抽屉原理练习(教师用)
抽屉原理练习题
抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。
以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。
5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。
6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。
三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。
请证明至少有一个兴趣小组有6名或更多的学生参加。
解答:设有7个兴趣小组,每个小组最多可以有5名学生。
如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。
但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。
8. 一个图书馆有10个书架,每个书架最多可以放100本书。
如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。
但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。
9. 一个学校有365名学生,他们的生日分布在一年中的不同天。
抽屉原理练习题(精选3篇)
抽屉原理练习题〔精选3篇〕篇1:抽屉原理练习题抽屉原理练习题抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,假设蒙眼去摸,为保证取出的球中有两个球的颜色一样,那么最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有一样的点数?3.有11名学生到教师家借书,教师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型一样4.有50名运发动进展某个工程的单循环赛,假如没有平局,也没有全胜。
试证明:一定有两个运发动积分一样。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,将参赛人任意分成四组,那么必有一组的女生多于2人,又知参赛者中任何10人中必有男生,那么参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只〔不分左右手〕,至少要拿出多少只〔拿的时候不许看颜色〕,才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了假设干堆,后来发现无论怎么分,总能从这假设干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
假如乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,总分值为100分,且得分都为整数,总得分为01分,那么至少有多少人得分一样?12.名营员去游览长城,颐和园,天坛。
规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全一样?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,那么至少有多少人植树的株数一样?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色一样,那么最少要取出4个球。
抽屉原理十个例题
抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。
首先,计算取出3个球都是不同色球的概率。
当第一个球被取出后,有5个红球和7个蓝球剩下。
那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。
同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。
因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。
所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。
2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。
从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。
在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。
同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。
然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。
所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。
3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。
如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。
当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。
