广东省惠州市高考数学复习5.3解三角形解三角形练习文
高考数学一轮复习 第三章 三角函数、解三角形 3-5 两角和与差的正弦、余弦与正切公式练习 文-人教
3-5 两角和与差的正弦、余弦与正切公式练习 文[A 组·基础达标练]1.化简cos15°cos45°-cos75°sin45°的值为( ) A.12B.32 C .-12D .-32答案 A解析 cos15°cos45°-cos75°sin45°=cos15°cos45°-sin15°·sin45°=cos(15°+45°)=cos60°=12.2.[2015·某某中学二调]3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin20°12sin20°=-4,故选D.3.[2016·某某四校联考]已知sin ⎝ ⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π3的值是( )A.12B.23 C .-12D .1答案 C解析 由已知得cos α=12,sin α=-32,cos ⎝ ⎛⎭⎪⎫α-π3=12cos α+32sin α=-12. 4.[2016·某某期末]tan π12-1tan π12等于( )A .4B .-4C .23D .-2 3 答案 D解析 ∵tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3·ta nπ4=3-11+3=2-3,∴tan π12-1tan π12=2-3-12-3=-2 3.5.[2015·某某监测]已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235C.45D .-45 答案 D解析 sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.6.[2015·某某一模]已知cos α=13,cos(α+β)=-13,且α,β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( )A .-12B.12C .-13D.2327答案 D解析 ∵α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-79,∴sin2α=1-cos 22α=429,而α,β∈⎝⎛⎭⎪⎫0,π2,∴α+β∈(0,π),∴sin(α+β)=1-cos2α+β=223, ∴cos(α-β)=cos[2α-(α+β)] =cos2αcos(α+β)+sin2αsin(α+β)=⎝ ⎛⎭⎪⎫-79×⎝ ⎛⎭⎪⎫-13+429×223=2327. 7.[2016·某某检测]在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C ,两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.8.[2016·日照一模]函数y =sin ⎝ ⎛⎭⎪⎫3x +π3·cos ⎝ ⎛⎭⎪⎫x -π6-cos ⎝ ⎛⎭⎪⎫3x +π3cos ⎝ ⎛⎭⎪⎫x +π3的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =-π12D .x =-π24答案 A解析 对函数进行化简可得y =sin ⎝⎛⎭⎪⎫3x +π3cos ⎝⎛⎭⎪⎫x -π6-cos ⎝⎛⎭⎪⎫3x +π3cos ⎝⎛x +π2⎭⎪⎫-π6=sin ⎝ ⎛⎭⎪⎫3x +π3cos ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫3x +π3· sin ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫3x +π3+x -π6=sin ⎝ ⎛⎭⎪⎫4x +π6, 则由4x +π6=k π+π2,k ∈Z ,得x =k π4+π12,k ∈Z . 当k =0时,x =π12.故选A.9.化简:sin50°(1+3tan10°)=________. 答案 1 解析sin50°(1+3tan10°)=sin50°⎝ ⎛⎭⎪⎫1+3·sin10°cos10°=sin50°×cos10°+3sin10°cos10°=sin50°×2⎝ ⎛⎭⎪⎫12cos10°+32sin10°cos10°=2sin50°·cos50°cos10°=sin100°cos10°=cos10°cos10°=1.10.[2015·某某摸底]已知tan(3π-α)=-12,tan(β-α)=-13,则tan β=________.答案 17解析 依题意得tan α=12,又tan(β-α)=-13,∴tan β=tan[(β-α)+α]=tan β-α+tan α1-tan β-α·tan α=17.11.[2014·某某高考]已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos2α=1-2sin 2α=1-2×⎝⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.12.[2015·某某模拟]已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝ ⎛⎭⎪⎫θ+π8的值.解 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2. 由题意知函数f (x )的最小正周期为π, ∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin2x +2cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65, ∴sin ⎝ ⎛⎭⎪⎫θ+π4=35,∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝⎛⎭⎪⎫θ+π4=-1-sin 2⎝⎛⎭⎪⎫θ+π4=-45,∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4cos π4-cos ( θ+π4 )sin π4=7210,∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos2θ=2(1-2sin 2θ)=2⎣⎢⎡⎦⎥⎤1-2×⎝⎛⎭⎪⎫72102=-4825. [B 组·能力提升练]1.设a =12cos6°-32sin6°,b =2tan13°1+tan 213°,c =1-cos50°2,则有() A .a >b >c B .a <b <c C .b <c <a D .a <c <b 答案 D 解析 a =12cos6°-32sin6°=sin24°,b =2tan13°1+tan 213°=sin26°,c =1-cos50°2=sin25°,所以b >c >a ,故选D. 2.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________. 答案17250解析 因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin2⎝ ⎛⎭⎪⎫α+π6=2425,cos2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6sin π4=2425×22-725×22=17250. 3.[2016·某某八校联考]如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.答案513解析 由题意得|OB |=|BC |=1,从而△OBC 为等边三角形,∴sin ∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,3cos 2α2-sin α2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎝ ⎛⎭⎪⎫α+2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫α+2π3=sin ⎝ ⎛⎭⎪⎫π3-α=513.4.[2015·某某二模]已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,函数f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求f (2B )的取值X 围.解 f (x )=3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. (1)由f (x )=1,可得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,则cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=2sin 2⎝ ⎛⎭⎪⎫x 2+π6-1=-12.(2)由余弦定理及a cos C +c2=b ,可得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12,∴A =π3,∴B +C =2π3.又∵△ABC 是锐角三角形,∴B ∈⎝ ⎛⎭⎪⎫π6,π2, ∴π3<B +π6<2π3,又f (2B )=sin ⎝ ⎛⎭⎪⎫B +π6+12,∴1+32<f (2B )≤32.∴f (2B )的取值X 围是⎝ ⎛⎦⎥⎤1+32,32.。
高考数学(理)总复习:解三角形(解析版)
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
2023年高考数学一轮复习第四章三角函数与解三角形5三角函数的图象与性质练习含解析
三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin2x -1的最小正周期为T ,最大值为A ,则( ) A .T =π,A =1 B .T =2π,A =1 C .T =π,A =2 D .T =2π,A =2答案 A2.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.函数y =3cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间是________. 答案 ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z解析 因为y =3cos ⎝ ⎛⎭⎪⎫2x -π3,令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-1+222.∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .2.函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 由题意可得f (x )=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解.(2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练 1 (1)(2021·北京)函数f (x )=cos x -cos2x ,试判断函数的奇偶性及最大值( )A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x )=cos x -cos2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos2x =-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin2x )+9-x 2的定义域为________. 答案 ⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 解析 ∵函数y =lg(sin2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0,解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 A 中,函数f (x )=|cos2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________.答案5π6⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z ,即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π2+1=3cos2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z .教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x | B .y =cos|x | C .y =tan|x | D .y =(x -1)0答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________.答案π3解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x3+cos x3最小正周期和最大值分别是( ) A .3π和 2 B .3π和2 C .6π和 2 D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎪⎫22sin x 3+22cosx 3=2⎝⎛⎭⎪⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝ ⎛⎭⎪⎫x 3+π4, 所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2022)的值为( )A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·杭州模拟)设函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝ ⎛⎭⎪⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3,∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,32,∴2sin ⎝⎛⎭⎪⎫2x -π3+34∈⎣⎢⎡⎦⎥⎤-54,3+34, ∴f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54,故C 正确;对于D ,∵f ⎝⎛⎭⎪⎫2π3=2sin ⎝⎛⎭⎪⎫2×2π3-π3+34=34,∴f (x )的图象关于点⎝⎛⎭⎪⎫2π3,34对称,故D 错误.题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).延伸探究 f (x )=sin ⎝⎛⎭⎪⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π解析 令A =⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =⎣⎢⎡⎦⎥⎤0,5π12∪⎣⎢⎡⎦⎥⎤11π12,π,∴f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________. 答案 32解析 ∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 单调递增;当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3,∴ω=32.(2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎪⎫2k +54≤0,k ∈Z ,且2k +54>0,k ∈Z ,解得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 教师备选(2022·长沙模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .1 答案 B解析 因为x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,所以2n +14·T =π2(n ∈N ),即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调, 则5π36-π18=π12≤T 2, 即T =2πω≥π6,解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=-π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时,11x -π4∈⎝ ⎛⎭⎪⎫13π36,46π36,所以f (x )在⎝ ⎛⎭⎪⎫π18,5π36上不单调,不满足题意; 当ω=9时,-9π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时, 9x +π4∈⎝ ⎛⎭⎪⎫3π4,3π2,此时f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调递减,符合题意. 故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎪⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k=0,则-π3≤x ≤2π3.因为⎝ ⎛⎭⎪⎫0,π2⎣⎢⎡⎦⎥⎤-π3,2π3,所以区间⎝ ⎛⎭⎪⎫0,π2是函数f (x )的单调递增区间.(2)(2022·济南模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12B.⎣⎢⎡⎦⎥⎤12,1C.⎝ ⎛⎦⎥⎤13,23 D.⎣⎢⎡⎦⎥⎤23,2 答案 A解析 当-π6<x <π3时,-πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3.因为函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,所以⎩⎪⎨⎪⎧-πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12,因为ω>0,所以ω的取值范围是⎝ ⎛⎦⎥⎤0,12.课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π答案 D解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( )A.⎣⎢⎡⎦⎥⎤π3+4k π,5π3+4k π(k ∈Z )B.⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z )C.⎣⎢⎡⎦⎥⎤π6+4k π,5π6+4k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤16+4k ,56+4k (k ∈Z )答案 B解析 由题意,得2sinπ2x -1≥0, π2x ∈⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数 答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12 =sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x +5π12-π2 =sin 2⎝⎛⎭⎪⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎪⎫2x +5π6,故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数.4.函数f (x )=sin x +xcos x +x2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-xcos -x +-x 2=-sin x -xcos x +x2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ;又f ⎝ ⎛⎭⎪⎫π2=1+π2⎝ ⎛⎭⎪⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C.5.(多选)关于函数f (x )=sin2x -cos2x ,下列命题中为真命题的是( ) A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴C .点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心 D .y =f (x )的最大值为 2 答案 ACD解析 因为f (x )=sin2x -cos2x =2sin ⎝⎛⎭⎪⎫2x -π4,所以f (x )最大值为2,故D 为真命题. 因为ω=2,故T =2π2=π,故A 为真命题;当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴,故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上,故点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题. 6.