《物理化学(第五版,傅献彩)》课后习题及答案

合集下载

(完整版)傅献彩《物理化学》第五版课件及习题答案习题课2

(完整版)傅献彩《物理化学》第五版课件及习题答案习题课2

解析 取1mol锡作为体系,设计如下过程:
Sn(白)283K 283K, p
G, H , S
1G
1H
1S
Sn(白)298K
298K,p
G, H, S
Sn(灰)283K
2G 2H 2S
Sn(灰)298K
298K,p下: Hm 2197J mol1
Sm (44.76 52.30)J K 1 mol 1
Gm H T S (2197 298 7.54)J mol1
49.9J mol1
Gm >0,由Gibbs自由能减少原理可知,298K、 p 下白锡稳定。那么在283K、p 下哪一种晶型 稳定呢?这属于由一个温度下的 求另一个 温度下的 Gm。其计算方法一般有两种:
解法1
Hm 1Hm 2Hm 2Hm
1. G 计算小结
(从G H TS及dG SdT Vdp
出发,可以导出下列公式) (1) 等温封闭体系,无其他功的过程
• 理想气体 G nRT ln( p2 / p1), G H T S
• 实际体系(g,l, s) G V p2 dp p1
(2) 变压变温过程
G H (T2S2 T1S1)
p T
v
S V
p
p T
S
T
Cp V T
p
,
S T
p
Cp T
以上各偏微商中有关 T、p、V 的只要知道
物态方程其结果就很容易知道。另外,实验上
很容易测的量是 Cp , , , 因此有时又把这些
关系式写出与它们有关的形式,如
U V
T
T
p,
H
p
T
TV
V
等。

《物理化学》第五版-(傅献彩主编)复习题答案(全)

《物理化学》第五版-(傅献彩主编)复习题答案(全)

第一章气体1.两种不同的理想气体,如果它们的平均平动能相同,密度也相同,则它们的压力是否相同?为什么?答:由于两种气体均为理想气体,根据理想气体的状态方程式pV=nRT式中n是物质的量,p是压力,V是气体的体积,T是热力学温度,R是摩尔气体常数.又因为"=崙=聳式中川为气体的质量,M为气体分子的摩尔质量,p为气体的密岌pV^RT两边同除以V,则得p=常我们已知气体分子的平均动能是温度的函数,即Et=*hBT所以气体分子的平均平动能仅与温度有关.由题目中已知两种不同的理想气体,平均平动平动能相同,因此它们的温度相同,又因为它们的密度相同.则通过上式力=醫可知压力力仅与M有关.因此得出结论,两种不同的理想气体在它们具有相同的平均平动能,相同密度的条件下,它们的压力不同.压力与M成反比,M越大则p越小.2.在两个体积相等、密封、绝热的容器中,装有压力相等的某理想气体,试问这两个容器中温度是否相等?答:根据理想气体的状态方程式pV^nRT假设在第一个容器中某种理想气体符合向则在第二个容器中存在p2V2^mRT2. 又因为两容器的体积相等,装有的理想气体的压力也相等所以pif Vi=V2则得niRTi =厄夫丁2,两边同除以R则得n\ Ti —«2 T?若两容器中装有相同物质的量的该理想气体,则两个容器中温度相等;否则,两容器中温度不相等.3.Dalton分压定律能否用于实际气体?为什么?答:根据气体分子动理论所导出的基本方程式pV^mNu2式中P是N个分子与器壁碰撞后所产生的总效应,它具有统计平均的意义.平均压力是一个定值,是一个宏观可测的物理量.对于一定量的气体,当温度和体积一定时,它具有稳定的数值.因为通过气体分子动理论所导岀的Dalton分压定律学=直或%=心是摩尔分数)适用于实际气体,经得起实验的考验.4.在273 K时,有三种气体,H Z,O2和CQ,试判别哪种气体的根均方速率最大?哪种气体的最概然速率最小?答:根据:根均方程率"=弟呼或最概然速率Vm或可推知根均方速率、最概然速率与质量的平方根成反比因此,在相同温度273 K的条件下,M HJ= 2X10_3kg • mol-1 =32X10_3kg • mol-1 =44X10~3kg • mol-1H2的根均方速率最大;CO Z的最概然速率最小•5.最概然速率、根均方速度和数学平均速率,三者的大小关系如何?各有什么用处?答:在Maxwell速率分布曲线上有一最高点,该点表示具有这种速率的分子所占的分数最大,这个最高点所对应的速率称之为最概然速率(編或缶分子的数学平均速率(q)为所有分子速率的数学平均值根均方速率(Q是一个统计平均值,它与各个分子的速率有关,但又不等于任务单个分子的速率.三种速率之比在三者中,最概然速率最小,根均方速率最大,数学平均速率居中.6. 气体在重力场中分布的情况如何?用什么公式可以计算地球上某一高度的压力?这样的压力差能 否用来发电?答:在重力场中,气体分子受到两种互相相反的作用.无规则热运动将使气体分子均匀分布于它们所能达到的空间,而重力的作用则要使重的气体分子向下 聚集.由于这两种相反的作用,达到平衡时,气体分子在空间中并排均匀的分布,密度随高度的增加而减少•假定在。

