小学奥数 斐波那契数列典型例题讲课稿
优质课大赛课件(斐波那契数列)

教学过程
1、创设情境,引出斐波那契著名的兔子问题。 2、学生通过观察、分析、讨论,总结出斐波
那契数列的基本特征。 3、出示兔子问题的另一种提法,学生找出与
第一种提法的区别,并进一步引出经常考试 的爬楼梯问题。 4、课堂小结。 项起,每一项都是前两 项之和,那么我们就把 这样的数列称为斐波那 契数列。
课后作业
树木的生长问题
树木的生长,由于新生的枝条,往往需要一段 “休息”时间,供自身生长,而后才能萌发新 枝。所以,一株树苗在一段间隔,例如一年, 以后长出一条新枝;第二年新枝“休息”,老 枝依旧萌发;此后,老枝与“休息”过一年的 枝同时萌发,当年生的新枝则次年“休息”。 那么一棵小树7年后有多少枝树丫?
蜜蜂进蜂房问题: 一只蜜蜂从蜂房出发,想爬到9号蜂房, 只允许它自左向右(不许反方向倒走)。则
它爬到9号蜂房有多少不同的路线?
1
3
5
7
9
2
4
6
8
… …
n-1
…
n-2
n
…
教材分析
斐波那契数列是小学六年级数学课 本中的一篇阅读材料,好多同学甚至个 别老师都经常把它忽略掉,认为它不重 要,但它却常常出现在小升初考试和各 种杯赛的试卷中。
月 一二三四五六七八九十十十
份
一二
大
兔 数
1
1 2 3 ···
小
兔0
数
1 1 2 ···
总
数1
量
235
8 13 21 34 55 89 144 23 3
3、爬楼梯问题
一段楼梯,地板不算台阶则有7级台阶, 规定每一步只能跨1级或2级台阶,则 登上7级台阶共有( )种方法。
《斐波那契数列》课件

特征方程
特征方程
对于斐波那契数列,其特征方程为x^2=x+1。通过解这个方程,可以得到斐波 那契数列的通项公式。
通项公式
斐波那契数列的通项公式为F(n)=((φ^n)-(-φ)^-n))/√5,其中φ=(1+√5)/2是黄 金分割比。这个公式可以用来快速计算斐波那契数列中的任意数字。
03
斐波那契数列的数学模型
在生物学中的应用
遗传学研究
在遗传学中,斐波那契数列可以用于 描述DNA的碱基排列规律,有助于深 入理解遗传信息的传递和表达。
生物生长规律
许多生物体的生长和繁殖规律可以用 斐波那契数列来描述,如植物的花序 、动物的繁殖数量等。
在计算机图形学中的应用
图像处理
在图像处理中,斐波那契数列可以用于生成复杂的图案和纹理,增加图像的艺术感和视觉效果。
斐波那契数列的递归算法
F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
03
递归算法的时间复杂度
O(2^n),因为递归过程中存在大量的重复计算。
迭代算法
迭代算法的基本思想
迭代算法的时间复杂度
从问题的初始状态出发,通过一系列 的迭代步骤,逐步逼近问题的解。
O(n),因为迭代过程中没有重复计算 。
实际应用价值
斐波那契数列在计算机科指导 意义。
对未来研究的展望
深入探索斐波那契数列的性质
01
随着数学研究的深入,可以进一步探索斐波那契数列的性质和
规律,揭示其更深层次的数学原理。
跨学科应用研究
02
未来可以将斐波那契数列与其他学科领域相结合,如生物学、
表示方法
通常用F(n)表示第n个斐波那契数 ,例如F(0)=0,F(1)=1,F(2)=1 ,F(3)=2,以此类推。
奇妙的斐波那契数列