(多选)(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点 答案 AC解析 f (-x )=sin|-x |+|sin(-x )| =sin|x |+|sin x |=f (x ),f (x )是偶函数,A 正确;当x ∈⎝⎛⎭⎪⎫π2,π时,f (x )=sin x +sin x =2sin x , 单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝ ⎛⎭⎪⎫π2=2,C 正确; 在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos2x8.(2022·鞍山模拟)若在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则实数k 的取值范围是________. 答案 0≤k <1解析 函数f (x )=cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x +π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时, f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递增;当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递减,f (0)=2sin π6=1, f ⎝ ⎛⎭⎪⎫π6=2sin π2=2, f ⎝ ⎛⎭⎪⎫π2=2sin 7π6=-1, 所以在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则1≤k +1<2, 所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝ ⎛⎭⎪⎫ωx +π3-1(ω>0)的最小正周期为π.(1)求ω及f (x )的单调递增区间; (2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx -1=2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π6.∵最小正周期为π, ∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z ).(2)令2x -π6=k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎪⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x ,所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝⎛⎭⎪⎫x +π2=cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝⎛⎭⎪⎫x -π4=2sin x ,所以y =f (x )f ⎝⎛⎭⎪⎫x -π4=2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝ ⎛⎭⎪⎫12sin2x -12cos2x +12=sin ⎝⎛⎭⎪⎫2x -π4+22. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时,函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且y max =1+22.11.(多选)(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则( )A .函数f ⎝⎛⎭⎪⎫x -π3是偶函数B .x =-π6是函数f (x )的一个零点C .函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增 D .函数f (x )的图象关于直线x =π12对称答案 BCD解析 对于A 选项,令g (x )=f ⎝ ⎛⎭⎪⎫x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π3=sin ⎝⎛⎭⎪⎫2x -π3,则g ⎝ ⎛⎭⎪⎫π6=0,g ⎝ ⎛⎭⎪⎫-π6=sin ⎝ ⎛⎭⎪⎫-2π3≠0, 故函数f ⎝ ⎛⎭⎪⎫x -π3不是偶函数,A 错;对于B 选项,因为f ⎝ ⎛⎭⎪⎫-π6=sin0=0,故x =-π6是函数f (x )的一个零点,B 对;对于C 选项,当-5π12≤x ≤π12时,-π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增,C 对;对于D 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,k =0时,x =π12,D 对.12.(多选)(2022·厦门模拟)已知函数f (x )=cos 2⎝ ⎛⎭⎪⎫x -π6-cos2x ,则( )A .f (x )的最大值为1+32B .f (x )的图象关于点⎝⎛⎭⎪⎫7π6,0对称C .f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D .f (x )在[0,2π]上有4个零点 答案 ACD解析 f (x )=1+cos ⎝⎛⎭⎪⎫2x -π32-cos2x=12+12⎝ ⎛⎭⎪⎫12cos2x +32sin2x -cos2x =34sin2x -34cos2x +12 =32sin ⎝⎛⎭⎪⎫2x -π3+12,则f (x )的最大值为1+32,A 正确;易知f (x )图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),此即f (x )图象的对称轴方程,C 正确; 由f (x )=32sin ⎝⎛⎭⎪⎫2x -π3+12=0,得sin ⎝⎛⎭⎪⎫2x -π3=-33,当x ∈[0,2π]时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,11π3,作出函数y =sin x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎪⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 正确.13.(2022·唐山模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎢⎡⎦⎥⎤-34,54, 即cos y ∈⎣⎢⎡⎦⎥⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎪⎫cos y -122-1, 又cos y ∈⎣⎢⎡⎦⎥⎤-34,1, 利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝ ⎛⎭⎪⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎪⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎪⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z ,即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝ ⎛⎭⎪⎫π4+k π=±22.15.(多选)(2022·邯郸模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),已知f (x )在[0,2π]内有且仅有2个零点,则下列结论成立的有( ) A .函数y =f (x )+1在(0,2π)内没有零点B .y =f (x )-1在(0,2π)内有且仅有1个零点C .f (x )在⎝ ⎛⎭⎪⎫0,2π3上单调递增D .ω的取值范围是⎣⎢⎡⎭⎪⎫58,98答案 BCD解析 如图,由函数f (x )的草图可知,A 选项不正确,B 选项正确;若函数f (x )在[0,2π]内有且仅有2个零点,则5π4ω≤2π<9π4ω, 得58≤ω<98,当x ∈⎝ ⎛⎭⎪⎫0,2π3时,t =ωx -π4∈⎝ ⎛⎭⎪⎫-π4,2π3ω-π4⊆⎝ ⎛⎭⎪⎫-π4,π2,此时函数单调递增,故CD 正确.16.已知f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12.(1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点x 1,x 2.①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12 =1-cos ⎝ ⎛⎭⎪⎫2x +π42+22sin ⎝⎛⎭⎪⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎪⎫2x +π4, 结合正弦函数的图象与性质,可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎢⎡⎦⎥⎤-5π24,3π8时, t ∈⎣⎢⎡⎦⎥⎤-π6,π,12sin t ∈⎣⎢⎡⎦⎥⎤-14,12, ∴y =⎪⎪⎪⎪⎪⎪12sin t ∈⎣⎢⎡⎦⎥⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎪⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。
备考2025届高考数学一轮复习大题规范练3解三角形
大题规范3 解三角形考情综述 解三角形解答题,常出现在大题的前两题位置,难度中等偏易,是高考得分的基本组成部分.主要考查正、余弦定理的应用,常须要结合三角恒等变换进行求解,留意考查基础学问、基本方法在解题中的灵敏运用,以及数学抽象、数学运算和逻辑推理素养. 从近几年的命题状况来看,高频命题角度有求三角形的边、角、面积、周长问题,解三角形中的最值与范围问题,三角形中的高线、中线模型等.在解题过程中,要留意灵敏运用三角恒等变换公式,留意挖掘题目中隐含的各种限制条件,选择合理的解决方法,灵敏地实现问题的转化.在书写表达方面,应留意推理的充分性,确保“会而不失分”!示例 [2024新高考卷Ⅰ/10分]已知在△ABC 中,A +B =3C ,2sin (A -C )=sin B . (1)求sin A ;(2)设AB =5,求AB 边上的高.思维导引 (1(A -C )= B 往A 转化(2(1)得C 与sin A 用正弦定理 规范答题(1)在△ABC 中,A +B +C =π, 因为A +B =3C ,所以3C +C =π, 所以C =π4.(1分)→留意三角形的内角和为π在解题中的应用.因为2sin (A -C )=sin B ,所以2sin (A -π4)=sin (3π4-A ), (2分)→将含有三个角的三角等式,往要求的角A 转化.绽开并整理得√2(sin A -cos A )=√22(cos A +sin A ), (3分)→两角差的正弦公式与两角差的余弦公式不要搞混. 得sin A =3cos A ,(4分)又sin 2A +cos 2A =1,且sin A >0,所以sin A =3√1010. (5分)→留意条件“sin 2A +cos 2A=1”在解题中的应用.(2)由正弦定理,得BC sinA =ABsinC , 得BC =AB sinC ×sin A =√22×3√1010=3√5, (6分)由(1)知,sin A =3√1010,cos A =√1010,则sin B =sin (A +C )=sin (A +π4)=sin A cos π4+cos A sin π4=3√1010×√22+√1010×√22=2√55. (8分)→第(1)问中没有别的条件,其结论可以在第(2)问中合理运用.设AB 边上的高为h ,则h =BC ×sin B =3√5×2√55=6, 所以AB 边上的高为6. (10分) 感悟升华解三角形问题的答题策略1.转化思想的运用.即会把已知三角等式,利用正弦、余弦定理进行转化,若式子中含有正弦的齐次式,优先考虑用正弦定理实现“角化边”;若式子中含有边的齐次式,优先考虑用正弦定理实现“边化角”;若式子中含有余弦的齐次式,优先考虑用余弦定理实现“角化边”.另外,还需留意三角形内角和、大边对大角等在解题中的应用.2.会作图.依据题意作出草图,借助图形的直观性,可快速找到思维突破口.3.活用方法.求高问题可利用等面积法,求范围、最值问题可利用基本不等式、单调性法等进行求解.4.正确运用三角公式.牢记三角的有关公式,犹如角三角函数基本关系式,诱导公式,二倍角公式,两角和(差)的正弦、余弦、正切公式,帮助角公式等,并能灵敏运用这些公式求解.训练 [2024广东七校联考/10分]已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,√3cbcosA =tan A +tan B . (1)求B ;(2)若c =4,求△ABC 面积的取值范围. 解析 (1)由正弦定理可得√3c bcosA =√3sinCsinBcosA ,(1分) 又tan A +tan B =sinA cosA+sinBcosB=sinAcosB +cosAsinBcosAcosB=sin (A +B )cosAcosB=sin (π-C )cosAcosB=sinC cosAcosB, √3cbcosA=tan A +tan B ,(3分)所以√3sinCsinBcosA =sinCcosAcosB ,由C ∈(0,π),可得sin C >0,所以tan B =√3,又B ∈(0,π),所以B =π3.(求角时确定要先确定角的范围)(5分) (2)解法一 由(1)知B =π3,又c =4,所以S △ABC =12ac sin B =√3a , (6分)由B =π3,A +B +C =π,可得A +C =23π,则A =2π3-C ,因为△ABC 是锐角三角形,所以0<C <π2,0<A =2π3-C <π2,所以π6<C <π2,(留意锐角三角形的限制) (7分) 由正弦定理a sinA=csinC且c =4,得a =csinA sinC=4sinA sinC=4sin (2π3-C )sinC=2√3tanC+2, (8分) 因为π6<C <π2,所以tan C >√33,所以0<1tanC <√3,所以2<2√3tanC +2<8, (9分) 所以2√3<S △ABC <8√3,即△ABC 面积的取值范围为(2√3,8√3). (10分) 解法二 由(1)知B =π3,又c =4,所以S △ABC =12ac sin B =√3a .(6分) 由B =π3,c =4,结合余弦定理,得b 2=a 2+c 2-2ac cos π3=a 2-4a +16,(7分)△ABC 为锐角三角形应满意{cosA >0,cosB >0,cosC >0,即{b 2+c 2>a 2,a 2+c 2>b 2,a 2+b 2>c 2,即{a 2-4a +16+16>a 2,a 2+16>a 2-4a +16,a 2+a 2-4a +16>16,解得2<a <8,(9分) 所以2√3<S △ABC <8√3,即△ABC 面积的取值范围为(2√3,8√3).(10分)。
广东省惠州市高考数学复习5.5解三角形角化边、边化角问题练习文
5.4 解三角形 角化边、边化角问题 总纲:条件中同时含有 边和角,若不能直接使用正弦定理或者余弦定理得到答案,则都化成边(即“角化边”),或者都化成角(即“边化角”)来处理。
第一阶:典例1(直接使用正余弦定理):(2019年高考上海卷(理)改编)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,若22232330a ab b c ++-=,则C cos =典例2:(不能直接使用定理)在ABC ∆中,(1) 已知A b B a cos cos =,判断ABC ∆的形状(2) 已知B b A a cos cos =,判断ABC ∆的形状第二阶:方法指导:含有x sin 的齐次式,优先考虑使用 正弦定理 , 角化边。
例3:(高考天津卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c 已知sin 3sin b A c B =, a = 3,2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值. 练习3.(高考江西卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c 已知12cos sin sin sin sin =++B C B B A(1) 求证: ,,a b c 成等差数列; (2) 若C =23π,求a b的值. 方法指导:含有a ,b ,c 的齐次式,优先考虑使用 正弦定理 边化角。
例4.(高考陕西卷(理))设ABC ∆的内角,,A B C 的对边分别为,,a b c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定练习4.(辽宁数学(理)试题)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 而且1sin cos sin cos ,2a B C c B Ab += a b >,则B ∠=A.6πB.3πC.23πD.56π 方法指导:含有x cos 的式子,优先考虑 余弦定理 角化边。
高考数学解三角形中的不等问题基础知识与练习题(含答案解析)
高考数学解三角形中的不等问题基础知识与练习题(含答案解析)一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +−=⇔+−= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+−变式:()()2221cos a b c bc A =+−+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=(其中R 为外接圆半径)4、三角形内角和:A B C π++=,从而可得到:(1)正余弦关系式:()()sin sin sin A B C B C π=−+=+⎡⎤⎣⎦ ()()cos cos cos A B C B C π=−+=−+⎡⎤⎣⎦ (2)在已知一角的情况下,可用另一个角表示第三个角,达到消元的目的 5、两角和差的正余弦公式:()sin sin cos sin cos A B A B B A ±=± ()cos cos cos sin sin A B A B A B ±=6、辅助角公式:()sin cos a A b B A ϕ+=+,其中tan b aϕ=7、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。
2020版高考数学一轮总复习课件5.3 正弦、余弦定理及解三角形
2
;sin
A
2
B
=cos
C 2
;cos
A
2
B
=sin
C 2
.
2.三角形形状的判断方法
要判断三角形的形状,应围绕三角形的边角关系进行思考,依据已知条
件中的边角关系判断时,主要有以下两种途径:
(1)化角为边:利用正弦、余弦定理把已知条件转化为只含边的关系,通
过因式分解、配方等得出边的相应关系,从而判断三角形的形状.
ABC的外接圆半径为R.
(1)S= 1 ah(h为BC边上的高);
2
(2)S= 1 absin C= 1 acsin B= 1 bcsin A;
2
2
2
(3)S=2R2sin Asin Bsin C;
(4)S= abc ;
4R
(5)S=
p(
p
a)(
p
b)(
p
c)
p
1 2
(a
b
c)
.
考向基础 1.距离的测量
数学(浙江专用)
5.3 正弦、余弦定理及解三角形
考向基础 1.正、余弦定理
考点清单
考点一 正弦、余弦定理
2.解斜三角形的类型 (1)已知两角及一边,用正弦定理,有解时,只有一解. (2)已知两边及其中一边的对角,用正弦定理,有解时可分为几种情况.在 △ABC中,已知a、b和角A,解的情况如下:
55
∵B=2C,∴cos B=cos 2C=2cos2C-1=2× 4 -1= 3 ,
55
∴sin B= 4 .
5
∵A+B+C=π,∴sin A=sin(B+C)=sin Bcos C+cos Bsin C= 4 × 2 5 + 3× 5 =
【五年高考三年模拟】2021届高三数学(理)新课标一轮复习练习:5.3 解三角形
