课程的主要内容 计算机控制系统的概念
2021/3/8
2
一.自动控制系统的几个概念
1.自动控制 Automatic control 在无人直接参与的情况下,利用控制装
例子:计算机控制系统。 数学模型用差分方程描述
2021/3/8
13
二.自动控制系统的分类
4.按系统有无反馈环节分类 ①开环控制系统 ②闭环控制系统
5.按系统控制对象和方式分类,又可分为 拖动控制系统(电气控制系统、机械控 制系统)和过程控制系统(石油,化工, 制药等)
2021/3/8

电力拖动ppt课件

电力拖动ppt课件
电力拖动ppt课件
目 录
• 电力拖动概述 • 电力拖动系统的电动机 • 电力拖动系统的控制电路 • 电力拖动系统的应用实例 • 电力拖动系统的维护与故障排除
01
电力拖动概述
定义与原理
定义
电力拖动是指利用电动机作为原 动机来拖动生产机械的工作机构 使之运转的一种方法。
原理
利用电动机产生的转矩和转速, 通过传动机构来驱动生产机械的 工作机构运转。
电力拖动系统能够精确控制生产线的速度、位置和运动轨迹,提高生产效率和产品 质量。
工业自动化生产线通常需要高可靠性和高稳定性的电力拖动系统,以确保生产线的 正常运行和生产安全。
电梯控制系统
电梯是电力拖动系统在垂直运 输领域的典型应用,通过电机 驱动曳引绳或链条实现升降运 动。
电力拖动系统能够精确控制电 梯的速度和位置,提供安全、 舒适、高效的运输服务。
按控制方式分类
手动控制、半自动控制和自动控制等 。
机械传动、液压传动和气压传动等。
02
电力拖动系统的电动机
电动机的种类与特点
直流电动机
具有良好的调速性能, 适用于需要平滑调速的 场合。但结构复杂,维
护成本高。
交流电动机
结构简单,维护方便, 但调速性能较差。常见 的有异步电动机和同步
电动机。
伺服电动机
应确保所选电动机符合安全标准,并具有 必要的安全保护功能。
03
电力拖动系统的控制电 路
控制电路的组成与原理
组成
控制电路主要由控制电器、保护电器和测量仪表组成,用于实现对电动机的启 动、调速、制动和反向等控制操作。
原理
通过控制电路中的电器元件,实现对电动机的电源通断、调速和转向的控制, 从而达到生产工艺的要求。

《电力拖动自动控制》课件

《电力拖动自动控制》课件

二、电力拖动原理
1 电力拖动的基本原理解释电力拖动的基本工作来自理,包括电动机和传动装置的作用。
2 电机的参数和性能指标
介绍电机的关键参数,如功率、效率和转速,并解释这些指标在电力拖动中的意义。
三、电力拖动控制方法
1
开环控制和闭环控制
比较开环控制和闭环控制的优缺点,讨论何时使用哪种控制方法。
2
速度控制和位置控制
《电力拖动自动控制》 PPT课件
欢迎大家参加《电力拖动自动控制》课程,本课程将介绍电力拖动的背景、 原理、控制方法、应用案例和未来发展趋势。
一、背景
电力拖动的概念和应用领域
介绍电力拖动的定义和广泛应用的领域,如工 业生产和交通运输。
电力拖动自动控制的需求和意义
讨论为什么自动控制对电力拖动系统至关重要, 以及自动控制的优势和好处。
2 电力拖动技术的发展前景
回顾电力拖动技术的发展历程,并展望其未 来在工业领域的发展前景。
详细说明速度控制和位置控制的原理和实现方法,以及它们在不同应用中的应用。
3
电力拖动的其他控制方法
介绍其他常用的电力拖动控制方法,如扭矩控制和力矩控制。
四、控制器的设计和实现
控制器的功能和结构
探讨控制器的基本功能和结构,包括输入输出接口 和信号处理。
控制器的算法和调试
介绍控制器的算法设计和调试方法,确保系统稳定 和可靠。
五、电力拖动系统的应用案例
1 电梯控制系统
解释电梯控制系统如何应 用电力拖动和自动控制, 提高安全性和效率。
2 机床加工中心
讨论机床加工中心如何使 用电力拖动实现高精度和 高效率的自动化加工。
3 输送机及自动化生产
线
探讨输送机和自动化生产 线如何利用电力拖动提高 物料输送和生产效率。

电力拖动PPT(精品课件)

电力拖动PPT(精品课件)