关于物理化学课后答案傅献彩_第五版)

关于物理化学课后答案傅献彩_第五版)

第二章热力学第一定律L如果一个系统从环境吸收了40 J的热,而系统的热力学能却增加了200 J,问系统从环境得到了多少功?如杲该系统在膨胀过程对环境作了10 kJ的功,同时收了28 kJ的热,求系统的热力学能变化值.解:根据山=Q+W热力学第一定律,可知W=^J-Q (系统从环境吸热・Q>0)= (200-40)J=160JW=Q+W (系统对环境做功W<0)= (28-10)kJ-I8kJ.2.有10 mol的气体(设为理想气体八压力为1000 kP触温度为300 K*分别求岀等温时下列过程的功:⑴在空气压力为100 kPa时,体积胀大1血山⑵在空气压力为100 kP白时矽胀到气体压力也是100 kl靳(3)等温可逆膨胀至气体的压力为100 kPa.解:(1)外压始终维持恒定,系统对环境做功w=-p r^y^-100X103PaXlX10'3m3= -100j.=-A(V2-V I)=-Wmol X & 314-J •mol'1 *K_I X3OOKX1 OOkPa (一側驚)=一N 25 X12 J.(3)等温可逆膨胀:W=—『pJVJv i = -nRT\n^r"航i伊由心F推得}lOmolX&314]*molT - K-1 X300KXln lOOOkP 日lOOkPa图2—6=一5・ 74X104J.3.1 mol 单原子理想气体始态(1)的温度为273 K,体积为22.4 dm 3,经历如下三步,又叵 到始态,请计算每个状态的压力、Q ,W 和(1) 等容可逆升温由始态(1)到546K 的状态(2);(2) 等温(546K)可逆膨胀由状态(2)到44. 8 dm 3的状态(3);(3) 经等压过程由状态(3)回到始态仃).解:(1)等容可逆升温过程如图2-7. 546k, 1 mol, 44.8 X10-W图2-7W=_ 以△▼=()M/=Q +W=Q.= J ; nCv.ro dT=lmolX-|x& 314 ・ J ・ mol'1 ・ K"1 X(546-273)K=34O4.58J.(2) 等温可逆膨胀过程JJ=0 W= -TI RT In ~ lmolX & 314 J ・ mo 「・ K"1 Xln ||^X546K=-3146. 50JQ=-W=3146. 50J.(3) 等压过程lrQ Ql X'3M Jj jnol ' ' K ' 4-44, 8)X IQ-3m 3=2269. 72J (*R+R)X(273 K-546 K) =jX& 314J ・ mor 1 XK -1 X (-273)KXlmol=-5674. 31J=〃MJ=Q+W=(-5674. 31+2269. 72)J=-3404. 59J.4.在291 K 和100 kPa 下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H 2(g),并放热152 kJ.若以Zn 和盐酸为系统,求该反应所做的功及系统热力学能的变化.解:Zn( s)+2 HC1 一ZnCl 2 + H 2(g)546k,lmol,22.4 [T] nRT vT(V1-V2) T J丁nC hm dT22.4X10F(2)同理根据等温可逆过程中W=-nRT ln^— W41. 85X103J可得丁= ------ 了 = ---------------------- i----- 而T = 1093.05K.nR In 护2molX & 314 J • mol-1• K_1 In p:8.在100 kPa及423 K时,将1 mol NH3(g)等温压缩到体积等于10 dm3,求最少需做多少功?(1)假定是理想气体;⑵假定符合van der Waals 方程式.已知van der Waals 常数a=0. 417 Pa • m4• moL ,6=3. 71 X 10~5m3• molT.解:(1)假定为理想气体,那么气体在等温可逆压缩中做功最小W=-nRTv\= -lmolX& 314 J ・ mol-1・ K_1 X423 KXln 無器畔=4405. 74J可根据理想气体状态方程Vi 刃鴛閔;P;LX423K=35X 10-3m6代入上式方可求解.⑵假定符合van der Waals方程,方程整理后,可得代入数据V2.—3・ 472X ICT?必4-4.17X10~6V w-1.547X 1O-10 =0解三次方程后得V w=35X10-3m3=4385. 21J.9.