§5.3 解三角形考点一 正弦、余弦定理17.(2021湖南,3,5分)在锐角△ABC 中,角A,B 所对的边长分别为a,b.若2asin B=√3b,则角A 等于( ) A.π12 B.π6 C.π4 D.π3答案 D 由正弦定理可知:2sin A ·sin B=√3sin B,由于B 为三角形的内角,所以sin B ≠0,故sin A=√32,又由于△ABC 为锐角三角形,所以A ∈(0,π2),故A=π3,选D.评析 本题主要考查正弦定理及特殊角的三角函数值,考查同学运算求解力量,本题同学简洁记错特殊角的三角函数值导致选错失分.18.(2021辽宁,6,5分)在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B=( )A.π6 B.π3 C.2π3 D.5π6答案 A 由正弦定理得sin B(sin Acos C+sin Ccos A)=12sin B,即sin Bsin(A+C)=12sin B,由于sin B ≠0,所以sin B=12,所以∠B=π6或56π,又由于a>b,故∠B=π6,选A.19.(2021陕西,7,5分)设△ABC 的内角A,B,C 所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC 的外形为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B 由正弦定理得sin Bcos C+sin Ccos B=sin 2A,得sin(B+C)=sin 2A,∴sin A=1,即A=π2.故选B.20.(2021福建,12,4分)若锐角△ABC 的面积为10√3,且AB=5,AC=8,则BC 等于 . 答案 7解析 设内角A,B,C 所对的边分别为a,b,c.由已知及12bcsin A=10√3得sin A=√32,由于A 为锐角,所以A=60°,cos A=12.由余弦定理得a 2=b 2+c 2-2bccos A=25+64-2×40×12=49,故a=7,即BC=7. 评析 本题考查了三角形的面积和解三角形,利用三角形的面积求出cos A 是求解关键.21.(2021浙江,16,4分)在△ABC 中,∠C=90°,M 是BC 的中点.若sin ∠BAM=13,则sin ∠BAC= . 答案√63解析 令∠BAM=β,∠BAC=α, 故|CM|=|AM|sin(α-β),∵M 为BC 的中点,∴|BM|=|AM|sin(α-β). 在△AMB 中,由正弦定理知:|AM|sinB =|BM|sinβ, 即|AM|sin (π2-α)=|AM|·sin(α-β)sinβ, ∵sin β=13,∴cos β=2√23, ∴1=cos α·(2√2sinα-1cosα) =2√2sin αcos α-1cos 2α, 整理得1=2√2sin αcos α-cos 2α, 解得tan α=√2,故sin α=√63.评析 本题考查解三角形,正弦定理的应用和三角函数求值问题.考查同学的图形观看力量和数据处理力量.如何利用M 是BC 中点是解答本题的关键.22.(2022湖北,11,5分)设△ABC 的内角A,B,C 所对的边分别为a,b,c.若(a+b-c)(a+b+c)=ab,则角C= . 答案2π3解析 由已知得a 2+b 2-c 2=-ab,∴cos C=a 2+b 2-c 2=-1, ∴C=2π3.评析 本题考查余弦定理,考查同学的运算求解力量.23.(2022重庆,13,5分)设△ABC 的内角A,B,C 的对边分别为a,b,c,且cos A=35,cos B=513,b=3,则c= . 答案145解析 ∵A,B,C 为三角形内角且cos A=35,cos B=513, ∴sin A=45,sin B=1213.sin C=sin[π-(A+B)]=sin(A+B) =sin Acos B+cos Asin B=45×513+35×1213=5665. 由正弦定理c sinC =bsinB ,得c=b×sinC sinB =3×56651213=145.评析 本题考查同角三角函数关系及正弦定理.24.(2021北京,15,13分)在△ABC 中,a=3,b=2√6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.解析 (1)由于a=3,b=2√6,∠B=2∠A,所以在△ABC 中,由正弦定理得3sinA =2√6sin2A .所以2sinAcosA sinA =2√63.故cos A=√63.(2)由(1)知cos A=√63,所以sin A=√1-cos 2A =√33. 又由于∠B=2∠A, 所以cos B=2cos 2A-1=13.所以sin B=√1-cos 2B =2√23.在△ABC 中,sin C=sin(A+B)=sin Acos B+cos Asin B=5√39.所以c=asinCsinA =5.评析 本题考查正弦定理及三角恒等变换,主要考查同学运算技巧和运算求解力量,二倍角公式和诱导公式的娴熟应用是解决本题的关键.考点二 解三角形及其综合应用16.(2022重庆,10,5分)已知△ABC 的内角A,B,C 满足sin 2A+sin(A-B+C)=sin(C-A-B)+12,面积S 满足1≤S ≤2,记a,b,c 分别为A,B,C 所对的边,则下列不等式肯定成立的是( ) A.bc(b+c)>8 B.ab(a+b)>16√2 C.6≤abc ≤12 D.12≤abc ≤24答案 A 设△ABC 的外接圆半径为R,由三角形内角和定理知A+C=π-B,A+B=π-C.于是sin2A+sin(A-B+C)=sin(C-A-B)+12⇒sin 2A+sin 2B=-sin 2C+12⇒sin 2A+sin 2B+sin 2C=12⇒2sin(A+B)cos(A-B)+2sin Ccos C=12⇒2sin C ·[cos(A-B)-cos(A+B)]=12⇒4sin Asin Bsin C=12⇒sin Asin Bsin C=18.则S=12absin C=2R 2·sin Asin Bsin C=14R 2∈[1,2],∴R ∈[2,2√2],∴abc=8R 3sin Asin Bsin C=R 3∈[8,16 √2],知C 、D 均不正确.bc(b+c)>bc ·a=R 3≥8,∴A 正确.事实上,留意到a 、b 、c 的无序性,并且16√2>8,若B 成立,则A 必定成立,排解B.故选A.17.(2021浙江,16,14分)在△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知A=π4,b 2-a 2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.解析 (1)由b 2-a 2=12c 2及正弦定理得sin 2B-12=12sin 2C,所以-cos 2B=sin 2C.又由A=π4,即B+C=34π,得-cos 2B=sin 2C=2sin Ccos C, 解得tan C=2.(2)由tan C=2,C ∈(0,π)得sin C=2√5,cos C=√5. 又由于sin B=sin(A+C)=sin (π4+C),所以sin B=3√1010. 由正弦定理得c=2√23b, 又由于A=π4,12bcsin A=3,所以bc=6√2,故b=3.评析 本题主要考查三角函数及其变换、正弦定理等基础学问,同时考查运算求解力量.18.(2021陕西,17,12分)△ABC 的内角A,B,C 所对的边分别为a,b,c.向量m =(a,√3b)与n =(cos A,sin B)平行.(1)求A;(2)若a=√7,b=2,求△ABC 的面积.解析 (1)由于m ∥n ,所以asin B-√3bcos A=0, 由正弦定理,得sin Asin B-√3sin Bcos A=0, 又sin B ≠0,从而tan A=√3, 由于0<A<π,所以A=π3.(2)解法一:由a 2=b 2+c 2-2bccos A 及a=√7,b=2,A=π3, 得7=4+c 2-2c,即c 2-2c-3=0,由于c>0,所以c=3. 故△ABC 的面积为12bcsin A=3√32. 解法二:由正弦定理,得√7sin π3=2sinB , 从而sin B=√217,又由a>b,知A>B,所以cos B=2√77. 故sin C=sin(A+B)=sin (B +π3)=sin Bcos π3+cos Bsin π3=3√2114. 所以△ABC 的面积为12absin C=3√32. 19.(2021四川,19,12分)如图,A,B,C,D 为平面四边形ABCD 的四个内角. (1)证明:tan A 2=1-cosAsinA;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan A2+tan B2+tan C2+tan D2的值.解析(1)tan A 2=sin A2cos A 2=2sin 2A22sin A 2cosA 2=1-cosA sinA .(2)由A+C=180°,得C=180°-A,D=180°-B. 由(1),有tan A2+tan B 2+tan C 2+tan D 2=1-cosA sinA +1-cosB sinB +1-cos(180°-A)sin(180°-A)+1-cos(180°-B)sin(180°-B) =2sinA +2sinB . 连结BD.在△ABD 中,有BD 2=AB 2+AD 2-2AB ·ADcos A,在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CDcos C,所以AB 2+AD 2-2AB ·ADcos A=BC 2+CD 2+2BC ·CDcos A.则cos A=AB 2+AD 2-BC 2-CD 2=62+52-32-42=3. 于是sin A=√1-cos 2A =√1-(37)2=2√107.连结AC.同理可得cos B=AB 2+BC 2-AD 2-CD 22(AB ·BC+AD ·CD)=62+32-52-422×(6×3+5×4)=119,于是sin B=√1-cos 2B =√1-(119)2=6√1019. 所以,tan A2+tan B2+tan C2+tan D2 =2+2=2√10+6√10=4√10. 评析 本题主要考查二倍角公式、诱导公式、余弦定理、简洁的三角恒等变换等基础学问,考查运算求解力量、推理论证力量,考查函数与方程、化归与转化等数学思想.20.(2022北京,15,13分)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17.(1)求sin ∠BAD;(2)求BD,AC 的长.解析 (1)在△ADC 中,由于cos ∠ADC=17, 所以sin ∠ADC=4√37.所以sin ∠BAD=sin(∠ADC-∠B) =sin ∠ADCcos B-cos ∠ADCsin B=4√37×12-17×√32=3√314. (2)在△ABD 中,由正弦定理得BD=AB ·sin ∠BAD sin ∠ADB=8×3√314437=3.在△ABC 中,由余弦定理得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC=7.评析 本题考查了三角恒等变换,及利用正、余弦定理解三角形;考查分析推理、运算求解力量. 21.(2022陕西,16,12分)△ABC 的内角A,B,C 所对的边分别为a,b,c. (1)若a,b,c 成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c 成等比数列,求cos B 的最小值. 解析 (1)证明:∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sin A+sin C=2sin B. ∵sin B=sin[π-(A+C)]=sin(A+C), ∴sin A+sin C=2sin(A+C). (2)∵a,b,c 成等比数列,∴b 2=ac.由余弦定理得cos B=a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a=c 时等号成立.∴cos B 的最小值为12.评析 本题考查了等差、等比数列,正、余弦定理,基本不等式等学问;考查运算求解力量. 22.(2022安徽,16,12分)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B. (1)求a 的值;(2)求sin (A +π4)的值.解析 (1)由于A=2B,所以sin A=sin 2B=2sin Bcos B. 由正、余弦定理得a=2b ·a 2+c 2-b 22ac .由于b=3,c=1,所以a 2=12,a=2√3. (2)由余弦定理得cos A=b 2+c 2-a 22bc =9+1-126=-13.由于0<A<π,所以sin A=√1-cos 2A =√1-1=2√2. 故sin (A +π4)=sin Acos π4+cos Asin π4=2√23×√22+(-13)×√22=4-√26. 评析 本题考查正、余弦定理,三角变换等学问,属简洁题.23.(2022浙江,18,14分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a ≠b,c=√3,cos 2A-cos 2B=√3sin Acos A-√3sin Bcos B. (1)求角C 的大小;(2)若sin A=45,求△ABC 的面积. 解析 (1)由题意得1+cos2A 2-1+cos2B 2=√32sin 2A-√32sin 2B, 即√32sin 2A-12cos 2A=√32sin 2B-12cos 2B,sin (2A -π6)=sin (2B -π6).由a ≠b,得A ≠B,又A+B ∈(0,π),得 2A-π+2B-π=π, 即A+B=2π3, 所以C=π3.(2)由c=√3,sin A=45,asinA =csinC ,得a=85, 由a<c,得A<C.从而cos A=35,故sin B=sin(A+C)=sin Acos C+cos Asin C=4+3√310, 所以,△ABC 的面积为S=12acsin B=8√3+1825. 评析 本题主要考查诱导公式、二倍角公式、正弦定理、三角形面积公式等基础学问,同时考查运算求解力量. 24.(2021四川,17,12分)在△ABC 中,角A,B,C 的对边分别为a,b,c,且2cos 2A -B2cos B-sin(A-B)sinB+cos(A+C)=-35. (1)求cos A 的值;(2)若a=4√2,b=5,求向量BA ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影. 解析 (1)由2cos2A -B2cos B-sin(A-B)sin B+cos(A+C)=-35,得[cos(A-B)+1]cos B-sin(A-B)sin B-cos B=-35,即cos(A-B)cos B-sin(A-B)sin B=-35. 则cos(A-B+B)=-35,即cos A=-35. (2)由cos A=-35,0<A<π,得sin A=45, 由正弦定理,有a sinA =bsinB ,所以sin B=bsinA a =√22. 由题意知a>b,则A>B,故B=π4.依据余弦定理,有(4√2)2=52+c 2-2×5c×(-35), 解得c=1或c=-7(舍去).故向量BA ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为|BA ⃗⃗⃗⃗⃗ |cos B=√22. 评析 本题主要考查两角和的余弦公式、二倍角公式、正弦定理、余弦定理、同角三角函数的关系等基础学问,考查运算求解力量,考查化归与转化等数学思想.25.(2021安徽,16,12分)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD,求AD 的长.解析 设△ABC 的内角A,B,C 所对边的长分别是a,b,c,由余弦定理得a 2=b 2+c 2-2bccos ∠BAC=(3√2)2+62-2×3√2×6×cos 3π4=18+36-(-36)=90,所以a=3√10. 又由正弦定理得sin B=bsin ∠BAC a =33√10=√1010, 由题设知0<B<π4,所以cos B=√1-sin 2B =√1-110=3√1010.在△ABD 中,由正弦定理得AD=AB ·sinB sin(π-2B)=6sinB2sinBcosB=3cosB =√10.26.(2021湖南,17,12分)设△ABC 的内角A,B,C 的对边分别为a,b,c,a=btan A,且B 为钝角. (1)证明:B-A=π2;(2)求sin A+sin C 的取值范围.解析 (1)由a=btan A 及正弦定理,得sinA =a =sinA ,所以sin B=cos A,即sin B=sin (π+A). 又B 为钝角,因此π2+A ∈(π2,π),故B=π2+A,即B-A=π2. (2)由(1)知,C=π-(A+B)=π-(2A +π2)=π2-2A>0,所以A ∈(0,π4).于是sin A+sin C=sin A+sin (π2-2A) =sin A+cos 2A=-2sin 2A+sin A+1=-2(sinA -14)2+98.由于0<A<π4,所以0<sin A<√22,因此√22<-2(sinA -14)2+98≤98.由此可知sin A+sin C 的取值范围是(√22,98].评析 本题以解三角形为背景,考查三角恒等变形及三角函数的图象与性质,对考生思维的严谨性有较高要求.27.(2021江西,16,12分)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cos C+(cos A-√3sin A)cos B=0. (1)求角B 的大小;(2)若a+c=1,求b 的取值范围. 解析 (1)由已知得-cos(A+B)+cos Acos B-√3sin Acos B=0, 即有sin Asin B-√3sin Acos B=0, 由于sin A ≠0,所以sin B-√3cos B=0, 又cos B ≠0,所以tan B=√3, 又0<B<π,所以B=π3.(2)由余弦定理,有b 2=a 2+c 2-2accos B. 由于a+c=1,cos B=12,所以b 2=3(a -12)2+14.又0<a<1,于是有1≤b 2<1,即有1≤b<1.28.(2021课标全国Ⅰ,17,12分)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA.解析 (1)由已知得,∠PBC=60°,所以∠PBA=30°.在△PBA 中,由余弦定理得PA 2=3+14-2×√3×12cos 30°=74.故PA=√72.(2)设∠PBA=α,由已知得PB=sin α. 在△PBA 中,由正弦定理得√3sin150°=sinαsin(30°-α), 化简得√3cos α=4sin α. 所以tan α=√34,即tan ∠PBA=√34.评析 本题考查了利用正弦定理和余弦定理解三角形,考查了运算求解力量和分析、解决问题的力量.题目新颖且有肯定的难度,通过PB 把△PBC 和△PAB 联系起来利用正弦定理是解题关键.29.(2022江西,17,12分)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知A=π4,bsin (π4+C)-csin (π4+B)=a. (1)求证:B-C=π2;(2)若a=√2,求△ABC 的面积.解析 (1)证明:由bsin (π4+C)-csin (π4+B)=a,应用正弦定理,得sin Bsin (π4+C)-sin Csin (π4+B)=sin A, sinB (√22sinC +√22cosC)-sin C√22sin B+√22cos B =√22,整理得sin Bcos C-cos Bsin C=1,即sin(B-C)=1, 由于0<B,C<34π,从而B-C=π2. (2)B+C=π-A=3π4,因此B=5π8,C=π8.由a=√2,A=π4,得b=asinBsinA =2sin 5π8,c=asinCsinA =2sin π8,所以△ABC 的面积S=12bcsin A=√2sin 5π8·sin π8=√2cos π8·sin π8=12. 评析 本题主要考查解三角形的基本学问,运用正弦定理、三角恒等变换及三角形的面积公式进行求解,考查了推理运算力量及应用意识.。
高考数学复习5.5解三角形角化边、边化角问题练习文
总纲:条件中同时含有 边和角,若不能直接使用正弦定理或者余弦定理得到答案,则都化成边(即“角化边”),或者都化成角(即“边化角”)来处理。
第一阶:典例1(直接使用正余弦定理):(2013年高考上海卷(理)改编)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,若22232330a ab b c ++-=,则C cos =典例2:(不能直接使用定理)在ABC ∆中,(1) 已知A b B a cos cos =,判断ABC ∆的形状(2) 已知B b A a cos cos =,判断ABC ∆的形状第二阶:方法指导:含有x sin 的齐次式,优先考虑使用 正弦定理 , 角化边。
例3:(2013年高考天津卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值; (Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值. 练习3.(2013年高考江西卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c 已知12cos sin sin sin sin =++B C B B A(1) 求证: ,,a b c 成等差数列; (2) 若C =23π,求a b的值. 方法指导:含有a ,b ,c 的齐次式,优先考虑使用 正弦定理 边化角。
例4.(2013年高考陕西卷(理))设ABC ∆的内角,,A B C 的对边分别为,,a b c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定练习4.(2013年辽宁数学(理)试题)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 而且1sin cos sin cos ,2a B C c B Ab += a b >,则B ∠= A.6π B.3π C.23π D.56π方法指导:含有x cos 的式子,优先考虑 余弦定理 角化边。
2025年广东省高三数学第一轮复习第四章三角函数、解三角形第1节 任意角、弧度制和三角函数的概念
角度 1 三角函数的定义
例 3 (1)(2024·湖北新高考协作体考试)已知角 α 的顶点与坐标原点 O 重合,始边
与 x 轴的非负半轴重合.若 Pcos π3,1是角 α 终边上一点,则 sin α=( D )
A.
5 5
B.
3 2
C.12
D.2 5 5
解析 依题意,点 P12,1,则|OP|= 122+12= 25,
∴sin α= 15=255. 2
索引
(2)(2024·豫北名校联考)已知角α的顶点与坐标原点O重合,始边与x轴的非负半 轴重合,终边经过点P(-4m,3m)(m≠0),则2sin α+cos α的值为__25_或__-__52__.
解析 由题意得,点 P 与原点间的距离 r= (-4m)2+(3m)2=5|m|, 所以 sin α=53|mm|,cos α=-5|m4m| , 当 m>0 时,sin α=53,cos α=-45, 故 2sin α+cos α=25; 当 m<0 时,sin α=-35,cos α=45, 故 2sin α+cos α=-25.