斐波那契数列贺兰一小吴爱玲教学内容: 人教版小学数学六(下)第65页阅读资料“斐波那契数列”教学目标:1、使学生初步认识“斐波那契数列”及其部分特性。
2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力,形成一定的数感,培养良好的思维品质。
3、在知识结构不断拓展、能力不断提升的过程中,感悟数学文化的广袤和久远,培养良好的数学阅读习惯,形成积极的数学情感。
教学准备: 多媒体教学课件等。
教学过程:一、导入师:古人云:“有朋自远方来,不亦乐乎!”今天吴老师就带领大家来认识解决一个很有趣的数学问题,据说他的发现曾激起一个民族的数学学习热情,它的解决更造就了一位著名的数学家;究竟是怎样的问题有如此魅力,你们想了解吗?那就要看你们的表现了。
大家有没有信心?二、初涉规律,引入新课好,请看大屏幕:找规律填数。
1. 5、10、15、()、()、302. 4、6、()、10、()、143. 1、4、9、16、()、()、494. 10、3、8、3、6、3、()、()5. 1、1、2、3、5、8、()、(),……指名回答,引导说出规律。
(前两个数之和等于第三个数)师:刚才大家表现得很积极。
这类找规律题,都需要观察前后数的关系来解答。
像以上这样有规律的每一组数,我们把它称之为数列,下面我们就来进一步研究这样一组有规律的数,它就是这个数列:(课件出示)1、1、2、3、5、8、13、21……三、游戏激趣,解决问题师:这个数列还有个有趣的名字,叫做“兔子数列”,想知道为什么吗?这就要从一对刚出生的小兔子说起了。
师:很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一位举世闻名的数学家。
这一年到底发生了什么呢?他用一道数学题巧妙地告诉了我们,请看大屏幕:假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢?1、请学生读题,分析、理解题意。
人教版小学数学六年级下册《斐波那契数列》教学设计(课例)

(2)第五个月、第六个月有多少对兔子呢,你们愿意自己尝试着研究一下吗?把你研究的过程记录在这张纸上,咱们比一比,看谁的研究成果能让人一眼就看得懂、看得明白,拿出纸笔,开始吧!(完成的和周围同学说说,大家互相学习)哪位同学愿意来给大家讲讲自己的作品?他画的什么意思,听明白了吗?孩子,我有个问题:咱们研究的是兔子,你怎么画了这么多图形啊?(简单、好画)是这样吗?你们也是这样画的吗?还有画的不一样的吗?来看看这几位同学画的,也都是用了各种图形、符号,我们研究兔子,你们想到用图形代替,这种数学的思维意识非常好。
比较一下这几种不同的画法,你有什么想法吗?(展台同时展示几种不同的方法)(生评价)生1:画兔子的,麻烦、慢生2:用三角、圆、四边形的,不能一眼看出哪个是大兔哪个是小兔。
生3:用大圆和小圆的,用“大”“小”字的,一下就能看出哪个是大兔哪个是小兔。
我们研究的成果不仅要自己懂,还要让所有看图的人都懂。
在面对“第5个月第6个月有多少对兔子”这个比较复杂的问题时,我们通过画图就能简洁的、清晰的理解题意,其实在我们学习数学的过程中,有很多问题都可以借助图形、符号进行研究并帮助我们解决问题。
(课件验证)现在我们请小兔子们亲自为同学们演示一下,想看吗?月月月月月月现在如果要算算6月有多少对兔子,你能用一个算式表示吗?11235112358斐波那契螺旋——黄金螺旋黄金矩形大自然中的斐波那契数列 )除了动物,哪里还会有呢?①看,这是什么?松果里有螺旋吗?种子的排列(松果)大自然中的斐波那契数列8 种子的排列(松果)大自然中的斐波那契数列13大自然中的斐波那契数列有13条逆时针螺旋和21条顺时针螺旋有13条顺时针螺旋和21条逆时针螺旋大自然中的斐波那契数列大自然中的斐波那契数列21条和34条最多可达89条和14434条和55条条和89条它的种子也排列成?(两组交错的斐波那契螺旋)一般是34和55条螺旋一组,还有和89条螺旋一组的,目前植物学家发现最多是条螺旋一组。
《斐波那契数列》课件