所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。
所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。
4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。
如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。
《抽屉原理练习题》#(精选.)
抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。
共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。
如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。
4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。
证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。
解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。
以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。
抽屉原理(教师版)
抽屉原理一内容概述理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析.典型问题兴趣篇1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点.答案:一定有两个班去同一个地点。
解析:4÷3=1 (1)4个苹果放入3个抽屉里,至少有两个苹果在同一个抽屉里。
2. 小悦,冬冬和阿奇到费步步家玩,费叔叔拿出许多巧克力来招待他们,他们一数,共有19块巧克力,如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块.答案:19÷3=6 (1)解析:19个苹果放入三个抽屉里,至少7个苹果放入同一个抽屉里,所以每人至少拿7个苹果。
3. 任意40个人中,至少有几个人属于同一生肖?答案:40÷12=3 (4)解析:40个苹果放入12个抽屉里,至少有4个苹果放入同一个抽屉里。
4. 有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多,一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同?答案:5个解析:最不利原则,至少拿5个才能保证其中一定有2颗颜色相同。
5. 某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同?答案:17个解析:最不利原则,13-6+1=8(人)8×2+1=17(个)6. 有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔?答案:13支解析:最不利原则,3×4+1=13(支)7. 口袋里装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个,小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?答案:13个解析:最不利原则,3×4+1=13(个)8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,那么:(1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?(2)至少从中摸出多少张牌,才能保证至少有3张牌是红桃?(3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的?(1)答案:42张。
抽屉原理练习(教师用)
抽屉原则1.画图说明,把4支铅笔放入3个笔盒内,共有__3____种不同的放法,各种放法中总有___1___个笔盒内铅笔的支数不少于2支。
那么把n+1件物品放入n个抽屉内,总有一个抽屉内的物品不少于__2____件。
2.把 5个棋子放入下图中四个每条边长为“1”的小三角形内,那么一定有一个小三角形内至少有____2__个棋子,两棋子的距离一定小于__13.在一条1米长的线段上的任意六个点,试证明这六个点中至少有两个点的距离不大于20厘米。
将一米长的线段等分成五段,每段20厘米长,作五个抽屉,按照抽屉原理,一定有一段里有两个点,它们间距离小于20厘米。
4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗,试证明不管怎样插至少有两面彩旗之间的距离不大于10米。
因为跑道是环形的你插上彩旗之后正好把跑道分成40等份400/40=10米所以不管怎么插至少有两面彩旗之间的距离不大于10米。
注意是不大于10米5.跳绳练习中,一分钟至少跳多少次才能保证某一秒钟内至少跳了两次?616.一只鱼缸有很多条鱼共有五个品种,问至少捞出多少条鱼,才能保证有五条相同品种的鱼?21 因为考虑到最坏的情况即捞了20条出现每种4条,捞了第21条一定出现一种鱼有5条。
7.有甲、乙两种不同的书各若干本,每个同学至少借一本,至多借二本,(同样的书最多借一本)只要有几个同学借书,就可保证有两人借的书完全相同。