已知在373 K和100 kPa压力时,1 kg比0⑴的体积为1.043 dm\l kg H2O(g)的体积为1677dm3,H2O⑴的摩尔汽化焙变值△獅弘=40・69 kJ・mor1.当1 mol出0(1)在373 K和外压为100 kPa时完全蒸发成H2O(g),试求:(1)蒸发过程中系统对环境所做的功;•(2)假定液态水的体积可忽略不计,试求蒸发过程中系统对环境所做的功,并计算所得结果的相对误3假定把蒸汽看作理想气体,且略去液态水的体积,求系统所做的功;解:(1)蒸发过程中系统对环境做功W=-pg—匕)=-100X103PaX(1677X 10~3-1.043XIO"3)m3・ kg_1X(l8.0X10_s)kg=-3016. 72J.5解释何故蒸发的焙变大于系统所作的功.6 求(1)中变化的—Um和△vpHm;(2)假设水的体积可忽略•则匕=0W=-AV f = -100X103PaX1677X10-3kg*1• m3 X18X10"3kg=-3018. 60J□鸟驀3跻⑵&100%=0.062%・(3)把水蒸气看作理想气体,则可使用理想气体状态方程pV=nRT且忽略液态水的体积,则匕=0W =—仪匕=—nRT= -lmolX& 314J • moP1• K"1 X373 K=_3101.12J.(4)Q>・fn = Sp H m=40. 69kJ • mor1、U =Q+W=40・ 69kJ ・ moLXlmoIX 1()3+(-3016. 72)J叩m n lmol=37. 67X103J ・ mor1.(5)在瘵发过程中,用于系统对环境做膨胀功的部分很少,吸收的大部分热量用于提高系统的热力学10.1 mol单原子理想气体,从始态:273 K,200 kPa,到终态323 K,100 kPa,通过两个途径:(1)先等压加热至323 K,再等温可逆膨胀至100 kPa;(2)先等温可逆膨胀至100 kPa,再等压加热至323 K.请分别计算两个途径的Q,W,W和AH,试比校两种结果有何不同,说明为什么.解:⑴因为单原子理想气体Cv.m=#R,Cp.m=|~R过程如图2—&图2—8①等压升温= -^(T2-T1) = -lmolX& 314 J • mol"1• K"1 X(323~273)K=-415. 7J②等温可逆△Hi =Q] = $ nC^m dT=lmolXyX& 314 J • moL • L (323—273)K=1039. 257dT=lmolXyX8.314 J ・ mol"1 - K_1 =623. 55J.W2 = ~nRT ln^ = -nRT ln^ = -lmolX& 314 J • mol-1• K-1X323 KXln弯= -1861. 39 J y\ pz100 =0» = 0,Q = —W2 = 1861・39JW=W;+W2 = -2277. 09JQ=Q+Q=290O 64J+山2=623. 55J△H=AHi -F A H2=1039. 25J.= -lmolX& 314 J ・ moL ・X273KXln 需=一1573. 25J^JJ\ =0>AH I =0Q=-W\ =1573. 25J.②等压升温W2 = -p e (V2-V x ) = -nRCT2-T }) = -\molX & 314 J • mol"1 - K'1 (323-273)K=-415. 7J=1 molX jX8.314 J ・ moL ・ K"1 X (323~273)K=1039. 25J山2 = J : nCy,ro dT=l molXyX& 314 J ・ moL ・ ^*=623. 55JW=W|+W2 = -198& 95JQ=Q+Q=2612.5JMJ=MJ 】+M/2=623・ 55J△H=AH 】+A H2 = 1039. 25J.比较两种结果,M 和AH 值相同,而Q 和W 值不同.说明Q 和W 不是状态函数,它们的数值与所经 过的途径和过程有关.而山和AH,是状态函数,无论经过何种途径,只要最终状态相同,W 和的数 值必相等.11.273 K,压力为5X105Pa 时,N2(g )的体积为2. 0 dm 3,在外压为100 kPa 压力下等温膨胀,直到N (g )的压力也等于100 kPa 为止.求过程中的和Q.假定气体是理想气体.解:该过程为恒定外压等温膨胀W=O.AH=0W=-A (V 2-V I )(理想气体状态方程pV=nRT )=-100 X W kPa ( 篇严 A' -2X10~3m 3Q =-W=800J. 12. 0. 02 kg 乙醇在其沸点时蒸发为气体.已知蒸发热为858 kJ • kg 。