03
斐波那契数列的应用
在自然界的运用
生长与繁殖
许多动植物的生长和繁殖遵循斐 波那契数列的规律。例如,菠萝 表面的小眼通常以斐波那契数列
的顺序排列。
植物生长
许多植物的花瓣、叶子和分支遵 循斐波那契数列的规律,如向日 葵花盘上的花瓣数量、松果的鳞
片排列等。
动物行为
一些动物的行为模式,如蜘蛛网 的构造、蜜蜂的蜂巢等,也与斐
02
在建筑设计中的应用
斐波那契数列的美学价值使得它在建 筑设计中也有所应用。通过运用斐波 那契数列的规律和比例,可以在建筑 设计中创造出和谐、优美的作品。
03
在音乐和艺术领域的 应用
斐波那契数列在音乐和艺术领域也有 所应用。例如,在作曲中可以利用斐 波那契数列来安排和声和旋律,在绘 画中可以利用斐波那契数列来构图和 布局。
在计算机科学中的应用
数据结构和算法设计
斐波那契数列在计算机科学中被广泛应用于数据结构和算 法设计。例如,斐波那契堆是一种优化的数据结构,用于 实现高效的内存管理和动态调整。
加密和安全
斐波那契数列在加密算法和网络安全领域也有所应用。例 如,利用斐波那契数列的特性可以设计出更安全的加密算 法。
计算机图形学
寻找新的应用领域
除了在生物学、经济学等领域的应用,未来可以 寻找斐波那契数列在其他领域的新应用,如物理 学、计算机科学等。
优化算法和计算方法
随着计算能力的提高,可以进一步优化斐波那契 数列的计算方法和算法,提高计算效率和精度。
如何将斐波那契数列应用到实际生活中
01
在金融领域的应用
斐波那契数列在金融领域有广泛的应 用,如股票价格预测、风险评估等。 通过分析历史数据,可以利用斐波那 契数列预测未来的市场走势。
小学奥数 斐波那契数列典型例题

拓展目标:一:周期问题的解决方法(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。
例1:(1)1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.二:斐波那契数列斐波那契是意大利中世纪著名的数学家,他曾提出这样一个有趣的有关兔子的问题:假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢?斐波那契数列(兔子数列)1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …你看出是什么规律:。
【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】【巩固】(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?【解析】120÷3=40 2004÷3=668【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数?例2:(10秒钟算出结果!)(1)1+1+2+3+5+8+13+21+34+55=(2)1+2+3+5+8+13+21+34+55+89=数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍!巩固:34+55+89+144+233+377+610+987+1597+2584==例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …(1)这列数中第2013个数的个位数字是几?分析:相加,只管个位,发现60个数一循环个位数F1 - F30:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 61 7 8 5 3 8 1 9 0F31-F60:9 9 8 7 5 2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 49 3 2 5 7 2 9 1 0F61-F81:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 62013 = 60*33 + 33,第33个个位为8巩固:这列数中第2003个数的个位数字是几?(2)这列数中第2003个数除以5的余数是几?11235813213455数列余1123033140数数891442333776109871597258441816765规律:发现20个数一循环、。
小学数学演讲-斐波那契数列