4因为借一本有两种情况,借二本只有一种情况,将三种情况作为三个抽屉8.篮子里有苹果、梨、桃子和桔子,如果每个小朋友都从中任意拿两个水果,问至少有多少个小朋友才能保证至少有两个小朋友拿的水果完全一样?11四种水果我们用甲、乙、丙、丁表示,拿二个水果情况有如下10种情况:(甲、甲),(乙,乙),(丙,丙),(丁,丁),(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)9.六个小朋友每人至少有一本书,一共有20本书,试证明至少有两个小朋友有相同数量的书。
抽屉原理练习题
抽屉原理练习题抽屉原理,又称鸽巢原理,是离散数学中的一个重要概念。
它指的是如果有n个物品要放到m个抽屉里,当n>m时,至少有一个抽屉里会放多于一个物品。
这个原理在实际生活中也有很多应用,比如密码学、计算机算法等领域都能看到它的身影。
在本文中,我们将通过一些练习题来加深对抽屉原理的理解。
1. 有7个苹果要放到3个篮子里,问至少有一个篮子里有几个苹果?解,根据抽屉原理,当7个苹果要放到3个篮子里时,至少有一个篮子里会有$\lceil \frac{7}{3} \rceil = 3$个苹果。
2. 有11个学生,每人至少选一门课,共有8门课可选,问是否一定有某门课至少有3个学生选修?解,根据抽屉原理,11个学生至少选一门课,共有8门课可选,如果每门课最多只有2个学生选修,那么总共只有$2 \times 8 =16$个名额,不足以让11个学生都选课。
因此一定有某门课至少有3个学生选修。
3. 一家餐厅每天供应5种不同口味的冰淇淋,某天共卖出了27份冰淇淋,问是否一定有某种口味的冰淇淋卖出了至少6份?解,根据抽屉原理,27份冰淇淋要分配到5种口味里,如果每种口味最多卖出5份,那么总共只有$5 \times 5 = 25$份,不足以满足27份的需求。
因此一定有某种口味的冰淇淋卖出了至少6份。
4. 一张彩票上有1-100的100个号码,问购买多少张彩票能够保证至少有一张彩票中奖号码相同?解,根据抽屉原理,当购买的彩票张数为101张时,每张彩票中奖号码都不同,那么购买100张彩票时,至少有一张彩票中奖号码相同。
通过以上练习题的分析,我们对抽屉原理有了更深入的理解。
抽屉原理在解决实际问题时能够提供一种思维方式,帮助我们简化问题、找到解决方案。
在日常生活和学习中,我们可以多多运用抽屉原理,提高问题解决能力。
抽屉原理的练习
抽屉原理的练习1、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取同颜色的袜子两双,问至少取多少只才能达到要求?思路导航:把三种不同的颜色看作3个抽屉,把所有的袜子数量看作苹果。
要使其中一个抽屉里至少有4只同样颜色的袜子,那么先保证从每个抽屉各取3只同一颜色的袜子,在任意的添1只,即3×3+1=10变式题2、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取黑色的袜子1双,问至少取多少只才能达到要求?3、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取颜色的不同袜子2双,问至少取多少只才能达到要求?二、1.任意5个不相同的自然数,其中最少有两个数的差是4的倍数,这是为什么?思路导航:一个自然数除以4有两种情况:一是整除为0,二是有余数1、2、3.如果有2个自然数除以4的余数相同,那么这两个自然数的差就是4的倍数。
把0、1、2、3这四种情况看作4个抽屉,把5个不同自然数看作5个苹果,必定有一个抽屉里至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。
所以任意5个不相同的自然数,其中至少有两个数的差是4的倍数。
2、一副扑克(去掉大小王),要取出几张才能保证四种花色的扑克都有?要取出几张才能保证拿出的牌有两张大小相等?思路导航:(1)四种花色是四个抽屉,每个抽屉里有13张牌,四种花色都有要考虑其他三种都拿完才会有一张第四种花色的牌出现,也就是3×13+1=40(张)(2)一副牌中每个花色有13张,先拿出同一个花色的13张牌,那么再拿出任意一张就可以与其中的一张大小相同。
3、一只布袋中有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要拿出多少只手套才能保证有3付同色的?思路导航:把四种不同颜色看作4个抽屉,手套看作苹果。
要保证一副手套是同色的,就是有一个抽屉里至少有2只手套,根据抽屉原理最少要拿出5只手套。
这时拿出一副同色的后,4个抽屉中还剩下3只手套,再根据抽屉原理,只要再拿出2只手套,又能保证有一副手套是同色的,以此类推,要保证有3付同色的,一共拿出5+2+2=9(只)注意(这里的3付手套是指3种不同颜色的各两只,黑色两只一付,红色两只一付,黄色两只一付,蓝色两只一付,从中任选3付)4、幼儿园有120个小朋友,各种玩具364件。
抽屉原理练习题
抽屉原理练习题抽屉原理练习题抽屉原理,又称鸽巢原理,是数学中的一个重要原理。
它的内容是:如果有n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。
这个原理看似简单,但却有着广泛的应用。
在日常生活中,我们可以通过一些练习题来巩固和应用这个原理。
练习题一:班级生日问题假设一个班级有30个学生,每个学生的生日都是不同的。
那么至少有多少个学生的生日在同一个月份?解析:这道题可以通过抽屉原理来解答。
我们可以将每个月份看作一个抽屉,而学生的生日则是物体。