物理化学傅献彩下册第五版课后习题答案

物理化学傅献彩下册第五版课后习题答案

物理化学傅献彩下册第五版课后习题答案 18 / 26
物理化学傅献彩下册第五版课后习题答案 19 / 26
物理化学傅献彩下册第五版课后习题答案 20 / 26
物理化学傅献彩下册第五版课后习题答案 21 / 26
Hale Waihona Puke 理化学傅献彩下册第五版课后习题答案 22 / 26
物理化学傅献彩下册第五版课后习题答案 23 / 26
物理化学傅献彩下册第五版课后习题答案 24 / 26
物理化学傅献彩下册第五版课后习题答案 25 / 26
物理化学傅献彩下册第五版课后习题答案 26 / 26
物理化学傅献彩下册第五版课后习题答案 6 / 26
物理化学傅献彩下册第五版课后习题答案 7 / 26
物理化学傅献彩下册第五版课后习题答案 8 / 26
物理化学傅献彩下册第五版课后习题答案 9 / 26
物理化学傅献彩下册第五版课后习题答案 10 / 26
物理化学傅献彩下册第五版课后习题答案 11 / 26
物理化学傅献彩下册第五版课后习题答案
物理化学傅献彩下册第五版课后习题答案
第九章 可逆电池的电动势及其应用
1 / 26
物理化学傅献彩下册第五版课后习题答案 2 / 26
物理化学傅献彩下册第五版课后习题答案 3 / 26
物理化学傅献彩下册第五版课后习题答案 4 / 26
物理化学傅献彩下册第五版课后习题答案 5 / 26
物理化学傅献彩下册第五版课后习题答案 12 / 26
物理化学傅献彩下册第五版课后习题答案 13 / 26
物理化学傅献彩下册第五版课后习题答案 14 / 26
物理化学傅献彩下册第五版课后习题答案 15 / 26
物理化学傅献彩下册第五版课后习题答案 16 / 26

《物理化学(第五版,傅献彩)》课后习题及答案

《物理化学(第五版,傅献彩)》课后习题及答案

压蒸发热为 40.63kJ·mol-1。当 1mol 液态水,在 373K 和外压为 p时完全蒸发成水蒸气时,
试求:
(1)蒸发过程中体系对环境所作的功。
(2)假定液态水的体积略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。
(3)假定把蒸气看作理想气体,且略去液态水的体积,求体系所作的功。
(4)求(1)中变化的△vapHm 和△vapUm。 (5)解释何故蒸发热大于体系所作的功。
T V
0
T
16.证明:
U V
p
C p
T V
p
p
证:
U V
p
H V
P
p
=
H T
T p V
p
p
=
CP
T V
p
p
证明: CP
CV
p T
V
Hp
T
V
证: CP
CV
HT
U = H p T V T
P
HT
V T
dT P
Hp
T dP
H T
V
H T
解:
Zn (s)+2 H+= Zn2++ H2(g)
VH2
RT p
8.314 291 m3 101325
0.024m 3
W pV pVg nRT 8.314 291J 2419.4J
△rUm=(Q+W)/ =(-152-2.42)kJ·mol-1
3 . 在 373.2K 和 p压力下,使 1molH2O(l)汽化。已知水在气化时吸热 40.69kJ·mol-1。
P
Hp
T Tp
V
代入上式