对于A,tan α-sin α>0,故A正确;
对于B,sin α+cos α<0,故B错误;
对于C,cos α-tan α<0,故C错误;
对于D,tan αsin α<0,故D错误.
索引
(2)(多选)(2024·衢州质检)若 sin xcos x>0,sin x+cos x>0,则x2可以是( AC )
INNOVATIV E DESIGN
第四章 三角函数、解三角形
考试要求
1.了解任意角的概念和弧度制的概念. 2.能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.
2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文
三角函数与解三角形1.三角函数(1)以正弦函数、余弦函数、正切函数为载体,考查函数的定义域、最值、单调性、对称性、周期性.(2)考查三角函数式的化简,三角函数的图象的性质以及平移和伸缩变换. 2.解三角形(1)利用正余弦定理进行三角形边和角的计算,三角形形状的判断、面积的计算,以及有关的参数的范围.(2)考查运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、三角函数 1.公式(1)诱导公式:(2)同角三角函数关系式:22sin cos 1αα+=,sin tan cos ααα=(3)两角和与差的三角函数:sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(4)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 22tan tan 21tan ααα=- (5)降幂公式:21cos2sin2αα-=,21cos2cos2αα+=2.三角函数性质3.函数y=A sin(ωx+φ)的图象及变换(1)φ对函数y=sin(x+φ)的图象的影响(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响(3)A(A>0)对y=A sin(ωx+φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形 1.正余弦定理(为外接圆半径); ;,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在ABC△中,已知,和角A时,解得情况如下:上表中A为锐角时,,无解.A为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.若1sin 33πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .79-B .23C .23-D .79【答案】A【解析】1sin cos cos 32363ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 2217cos 2cos 22cos 12136639πππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A .【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想, 属于基础题.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为()A.1BC. D .3【答案】B【解析】因为()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭,所以()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+,则()2sin 2sin cos 2sin sin 2f θθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令f ′(θ)=0,得cos 1θ=-或1cos 2θ=,经典训练题(70分钟)当11cos 2θ-<<时,f ′(θ)<0;1cos 12θ<<时,f ′(θ)>0,所以当1cos 2θ=时,f (θ)取得最大值,此时sin 2θ=,所以()max2f x =,故选B .【点评】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值. 3.已知锐角ϕ满足cos 1ϕϕ-=.若要得到函数()()21sin 2f x x ϕ=-+的图象,则可以将函数1sin 22y x =的图象() A .向左平移7π12个单位长度B .向左平移π12个单位长度C .向右平移7π12个单位长度D .向右平移π12个单位长度【答案】A 【解析】由cos 1ϕϕ-=,知2sin()16πϕ-=,即1sin()62πϕ-=, ∴锐角3πϕ=,故()()221112sin sin cos(2)22323f x x x x ππϕ⎛⎫=-+=-+=+ ⎪⎝⎭,又12117cos(2)sin(2)sin(2)232626x x x πππ+=-+=+, ∴()17sin(2)26f x x π=+,故f(x)是将1sin 22y x =向左平移7π12个单位长度得到,故选A .【点评】由辅助角公式化简已知条件求锐角ϕ,根据f(x)的函数式,应用二倍角、诱导公式将f(x)化为正弦型函数,即可判断图象的平移方式.4.已知函数f (x )=2sin (ωx +φ),(0,)2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .−√2B .√2C .−√3D .−1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=, ∴f (x )=2sin (x +φ),将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=- ⎪⎝⎭, 将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x xπππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考查三角函数图象,需要利用三角函数的周期性以及对称性进行处理,再结合图象的平移,三角函数的单调性进行解题,本题属于中档题.5.已知函数f (x )=sin ωx −√3cos ωx (0ω>,x ∈R )的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数g (x )的图象,则下列关于函数g (x )的命题中正确的是() A .函数g (x )是奇函数B .g (x )的图象关于直线6x π=对称C .g (x )在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数D .当,66ππx ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[0,2] 【答案】B【解析】()πsin 2sin 3f x x x x ωωω⎛⎫==- ⎪⎝⎭,由题意知函数周期为π,则2T ππω==,2ω=,从而()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()2sin π3g x x ⎛⎫=+ ⎪⎝⎭,g (x )不是奇函数,A 错;g (x )在,36ππ⎡⎤-⎢⎥⎣⎦是单调递增,C 错;,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[1,2],D 错;g (x )的图象关于直线π6x =对称,B 对,只有选项B 正确,故选B .【点评】本题考查三角函数,图象的变换,以及图象的性质,属于中档题.6.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若3A π=,b =4,△ABC的面积为3√3,则sin B =()A BC .13D 【答案】A【解析】1sin 2S bc A ===c =3,由余弦定理可得2222cos 13ab c bc A =+-=,得a =√13,又由正弦定理可得sin sin a b A B=,所以sin sin 13b A B a ==,故选A .【点评】本题主要考了三角形的面积公式以及余弦定理公式的运用,属于基础题型.7.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为() A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin sin cos C B A <, 由内角和定理可得sin()cos sin A B A B +<,化简可得sin cos 0A B <,cos 0B ∴<,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题.8.已知(0,π)α∈,且有1−2sin 2α=cos 2α,则cos α=_________.【答案】5【解析】2212sin 2cos 214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,π)α∈,所以sin 0α≠, 因此由2πsin 2sin cos sin 2cos tan 20,2ααααααα⎛⎫=⇒=⇒=⇒∈ ⎪⎝⎭,而()22sincos 11αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=2π0,α⎛⎫∈ ⎪⎝⎭,因此cos 5α=,故答案为5.【点评】本题考查了三角恒等变换与三角函数求值问题,是基础题.9.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点P (3,4),则tan π2α⎛⎫+= ⎪⎝⎭___________.【答案】34-【解析】由三角函数的定义可得4sin 5α==,3cos 5α==,因此,3sin cos 325tan 42sin 4cos 52παπααπαα⎛⎫+ ⎪⎛⎫⎝⎭+====- ⎪-⎛⎫⎝⎭-+ ⎪⎝⎭, 故答案为34-.【点评】本题考查任意角的三角函数的应用,诱导公式的应用,是基本知识的考查.三、解答题.10.已知函数2()cos 222x x xf x =+.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围. 【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)()2πcos 2sin()2224x x x f x x x x =+-=+=+,令4U x π=+,[]0,x π∈,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4πx ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 2π4x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>, ∵f(ωx)=√3,2sin()4x πω∴+=,即sin()42x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z , 由于方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥, 所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. 【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin (ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.11.已知函数()2sin 2cos 232f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(1)求函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调区间;(2)若0,2πβ⎛⎫∈ ⎪⎝⎭,1123f πβ⎛⎫-= ⎪⎝⎭,求cos 26πβ⎛⎫+ ⎪⎝⎭的值.【答案】(1)递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦,递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦;(2)3-.【解析】(1)由题意得()21sin 2cos 2cos 2sin 2sin 23222f x x x x x x ππ⎛⎫⎛⎫=++-=-+ ⎪ ⎪⎝⎭⎝⎭12sin 2sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, 因为5,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]20,23x ππ+∈, 令0232x ππ≤+≤,解得,612x ππ⎡⎤∈-⎢⎥⎣⎦; 令32232x πππ≤+≤,解得7,1212x ππ⎡⎤∈⎢⎥⎣⎦;令32223x πππ≤+≤,得75,126x ππ⎡⎤∈⎢⎥⎣⎦. 所以函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦, 单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦.(2)由(1)知1sin 21263f ππββ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭.因为2π0,β⎛⎫∈ ⎪⎝⎭,所以7π2,66ππ6β⎛⎫+∈ ⎪⎝⎭, 又因为1π1sin 2632β⎛⎫+=< ⎪⎝⎭,所以2,π62ππβ⎛⎫+∈ ⎪⎝⎭,所以cos 2π6β⎛⎫+== ⎪⎝⎭.【点评】三角函数的化简求值的规律总结:1.给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题; 2.给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系; 3.给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围). 12.在四边形ABCD 中,AB //CD ,AD =CD =BD =1. (1)若32AB =,求BC ;(2)若AB =2BC ,求cos BDC ∠.【答案】(1)2BC =;(2)cos 1BDC ∠=.【解析】(1)在△ABD 中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,∵CD //AB,∴∠BDC =∠ABD ,在△BCD 中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,2BC =.(2)设BC =x ,则AB =2x ,在△ABD 中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅, 在△BCD 中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅,由(1)可知,∠BDC =∠ABD ,所以,cos ∠BDC =cos ∠ABD ,即222x x -=,整理可得x2+2x −2=0,因为x >0,解得x =√3−1, 因此,cos cos 1BDC ABD x ∠=∠==.【点评】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角"或“角化边",变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角"; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b −c )cos A =acosC.(1)求角A ;(2)若a =√13,b +c =5,求△ABC 的面积. 【答案】(1)π3A =;(2)√3.【解析】(1)在三角形ABC 中,∵(2b −c )cos A =acos C , 由正弦定理得()2sin sin cos sin cos B C A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=, 三角形中sin 0B ≠,解得1cos 2A =,A ∈(0,π),∴π3A =.(2)由余弦定理得2222cos ab c bc A =+-,∵a =√13,b +c =5,∴13=(b +c )2−3cb =52−3bc,化为bc =4,所以三角形ABC 的面积11sin 4222S bc A ==⨯⨯=【点评】本题考查正余弦定理和三角形面积公式的综合运用,涉及三角函数恒等变换,属基础题.熟练掌握利用正弦定理边化角,并结合三角函数两角和差公式化简,注意余弦定理与三角形面积公式的综合运用.14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin (A +B −C )=c sin (B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为2√3,求△ABC 的周长.【答案】(1)π3C =;(2)6+2√3.【解析】(1)∵a sin(A +B −C)=c sin(B +C),sin sin(π2)sin sin A C C A ∴-=,2sin sin cos sin sin A C C C A ∴=, sin sin 0A C ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得c2=12,c =2√3,此时周长为6+2√3.【点评】本题主要考查了三角形的内角及诱导公式在三角形化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2c sin B =3a sin C ,1cos 3C =. (1)求证:△ABC 为等腰三角形;(2)若△ABC 面积为2√2,D 为AB 中点,求线段CD 的长. 【答案】(1)证明见解析;(2).【解析】(1)由2c sin B =3a sin C ,根据正弦定理可得2cb =3ac ,所以2b =3a ,则32b a =, 又1cos 3C =,根据余弦定理可得222222222913144cos 332322a a c a c abc C ab a a a +--+-====⋅,则222134aa c =-,所以32c a b ==, 因此△ABC 为等腰三角形.(2)因为角C是三角形内角,所以sin C>0,则sin C==因为△ABC面积为2√2,所以113sin222ab C a a==⋅a=2,所以b=c=3,又D为AB中点,所以cos cosADC BDC∠=-∠,则222222333222332222CD CDCD CD⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,整理得2174CD=,所以CD=.【点评】本题主要考查正余弦定理、三角形的面积公式的综合运用,利用正弦定理进行边角转换等,属于中档题型.