(2) 空气式延时继电器
a) 通电延时继电器 KT
线圈
常开触点 KT
通电延时闭合
常闭触点
KT
通电延时断开 b) 断电延时继电器
(a) 外形 延时继电器的外形与结构
KT
KT
线圈
KT
常开触点
常闭触点
(b)符号 断电延时断开 断电延时闭合
(2) 空气式时间继电器
排气孔
进气孔
调节螺丝
常开触头 延时闭合
橡皮膜
释放弹簧
锁钩 过流 脱扣器
欠压 脱扣器
主触点 手动闭合
动画
连杆装置 衔铁释放
自动空气断路器原理图
4.1.6 接触器
用于频繁地接通和断开大电流电路的开关电器。
(a) 外形
(b) 结构
交流接触器的外形与结构
用于频繁地接通和断开大电流电路的开关电器。
弹簧 ~
电源 常开
线圈
常闭
铁心 衔铁
电机 M
3~
主触点 辅助触点
如CJ10系列主触点额定电流5、10、20、40、75、 120A等数种;额定工作电压通常是220V或380V。
4.1.7 继电器
继电器和接触器的结构和工作原理大致相同。 主要区别在于:
接触器的主触点可以通过大电流; 继电器的体积和触点容量小,触点数目多,且 只能通过小电流。所以,继电器一般用于控制电路 中。 1. 电流及电压继电器 电流继电器:可用于过载或过载保护, 电压继电器:主要作为欠压、失压保护。
断电延时的空气式时间继电器结构示意图
时间继电器的型号有JS7-A和JJSK2等多种类型。
4 热继电器
用于电动机的过载保护。器外形与结构
用于电动机的过载保护。

电拖电力拖动控制系统PPT课件

电拖电力拖动控制系统PPT课件

a)主电路
b)简图2.交叉连接ຫໍສະໝຸດ VFA1 B1 C1
Ld M
LC1
LC2
VR
A2
B2 C2
图3-5交叉连接的可逆电路
3.1.3 反并联可逆电路的工作状态
1.无环流系统 主要特征是任何时刻都不让VF、VR两组桥同时工作,若VF工作,则VR封
锁;若VR工作,则VF封锁;或VF、VR同时封锁。以此使产生环流的必要条件 不再存在。
优点:安全可靠,无环流,体积小。
缺点:存在换流死区,动态响应慢。
2.有环流系统
基本工作方式:VF、VR同时加触发脉冲信号,但它们的控制角满足 FR180
,其目的是使两组整流桥输出同一个数值、同一个方向的Ud 。这种控制方式称为 ,
配合控制。 由电流来决定哪一组真正工作,不工作的那一组处于待逆变或待整流状况。
1.反并联连接
VF
A
LC1 Ld
VF
VR
Ld
VF
VR
B
C
LC 2
M
A B
~
M
M
VR N
C N
N
a)
b)
c)
图3-3 采用三相半波整流电路的反并联可逆电路
a)主电路图1
b)主电路图2
c)简图
VF
LC1
LC2
VR
A
Ld Ia
B
Ud
C
M- Ea
A
VF
VR
B
C
M -
LC3
LC4
a)
b)
图3-4 采用三相桥式电路的反并联可逆电路
2.抑制办法
直流平均环流可以用配合控制 消除,而瞬时脉动环流却始终存在, 必须设法加以抑制,不能让它太大。 抑制瞬时脉动环流的办法是在环流 回路中串入电抗器,叫做限环流电 抗器或称均衡电抗器,一般要求把 瞬时脉动环流中的直流分量Icp限制 在负载额定电流的5%~10%之间。

电力拖动自动控制系统(陈伯时)ppt,按转子磁链定向的矢量控制系统

电力拖动自动控制系统(陈伯时)ppt,按转子磁链定向的矢量控制系统
来看,是解耦的,但由于Te同时受到 ist 和 r
的影响,两个子系统仍旧是耦合着的。
电电力力拖传动动自控动制控系制统系统
8
带除法环节的解耦矢量控制系统 (采用电流控制变频器)
r AR

ASR

Lr n p Lm
ism
i
A
iA
r
异步电机
i
CB 2r /3s
电流 控制
iB
矢量
÷
电电力力拖传动动自控动制控系制统系统
4
按转子磁链定向后的系统模型
代入转矩方程式和状态方程式,并 用m,t替代d,q,即得
Te

n p Lm Lr
ist r
d r
dt


1 Tr

r

Lm Tr
ism
0
(1
) r

Lm Tr
ist
电电力力拖传动动自控动制控系制统系统
5
矢量控制方程
1
i1
im1
等效直流
3/2 iβ1 VR
电机模型
异步电动机 it1
反馈信号
这样的矢量控制交流变压变频调速系统在静、 动态性能上完全能够与直流调速系统相媲美。
电电力力拖传动动自控动制控系制统系统
3
6.7.2按转子磁链定向
(Field Orientation)
rd rm r rq rt 0
14
• 在两相静止坐标系上的转子磁链模型
is
Lm
+
1
r
-
Tr p+1