由于有12个月份和30个学生,根据抽屉原理,至少有一个月份的抽屉中会放有两个或更多的学生的生日。
因此,至少有两个学生的生日在同一个月份。
练习题二:扑克牌问题一副扑克牌共有52张,其中有4种花色(红桃、黑桃、方块、梅花),每种花色有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。
如果从这副扑克牌中随机选择5张牌,那么至少有两张牌的花色相同吗?解析:我们可以将每种花色看作一个抽屉,而每张牌则是物体。
根据抽屉原理,至少有一个花色的抽屉中会放有两张或更多的牌。
因此,在随机选择5张牌的情况下,至少有两张牌的花色是相同的。
练习题三:桌上的苹果在一张桌子上放置了10个苹果,其中有5个红苹果和5个绿苹果。
如果我们盲目地选择了6个苹果,那么至少有两个苹果的颜色是相同的吗?解析:我们可以将红苹果和绿苹果分别看作两个抽屉,而每个苹果则是物体。
根据抽屉原理,至少有一个抽屉中会放有两个或更多的苹果。
因此,在选择了6个苹果的情况下,至少有两个苹果的颜色是相同的。
练习题四:数字的平方考虑从1到11的11个整数,我们可以计算它们的平方。
如果我们只能选择其中10个整数的平方,那么至少有两个平方是相同的吗?解析:我们可以将平方数看作抽屉,而整数则是物体。
根据抽屉原理,至少有一个抽屉中会放有两个或更多的整数的平方。
因此,在只选择了10个整数的平方的情况下,至少有两个平方是相同的。
抽屉原理练习题
抽屉原理练习题一、选择题1. 一个班级有50名学生,如果每个学生至少参加一个兴趣小组,那么至少有多少名学生参加同一个兴趣小组?A. 1B. 2C. 3D. 132. 有7个苹果放在6个抽屉里,每个抽屉至少放一个苹果,那么至少有一个抽屉里有多少个苹果?A. 1B. 2C. 3D. 43. 一个学校有100名学生,如果每个学生至少参加一个课外活动,那么至少有多少名学生参加同一个课外活动?A. 1B. 2C. 101D. 无法确定二、填空题4. 如果有10个物品放入9个抽屉中,根据抽屉原理,至少有一个抽屉里至少有______个物品。
5. 假设有33本书,需要放入5个抽屉中,每个抽屉至少放一本书,那么至少有一个抽屉里至少有______本书。
三、简答题6. 解释什么是抽屉原理,并给出一个生活中的例子。
7. 有100个数字,它们都是由0到9的数字组成的三位数。
证明至少有两个数字的数字之和是相同的。
四、计算题8. 一个班级有35名学生,如果每个学生至少参加两个兴趣小组,那么至少有多少名学生参加同一个兴趣小组?9. 有200个苹果需要放入20个篮子中,每个篮子至少放一个苹果,求至少有一个篮子里至少有多少个苹果。
五、证明题10. 证明:如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里至少有两个物品。
11. 证明:在一个有m个抽屉的抽屉柜中,如果有超过m^2个物品需要放入,那么至少有一个抽屉里至少有三个物品。
六、应用题12. 一个图书馆有5种不同颜色的书签,如果图书馆有41个书签,那么至少有多少个书签是同一种颜色的?13. 一个班级有48名学生,每位学生至少获得一个奖项。
如果奖项分为4类,那么至少有多少名学生获得同一类奖项?七、探索题14. 探讨抽屉原理在解决实际问题中的应用,例如在安排座位、分配资源等方面。
15. 思考抽屉原理在数学问题解决中的局限性,并给出一个例子说明。
八、综合题16. 一个班级有56名学生,每位学生至少参加一个兴趣小组。
抽屉原理十个例题
抽屉原理十个例题
1. 一张桌子上有8个抽屉,每个抽屉里都放着相同的颜色的袜子。
根据抽屉原理,至少有两个抽屉里放着相同的数量的袜子。
2. 一本书架上有12本书,每本书的厚度不同。
根据抽屉原理,至少存在两本书的厚度相同。
3. 一辆公交车上共有30个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同数量的人。
4. 有10个人参加一个比赛,每个人的年龄都不相同。
根据抽
屉原理,至少有两个人的年龄相差不超过3岁。
5. 一家饭店里供应了12种不同的菜肴。
根据抽屉原理,至少
有两种菜肴的售价相同。
6. 某班级有32名学生,每个学生都有自己的出生月份。
根据
抽屉原理,至少有两名学生的出生月份相同。
7. 一个购物网站上有100种不同的商品,每种商品的价格都不同。
根据抽屉原理,至少有两种商品的价格相同。
8. 一辆公交车上共有50个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同的性别。
9. 在一个花园里有20棵不同种类的花树。
根据抽屉原理,至
少有两棵花树的花朵颜色相同。
10. 在一张桌子上有6只袜子,都是黑色的。
根据抽屉原理,至少有两只袜子的长度相同。
5-抽屉原理(教师版)
| 四年级·提高班 教师版 | 第5讲简单抽屉原理| 四年级·提高班 教师版 | 第5讲抽屉原理是小学数学竞赛的一个热门课题,接触过数学竞赛的同学几乎人人都知道它,然而怎样灵活准确地运用这一原理解决一些较为复杂的问题,尤其是怎样将一个具体的问题转化成抽屉原理所能解决的典型模式上来却是需要大家认真研究的问题。
抽屉原理一般有两种基本形式,通常用原理Ⅰ和原理Ⅱ原理Ⅰ 将n+1个苹果放入n 个抽屉中,则必有一个抽屉中至少有2个苹果。
原理Ⅱ 将nm+1个苹果放入n 个抽屉中,则必有一个抽屉中至少有m+1个苹果 其中原理Ⅰ可以看成原理Ⅱ的简化形式,同时这个原理在具体的运用时也不必为其中的数据过于强调,例如两个原理中的数字“n+1”,“mn+1”,在运用时可以放宽多于n 个或多于mn 个。