《物理化学》第五版,(傅献彩主编)复习题答案(全)

《物理化学》第五版,(傅献彩主编)复习题答案(全)

第一章气体1. 两种不同的理想气体t 如果它们的平均平动能相同,密度也相同,则它们的压力是否相同?为什么?S :由于两种气体均为理想气体.根据理想气体的状态方程式PV^nRT式中材是物质的蚩"是压力,U 是气体的体积,丁是热力学温度.R 是摩尔气体常数.又因为材=舊=豁式中也为气体的质儀为气体分子的摩尔质量屮为气体的密声 PV=為R 丁两边同除以V*则得P=疇我们已知气休分子的平均动能是温度的函数,即丁所以气休分子的平均平动能仪与温度有 关.由题目中已知两种不同的理想气体•平均平动平动能相同,因此它们的温度相同*又因为它们的密度相 同*则通过上式P=疇可知压力P 仪与M 有关.因此得出结论,两种不同的理想气体在它们具有相同的平均平动能,相同密度的条件下.它们的压力不 同.压力与M 成反比,M 越大则P 越小.乂在两个体积相等、密封、绝热的容器中+装有压力相等的某理想气体.试问这两个容器中温度是否相等?答:根据理想气体的状态方程式pV=n RT假设在第一个容器中某种理想气体符合AV 1 =«L JJT 1则在第二个容器中存在p 2V 2^n z R‰又因为两容器的体积相等,装有的理想气体的压力也相尊所以P 严P 2 ¼=V≡则得n i RT 1 ^n 2RT i ,两边同除以R 则得 m T 1 T 2若两容器中装有相同物质的慑的该理想气体,则两个容器中温度相等;否则,两容器中温度不相等.3. DakOn 分压定律能否用于实际气体?为什么?答:根据气体分子动理论所导出的基本方程式PV=^mNU i式中0是N 个分子与器壁碰撞后所产生的总效应,它具有统计平均的意义平均压力是一个定值,是 一个宏观可测的物理量•对于一定量的吒体,当温度和体积一定时,它具有稳定的数值+因为通过气体分子动理论所导岀的D a ltOn 分压定律孕是或专=述4是摩尔分数)适用于实际气体,经得起实验的考验+4. 在273 K 时,有三种气体,HχQ 和CQ,试判别哪种气休的根均方速率最大?哪种气体的最概然速 率最小?最概然速率 班或咖=勺瞬可推知棍均方速率、最概然速率与质議的平方根成反比因此,在相同温度273 K 的条件M H 2=2X10^3kg ∙ moΓ1t M⅛ s =32×10^3kg ∙ mol~1t ‰, =44XlO^kg ∙ mol~,HZ 的根均方速率第大;GE 的最概然速率蜃小.5. 最概撚速率、根均方連度和数学平均速率•三者的大小关系如何?各有什么用⅞t?答:在M aX W 訓速率分布曲线上有一最高点*该点表示具有这种速率的分子所占的分数葩大,这个最高 点所对应的速率称之为最概然速率或%=JW答:根据’根均方程率分子的数学平均速率(S)为所有分子速率的数学平均值∕‰T根均方速率(Q是一个统计平均值•它与各个分子的速率有关•但又不等于任务单个分子的速率・三种速率之比在三者中•最概然速率最小,根均方速率最大,数学平均速率居中.6. 气体在電力场中分布的情况如何?用什么公式可以计算地球上某一高度的压力?这样的压力差能否用来发电?答:在重力场中,气体分子受到两种互相相反的作用.无规则热运动将使气体分子均匀分布于它们所能达到的空间,而重力的作用则要使重的气体分子向下聚集.由于这两种相反的作用,达到平衡时•气体分子在空间中并排均匀的分布,密度随高度的增加而减少・假定在O〜人的高度范围内温度不变,则P=PO exp(—箸)由于在上述公式的积分过程中,均将温度看作常数,所以只在高度相差不太大的范围内,可以计算地球上某一高度的压力.虽然存在这样的压力差,但是由于存在重力场的原因,在实际生活中我们不能用这样的压力差来进行发电.7. 在一个密闭容器内有一定凰的气体,若升高温度,气体分子的动能和碰撞次数增加,那分子的平均自由程将如何改变?