这个神奇奥妙的序列隐藏在我们生活 中任何常见的事物,植物如一棵花菜,一 朵向日葵,宏观如星系和飓风,小到细胞 分裂,都有斐波那契数列的存在。
楼梯
海螺
植物
耳朵
宇宙
星际
气旋
植物
花是自然界斐波那契数列的另一个例子。花朵不仅以树枝几乎相同的方式工作,而 且许多花朵有1,2,3,5,8等花瓣数量,如雏菊可以在一朵花上多达21,34,55和89朵花瓣。
动物
建筑
在古代文明中,黄金比例(神圣几何)经常被用于 艺术和建筑的设计。从简单的螺旋到更复杂的设计。今 天的神圣几何仍然用于规划和建造许多建筑物,如教堂 ,寺庙,祭坛,住房以及创造宗教艺术品。
艺术
斐波那契数列在艺术和科学 方面起着特殊的作用,是一个普 遍的神话。
美国总统
斐波那契数列是不是很神奇?
数学的奥妙
奇妙的斐波那契数列
意大利数学家-列昂纳多· 斐波那契
什么是斐波那契数列?
1、2、3、5、8、13、21、? 、rdo Pisano ,Fibonacci, Leonardo Bigollo 1175年出生在意大利,著名数学家。
神奇的斐波那契数列
二十讲:斐波那契数列

二十讲:斐波那契数列斐波那契数列意大利数学家斐波那契在他的《算盘书》里排了一个数列:1、2、3、5、8、13……这个数列揭开了大自然隐秘世界的一角。
这个数列不是随便写的,它是有规律的,从第二个数字开始,2是1加1,是第一个数字的倍数;3是1加2,是第一个和第二个数字的合;5是2加3;8是3加5……也就是每一个数字都是它前面两个数字之和,一直往下排,由此得到的这个数列就叫斐波那契数列。
从斐波那契数列我们得到一个非常重要的数值:0.61803……这也就是我们经常讲到的黄金分割比例。
黄金分割比例是指斐波那契数列任意相邻两项的比值都会趋向于0.618,尽管每一个比值都不一样,但是它们会无限趋向0.618,越来越趋向于那个点。
我们通常认为这是一个趋于完美的点。
黄金分割比例在艺术、建筑等许多领域得到了广泛地应用。
我们发现,凡是人类认为美的事物,通常都符合这个黄金分割比例。
这几乎是一个自然规律,我们说不清楚为什么,但是大家的感觉就是如此。
人们心理上本能地认同这样一个比例关系,并且大自然当中很多事物也都符合这个规律。
这是一种当代科学无法认证的自然规律,但是它确实存在。
像这种存在于自然现象背后的自然规律对我们从事市场交易活动具有非常重要的意义。
黄金分割比例对于市场行情的研究具有什么样的意义呢?简单点讲就是当一波行情在上涨或是下跌的时候,通常情况下,假如市场行情在涨,当它涨到这一波行情最高点的0.618的价位的时候,它必定要停一停,要回头,要往回走,要反驰,它要回调。
要回调到什么价位呢?回调到的0.618的倒数那个位置,从上点往下看,也是0.618。
到了那个位置以后,它又开始往上反弹,最后到达那个最高点。
这是一个很奇怪的现象,人们在研究行情的过程中无数次发现这样的规律,虽然不是百分之一百准确,但是八九不离十,大体上符合这样一个规律。
这样的规律我们把它叫做自然法则,就是说我们发现事物现象背后存在这样一个规律,但是它不是科学定律。
斐波那契数列教案 适合小学