比如原理Ⅰ也可叙述成“将多于n 个苹果放入n 个抽屉,则必有一个抽屉中的苹果多于1个。
”例1:四(1)班学雷锋小组有13人。
教数学的张老师说:“你们这个小组至少有2个人在同一月过生日”。
你知道张老师为什么这样说吗?练习11.将一盒围棋的棋子倒入一个不透明的布袋中,任意摸出三枚,其中必有两个棋子是同种颜色的。
专题解析典型例题解析| 四年级·提高班 教师版 | 第5讲2.某校六年级有400名学生都是1992年出生的,证明:一定能够找到两个学生,他们是同年同月同日出生的.3. 学校五(1)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有多少名学生是同年同月出生的?4.有十只鸽笼,为保证每只鸽笼中最多住一只鸽子(可以不住鸽子),那么鸽子总数最多能有多少只?请你用抽屉原理说明你的结论。
例2:四(2)班有43名同学,班上的“图书馆”至少要准备多少本课外书,才能保证一定有同学能借到两本或两本以上的书?练习21.学校体育班共有125名同学,现组织购买水果,问至少要准备购买多少个水果,才能保证一定有同学可以吃到至少三个水果?2.小军口袋里有5个红色弹子,3个黄色弹子,7个花色弹子。
抽屉原理习题(含答案)
抽屉原理习题讲解1.一个篮球运动员在15分钟内将球投进篮圈20次,证明总有某一分钟他至少投进两次.2.有黑、白、黄筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出多少只筷子才能做到?3.证明:在1,2,3,…,10这十个数中任取六个数,那么这六个数中总可以找到两个数,其中一个是另一个的倍数.4.证明:任意502个整数中,必有两个整数的和或差是998的倍数.5.任意写一个由数字1,2,3组成的30位数,从这30位数任意截取相邻三位,可得一个三位数,证明:在从各个不同位置上截得的三位数中至少有两个相等.6.证明:把任意10个自然数用适当的运算符号连接起来,运算的结果总能被1890整除. 7.七条直线两两相交,所得的角中至少有一个角小于26°.8.用2种颜色涂3行9列共27个小方格,证明:不论如何涂色,其中必至少有两列,它们的涂色方式相同.9.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现.10.求证存在形如11…11的一个数,此数是1987的倍数.抽屉原理习题答案(苹果数总是比抽屉数少)1、平均分假设,每分钟投进一个,那么还有5个球没时间投,无论在哪个一分钟内投都能够使得这一分钟投进至少两球。
2、11只,最倒霉原则,先取出8只黄筷子,然后一黑一白,在任意取一只必能满足结果!3、首先找到5个数,任意数都不是其他数的倍数!可能是4、5、6、7、9或者5、6、7、8、9,这能是这两种组合,然后任意再挑一个,都会出现倍数关系。
3、另解:把1到10分成5个组{5,10}、{3,9}、{1,2,4,8}、{6}、{7}咱要从5个组里取6个数出来,必须从1个组里取2个数出来,而任意组拿出来的2个数都是倍数关系。
4、998=499*2=500+498,0-499这500个数,不能满足条件,任意拿到一个数加上或者减这500个数中的一个数,必然是998的倍数4、另解:每个整数被998除,余数必是0,1,2,…,997中的一个.把这998个余数制造为(0),(1,997),(2,996),…,(497,501),(498),(499),(500)共501个抽屉,把502个整数按被998除的余数大小分别放入上述抽屉,必有两数进入同一抽屉.若余数相同,那么它们的差是998的倍数,否则和为998的倍数.5、从30位数中截出个3位数来,这个三位数共有多少中情况呢?111,112,113。
抽屉原理练习题
抽屉原理练习题抽屉原理练习题抽屉原理,也被称为鸽巢原理,是数学中一个重要的概念。
它的核心思想是:如果有n+1个物体放进n个抽屉,那么至少有一个抽屉里会放入两个或更多的物体。
这个原理看似简单,却有着广泛的应用。
在本文中,我们将通过一些练习题来深入理解抽屉原理及其应用。
练习题一:生日悖论假设有一个房间里有23个人,问他们中是否有两个人的生日相同的概率是多少?根据抽屉原理,我们可以将365个可能的生日(不考虑闰年)看作是365个抽屉,而23个人则是待放入抽屉的物体。
根据题目条件,我们可以得出结论:至少有一个抽屉里放入了两个或更多的物体,即至少有两个人生日相同。
要计算这个概率,我们可以考虑相反事件,即所有人的生日都不相同。
第一个人的生日可以是任意一天,概率为1。
第二个人的生日不能与第一个人相同,概率为364/365。
依此类推,第23个人的生日不能与前22个人相同,概率为343/365。
因此,所有人的生日都不相同的概率为(364/365) * (363/365) * ... * (343/365) ≈ 0.492703。
所以,至少有两个人生日相同的概率为1 - 0.492703 ≈ 0.507297,约为50.73%。
练习题二:抽屉问题假设有10对袜子,每对袜子的颜色都不同。
现在我们要从这些袜子中随机选取11只袜子,问至少选到一对颜色相同的概率是多少?根据抽屉原理,我们可以将每对袜子看作是一个抽屉,共有10个抽屉。
而我们要选取的11只袜子则是待放入抽屉的物体。
根据题目条件,我们可以得出结论:至少有一个抽屉里放入了两只或更多的袜子,即至少选到一对颜色相同的袜子。
要计算这个概率,我们同样考虑相反事件,即所有袜子的颜色都不相同。
第一只袜子可以是任意一对袜子中的一只,概率为1。