答:在一密闭的容器内,若温度升高,碰據次数增加,平均速度匕增加根据,平均自由程(Z)7=予由于移动着的分子在单位时间内与其他分子相碰的次数<可以用含"的式子来表示,例如书中以分子平均以90°的角度互相碰撞为例,推导岀Z =》=需我们可以间接证明分子的平均自由程与温度无关.&什么是分子碰掠的有效截面积?如何计算分子的互碰频率?答:设分子的有效半径为r,有效直径为d.运动着的分子,其运动的方向与纸面垂直,以有效直径d(d =2刀为半径作虚线圆,这个面积称为分子碰撞的有效截面积Grd2).单位时间、单位体积中分子平均相撞的总次数Z应为Z=甌4^rI AnB式中,dAβ代表A,B分子的有效半径之和,“代表折合质量9.什么是气体的隙流?研究气体隙流有何用处?答:气体分子通过小孔向外流出称为隙流.Graharn的隙流定律是指隙流速度与其摩尔质憊的平方根成反比,若两种气体在相同的情况下进行比隙流定律可以用来求气体的摩尔质绘,即√ = n A用隙流作用也可以分离摩尔质量不同的气体混合物,这在同位素分离中得到了应用.10.Van der WaalS对实际气体作了哪两项校正?如果把实际气体看作刚球,则其状态方程的形式应该如何?SIV a n der W a aI S对实际气体的体枳和压力两项上提出了具有物理意义的修正因子α和趴这两个因子揭示了真实气悴与理想咒体有差别的根本原因•Van der WaaIS 方程式,即(P十豈)(V m—6) =J?T11.在同温、同压下,某实际气体的摩尔体积大于理想气体的摩尔体积,则该气体的压缩因子Z是大于1还是小于1?答:在压力轻高或温度较祗时,实际气休与理想气体的偏差较大.我们以书中提及的压蝇因子(Z)衡址偏差的大小忆=晋=需在同温•同压下,某实际气体的摩尔体积大于理想气休的摩尔体积.则该气体的压缩因子z>ι^vς> Rh实际气体的可压缩性比理想气体小.同理我们可以推岀在相同情况下,若实际气体的摩尔体积小于理想气体的摩尔怵积•则该气悴的压竭因子Z<∖,pV rn<RT.实际气体的可压缩性比理想气体大.12.压缩因子图的基本原理建立在什么原理的基础上?如果有两种性质不同的实际气体*其压力、摩尔体积和温度是否可能都相同?其压缩因子是否相同?为什么?答:凡是Van der W^IS气体都可以用统一的对比方程式表示D = Sr没有岀现气体的持性常数α •仏所以它是一个具有普遍性的方程式.但直接使用对比方程式似嫌太繁.特别是对高压气体的有关计算,常使用压缩因子图.其状态方程式仍保留理想气体方程式的形式"V* ZRT(Z=嘗).我们将范氏方程护十孟)仏一刃=RT展开后得必_瓷(卄竽)+讯計乎=0也可写成严ξ¾-荒假设两种性质不同的实际气体具有相同的V%和厂但是由于性质不同•它们分别的值不同.因而它们的P 值不同•所以说两种性质不同的实际气体*,Vπι和T值不可能同时相同.因为L护尸芒?尸£代入小修后得K许*孚又根据书中提及:諾=号已证明Van der W^I S气体的军背接近一个常数”所以两种性质不同的实际气体若具有相同的对比状态.即值相同’则它们的压缩因于相同;否则.压缩因子相同.第二章热力学第…定律1 •判断下列说法是否正确.G)状态给定后,状态函数就有一定的值,反之亦然.(2)状态函数改变后,状态一定改变.(3)状态改变后,状态函数一定都改变.(4)因为W=QMH=Q,,所以QSQP是特定条件下的状态函数.(5)恒温过程一定是可逆过程.(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△ H=Qp=O.(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量.(8)系统从状态I变化到状态∏ ,若AT=O,则Q=0,无热量交换.