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sin cos2Aa C c=.(1)求A;(2)已知b=1,c=3,且边BC上有一点D满足3ABD ADCS S=△△,求AD.【答案】(1)π3A=;(2)4AD=.【解析】(1)因为sin cos2Aa C c=,由正弦定理得sin sin sin cos2AA C C=,因为sin C≠0,所以sin cos2AA=,所以2sin cos cos222A A A=,因为0π22A<<,所以cos02A≠,所以1sin22A=,即π26A=,所以π3A=.(2)设△ABD的AB边上的高为ℎ1,△ADC的AC边上的高为ℎ2,因为3ABD ADCS S=△△,c=3,b=1,所以1211322c h b h⋅=⨯⋅,所以ℎ1=ℎ2,AD 是△ABC 角A 的内角平分线,所以π6BAD ∠=,因为S△ABD=3S △ADC,可知34ABDABC SS =△△, 所以131sin sin 26423ππAB AD AB AC ⨯⨯=⨯⨯⨯,所以4AD =.【点评】关键点点睛:本题考查了正弦定理的边角互化、三角形的面积公式,解题的关键是确定AD 是△ABC 角A 的内角平分线,考查了运算能力.一、选择题.1.已知函数()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,现将()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为()A .221124x y +=B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .2sin 4π3y x ⎛⎫=+ ⎪⎝⎭D .π2sin 3y x ⎛⎫=+ ⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移π12个单位得2sin 22sin 21πππ263y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2in 4πs 3y g x x ⎛⎫==+ ⎪⎝⎭,高频易错题故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin [ω(x +φ)]=sin (ωx +ωφ),而不是y =sin (ωx +ϕ),考查运算求解能力,是基础题.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________. 【答案】(2√2,2√3)【解析】由sin2sin b aA A=,得b =4cos A ,由0290045A A ︒<<︒⇒︒<<︒, 01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos 2A A ︒<<︒⇒<<,cos A <<b =4cos A ∈(2√2,2√3).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.一、选择题.1.如图,角α,β的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 分别交于A ,B 两点,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =()A .cos(α−β)B .cos(α+β)C .sin(α−β)D .sin(α+β)精准预测题【答案】A【解析】由图可知()cos ,sin A αα,()cos ,sin B ββ, 所以cos cos sin sin cos()OA OB αβαβαβ⋅=+=-,故选A .【点评】本题考查运用向量进行余弦定理的证明,属于基础题型.2.已知()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,则tan π4α⎛⎫-= ⎪⎝⎭()A .4-B .4C .13-D .13【答案】C【解析】因为()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,利用诱导公式可得()sin 2cos αα-=⨯-,即tan 2α=,所以tantan 1214tan 41231tan 4πta πn πααα--⎛⎫-===- ⎪+⎝⎭+⋅,故选C .【点评】本题主要考查诱导公式,正切的两角和差公式的应用,属于基础题.二、解答题. 3.已知函数()22cos 12xf x x =-+. (1)若()π6f αα⎛⎫=+ ⎪⎝⎭,求tan α的值;(2)若函数f(x)图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数g(x)的图象,求函数g(x)在0,π2⎡⎤⎢⎥⎣⎦得的值域.【答案】(1);(2)[−1,2].【解析】(1)()22cos 1cos π2sin 26x f x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,因为()π6f αα⎛⎫=+ ⎪⎝⎭,所以πsin 6αα⎛⎫-= ⎪⎝⎭,即1cos 22ααα-=,所以−3√3sin α=cos α,所以tan 9α=-.(2)f(x)图象上所有点横坐标变为原来的12倍得到函数g(x)的图象,所以g(x)的解析式为()()π22sin 26g x f x x ⎛⎫==- ⎪⎝⎭,因为π02x ≤≤,所以ππ5π2666x -≤-≤,则1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,所以−1≤g(x)≤2,故g(x)在0,π2⎡⎤⎢⎥⎣⎦上的值域为[−1,2].【点评】本题主要考查三角恒等变换,同角三角函数的基本关系,函数y =A sin (ωx +φ)的图象变换规律,正弦函数的定义域和值域,属于中档题. 4.设函数()212coscos 5f x x x x =--.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=−5,a =√3,求△ABC 周长的取值范围.【答案】(1)π,[−4√3+1,4√3+1](2)(3+√3,3√3]. 【解析】(1)()2212coscos 512cos 25f x x x x x x =--=--6cos 221π216x x x ⎛⎫=-+=++ ⎪⎝⎭,πT ∴=,值域为[−4√3+1,4√3+1].(2)由f(A)=−5,可得212coscos A A A=,因为三角形为锐角△ABC ,sin A A=,即tan A =π3A =,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,2π2sin 2sin()3c C B ==-,所以2π12sin sin()2(sin sin )322a b c B B B B B ⎡⎤++=+-=++⎢⎥⎣⎦32(sin cos ))22π6B B B =++=++.因为△ABC 为锐角三角形,所以π02B <<,π02C <<, 即022π3π02πB B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得π6π2B <<, 所以ππ2π363B <+<sin()16πB <+≤,即3)6πB ++≤,所以周长的取值范围为区间(3+√3,3√3].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域, 求周长的取值范围,是常用解法.。
2024数学高考前冲刺题《解三角形》含答案
黄金冲刺大题01 解三角形(精选30题)1.(2024·江苏·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos 1c B a+=.(1)证明:2B A =;(2)若sin A b ==,求ABC 的周长.2.(2024·湖南常德·三模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B A B C ++=.(1)求角C ;(2)若a ,b ,c 成等差数列,且ABC ABC 的周长.3.(2024·江苏·一模)在ABC 中,()sin sin B A A C -=.(1)求B 的大小;(2)延长BC 至点M ,使得2BC CM = .若π4CAM ∠=,求BAC ∠的大小.4.(2024·浙江温州·二模)记ABC 的内角,,A B C 所对的边分别为,,a b c ,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.5.(2024·浙江嘉兴·二模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2cos 3cos23A A -=.(1)求cos A 的值;(2)若ABC 为锐角三角形,23b c =,求sin C 的值.6.(2023·福建福州·模拟预测)在ABC 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C π==.(1)求B ;(2)若ABC BC 边上中线的长.7.(2024·山东淄博·一模)如图,在△ABC 中,2,3BAC BAC π∠=∠的角平分线交 BC 于P 点,2AP =.(1)若8BC =,求△ABC 的面积;(2)若4CP =,求BP 的长.8.(2024·安徽·模拟预测)如图,在平面四边形ABCD 中,4AB AD ==,6BC =.(1)若2π3A =,π3C =,求sin BDC ∠的值;(2)若2CD =,cos 3cos A C =,求四边形ABCD 的面积.9.(2024·浙江·一模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2222sin sin c Cb c a B=+-.(1)求角A ;(2)设边BC 的中点为D ,若a =ABC AD 的长.10.(2024·湖北·一模)在ABC 中,已知π4AB AC C ===.(1)求B 的大小;(2)若BC AC >,求函数()()()sin 2sin 2f x x B x A C =--++在[]π,π-上的单调递增区间.11.(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC 的面积为S ,三个内角、、A B C 所对的边分别为,,a b c ,且222sin SC c b =-.(1)证明:ABC 是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .12.(2024·福建漳州·模拟预测)如图,在四边形ABCD 中,π2DAB ∠=,π6B =,且ABC 的外接圆半径为4.(1)若BC =AD =ACD 的面积;(2)若2π3D =,求BC AD -的最大值.13.(2024·山东济南·二模)如图,在平面四边形ABCD 中,BC CD ⊥,AB BC ==ABC θ∠=,120180θ︒≤<︒.(1)若120θ=°,3AD =,求ADC ∠的大小;(2)若CD =,求四边形ABCD 面积的最大值.14.(2024·湖北武汉·模拟预测)已知锐角ABC 的三内角A B C ,,的对边分别是a b c ,,,且222(cos cos )b c b C c B bc +-⋅+⋅=,(1)求角A 的大小;(2)bc 的取值范围.15.(2024·湖南邵阳·模拟预测)在ABC 中,角,,A B C 的对边分别为,,a b c ,且ABC 的周长为sin sin sin sin a BA B C+-.(1)求C ;(2)若2a =,4b =,D 为边AB 上一点,π6BCD ∠=,求BCD △的面积.16.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .17.(2024·广东广州·一模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S .已知222)S a c b =+-.(1)求B ;(2)若点D 在边AC 上,且π2ABD ∠=,22AD DC ==,求ABC 的周长.18.(2024·广东佛山·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中1a =,21cos 2c A b-=.(1)求角B 的大小;(2)如图,D 为ABC 外一点,AB BD =,ABC ABD ∠=∠,求sin sin CABCDB∠∠的最大值.19.(2024·河北石家庄·二模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量(2sin )m A A A =,π2π(cos ,cos sin ),(),,63n A A A f A m n A ⎡⎤=-=⋅∈⎢⎥⎣⎦.(1)求函数()f A 的最大值;(2)若()0,sin f A a B C ==+=ABC 的面积.20.(2024·广东·一模)设锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos b c A a B C -=.(1)求cos B ;(2)若点D 在AC 上(与,A C 不重合),且π,24C ADB CBD =∠=∠,求CDAD 的值.21.(2024·辽宁·二模)在ABC 中,D 为BC 边上一点,1DC CA ==,且ACD 面积是ABD △面积的2倍.(1)若AB =,求AB 的长;(2)求sin sin ADBB∠的取值范围.22.(2024·黑龙江齐齐哈尔·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知π,4cos 24B bC a ==+.(1)求tan C ;(2)若ABC 的面积为32,求BC 边上的中线长.23.(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,16.5MCE ∠=︒(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角48.5MDE ∠=︒,楼尖MN 的视角 3.5MDN ∠=︒(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO .参考数据:sin16.5sin48.52sin325︒︒≈︒,8tan16.527︒≈,8tan48.57︒≈37.4,≈24.(2024·重庆·模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)若BP PC =,且2b c +=,求AP 的最小值.25.(2024·山西朔州·一模)已知ABC 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=-- ,且//m n .(1)求B ;(2)求222b a c+的最小值.26.(2024·河南开封·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin b A B =.(1)求sin A ;(2)若a =①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求ABC 的面积.条件① :=b ;条件② :b =③ :1sin 3C =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.27.(2024·河南·一模) ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足22b a ac -=.(1)求证:2B A =;(2)若ABC 为锐角三角形,求sin()sin sin C A BA--的取值范围.28.(2023·河南·三模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2222a abc c b +-=,且a c ≠.(1)求证:2B C =;(2)若ABC ∠的平分线交AC 于D ,且12a =,求线段BD 的长度的取值范围.29.(2024·湖北·二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,()c a b <,2cos cos cos 2c a A B b A =-.(1)求A ;(2)者13BD BC =,2AD = ,求b c +的取值范围.30.(2024·河北·二模)若ABC 内一点P 满足PAB PBC PCA θ∠=∠=∠=,则称点P 为ABC 的布洛卡点,θ为ABC 的布洛卡角.如图,已知ABC 中,BC a =,AC b =,AB c =,点P 为的布洛卡点,θ为ABC的布洛卡角.(1)若b c =,且满足PBPA=ABC ∠的大小.(2)若ABC 为锐角三角形.(ⅰ)证明:1111tan tan tan tan BAC ABC ACBθ=++∠∠∠.(ⅱ)若PB 平分ABC ∠,证明:2b ac =.黄金冲刺大题01 解三角形(精选30题)1.(2024·江苏·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos 1c B a+=.(1)证明:2B A =;(2)若sin A b ==,求ABC 的周长.【答案】(1)证明见解析(2)7【分析】(1)利用正弦定理边化角结合角范围可证;(2)利用倍角公式求得sin C ,然后利用正弦定理可得【详解】(1)()()2cos 1sin sin sin sin cos cos sin B A C A B A B A B+==+=+()sin sin cos cos sin sin A B A B A B A ⇒=-=-因为()(),0,π,π,πA B B A ∈∴-∈-A B A ∴=-或()πA B A +-=(舍),2B A ∴=.(2)由sin A =1)知()30,πA B A +=∈,则π0,3A ⎛⎫∈ ⎪⎝⎭,得cos A ===sin sin22sin cos 2B A A A ====,213cos cos212sin 1284B A A ==-=-⨯=,()3sin sin sin cos cos sin 4C A B A B A B ∴=+=+===由正弦定理得25sin sin sin a a b c c A B C =⎧==⇒==⇒⎨=⎩ABC ∴的周长为7a b c ++=2.(2024·湖南常德·三模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B A B C ++=.(1)求角C ;(2)若a ,b ,c 成等差数列,且ABC ABC 的周长.【答案】(1)2π3(2)15【分析】(1)先利用正弦定理角化边得出222a b ab c ++=;再结合余弦定理得出1cos 2C =-即可求解.(2先根据a ,b ,c 成等差数列得出2a c b +=;再利用三角形的面积公式得出15ab =;最后结合(1)中的222a b ab c ++=,求出a ,b ,c 即可解答.【详解】(1)因为222sin sin sin sin sin A B A B C ++=,由正弦定理sin sin sin a b cA B C==可得:222a b ab c ++=.