第二只袜子不能与第一只袜子颜色相同,概率为18/19。
依此类推,第11只袜子不能与前10只袜子颜色相同,概率为1/10。
因此,所有袜子的颜色都不相同的概率为(18/19) * (17/18) * ... * (1/10) ≈0.36288。
小学奥数-抽屉原理(教师版)
抽屉原理如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。
这样n个抽屉中所放物品的总数就不会超过n件。
这与有多于n个物品的假设相矛盾。
说明抽屉原理1成立。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。
假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。
这与多于m×n件物品的假设相矛盾。
说明原来的假设不成立。
所以抽屉原理2成立。
运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。
运用原理1还是原理2要看题目的问题和哪一个更直观。
抽屉原理2实际上是抽屉原理1的变形。
【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【解析】平年一年有365天,闰年一年有366天。
把天数看做抽屉,共366个抽屉。
把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。
【例2】★某班学生去买语文书、数学书、外语书。
买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。
抽屉原理十个例题及解答
抽屉原理十个例题及解答1. 鸽巢原理假设有10只鸽子,但只有9个巢。
根据抽屉原理,必然会有至少一个巢里有2只鸽子。
解答:根据鸽巢原理,至少有一个巢里有2只鸽子。
2. 生日相同在一个教室里,有30个学生。
根据抽屉原理,至少有两个学生生日相同。
解答:根据抽屉原理,在30个学生中至少有两个学生生日相同。
3. 手套颜色有9副黑色手套和8副白色手套,手套放在一个抽屉里。
如果你在黑暗中随机拿出两只手套,那么至少有一只手套是黑色的。
解答:根据抽屉原理,至少有一副手套是黑色的。
4. 扑克牌颜色一副扑克牌共有52张,其中有26张红桃牌。
根据抽屉原理,在任意抓取5张扑克牌的情况下,至少有两张牌是红桃牌。
解答:根据抽屉原理,至少有两张牌是红桃牌。
5. 课程选择一个学生需要在10门不同的课程中选择5门,其中至少有两门课程是相同的。
根据抽屉原理,不同的选课组合情况中至少有两个选课组合是相同的。
解答:根据抽屉原理,至少有两门课程是相同的。
6. 彩票中奖彩票有100个号码,其中只有1个号码中奖。
如果你购买10张彩票,那么至少有一张彩票中奖。
解答:根据抽屉原理,至少有一张彩票中奖。
7. 字母排列字母表中有26个字母,如果你随机选择4个字母,那么至少有两个字母是相同的。
解答:根据抽屉原理,至少有两个字母是相同的。
8. 物品盛放一个抽屉只能容纳5件物品。
如果有6件物品要放入抽屉,那么至少有两件物品会放在同一个抽屉里。
解答:根据抽屉原理,至少有两件物品会放在同一个抽屉里。
9. 邮票问题有10种不同面值的邮票,邮票的面值分别为1元、2元、3元…10元。
如果你随机选择6张邮票,那么至少有两张邮票的面值相同。
解答:根据抽屉原理,至少有两张邮票的面值相同。
10. 青蛙跳跃在一个长度为10米的地面上,一只青蛙每次跳1米或2米。
如果青蛙从起点开始跳,那么至少有一个点被跳过两次。
解答:根据抽屉原理,至少有一个点被跳过两次。
以上是抽屉原理的十个例题及解答。
四年级三大原理抽屉原理教师版
抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。
由此得到充分可靠的结论。
抽屉原理又称鸽巢原理或Dirichlet原理如果把1n+个苹果任意放入n个抽屉,那么必定有一个抽屉里至少有两个苹果。
这个现象就是我们所说的抽屉原理。
抽屉原理在国外又称为鸽巢原理。
(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。
它是由德国数学家狄利克雷(G.Lejeune Dirichlet,18051859~)首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。
它是组合数学中一个重要的原理。
抽屉原理1:如果把多于n件物品任意放到n个抽屉中,那么必有1个抽屉至少有2件物品。
抽屉原理2:如果把多于m nm+件物品。
⨯件物品任意放到n个抽屉中,那么必有1个抽屉至少有1抽屉原理3:如果把无穷多件物品任意放到n个抽屉中,那么必有1个抽屉至少有无穷多件物品。
最不利原则【例 1】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?【分析】由最不利原则,先摸出2张王牌、13张红心、13张草花、13张方块,然后无论模出哪一张必是黑桃;所以至少从中摸出2131313142++++=张牌,才能保证在摸出的牌中有黑桃。
【例 2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?【分析】由最不利原则,先摸出2张王牌、13张黑桃、13张草花、13张方块,然后无论模出哪三张必是红桃;所以至少从中摸出2131313344++++=张牌,才能保证至少有3张牌是红桃。