(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则AH=Q,=0.(10)理想气体绝热变化过程中,W=ΔU ,即WR=∆U=cv∆T, Vy IR=Δ(7=CVΔT,所以WR=W叫(11》有一个封闭系统,当始态和终态确定后:(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q有定值(设不作非膨胀功);(C)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值.(12)某一化学反应在烧杯中进行,放热Q ,熔变为AH∣,若安排成可逆电池,使始态和终态都相同,这时放热Q ,熔变为厶局,则∆Hι =∆H2・答:(1)对.(2)对.(3)错.若外界条件不变,即状态给定后,所有的状态函数都有一定的数值•当某一个或某几个状态函数发生变化时,状态一定改变;反之,当状态改变,状态函数中一定有某一个或某几个发生变化,而不一定是全部的状态函数都发生改变.(4)错.热力学能U和熔H是状态函数•它的改变值决定于系统的起始和终了的状态,与途径无关.功和热决定于引起状态发生变化的方法,于途径有关.在特定条件下,断定Q、QP就是状态函数是不充分的.(5)对.恒温过程是系统与环境的温度随时相等且恒定,是一个热平衡的过程.当系统的诸种性质不随时间而改变,则系统处于热力学平衡状态.满足可逆过程的要求,即保持连续平衡状态的过程.(6〉错.等外压与等压不是同一概念,勿混淆;绝热膨胀过程中Q=O,而不是Qp = O.熔是状态函数•在绝热膨胀过程压力由Pl至化,石至T2(p2<Z>l,T2<T1)可得出AHVO.(7)错.热力学第一定律说明热力学能(U)、热(Q)和功(W)可以互相转化,又表述了它们转化时的定掀关系,所以它又是一个能量守恒定律.因此可知,系统热力学能的变化是W=Q+W.所以功的转化形式不仅有热,也可通过热力学能.⑻错.热(Q)的变化值与具体的变化途径有关,它不是状态函数•当AT=O时,只说明初始和终了的温度相同,而不能说明整个过程的变化情况,故Q不一定为零.(9)错.'H=Qp是在没有其他功的条件下才存在的等式.题目中提及机械搅拌使液体升温•则说明存在机械功,即δ W z≠0.所以,上面等式'H=Qp不成立.(10)错.由同一状态I出发,经过绝热可逆过程达到的状态∏和经过绝热不可逆过程达到的状态U两状态的温度一定不相同,故AGH△乃R ,所以W R HW IR.(IlXa)对.绝热过程,W=譽三皆=G(T2 —「).(b)对.等容过程中(不作非膨胀功)Q∙ = ∆U.(C)错.等温过程,∆U=0.(d)对.多方可逆Q^W=∫ CvdT.(12)对.Q是非状态函数,由于经过的途径不同,则Q值将会不同.熔(H)是状态函数,只要始终态相同,不考虑所经过的过程,则两熔变值AH∣和 Z 相等.2.回答下列问题.(1)在盛水槽中放置一个盛水的封闭试管,加热盛水槽中之水,使其达到沸点•试问试管中的水是非会沸腾,为什么?(2)夏天将室内电冰箱的门打开,接通电源并紧闭门窗(设墙壁、门窗均不传热),能否使室内温度降低, 为什么?(3)可逆热机的效率最高,在其他条件都相同的前提下•用可逆热机去牵引火车,能否使火车的速度加快,为什么?(4)Zn与稀硫酸作用,(a)在敞口的容器中进行;(b)在密闭的容器中进行.哪一种情况放热较多,为什么?(5)在一铝制筒中装有压缩空气,温度与环境平衡.突然打开筒盖•使气体冲出,当压力一外界相等时, 立即盖上筒盖,过一会儿,筒中气体的压力有何变化?