由余弦定理可得:2222222()1cos 222a b c a b a b ab C ab ab +-+-++===-.又因为(0,π)C ∈,所以2π3C =.(2)由a ,b ,c 成等差数列可得:2a c b +=①.因为三角形ABC ,2π3C =,1sin 2ab C ∴=15ab =②.由(1)知:222a b ab c ++=③由①②③解得:3,5,7a b c ===.15a b c ∴++=,故三角形ABC 的周长为15.3.(2024·江苏·一模)在ABC 中,()sin sin B A A C -=.(1)求B 的大小;(2)延长BC 至点M ,使得2BC CM = .若π4CAM ∠=,求BAC ∠的大小.【答案】(1)π4B =;(2)π12BAC ∠=或5π12.【分析】(1)由()sin sin C A B =+,代入已知等式中,利用两角和与差的正弦公式化简得cos B =B 的大小;(2)设BC x =,BAC θ∠=,在ABC 和ACM △中,由正弦定理表示边角关系,化简求BAC ∠的大小.【详解】(1)在ABC 中,A B C π++=,所以()sin sin C A B =+.因为()sin sin B A A C -=,所以()()sin sin B A A A B -=+,即sin cos cos sin sin cos cos sin B A B A A B A B A -=+2cos sin A B A =.因为()0,πA ∈,所以sin 0A ≠,cos B =因为0πB <<,所以π4B =.(2)法1:设BC x =,BAC θ∠=,则2CM x =.由(1)知π4B =,又π4CAM ∠=,所以在ABM 中,π2AMC θ∠=-.在ABC 中,由正弦定理得sin sin BC AC BAC B=∠,即πsin sin 4x ACθ=①.在ACM △中,由正弦定理得sin sin CM ACCAM M =∠,即2ππsin sin 42x ACθ=⎛⎫- ⎪⎝⎭②.①÷②=12sin cos 2θθ=,所以1sin 22θ=.因为3π0,4θ⎛⎫∈ ⎪⎝⎭,3π20,2θ⎛⎫∈ ⎪⎝⎭,所以π26θ=或5π6,故π12θ=或5π12.法2:设BC x =,则2CM x =,3BM x =.因为π4CAM B ∠==,所以ACM BAM △△∽,因此AM CMBM AM=,所以226AM BM CM x =⋅=,AM =.在ABM 中,由正弦定理得sin sin =∠BM AM BAM B,即3sin x BAM =∠化简得sin BAM ∠=因为30,4BAM π⎛⎫∠∈ ⎪⎝⎭,所以π3BAM ∠=或2π3,π4BAC BAM ∠=∠-,故π12BAC ∠=或5π12.4.(2024·浙江温州·二模)记ABC 的内角,,A B C 所对的边分别为,,a b c,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.【答案】(1)π4C =或3π4(2)43【分析】(1)根据正弦定理,边化角,结合三角形中角的取值范围,可得sin C ,从而确定角C .(2)根据条件求角求边,再结合三角形面积公式求面积.【详解】(1)由2sin c B得2sin sin C B B =,而B 为三角形内角,故sin B >0,得sin C =C 为三角形内角,∴π4C =或3π4(2)由()tan tan tan tan A B C B C =-+=+得tan tan tan tan 1tan tan B CB C B C+-=+-,又tan tan 0B C +≠,∴tan tan 2B C =, ,故π,0,2B C ⎛⎫∈ ⎪⎝⎭,由(1)得tan 1C =,故tan 2B =,∴tan tan tan 3A B C =+=,而A 为三角形内角,∴sin A =又sin sin a c A C ==⇒c =又tan 2B =,而B为三角形内角,故sin B =114sin 2223S ac B ∴==⨯=.5.(2024·浙江嘉兴·二模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2cos 3cos23A A -=.(1)求cos A 的值;(2)若ABC 为锐角三角形,23b c =,求sin C 的值.【答案】(1)1cos 3A =或cos 0A =;.【分析】(1)根据题意,利用二倍角余弦公式化简求解;(2)解法一,由23b c =,利用正弦定理边化角得2sin 3sin B C =,结合()sin sin A C B +=和1cos 3A =,化简运算并结合平方关系求得答案;解法二,根据条件利用余弦定理可得23c a =,再利用正弦定理边化角并结合条件求得答案.【详解】(1)由题可得()22cos 32cos 13A A --=,即23cos cos 0A A -=,解得1cos 3A =或cos 0A =.(2)解法一:因为23b c =,由正弦定理得2sin 3sin B C =,即()2sin 3sin A C C +=,即2sin cos 2sin cos 3sin A C C A C +=,因为1cos 3A =,所以sin A =2sin 3sin 3C C C +=,又22sin cos 1C C +=,且ABC为锐角三角形,解得sin C =.解法二:由余弦定理得2221cos 23b c a A bc +-==,因为23b c =,所以222291433c c a c +-=,即2249c a =,所以23c a =,所以2sin sin 3C A =,又1cos 3A =,所以sin A =,所以2sin sin 3C A ==.6.(2023·福建福州·模拟预测)在ABC 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C π==.(1)求B ;(2)若ABCBC 边上中线的长.【答案】(1)π6B =【分析】(1)由正弦定理边化角即可得到角B ;(2)根据A B =,得a b =,结合三角形面积公式即可得到a b ==c ,以及2AD AB AC =+,即可得到答案.【详解】(1)sin sin a C c B = ,由正弦定理边化角得sin sin sin sin A C C B =,sin 0C ≠ ,sin sin A B ∴=,A B ∴=或πA B +=(舍),又 2π3C =,∴π6B =;(2) π6B =,2π3C =,π6A =,a b ∴=,∴1sin 2ABC S ab C =212a =a b ==由正弦定理sin sin a cA C=,得sin 3sin a Cc A==,设BC 边的中点为D ,连接AD ,如下图:2AD AB AC =+ ,即22(2)()AD AB AC =+,即22242cos 9323AD c b bc A =++=++解得AD 7.(2024·山东淄博·一模)如图,在△ABC 中,2,3BAC BAC π∠=∠的角平分线交 BC 于P 点,2AP =.(1)若8BC =,求△ABC 的面积;(2)若4CP =,求BP 的长.【答案】【分析】(1)利用余弦定理和三角形面积公式即可求出答案;(2)首先利用余弦定理求出1AC =,再利用正弦定理求出sin C ,再根据三角恒变换求出sin B ,最后再根据正弦定理即可.【详解】(1)ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-⋅⋅∠,即2264c b b c =++⋅①因ABC MBP MCP S S S =+,即22222bc c b =整理得22b c b c ⋅=+②①②解得2b c ⋅=+所以1sin 2ABC S bc BAC =∠=(2)因为π2,4,3AP CP PAC ==∠=,所以在APC △中由余弦定理可得2222cos CP AP AC AP AC CAP =+-⋅⋅∠,所以21642AC AC =+-解得1AC =,由正弦定理得sin sin AP PCC CAP=∠,即2sin Csin C =所以cos C ==,sin sin()sin cos cos sin B BAC C BAC C BAC C =∠+=∠+∠=ABC 中由正弦定理得sin sin AC BC B BAC=∠=解得BC所以4PB BC PC =-==8.(2024·安徽·模拟预测)如图,在平面四边形ABCD 中,4AB AD ==,6BC =.(1)若2π3A =,π3C =,求sin BDC ∠的值;(2)若2CD =,cos 3cos A C =,求四边形ABCD 的面积.【答案】(1)34【分析】(1)ABD △中求出BD ,在BCD △中,由正弦定理求出sin BDC ∠的值;(2)ABD △和BCD △中,由余弦定理求出cos A 和cos C ,得sin A 和sin C ,进而可求四边形ABCD 的面积.【详解】(1)在ABD △中,4AB AD ==,2π3A =,则π6ADB ∠=,π2cos 24cos 6BD AD ADB =∠=⨯⨯=,在BCD △中,由正弦定理得sin sin BC BDBDC C=∠,sin 3sin 4BC C BDC BD ∠===.(2)在ABD △和BCD △中,由余弦定理得222222cos 44244cos 3232cos BD AB AD AB AD A A A =+-⋅=+-⨯⨯⨯=-,222222cos 62262cos 4024cos BD CB CD CB CD C C C =+-⋅=+-⨯⨯⨯=-,得4cos 3cos 1A C -=-,又cos 3cos A C =,得11cos ,cos 39A C =-=-,则sin A =sin C =四边形ABCD 的面积11sin sin 22ABD BCD S S S AB AD A CB CD C =+=⋅⋅+⋅⋅11446222=⨯⨯⨯⨯9.(2024·浙江·一模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2222sin sin c Cb c a B=+-.(1)求角A ;(2)设边BC 的中点为D ,若a =ABC AD 的长.【答案】(1)π3A =【分析】(1)根据正弦定理和题中所给式子化简计算得到222b c a bc +-=,再结合余弦定理即可求出角A ;(2)根据三角形面积公式得到3bc =和2210b c +=,再结合中线向量公式计算即可.【详解】(1)在ABC 中,由正弦定理得,sin sin C cB b=,因为2222sin sin c Cb c a B =+-,所以2222c c b c a b =+-,化简得,222b c a bc +-=,在ABC 中,由余弦定理得,2221cos 22b c a A bc +-==,又因为0πA <<,所以π3A =(2)由1sin 2ABC S bc A ===△3bc =,由2222cos a b c bc A =+-,得2273b c =+-,所以2210b c +=.又因为边BC 的中点为D ,所以()12AD AB AC =+,所以12AD ====10.(2024·湖北·一模)在ABC 中,已知π4AB AC C ===.(1)求B 的大小;(2)若BC AC >,求函数()()()sin 2sin 2f x x B x A C =--++在[]π,π-上的单调递增区间.【答案】(1)π3B =或2π3B =(2)7ππ5π11ππ,,,,,π12121212⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【分析】(1)利用正弦定理及三角函数的特殊值对应特殊角即可求解;(2)利用大边对大角及三角形的内角和定理,再利用诱导公式及三角函数的性质即可求解.【详解】(1)在ABC 中,由正弦定理可得:sin sin AB ACC B==sin B =又0πB <<,故π3B =或2π3B =.(2)由BC AC >,可得A B >,故π2π,33B AC =+=.()π2πππsin 2sin 2sin 2sin 2π3333f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭π2sin 23x ⎛⎫=- ⎪⎝⎭,令πππ2π22π,Z 232k x k k -+≤-≤+∈,解得π5πππZ 1212k x k k -+≤≤+∈,.由于[]π,π∈-x ,取1k =-,得7ππ12x -≤≤-;取0k =,得π51212πx -≤≤;取1k =,得11ππ12x ≤≤,故()f x 在[]π,π-上的单调递增区间为7ππ5π11ππ,,,,,π12121212⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.11.(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC 的面积为S ,三个内角、、A B C 所对的边分别为,,a b c ,且222sin SC c b =-.(1)证明:ABC 是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .【答案】(1)证明见解析【分析】(1)由三角形面积公式化简条件,结合余弦定理及正弦定理进一步化简即可证明;(2)由正弦定理结合题中条件得到9sin 3sin 2B a B=,结合三角形面积公式1sin 2S ac B =⨯化为关于tan B 的表达式,构造函数,利用导数求得最大值即可.【详解】(1)因为22222212sin 2sin 2sin ab CS ab C C c b c b c b ⨯===---,又sin 0C ≠,所以221abc b =-,则22b c ab =-,又由余弦定理知,2222cos b a c ac B =+-,故可得2cos c B a b =+,由正弦定理,2sin cos sin sin C B A B =+,又()sin sin sin cos cos sin A B C B C B C =+=+,代入上式可得sin cos sin cos sin C B B C B =+,即sin cos sin cos sin C B B C B -=,()sin sin C B B -=,则有,2C B B C B -==,故ABC 是倍角三角形.(2)因为2C B =,所以ππ30A B C B =--=->,故π03B <<,则(tan B ∈,又9c =,又sin sin a c A C =,则()9sin π39sin 9sin 3sin sin 2sin 2B A Ba C B B-===,则19sin sin 22S ac B a B=⨯=99sin 381sin 3sin 2sin 24cos B B B B B =⨯⨯=⋅,81sin 2cos cos 2sin 4cos B B B B B +=⋅()81sin 2cos 2tan 4B B B =⨯+222812tan 1tan tan 41tan 1tan B BB B B ⎛⎫-=+⋅ ⎪++⎝⎭32813tan tan 41tan B B B-=⨯+设(tan x B =∈,()3231x x f x x -=+,则()()()()()22322331321x x x x x f x x -+--⋅+'=()4222631x x x --+=+令()0f x '=得23x =-或者23x =-(舍),且当203x <<时,()0f x '>,当233x <<时,()0f x '<,则()f x 在(上单调递增,在上单调递减,故当x =()f x 取最大值,此时S 也取最大值,故tan B =.12.(2024·福建漳州·模拟预测)如图,在四边形ABCD 中,π2DAB ∠=,π6B =,且ABC 的外接圆半径为4.(1)若BC =AD =ACD 的面积;(2)若2π3D =,求BC AD -的最大值.【答案】(1)4;.【分析】(1)在三角形ABC 中,根据正弦定理求得,AC CAB ∠,再在三角形ADC 中,利用三角形面积公式即可求得结果;(2)设DAC ∠θ=,在三角形,ADC ABC 中分别用正弦定理表示,BC AD ,从而建立BC AD -关于θ的三角函数,进而求三角函数的最大值,即可求得结果.【详解】(1)因为π6B =,ABC 的外接圆半径为4,所以8sin ACB=,解得4AC =.在ABC 中,BC =8sin BC CAB ==∠,解得sin CAB ∠又π0,2CAB ⎛⎫∠∈ ⎪⎝⎭,所以π4CAB ∠=;在ACD 中,4AC =,ππ24DAC CAB ∠=-∠=,AD =所以1442ACD S ∆=⨯⨯=.(2)设DAC ∠θ=,π0,3θ⎛⎫∈ ⎪⎝⎭.又2π3D =,所以π3ACD θ∠=-.因为π2DAB ∠=,所以π2CAB θ∠=-.在DAC △中,4AC =,由正弦定理得sin sin AC ADD ACD=∠,πsin 3ADθ=⎛⎫- ⎪⎝⎭,解得π1sin 32AD θθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎭4cos θθ=.在ABC 中,4AC =,由正弦定理得sin sin AC BCB CAB=∠,即41πsin 22BC θ=⎛⎫- ⎪⎝⎭,解得π8sin 8cos 2BC θθ⎛⎫=-= ⎪⎝⎭,所以4cos BC AD θθ⎛⎫-= ⎪ ⎪⎝⎭π3θ⎛⎫+ ⎪⎝⎭.又π0,3θ⎛⎫∈ ⎪⎝⎭,所以ππ2π,333θ⎛⎫+∈ ⎪⎝⎭,当且仅当ππ32θ+=,即π6θ=时,πsin 3θ⎛⎫+ ⎪⎝⎭取得最大值1,所以BC AD -.13.(2024·山东济南·二模)如图,在平面四边形ABCD 中,BC CD ⊥,AB BC ==ABC θ∠=,120180θ︒≤<︒.(1)若120θ=°,3AD =,求ADC ∠的大小;(2)若CD =,求四边形ABCD 面积的最大值.【答案】(1)=45ADC ∠︒2【分析】(1)在ABC 中,利用余弦定理可得AC =30BCA ∠=︒,然后在ADC △中利用正弦定理即可求解;(2)利用勾股定理求得BD =BCD ABD S S + 即可求解.【详解】(1)在ABC 中,AB BC ==120θ=°,所以30BCA ∠=︒,由余弦定理可得,2221262AC ⎛⎫=+--= ⎪⎝⎭,即AC =又BC CD ⊥,所以60ACD ∠=︒,在ADC △中,由正弦定理可得3sin 60=︒sin ADC ∠=因为AC AD <,所以060ADC ︒<∠<︒,所以=45ADC ∠︒.(2)在Rt BCD 中,BC CD ==BD =,所以,四边形ABCD 的面积1122BCD ABD S S S ABD=+=∠2sin ABD =∠,当90ABD Ð=°时,max 2S =,即四边形ABCD 2.14.(2024·湖北武汉·模拟预测)已知锐角ABC 的三内角A B C ,,的对边分别是a b c ,,,且222(cos cos )b c b C c B bc +-⋅+⋅=,(1)求角A 的大小;(2)bc 的取值范围.【答案】(1)π3(2)(]6,9【分析】(1)由余弦定理将cos ,cos B C 化成边,化简再结合余弦定理可求得答案;(2)利用正弦定理,将边化角,再利用角的范围即可得出结果.【详解】(1)()222cos cos b c b C c B bc +-+=Q ,由余弦定理可得22222222222a b c a c b b c b c bc ab ac ⎛⎫+-+-+-⋅+⋅= ⎪⎝⎭,化简整理得222b c a bc +-=,又2222cos b c a bc A +-=,1cos 2A ∴=,又π02A <<,所以π3A =.