【例 3】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
抽屉原理练习
第4单元:抽屉原理姓名:1、7个人住进5个房间,至少要有两个人住同一间房。
为什么?2、把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?3、希望小学有367人,请问有没有两个学生的生日是同一天?为什么?4、一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?5、一副扑克有4种花色,每种花色13张,从中任意抽牌,最少要抽多少张才能保证有4张牌是同一花色?为什么?6、袋子里有水果糖、奶糖、酥糖个30粒,要想摸出两粒相同的糖,至少要摸出几粒?为什么?7、有20位同学去拾贝壳,一共拾了345个贝壳,肯定有一位同学至少拾了多少贝壳?为什么?8、18个小朋友,老师至少拿多少本练习本分给大家,才能保证至少有一个小朋友分到2本?9、口袋里有三种颜色的卡片各10张,如果从口袋里摸出卡片,至少要摸多少张才能保证三种颜色的卡片都摸到?10、12个小朋友分红花,每个小朋友至少分得5朵花,而且其中有一个小朋友至少分得6朵,这些花至少有多少朵?11、学校开办了绘画、书法、舞蹈和小提琴四种课外学习班,每个学生最多可以参加2种(可以不参加)。
六(1)班有48名同学,问:每个学生共有几种选择?至少有几名同学参加课外学习班的情况完全相同?解决问题:1、甲、乙两车分别从A 、B 两地同时相向而行,两车经过6小时相遇,已知乙车每小时行全程的211,甲车每小时行60千米,A 、B 两地距离多少千米?2、车队向灾区运送一批救灾物资,去时每小时66km ,6.5小时到达灾区。
回来时每小时行78km ,多长时间能回到出发点?(用比例解)3、用一根长96厘米的铁丝做成一个长方体框架,使它的长、宽、高的比是5:4:3,在这个长方体框架外面糊一层纸,至少要多少平方厘米的纸?它的体积是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原则1.画图说明,把4支铅笔放入3个笔盒内,共有__3____种不同的放法,各种放法中总有___1___个笔盒内铅笔的支数不少于2支。
那么把n+1件物品放入n个抽屉内,总有一个抽屉内的物品不少于__2____件。
2.把 5个棋子放入下图中四个每条边长为“1”的小三角形内,那么一定有一个小三角形内至少有____2__个棋子,两棋子的距离一定小于__13.在一条1米长的线段上的任意六个点,试证明这六个点中至少有两个点的距离不大于20厘米。
将一米长的线段等分成五段,每段20厘米长,作五个抽屉,按照抽屉原理,一定有一段里有两个点,它们间距离小于20厘米。
4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗,试证明不管怎样插至少有两面彩旗之间的距离不大于10米。
因为跑道是环形的你插上彩旗之后正好把跑道分成40等份400/40=10米所以不管怎么插至少有两面彩旗之间的距离不大于10米。
注意是不大于10米5.跳绳练习中,一分钟至少跳多少次才能保证某一秒钟内至少跳了两次?616.一只鱼缸有很多条鱼共有五个品种,问至少捞出多少条鱼,才能保证有五条相同品种的鱼?21 因为考虑到最坏的情况即捞了20条出现每种4条,捞了第21条一定出现一种鱼有5条。
7.有甲、乙两种不同的书各若干本,每个同学至少借一本,至多借二本,(同样的书最多借一本)只要有几个同学借书,就可保证有两人借的书完全相同。
4因为借一本有两种情况,借二本只有一种情况,将三种情况作为三个抽屉8.篮子里有苹果、梨、桃子和桔子,如果每个小朋友都从中任意拿两个水果,问至少有多少个小朋友才能保证至少有两个小朋友拿的水果完全一样?11四种水果我们用甲、乙、丙、丁表示,拿二个水果情况有如下10种情况:(甲、甲),(乙,乙),(丙,丙),(丁,丁),(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)9.六个小朋友每人至少有一本书,一共有20本书,试证明至少有两个小朋友有相同数量的书。
2 因为每人不同的话,那就要有1+2+3+4+5+6=21本,现在只有20本,说明某一人缺一本,此人一定出现出2,3,4,5,6里,所以一定有两个小朋友的数量是相等的。
10.用红、黄两种颜色将2×5的矩形的小方格随意涂色,每个小方格涂一种颜色,证明必有两列它们的小方格中涂的颜色完全相同。
因为用两种颜色涂2×1小方格出现如下四种情况(红红),(黄黄),(红黄),(黄红)11.10双不同尺码的鞋子堆在一起,若随意地取出鞋来,并使其至少有两只鞋可以配成一双,试问需取出多少双鞋就能保证成功?1112.某次会议有10位代表参加,每位代表至少认识其余9位中的一位,试说明这10位代表中,至少有2位认识人的个数相同?因为认识人数分:1人,2人,……9人,9种情况,这九种情况作为9个抽屉13.布袋中装有塑料数字1、2、3各若干个,每次任选6个数字相加,至少选多少次才能保证有两个相加的和相等。
14次提示数字1,2,3任选六个组成和是从6,7…18共13种情况14.在一副扑克牌中,最少要拿多少张,才能保证四种花色都有。
15.将7支铅笔放入2个笔盒内,共有__4____种放法,各种放法中总有一个笔盒内铅笔支数不少于__4____支,因为7=__3____×2+1。
一般来说,把k×n+1件物品放入n个抽屉内,一定有一个抽屉内物品不少于___1___+1件。