拓展课斐波那契数列【教学内容】斐波那契数列相关知识。
【教学目标】1. 使学生认识“斐波那契数列”及其部分特性,并探究著名的兔子问题。
2. 在经历感知、分析、归纳和应用过程中培养学生的思维能力,会利用从易入难的数学思想方法解决问题,培养良好的思维品质。
3. 在知识结构不断拓展、能力不断提升的过程中,感悟数学文化的广袤和久远,培养积极的数学阅读习惯,形成积极的数学情感。
【教学重难点】重点:发现斐波那契数列的规律,探究兔子问题难点:会利用从易入难的数学思考方法解决问题【教学准备】课件、学习单【教学流程】一、图片欣赏,引出课题1.出示自然界中的图片师:一起欣赏这些大自然的图片,它们都有什么特点?预设:它们都有螺旋线2.出示鹦鹉螺师:鹦鹉螺的内部是非常美丽的螺旋线,我们可以把它画出来。
3. 出示斐波那契螺旋线,观察是怎么画出来的师:用数学的眼光看一看,说说它是怎么画出来的。
引导学生从最小的正方形数起。
预设:最小的正方形边长是1,有2个这样的小正方形预设:是正方形的对角线师:是的,需要先从里到外画出正方形,再画出正方形对角顶点相连的弧提问:这些正方形的边长都是多少?1,1,2,3,5,8,13,21……师:老师加了省略号是为什么?预设:还可以继续画下去。
师:你们发现后面应该是几了吗?预设:34预设:这串数字是有规律的,每次都是前两个数字之和师小结并揭示课题:像这些正方形的边长形成的一列有序的数,我们叫它数列(板贴:数列)。
4. 出示人物介绍,认识斐波那契最早研究这个数列的是莱昂纳多斐波那契,他是中世纪意大利的一位数学家。
因此这个数列就已他的名字命名,叫斐波那契数列。
(板贴:斐波那契)今天我们一起来研究学习斐波那契数列。
(指着板贴读课题)二、探究问题,学习新知1.兔子繁殖问题师:这个数列可不是斐波那契凭空想出来的,最早是斐波那契以兔子繁殖为例子而引入,让我们也像数学家一样研究兔子繁殖的规律吧。
出示兔子繁殖的故事,请学生朗读,并加以理解。
小学奥数 斐波那契数列典型例题

拓展目标:一:周期问题的解决方法(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。
例1:(1)1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.二:斐波那契数列斐波那契是的有关兔子的问题:假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对斐波那契数列(兔子数列)1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …你看出是什么规律:。
【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】【巩固】(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?【解析】120÷3=40 2004÷3=668【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数?例2:(10秒钟算出结果!)(1)1+1+2+3+5+8+13+21+34+55=(2)1+2+3+5+8+13+21+34+55+89=数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍!巩固:34+55+89+144+233+377+610+987+1597+2584==例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …(1)这列数中第2013个数的个位数字是几?分析:相加,只管个位,发现60个数一循环个位数F1 - F30:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 61 7 8 5 3 8 1 9 0F31-F60:9 9 8 7 5 2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 49 3 2 5 7 2 9 1 0F61-F81:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6 2013 = 60*33 + 33,第33个个位为8巩固:这列数中第2003个数的个位数字是几?(2)这列数中第2003个数除以5的余数是几?规律:发现20个数一循环、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展目标:
一:周期问题的解决方法
(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个
②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。
例1:
(1)1,2,1,2,1,2,…那么第18个数是多少?
这个数列的周期是2,1829
÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
这个数列的周期是3,16351
÷=⋅⋅⋅,所以第16个数是1.二:斐波那契数列
斐波那契是
的有关兔子的问题:
假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对
斐波那契数列(兔子数列)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
你看出是什么规律:。
【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】
【巩固】
(1)2,2,4,6,10,16,(),()
(2)34,21,13,8,5,(),2,()
例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?
【解析】120÷3=40 2004÷3=668
【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数?
例2:(10秒钟算出结果!)
(1)1+1+2+3+5+8+13+21+34+55=
(2)1+2+3+5+8+13+21+34+55+89=
数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍!
巩固:34+55+89+144+233+377+610+987+1597+2584==
例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
(1)这列数中第2013个数的个位数字是几?
分析:相加,只管个位,发现60个数一循环
个位数
F1 - F30:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6
1 7 8 5 3 8 1 9 0
F31-F60:9 9 8 7 5 2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 4
9 3 2 5 7 2 9 1 0
F61-F81:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6 2013 = 60*33 + 33,第33个个位为8
巩固:这列数中第2003个数的个位数字是几?
(2)这列数中第2003个数除以5的余数是几?
规律:发现20个数一循环、。