(2)因为三角形外接圆半径为R b B =,c C =,12sin sin bc B C ∴=,由(1)得2π3B C +=,所以2π112sin sin 12sin sin 12sin sin 32bc B C B B B B B ⎫⎛⎫==-=+⎪ ⎪⎪⎝⎭⎭()2cos 6sin 231cos 2B B B B B =+=+-162cos 232B B ⎫=-+⎪⎪⎭π6sin 236B ⎛⎫=-+ ⎪⎝⎭,因为ABC 是锐角三角形,且2π3B C +=,所以ππ62B <<,ππ5π2666B ∴<-<,1πsin 2126B ⎛⎫∴<-≤ ⎪⎝⎭,π66sin 2396B ⎛⎫∴<-+≤ ⎪⎝⎭,即69bc <≤.所以bc 的取值范围为(]6,9.15.(2024·湖南邵阳·模拟预测)在ABC 中,角,,A B C 的对边分别为,,a b c ,且ABC 的周长为sin sin sin sin a BA B C+-.(1)求C ;(2)若2a =,4b =,D 为边AB 上一点,π6BCD ∠=,求BCD △的面积.【答案】(1)2π3C =;【分析】(1)根据给定条件,利用正弦定理角化边,再利用余弦定理求解即得.(2)由(1)的结论,利用三角形面积公式,结合割补法列式求出CD ,再求出BCD △的面积.【详解】(1)在ABC 中,sin sin sin sin a B A B C a b c +=-++,由正弦定理得aba b c a b c++=+-,整理得222a b c ab +-=-,由余弦定理得2221cos 22a b c C ab +-==-,而0πC <<,所以2π3C =.(2)由D 为边AB 上一点,π6BCD ∠=及(1)得π2ACD ∠=,且+= ACD BCD ABC S S S ,即有1π1π12πsin sin sin 222623b CD a CD ab ⋅+⋅=,则4CD CD +=,解得CD =所以BCD △的面积1π1sin 2264BCD S a CD =⋅=⨯=16.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .【答案】(1)2π3A =(2)AC =ABC S 【分析】(1)利用正弦定理,三角函数恒等变换的应用化简已知等式可得tan A 的值,结合(0,)A π∈即可求解A 的值;(2)(Ⅰ)根据锐角三角函数和差角公式可得cos AB AD ABC ABC C BD BD ∠=∠===正弦定理即可求解.(Ⅱ)采用面积分割的方法以及正弦定理即可解决.【详解】(1)cos sin B b A -=,cos sin sin A B B A C -=,又sin sin()sin cos cos sin C A B A B A B =+=+,所以sin sin sin B A A B -=,因为B 为三角形内角,sin 0B >,所以sin A A -=,可得tan A =因为(0,π)A ∈,所以2π3A =;(2)(Ⅰ)此时22AB AD ==,AD AB ⊥,所以D B ==2π1cos sin 32AB AD ABC ABC C B BD BD ⎛⎫⎛⎫∠=∠===+-= ⎪ ⎪⎝⎭⎝⎭在ABC中,由正弦定理可得sin sin sin sin AC AB AB ABCAC ABC C C∠=⇒==∠=(Ⅱ)设CAD α∠=,由ABC BAD CAD S S S =+ ,2π2sin()sin 3b αα=-+2πsin 2sin()3b αα-=-有2,2πsin sin sin sin()3b CD BD ADC ADB αα==∠∠-,由于2BD DC =,所以sin sin 12πsin 22sin()3b ADB ADC αα∠⨯=∠-,所以2πsin()13sin sin 2b ααα-==⇒b =则1sin 2ABC S bc A ==17.(2024·广东广州·一模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S .已知222)S a c b =+-.(1)求B ;(2)若点D 在边AC 上,且π2ABD ∠=,22AD DC ==,求ABC 的周长.【答案】(1)2π3;(2)3+【分析】(1)根据三角形面积公式和余弦定理,化简已知条件,结合B 的范围,即可求得结果;(2)利用平面向量的线性运算及数量积运算,求得,AB BC ,即可求得三角形周长.【详解】(1)由222)S a c b =+-,则1sin 2cos 2ac B ac B ⋅=⋅,tan B =又()0,πB ∈,故2π3B =.(2)由(1)可知,2π3B =,又π2ABD ∠=,则π6CBD ∠=;由题可知,22AD DC ==,故()11213333BD BC CD BC CA BC BA BC BC BA =+=+=+-=+,所以2211103333BA BD BA BC BA c ac ⎛⎫⋅=⋅+=-= ⎪⎝⎭ ,因为0c ≠,所以a c =,π6A C ==,在Rt △ABD中,πcos6c AD =⋅=,故ABC的周长为33AB BC AC ++=+=+18.(2024·广东佛山·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中1a =,21cos 2c A b-=.(1)求角B 的大小;(2)如图,D 为ABC 外一点,AB BD =,ABC ABD ∠=∠,求sin sin CABCDB∠∠的最大值.【答案】(1)π3B =【分析】(1)根据题意,由正弦定理将边化为角,可得角的方程,化简计算,即可得到结果;(2)根据题意,由正弦定理可得sin sin CAB CDCDB AC∠=∠,再由余弦定理分别得到22,AC CD ,再由基本不等式代入计算,即可得到结果.【详解】(1)因为1a =,所以2cos 2c aA b-=,由正弦定理sin sin sin a b cA B C ==,可得2sin sin cos 2sin C A A B-=,整理可得2sin cos 2sin sin B A C A =-,又因为()sin sin sin cos sin cos C A B A B B A =+=+,化简可得sin 2sin cos A A B =,而sin 0A ≠,则1cos 2B =,又()0,πB ∈,则π3B =(2)在BCD △中,由sin sin BC CD CDB CBD=∠∠可得2sin 3sin CDB CD π∠=,在ABC 中,由sin sin BC AC CAB ABC=∠∠可得sin3sin CAB ACπ∠=,所以sin sin CAB CDCDB AC∠=∠,设()0AB BD t t ==>,由余弦定理2222cos CD BA BC BA BC CBD =+-⋅⋅∠,2222cos AC BA BC BA BC CBA =+-⋅⋅∠,可得221CD t t =++,221AC t t =+-,因此222221211311CD t t tAC t t t t++==+≤=+-+-,当且仅当1t t =时,即1t =等号成立,所以sin sin CABCDB∠∠1AB BD ==.19.(2024·河北石家庄·二模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,设向量(2sin )m A A A =,π2π(cos ,cos sin ),(),,63n A A A f A m n A ⎡⎤=-=⋅∈⎢⎥⎣⎦.(1)求函数()f A 的最大值;(2)若()0,sin f A a B C ==+=ABC 的面积.【答案】(2)ABC S !【分析】(1)由平面向量的数量积与三角恒等变换知识计算可得π()2sin(23f x A =+,再结合三角函数的值域计算即可求得;(2)由题中条件计算可得π3A =,再由正弦定理得b c +=,由余弦定理可得1bc =,再由三角形的面积公式计算即可求得.【详解】(1)()2sin cos )(cos sin )f x m n A A A A A A =⋅=+-22πsin 2sin )sin 222sin(2)3A A A A A A =-=+=+因为π2π,63A ⎡⎤∈⎢⎥⎣⎦,所以π2π5π2,333A ⎡⎤+∈⎢⎥⎣⎦,所以当π2π233A +=,即π6A =时,()f x有最大值2=;(2)因为()0f A =,所以π2sin(2)03A +=,所以π2π,Z 3A k k +=∈,因为π2[,]63A A ∈,所以π3A =,由正弦定理得:22sin a R A===,所以sin 22b bB R ==,sin 22c c C R ==,又因为sin sin B C +=22b c +=所以b c +=,由余弦定理有:2222cos a b c bc A =+-,即23()3b c bc =+-,所以1bc =,所以11sin 122ABC S bc A ==⨯=△20.(2024·广东·一模)设锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos b c A a B C -=.(1)求cos B ;(2)若点D 在AC 上(与,A C 不重合),且π,24C ADB CBD =∠=∠,求CDAD 的值.【答案】(1)12(2)2【分析】(1)根据条件,边转角得到sin sin cos 2sin cos cos B C A A B C -=,再利用sin sin cos cos sin B A C A C =+即可求出结果;(2)根据题设得到π4DBC C ∠==,进而可求得5π12A =,π12ABD ∠=,再利用BCD ABD S CD AD S = ,即可求出结果.【详解】(1)由cos 2cos cos b c A a B C -=,得到sin sin cos 2sin cos cos B C A A B C -=,又sin sin(π)sin()sin cos cos sin B A C A C A C A C =--=+=+,所以cos sin 2sin cos cos C A A B C =,又三角形ABC 为锐角三角形,所以sin 0,cos 0A C ≠≠,得到12cos B =,即1cos 2B =.(2)因为2ADB CBD ∠=∠,又ADB ACB CBD ∠=∠+∠,所以ACB CBD ∠=∠,则BD CD =,所以π4DBC C ∠==,由(1)知,π3B =,则ππ5ππ3412A =--=,π5πππ21212ABD ∠=--=,则1ππ5πππsin sin sin sin sin cos1244124121ππππππsin sin sin sin sin sin tan 212124121212BCDABDBC BD A S CD AD S AB BD C ⋅⋅⋅======⋅⋅⋅ ,又πππtan tan(1243=-=2CD AD ==21.(2024·辽宁·二模)在ABC 中,D 为BC 边上一点,1DC CA ==,且ACD 面积是ABD △面积的2倍.(1)若AB =,求AB的长;(2)求sin sin ADBB∠的取值范围.【答案】(1)1(2)5,4⎛⎫+∞ ⎪⎝⎭【分析】(1)根据三角形面积公式,结合余弦定理进行求解即可;(2)根据余弦定理、二倍角的余弦公式求出,AB AD 的表达式,最后根据正弦定理求出sin sin ADBB∠的表达式,利用余弦函数的最值性质进行求解即可.【详解】(1)设BC 边上的高为AE ,垂足为E ,因为ACD 面积是ABD △面积的2倍,所以有113221222ACD ABDCD AES BD BC S BD AE ⋅==⇒=⇒=⋅ ,设AB x AD ==⇒=,由余弦定理可知:222222229111142cos 322211212x x AC BC AB AC DC AD C AC BC AC DC +-+-+-+-==⇒=⋅⋅⨯⨯⨯⨯,解得1x =或=1x -舍去,即1AB =;(2)由(1)可知13,22BD BC ==,设ADC θ∠=,由π2DC CA DAC ADC C θθ=⇒∠=∠=⇒=-且π0,2θ⎛⎫∈ ⎪⎝⎭,由余弦定理可得:AD ==2cos θ==,AB ====,在ABD △中,因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以由正弦定理可知:sin sin sin sin AB AD ADB ABADB B B AD∠=⇒=∠1144==,因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以()()22211cos 0,1cos 0,1124255cos cos θθθθ∈⇒∈⇒>⇒+>⇒>,于是有sin 5sin 4ADB B ∠>,因此sin sin ADBB ∠的取值范围为5,4∞⎛⎫+ ⎪⎝⎭..22.(2024·黑龙江齐齐哈尔·一模)记ABC 的内角,,A B C 的对边分别为,,a b c,已知π,4cos 24B bC a ==+.(1)求tan C ;(2)若ABC 的面积为32,求BC 边上的中线长.【答案】(1)1tan 2C =.【分析】(1)利用正弦定理以及三角恒等变换的知识求得tan C .(2)根据三角形ABC 的面积求得ac ,根据同角三角函数的基本关系式求得sin ,cos A A ,利用正弦定理、向量数量积运算来求得BC 边上的中线长.【详解】(1)由正弦定理可得sin sin c bC B=,所以4sin cos 2sin B C C A =+,即2sin C C A +,又πA B C ++=,所以π2sin 4C C C C C ⎛⎫=++= ⎪⎝⎭,C C =,解得1tan 2C =;(2)依题意,113sin 222ac B ac ==,解得ac =又3π1tan tan tan 341tan CA C C--⎛⎫=-==- ⎪-⎝⎭,所以A 为钝角,所以由22sin 3cos sin cos 1AAA A ⎧=-⎪⎨⎪+=⎩,解得sin A A ==由正弦定理可得sin sin c C a A ===,又ac =所以sin 3,sin c Ba cb C=====设BC 的中点为D ,则()12AD AB AC =+,所以222212cos 5()444b c bc A AD AB AC ++=+===,所以BC23.(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,16.5MCE ∠=︒(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角48.5MDE ∠=︒,楼尖MN 的视角 3.5MDN ∠=︒(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO.参考数据:sin16.5sin48.52sin325︒︒≈︒,8tan16.527︒≈,8tan48.57︒≈37.4,≈【答案】(1)41.7m ,5m (2)FO 为37.4m【分析】(1)法一:在CDM V 中,由正弦定理得,可得100sin 48.5sin 32CM ︒=︒,进而求得ME ,MO ,进而求得CE ,计算可求得楼离MO 和楼尖MN ;法二:利用tan ME CE MCE=∠,tan MEDE MDE =∠,可求得ME ,进而计算可求得楼离MO 和楼尖MN ;(2)设m FO x =,40tan MGE x∠=,35tan NGE x ∠=,进而可得()tan tan MGN MGE NGE ∠=∠-∠403540351x x x x -=+⋅,利用基本不等式可求得楼尖MN 的视角最大时x 的值.【详解】(1)法一:16.5MCE ∠=︒,48.5MDE ∠=︒,∴32DMC ∠=︒.在CDM V 中,由正弦定理得,sin sin CD CDMCM DMC∠=∠,又100m CD =,∴()100sin 18048.5100sin 48.5sin 32sin 32CM ︒-︒︒==︒︒.∴100sin 48.5sin16.5sin 40m sin 32ME CM MCE ︒︒=∠==︒,∴40m 1.7m 41.7m MO ME EO =+=+=.40401358tan tan16.527ME CE MCE ====∠︒(m ).∴35m DE CE CD =-=.∵45NDE MDE MDN ∠=∠-∠=︒,∴35m NE DE ==,5m MN ME NE =-=.法二:tan ME CE MCE=∠,tan MEDE MDE =∠,∴100tan tan ME MECE DE MCE MDE-=-=∠∠,即27710088ME ⎛⎫⨯-= ⎪⎝⎭,∴40m ME =,∴40m 1.7m 41.7m MO ME EO =+=+=.40401358tan tan16.527ME CE MCE ====∠︒m .∴35m DE CE CD =-=.∵45NDE MDE MDN ∠=∠-∠=︒,∴35m NE DE ==,5m MN ME NE =-=.(2)设m FO x =,40tan MGE x∠=,35tan NGE x ∠=,∴()tan tan tan tan 1tan tan MGE NGEMGN MGE NGE MGE NGE∠-∠∠=∠-∠=+∠⋅∠40355403540351x x x x x x -==≤=⨯+⋅+当且仅当4035x x⨯=,即37.4x ≈时,等号成立.∴测角仪底到楼底的距离FO 为37.4m 处时,测得楼尖MN 的视角最大.24.(2024·重庆·模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)若BP PC =,且2b c +=,求AP 的最小值.【答案】(1)π3A =;【分析】(1)根据题意,由正弦定理代入计算,结合三角恒等变换公式代入计算,即可得到结果;(2)根据题意,由平面向量数量积的运算律代入计算,结合基本不等式代入计算,即可得到结果.【详解】(1)在ABC 中,由正弦定理sin sin a bA B=,可得sin sin a B b A =又由2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦知2π2sin cos 2cos 122122B B A a b ⎡⎤⎛⎫=⋅-- ⎪⎢⎥⎝⎭⎣⎦,即πsin cos 6a B b A ⎛⎫=- ⎪⎝⎭,得πsin cos 6b A b A ⎛⎫=- ⎪⎝⎭,得π1sin cos sin 62A A A A ⎛⎫=-=+ ⎪⎝⎭,得1sin 2A A =,所以tan A =又因为()0,πA ∈,所以π3A =.(2)由BP PC =,得1122AP AB AC =+ ,所以22221111122442AP AB AC AB AC AB AC⎛⎫=+=++⋅ ⎪⎝⎭ 2222111111cos 442444c b bc A c b bc =++=++()()()22221133442164b c b c bc b c b c ⎡⎤+⎛⎫⎡⎤=+-≥+-=+=⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当2b c b c =⎧⎨+=⎩,即1b c ==时等号成立,故AP25.(2024·山西朔州·一模)已知ABC 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=-- ,且//m n.(1)求B ;(2)求222b a c +的最小值.【答案】(1)π3B =(2)12【分析】(1)利用向量共线的坐标形式可得222a c b ac +-=,结合余弦定理可求B ;(2)利用基本不等式可求最小值.【详解】(1)因为//m n ,所以()()()sin sin sin sin a b A B c A C +-=-,由正弦定理可得()()()a b a b c a c +-=-即222a b ac c -=-,故222a cb ac +-=,所以2221cos 22a cb B ac +-==,而B 为三角形内角,故π3B =.(2)结合(1)可得:2222222221ac b a c ca c c c a a a +==+--++,2211111222c a c a a c c a -≥-=-=+,当且仅当a c =时等号成立,故222b a c+的最小值为12.26.(2024·河南开封·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c,已知cos sin b A B =.(1)求sin A ;(2)若a =①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求ABC 的面积.条件①:=b ;条件②:b =③ :1sin 3C =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)sin A =;(2)答案见解析.【分析】(1)利用正弦定理边化角,结合同角公式计算即得.(2)选择条件①,利用余弦定理及三角形面积公式计算求解;选择条件②,利用正弦定理计算判断三角形不唯一;选择条件③,利用正弦定理计算判断,再求出三角形面积.【详解】(1)由cos sin b A B =得:sin cos sin B A A B =,而sin 0B ≠,则cos 0A A =>,A 为锐角,又22sin cos 1A A +=,解得sin A =所以sin A =且A 为锐角.(2)若选条件①,由sin A =A为锐角,得cos A =由余弦定理得2222cos a b c bc A =+-,又=b ,则222364c c c =+-,解得1,c b ABC ==唯一确定,所以1sin 2ABC S bc A ==.若选条件②,由正弦定理得sin sin a b A B=,则sin 1B =<,由b a =>=B A >,因此角B 有两解,分别对应两个三角形,不符合题意.若选条件③,由sin A =,A为锐角,得cos A又1sin sin 3A C =>=,得a c >,A C >,则cos C =,因此sin sin()sin cos cos sin B A C A C A C ABC =+=+=唯一确定,由正弦定理得sin sin a cA C=,则1c ==,所以1sin 2ABC S ac B ==△。