Tr
isβ
Lm
+
1

第6章电力拖动自动控制系统运动控制系统第5版ppt课件

第6章电力拖动自动控制系统运动控制系统第5版ppt课件

差功率、减小输出功率来换取转速的降低。
增加的转差功率全部消耗在转子电阻上,
这就是转差功率消耗型的由来。
6.2.2 异步电动机调压调速 的机械特性
增加转子电阻值, 临界转差率加大, 可以扩大恒转矩负 载下的调速范围, 这种高转子电阻电 动机又称作交流力 矩电动机。
缺点是机械特性
较软。
图6-6 高转子电阻电动机(交流力矩 电动机)在不同电压下的机械特性
6.2.3 闭环控制的调压调速系统
要求带恒转 矩负载的调 压系统具有 较大的调速 范围时,往 往须采用带 转速反馈的 闭环控制系 统。
图6-7 带转速负反馈闭环控 制的交流调压调速系统
6.2.3 闭环控制的调压调速系统
当系统带负载稳定时,如果负载增大或减 小,引起转速下降或上升,反馈控制作用 会自动调整定子电压,使闭环系统工作在 新的稳定工作点。
由于受电动机绝缘和磁路饱和的限制, 定子电压只能降低,不能升高,故又 称作降压调速。
异步电动机调压调速
调压调速的基本特征:电动机同步转速保 持额定值不变
n1
n1N
60 f1N np
气隙磁通
Φm
Us 4.44 f1NskNS
随定子电压的降低而减小,属于弱磁调速。
6.2.1 异步电动机调压调速 主电路
12
Lls
L'lr
2
异步电动机的机械特性
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3n p

《电力拖动与控制》课件

《电力拖动与控制》课件

在家用电器中的应用
空调和冰箱
在家用空调和冰箱中,电力拖动控制系统用于驱动压缩机 的运行,实现制冷和制热功能,同时保证设备的节能和高 效运行。
洗衣机和烘干机
在洗衣机和烘干机中,电力拖动控制系统用于驱动电机和 传送带,实现衣物的洗涤和烘干功能,同时保证设备的安 全和稳定运行。
厨房电器
在厨房电器中,电力拖动控制系统用于驱动电饭煲、电磁 炉等设备的加热元件,实现烹饪功能,同时保证设备的安 全和高效运行。
要点二
详细描述
按照电动机类型分类,电力动系统可以分为直流电力拖 动系统和交流电力拖动系统两大类。按照使用场合分类, 电力拖动系统可以分为工业用电力拖动系统和民用电力拖 动系统两类。按照运动形式分类,电力拖动系统可以分为 直线运动电力拖动系统和旋转运动电力拖动系统两类。此 外,还可以按照电力拖动系统的规模和复杂程度等进行分 类。
在交通运输中的应用
城市轨道交通
在城市轨道交通系统中,电力拖动控制系统用于驱动列车和各种 辅助设备,实现列车的高效、安全运行。
电动汽车
在电动汽车中,电力拖动控制系统用于驱动车辆行驶和各种辅助设 备,实现车辆的节能、环保和高效运行。
航空电子
在航空领域,电力拖动控制系统用于驱动飞行器的起落架、襟翼等 机构,实现飞行器的安全、稳定和高效运行。
在工业自动化中的应用
自动化生产线控制
物流自动化
电力拖动控制系统在自动化生产线中 发挥着关键作用,通过电机驱动和控 制,实现生产线的自动化运行,提高 生产效率和产品质量。
在物流自动化系统中,电力拖动控制 系统用于自动化输送设备和仓储设备 的驱动和控制,实现高效、准确的物 流作业。
机器人技术应用
在工业机器人中,电力拖动控制系统 用于驱动机器人的关节和执行机构, 实现机器人的各种复杂动作和精确控 制。

电力拖动自动控制系统PPT课件

电力拖动自动控制系统PPT课件
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
– 异步电动机变压变频调速时需要进行电压(或 电流)和频率的协调控制,有电压(或电流) 和频率两种独立的输入变量。在输出变量中, 除转速外,磁通也是一个输出变量。
2021/1/21
7
6.1 异步电动机动态数学模型的 性质
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
• 作如下的假设:
– 忽略空间谐波,三相绕组对称,产生的磁动势 沿气隙按正弦规律分布。
– 忽略磁路饱和,各绕组的自感和互感都是恒定 的。
– 忽略铁心损耗。 – 不考虑频率变化和温度变化对绕组电阻的影响