16.把9个点放入边长为1的2×2的小方格内,那么至少有一个小方格内有___2?个点,并且这一格内的点组成图形的面积一定小于__1?17.夏令营有400个小朋友参加,问在这些小朋友中:(1)至少有多少人在同一天过生日?2(2)至少有多少人单独过生日?解:365-(400-365或366)=330(个)或329(个)(3)至少有多少人不单独过生日?35例题1:试说明400人中至少有两个人的生日相同。
解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同。
例题2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。
解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。
练习题1、试说明:⑴我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
⑵从任意5双手套中任取6只,其中至少有2只恰为一双手套⑶从数1,2,。
,10中任取6个数,其中至少有2个数为奇偶性不同。
”2、在2010年出生的1000个孩子中,请你预测:(1)同在某月某日出生的孩子至少有个?解:1000个孩子的话先平均每天有2人过生日就是365*2=730个人,还有270个人再分布在不同的270天中,那么就有270组3人同生日的,也就是最少会有3个人会同生日。
(2)至少有多少个孩子将来不单独过生日?解:题目问至少有多少个孩子不单独过生日,我们来求最多有多少个孩子可以单独过生日,让365个孩子分别在365天生日。
然后剩下的635人无论在哪天生日总有人与他们同生日,且当这635个人在同一天生日时,可以单独过生日的孩子数最多,为365-1=364个孩子,这时不单独过生日的孩子最少。
所以至少有1000-364=636个3、某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同?6解:订阅的情况有7种:37/5=5。
14、一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.解:应取完成个抽屉内的26张及大小王各一张与另一种花色。
2*13+2+1=295、“六一”儿童节布置会场,学校把鲜花插在9个花瓶里,最少要有多少朵鲜花才能保证至少有一个花瓶里有6朵或6朵以上的鲜花?6、幼儿园大班的老师把61件玩具分给小朋友玩,要使其中至少有一个小朋友分到了3个玩具或3个以上的玩具,那么最多应有几个小朋友?7、口袋中有三种颜色的筷子各10根,问:⑴至少取多少根才能保证三种颜色都取到?21⑵至少取多少根才能保证有2双颜色不同的筷子?13⑶至少取多少根才能保证有2双颜色相同的筷子?108、将400张卡片分给若干名同学,每人都能分到,但都不超过11张,至少有多少名同学得到的卡片相同。
9、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
10.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
11、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。
所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。
12、篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?分析与解:首先应弄清不同的水果搭配有多少种。
两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。
所以不同的水果搭配共有4+6=10(种)。
将这10种搭配作为10个“抽屉”。
81÷10=8……1(个)。
根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。
13.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。
以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。
14.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。
解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。
所以女生有9人,男生有55-9=46(人)15、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。
问最少抽几张牌,才能保证有4张牌是同一种花色的?解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色。
16. 某旅游车上有47名乘客,每位乘客都只带有一种水果。
如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有___46___人带苹果。
解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。
17. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。
对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5堆。
18. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。