文科数学解三角形专题(高考题)练习【附答案】
解三角形专题练习1、在b、c,向量m2sinB,3,B2 ncos2B,2cos1,且m//n。
2(I)求锐角B的大小;(II)如果b2,求ABC的面积S ABC的最大值。
2、在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC3acosBccosB. (I)求cosB的值;(II)若BABC2,且b22,求a和c b的值.3、在ABC中,cos 5A,5 cos10B.10(Ⅰ)求角C;(Ⅱ)设AB2,求ABC的面积.4、在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量m(1,2sinA),n(sinA,1cosA),满足m//n,bc3a.(I)求A的大小;(II)求sin(B6)的值.5、△ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+3cos(A+B)=0,.当a4,c13,求△ABC的面积。
6、在△ABC中,角A、B、C所对边分别为a,b,c,已知11tanA,tanB,且最长边23的边长为l.求:(I)角C的大小;(II)△ABC最短边的长.7、在△ABC中,a、b、c分别是角A、B、C的对边,且c osBcosCb2ac.(I)求角B的大小;(II)若b13,ac4,求△ABC的面积.8、(2009全国卷Ⅱ文)设△ABC的内角A、B、C的对边长分别为a、b、c,32,求B.cos(AC)cosB,bac29、(2009天津卷文)在ABC中,BC5,AC3,sinC2sinA(Ⅰ)求AB的值。
(Ⅱ)求sin(2A)的值。
41、(1)解:m ∥n2sinB(2cos2B-1)=-3cos2B 22sinBcosB =-3cos2Btan2B =-3⋯⋯4分2ππ∵033⋯⋯2分 (2)由tan2B =-3B =π 5π 或 36π ①当B =3时b =2,由余弦定理,得:4=a2+c 2-a c ≥2a c -a c =a c (当且仅当a =c =2时等)⋯⋯3分 1 ∵△ABC 的面积S △ABC = 2acsinB = 3 4ac ≤3 ∴△A B C 的面3⋯⋯1分 5π ②当B =时b =2,由余弦定理,得: 6 4=a 2+c 2+3a c ≥2a c +3a c =(2+3)a ∴ac ≤4(2-3)⋯⋯1分 1 2 ∵△ABC 的面积S △ABC = 1 acsinB =ac ≤2-3 4 ∴△A B C 的面2-3⋯⋯1分 2、解:(I )由正弦定理得a2RsinA,b2RsinB,c2RsinC , 则2RsinBcosC6RsinAcosB2RsinCcosB, 故sinBcosC3sinAcosBsinCcosB, 可得sinBcosCsinCcosB3sinAcosB, 即sin(BC)3sinAcosB, 可得sinA3sinAcosB.sinA0, 又 因此 cosB1 3 . ⋯⋯⋯⋯6分 .(II )解:由BABC2,可得acosB2, 又cosB1 3,故ac 6, 2 由b 2 a 2c2accosB,2 可得a 2 c 12, 2所以(ac)0,a即c,所以a =c =6cosA5 5 ,cosB10 10 ,得A 、B0,23、(Ⅰ)解:由,所以23 sinA ,sinB.510⋯⋯3分cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为2 2 ⋯6分且0C 故C . 4⋯⋯⋯⋯7分(Ⅱ)解: 根据正弦定理得 ABACABsinB6 ACsinCsinBsinC10,⋯⋯⋯⋯..10分16 ABACsinA.所以ABC 的面积为252AA ⋯⋯2分4、解:(1)由m//n 得2sin1cos02AA即2coscos101 cosA 或cosA21⋯⋯⋯⋯⋯⋯4分AA 是ABC 的内角,cosA1舍去3⋯⋯⋯⋯⋯⋯6分3sinBsinC3sinA由正弦定理,2⋯⋯⋯⋯⋯⋯8分BC 232sinBsin(B)332⋯⋯⋯⋯⋯⋯10分..3 233 cosBsinB 即sin( 22B)63 25、解:由sin2C3cos(AB)0且ABC3 2sinCcosC3cosC0所以,cosC0或sinC 有2⋯⋯6分3a4,c13,有ca,所以只能sinC,则C 由32,⋯⋯8分2ababCbbbb222由余弦定理2cos430,13c 有解得或当11 b3时,SabsinC33当b1时,S absinC 223. 116、解:(I )tanC =tan[π-(A +B )]=-tan (A +B ) tanAtanB231111tanAtanB123C3 4∵0C ,∴⋯⋯⋯⋯⋯⋯⋯⋯5分(I I )∵0<t a nB <tan A,∴A 、B B∴为b 为c ⋯⋯⋯⋯⋯⋯⋯⋯7分 tanB 1 3 ,解得 sin B10 10 由⋯⋯⋯⋯⋯⋯⋯⋯9分 bc b10 1 csinB105sinC25由sinBsinC ,∴2 ⋯⋯⋯⋯⋯⋯12分 ab c sinAsinBsin C2R 7、解:(I )解法一:由正弦定理 得将上式代入已知c osBcosCbcosB得2accosC2sinBsinAsinC即2sinAcosBsinCcosBcosCsinB0 .. 即2sinAcosBsin(BC)0∵ABC,∴sin(BC)sinA,∴2sinAcosBsinA0∵1 sinA≠0,∴cosB,2∵B为三角形的内角,∴B23.解法二:由余弦定理得222222acbabc cosBcosC,2ac2ab将上式代入cosBcosC222bacb得×2ac2ac2ab222abcb2ac222 整理得acbac∴cosB222acbac2ac2ac12∵B为三角形内角,∴B23(II)将b13,ac4,B23 2222cos得代入余弦定理bacacB2()222cosbacacacB,∴113162ac(1),∴ac23∴1SacsinB△ABC2343.8、解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角3函数值的制约,并利用正弦定理得到sinB=2(负值舍掉),从而求出B=3。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
高考数学复习热点05 三角函数及解三角形(原卷版)
热点05 三角函数与解三角形【命题趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内。
鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点。
考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用。
本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升。
【知识点分析以及满分技巧】三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题,ABCD选项中特殊点的带入简单方便,正确率比较高。
总额和性的问题一般采用换元法转化成最基本的函数问题去解答。
对于三角函数有关恒等变换的题目应注重公式的变形。
解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件。
【考查题型】选择题,填空,(解答题21题)(两小一大或者是三小)【限时检测】(建议用时:40分钟)1.(2020·莆田第十五中学高三期中(理))已知中,“ABC A ”是“”的()()tan sin sin cos cos A C B B C-=-60A =︒A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.(2020·深圳市龙岗区龙城高级中学高三月考)已知函数在区间()()2sin 0f x x ωω=>上的最大值是,则的最小值等于( ),34ππ⎡⎤-⎢⎥⎣⎦2ωA .B .C .D .2332233.(2020·全国高三专题练习(理))秦九韶,字道古,汉族,鲁郡(今河南范县)人,南宋著名数学家,精研星象、音律、算术、诗词、弓、剑、营造之学.1208年出生于普州安岳(今四川安岳),咸淳四年(1268)二月,在梅州辞世. 与李冶、杨辉、朱世杰并称宋元数学四大家.他在著作《数书九章》中创用了“三斜求积术”,即是已知三角形的三条边长,求三角形面积的方法.其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘,,a b c 于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为,若满足,S =ABC A 2sin c A 2sin C =3cos 5B =,且a<b<c ,则用“三斜求积”公式求得的面积为( )ABC A A .B .3545C .1D .544.(2020·宁县第二中学高三期中(理))已知,,则1cos 2α=322παπ<<( )sin(2)πα-=A .B .C .D1212-5.(2020·河南开封市·高三一模(理))在中,是边的中点,是线段ABC A M BC N 的中点.若,取最小值时,( )BM 6A π∠=ABC A AM AN ⋅BC =A .2B.4C .D 1246.(2020·四川成都市·高三其他模拟(理))已知中,内角的对边分别为ABC A ,,A B C ,若,且,则的值为(),,a b c 2,23A b π==ABC A a A .B .C .D .82127.(2020·全国高考真题(理))在△ABC 中,cos C =,AC =4,BC =3,则cos B =( )23A .B .C .D .191312238.(2020·黑龙江鹤岗市·鹤岗一中高三期中(理))在中,角的对边分别为ABC A ,,A B C ,若,则的形状为( ),,a b c sin 22sin cos 0b A a A B -=ABC A A .直角三角形B .等腰三角形C .等腰直角三角形D.等边三角形9.(2020·贵州安顺市·高三其他模拟(理))在中,,则ABC A 2,6ABC π==的最大值为()AC+A .B .C .D .10.(2020·江西南昌市·高三其他模拟(理))已知直线与圆:相l C 22240x y x y +--=交于,两点,为坐标原点,若锐角的面积为,则( )A B O ABC A 125sin AOB ∠=A .B .C .D .122535344511.(2020·四川泸州市·高三一模(理))已知函数.2()2cos 12x f x x=-+(Ⅰ)若,求的值;()6f παα⎛⎫=+ ⎪⎝⎭tan α(Ⅱ)若函数图象上所有点的纵坐标保持不变,横坐标变为原来的倍得函数()f x 12()g x 的图象,且关于的方程在上有解,求的取值范围.x ()0g x m -=0,2π⎡⎤⎢⎥⎣⎦m 12.(2020·贵州安顺市·高三其他模拟(理))已知向量,.()3sin ,sin ,cos 22a x x b x x ππ⎛⎫⎛⎫⎛⎫=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()f x a b =⋅ (1)求的最大值及取得最大值时的取值集合;()f x ()f x x M (2)在中,分别是角的对边,若且,求ABC A a b c 、、、、A B C 24C Mπ+∈1c =面积的最大值.ABC A 13.(2020·广西北海市·高三一模(理))已知在中,角A ,B ,C 的对边分别为a ,ABC A b ,c ,且.()sin sin (2)sin a b A c C a b B +=+-(1)求角C 的大小;(2)若,求面积的最大值.c =ABC A14.(2020·广西高三一模(理))在中,角、、的对边分别为、、,ABC A A B C a b c 已知,且为钝角.4sin cos 4sin c b B C a B +=A (1)求角的大小;B (2)若,求的值.b =c =()sin 3cos3A B C -15.(2020·全国高三其他模拟)在中,内角,,所对的边分别为,,,ABC A A B C a b c 且.sin sin sinsin B C aA C b c +=--(1)求;B (2)若是锐角三角形,且的面积为,求的取值范围.ABC A ABC A c。
2024年新高考版数学专题1_5.4 解三角形(分层集训)
+1=5,c=a+2=6,∴cos A= b2 c2 a2 = 52 62 42 = 3 ,∴sin A= 1 cos2 A= 7 ,
2bc
256 4
4
∴S△ABC= 1 bcsin A= 1 ×5×6× 7 =15 7 .
2
2
44
(2)由已知得c>b>a,若△ABC为钝角三角形,则角C为钝角,∴cos C=
3
1
1
1
2
A. 9 B. 3 C. 2 D. 3
答案 A
3.(2021全国甲文,8,5分)在△ABC中,已知B=120°, AC= 19, AB=2,则BC= () A.1 B. 2 C. 5 D.3 答案 D
4.(2023届湖湘名校教育联合体大联考,14)△ABC的内角A,B,C的对边分别
为a,b,c,已知b-c= 1 a,2sin B=3sin C,则cos A的值为
5.(2020课标Ⅱ文,17,12分)△ABC的内角A,B,C的对边分别为a,b,c,已知
cos2
2
A +cos
A=
5.
4
(1)求A;
(2)若b-c= 3 a,证明:△ABC是直角三角形.
3
解析
(1)由已知得sin2A+cos
A=
5 4
,即cos2A-cos
A+
1=0.所以
4
cos
A
1 2
2=0,
问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A= 3sinB,
C= ,
?
6
注:如果选择多个条件分别解答,按第一个解答计分.
解析 方案一:选条件①.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3解三角形问题
、解三角形,即已知三角形的六个量(三条边、三个角)中的三个量,求另外三个量。
、在:ABC 中,求解三角形
2 、a =8,B =60 ,C =75
4、b = 6, A = 30 , a = 3 6、b = 6, A = 30 , a = 6
8、b = 6,C = 30 , a = 6、.. 3
10
、a=8,B =60 ,C =75°,求=ABC 德尔外接圆面积、■_ABC 的面积
cos ( A - B )的值,(2)若a =4,求 ABC 的面积
练习:(选作)
(1) 在 ABC 中,A =45 ,C =30 ,c =10,解三角形。
(已知两角和任意一边) (2) 在 ABC 中,a =1,b 二..3, A =30。
解三角形(已知两边及一边的对角) (3) 在 ABC 中,a =12,^10. 3,^150 .求b (已知两边及两边的夹角)
(4) 在. ABC 中,a =2・、3,b =2.2,c~6 •迈,解三角形(已知三边解三角形)
(5) 在 ABC 中,若a =7,b =3,c =8, ,( 1 )求S ABC ,( 2)求AC 边上的高(面积公式) 11、在匚ABC 中,tan A =—, tan B =-, ( 1)求角C 的大小,(2)若AB 长为-17,求BC 边的 4 5 长
参考答案:
兀
5兀 J6 +丁2
2兀
兀
丿6一』2
或「3”12,
1
、a =2, b = . 3, A = 45 ,
3、b = 6, A = 30 , a = 2丿3 5、b = 6, A = 30 , a = 2
7、b =6,A =60 ,a =6-、3 9、a =9,b =10,c =15
例3、在锐角 AABC 中,
a,b,c 分别是. ABC 的对边,
cos A =逅,sin B = 2^/10,
5 10
(1 )求
t
7 (Q、I4护=S (Q
H9
t7 £
'一日'—=*
H ir
LO乙卜乙
=q
9 = o l—
IT o l-= a
IT
旷乙=
(抄+ 卽)9 = qZ®
=
e l OL= □
3 - = (a + v)soo
——=gsoo
£(H
(辛虽)9
H9
9t
7 14
£
L.
9 soo
t
9
IT
a w乙尸
£?9 =
9Z
c Vsoo 、6
乙
o1—=
li
o1
£.■'
£ =
o1
L.
O1
C^t7+t7 = o ( 9/^P= q
9=0 v8
9
—=a 、L
it
£
—=a 、9 it
乙
—=a p it
£
=日* 1£
t7
—=P '乙。