2021/1/21
9
6.2 异步电动机的三相数学模型
• 无论异步电动机转子是绕线型还是笼型的 ,都可以等效成三相绕线转子,并折算到 定子侧,折算后的定子和转子绕组匝数相 等。
• 定、转子相对位置变化产生的与转速成正 比的旋转电动势
dL i d
2021/1/21
24
电压方程
• 转矩方程
T e n p L m ( i A s i a i B i b i C i c ) si ( n i A i b i B i c i C i a ) si 1 n ) 2 ( ( i A i c i B i a i C i b ) si 1 n ) 2 ( 0
ia R r
d a dt
ub
ib R r
d b dt
uc
ic R r
d c dt
2021/1/21
21
电压方程
• 将电压方程写成矩阵形式
u
Ri

dt
uA Rs 0 0 0 0 0 iA

电力拖动与控制 PPT课件

电力拖动与控制 PPT课件


第三重:脱图接线

第四重:改进线路
第五重:设计线路
2020/3/31
16
电控系统的发展三个阶段
什么是电力拖动?
以电动机作为原动机拖动机 械设备运动一种拖动方式。2020/3/31
17
电动机
2020/3/31
18
2020/3/31
19
2020/3/31
20
2020/3/31
21




2020/3/31
7
立 井 提 升
2020/3/31
斜井提升
8
塔式提升机
2020/3/31
9
摩擦式提升机
2020/3/31
单绳缠绕式提升机
10
斜井人车
2020/3/31
多绳摩擦式提升机
12
总课时及学分
本课程分两个学期学习,共132 个学时,7学分。
2020/3/31
13
考核方式
过程考核




2020/3/31
22
电力拖动与控制
2020/3/31
1
课程性质
本课程《电力拖动与控制》 是电力系统及自动化技术 专业的一门专业核心课程。
2020/3/31
2
主要内容
一、机床电气设备中常见电气元件的结构 二、机床电气设备中常见电气元件的工作原理
三、电动机控制线路的工作原理
2020/3/31
3
能力目标
1、能识读三相交流异步电动机控制线路图 2、能分析常见机床控制线路的组成和原理 3、掌握常见电动机控制线路的安装和检修 方法 4、掌握常见机床控制线路的故障分析及检 修技巧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/11/20
4
二、转速、电流双闭环调速系统的组成 两个调节器的输出都是带限幅的,ASR输出的限幅值Uim* 决定ACR输入的最大值,ACR的输出限幅电压Uctm限制晶 闸管整流电压的最大值。
ASR
ACR
2020/11/20
M
TG
5
三、静、动态品质 • 静特性上看:饱和—输出为恒值(不随输入变);不
2020/11/20
8
四、各变量的稳态工作点和稳态参数计算 当稳态工作中,两个调节器均不饱和
U
n
Un
n
n0
U
i
Ui
Id
I dL
U ct
Ud0 Ks
Cen Id R Ks
C
e
U
n
I dL R
Ks
比例调节器输出与输入成正比,而PI调节器的输出量
的稳态值与输入无关,这里PI调节器的输出值由后面环
E ↑Udo↑Uct↑ Uct线性 增长。要求△Un必须维持 一定的恒值, I d 应略小于Idm。
2020/11/20
11
Ⅲ区:t2 以后, 转速调节阶段。 n=n*时,△Un=0,
此时输出仍为Uim*,在最大电流上加速,使转速超调,
△Un<0,使ASR退出饱和,Ui*下降,电流也下降,当
Id>Idl时转速仍然是上升的,到Id=Idl时则转速不在上
电力拖动控制系统
李艳
2020/11/20
1
第六章 多环控制的直流调速系统
• 转速、电流双闭环调速系统及其静特性 • 双闭环调速系统的动态性能 • 调节器的工程设计方法 • 双闭环系统中转速、电流调节器的设计 • 转速微分负反馈 • 三环调速系统 • 弱磁控制的直流调速系统
2020/11/20
2
§6—1转速、电流双闭环调速系统及其静特性
环调速系统中,电网电压波动引起的速降比单闭环系统
二、动态过程分析 Ⅰ区:0—t1区,电流上升。突加给定电压Un*,Uct↑ Ud
↑Id↑,当Id>Idl后,电机开始转动。因开始时△Un很 大,其输出很快达到限幅值Uim*,Id↑到Id=Idm时, Ui=Uim*,ASR由不饱和变成饱和。而电流调节器不饱和,保 证电流恒定。 Ⅱ区:t1_t2 恒流升速。此时ASR一直饱和,转速环开环 状态,电流调节器作用使Id保持恒定,转速呈线性增长,n↑
的动态响应,进一步解决方法对电流进行反馈控制。

理想起动过程
带电流截止负反馈
2020/11/20
3
• 当电流从最大值降下来以后,电机转矩也随之减少, 因而加速过程拖长目的,缩短起制动时间。
• 方法:在过渡过程中始终保持电流(转矩)为允许的 最大值,使电力拖动系统尽可能用最大加速度起动, 到稳态转速后,电流下降,使转矩与负载相平衡,从 而转入稳态运行。起动时,保持电流为最大值(电流 负反馈)近似恒流,稳态转速后为转速负反馈。
数足够大,则电流负反馈扰动作用受到抑制。只有转速
调节器饱和与不饱和两种情况。
转速调节器不饱和
两调节器均不饱和,稳态时输入偏差电压都是零。
U
n
Un
n
n
U
n
n0
静特性的n。—A段
U
i
Ui
I d
由于ASR不饱和 , Ui*<Uim*→Id<Idm
2020/11/20
7
T
• (二)转速调节器饱和
升极最高值,T3以后Id<Idl,转速下降,ASR和ACR均不
饱和,ASR外环处于主导作用;ACR内环作用是使Id尽快
地跟随ASR的输出量Ui*,是一个电流随动子系统
小结:起动过程三个特点
(一)饱和非线性控制
不同情况下为不同结构的线性系统 —— 分段线性化的
处理方法:ASR饱和,转速环开环,恒值电流调节的单
饱和—输出末达到限幅值。 • 饱和时:除非有反向的输入信号使调节器退出饱和,
饱和调节器隔断了输入和输出间的联系,使调节器开 环。调节器不饱和,PI作用使输入偏差在稳态时为零 。 • 稳态结构图如下:
β
R
Ks
1
Ce
2020/11/20
α
6
正常运行时,电流调节器是不会达到饱和状态。电流
负反馈相当于一种扰动作用,只要转速调节器的放大倍
节需要决定的,后面的PI调节器需要多大值,它就能提
供多少,直到饱和为止。
参数
转速反馈系数
U
nm
2020/11/20
nmax
电流反馈系数
U
im
I dm
9
§6—2双闭环调速系统的动态性能
一、动态数学模型
WASR
WACR
Ks Ts s 1
β
1
RTLs 1
α
2020/11/20
R1 Tm s Ce
10
起动和升速过程,很好的跟随性能;减速过程,由
于电路的不可逆性,跟随性变差
动态抗扰性能
单闭环调速系统中,就静特性而言,对两种扰动的
抗扰效果是一样的只能靠ASR来抗扰(ASR
有好的抗扰性能,ACR有好的跟随性能);抗电网电压扰
动:被包围在电流环内,有电流环及时调节。所以双闭
转速调节器饱和时,n<n。,Ui*=Uim*,转速环呈开环
状态,转速变化时对系统不产生影响,变成一个电流
无静差调速系统,稳态时 特性的A—B段。
Id
U
* im
I dm 静
Id<Idm时转速无静差;Id=Idm时电流无静差。
• 从动态响应看:突加给定电压,转速反馈n=0来不及 作用,转速调节器很快饱和输出Uim*,经ACR电动机 起动,反馈电压上升,但由于ASR的作用,Un<Un*, 转速调节器输出维持限幅值不变,直到转速超过给定 值,Un>Un*时,输入△Un<0,才开始使ASR输出电压降 低下来,在整个升速过程中,ASR开环,只有恒流环 起作用,在最大的电流下起动,直到超调后,转速环 才能起作用,使转速稳定。
闭环系统;ASR不饱和,转速环闭环,整个系统为无静
差调速系统,电流内环表现为电流随动系统。
(二)准时间最优控制
恒流升速阶段,电流恒定为最大,使起动过程尽可能最
快——时间2最020/优11/控20 制
12
(三)转速超调
转速退出饱和,要求必须转速超调,ASR退出饱和
三、动态性能和两个调节器的作用
动态跟随性能
➢ 多环系统:指一环套一环的嵌套结构组成的具有两个
或两个以上的闭环的控制系统,又称串级调速。相当于过程
控制中的串级控制系统。本章以转速、电流双闭环调速系统
为主。
一、问题的提出:
采用PI调节器的单闭环调速系统,即保证动态稳定性,又能
做到无静差很好解决动、静态矛盾,系统只有靠电流截止环
节限制起动电流,不能充分利用电机过载的条件下获得最快
相关文档
最新文档