(6)在N2和H2的物质的量之比为1 : 3的反应条件下合成氨,实验测得在温度T l和T2时放出的热量分别为Q(C)和Q(T2),用KirChhOff定律验证时,与下述公式的计算结果不符,试解释原因∙Δr H m (T2) = ArH m(T1)+ F ∆r QdTJT I(7)从同一始态A岀发•经历三种不同途径到达不同的终态:(1)经等温可逆过程从Λ→β5(2)经绝热可逆过程从A-*C; (3)经绝热不可逆过程从AfD试问:(a)若使终态的体积相同,D点应位于BC虚线的什么位置,为什么?(b)若使终态的压力相同∙Γ>点应位于BC虚线的什么位置,为什么•参见图2-3.(8)在一个玻璃瓶中发生如下反应:H2(g)+Cl2(g)-^2HCl(g)反应前后T.p.V均未发生变化•设所有的气体都可看作是理想气体•因为理想气体的热力学能仅是温度的函数Q=U(T),所以该反应的∆U=0.这个结论对不对?为什么?答:(1)不会.由于水槽中的水与水的沸点相同,不满足只有环境的温度高于液体的沸点•液体才能沸腾的条件.所以试管中的水不会沸腾.(2)不能.由于墙壁、门窗不传热•则可把整个屋子看作是一个绝热等容的系统•又因为∆U=Q +W, 而Q =O(绝热过程)・电冰箱做电功,即环境对系统做功W>0,所以∆U>0,温度升高.(3)不能.热机效率v=g是指从高温热源所吸的热最大的转换成对环境所做的功.但是同时可逆热机循环一周是一个缓慢的过程,所需时间是无限的•又由P≈W∕t≈F "可推出P将无限的小•因此用可逆热机牵到火车的做法是不实际的,不能增加火车的速度只会降低.(4)在密闭的容器中进行的反应放热较多.这是由于在热化学中,Qp=Q∙+∆n(RT)而在这个反应中Zn÷H2SO4—ZnSa+出,0=1.又因为该反应为放热反应Q-Q的值均为负数・IQ I>∣Q, I.(5)简内的压力变化过程:当压缩空气气体冲出,在绝热可逆过程有PiTy=常数,当气体的压力与外界相等时,筒中温度降低.立即盖上筒盖,过一会儿,系统与环境的温度完全相等•温度升高•则压力也升高, 即大于环境中的标准大气压.(6)∆f实际上是指按所给反应式,进行兰为ImoI反应时的熔变,实验中测得的数值是反应达到平衡时放出的热量•此时∆eVlmol,因此经过计算使用Kir C hhOff定律计算的结果与实验不符.(a) (b)图2-4由各种过程的膨胀功计算中,我们可知绝热可逆膨胀的功最大•绝热过程中.W=Cv√T2-T1),由于是膨胀过程,所以WVO.又因IWRl> I Ww I,所以T2lfi>T2tt.又根据理想气体状态方程pV=nRT,当匕相同时叭>臥当仇相同时*V2ff f>,V2Λ. *绝热膨胀在实际过程中是一个降温过程,与等温可逆相比,T2∕R<T2w,同理,当匕相同时、皿>仇叭当PZ相同时,v2^>v2at.(8)∆LΓ=O这个结论不正确.根据热力学第一定律∆T=Q+W,由于反应前后的丁未变,Q=O,47= W.虽然整个反应中V未变,但此化学反应由于光照而引发,以这种的形式对反应做功•所以∆U≠0.3.可逆过程有哪些基本特征?请识别下列过程中哪些是可逆过程•(】)摩擦生热;(2)室温和大气压力(101. 3 kPa)下,水蒸发为同温、同压的气;(3)373 K和大气压力(Io1. 3 kPa)下,水蒸发为同温、同压的气;(4) 用干电池使灯泡发光;(5) 用对消法测可逆电池的电动势;(6) N 2(g),O 2(g)在等温、等压条件下温合;(7) 恒温下将1 mol 水倾入大量溶液中,溶液浓度未变;(8) 水在冰点时变成同温、同压的冰.答:可逆过程基本特征:① 过程中的每一步都可向相反的方向进行,而且,系统复原后在环境中并不引起其他变化.② 经过无限慢的膨胀与压缩•③ 在可逆膨胀中系统做的功最大,在系统复原可逆压缩过程中对环境做的功最小.(3) √5)和(8〉的过程为可逆过程,其余均不是.4. 试将如下的两个不可逆过程设计成可逆过程:⑴在298 KJOl. 3 kPa 压力下,水蒸发为同温、同压的气;(2〉在268 K,101.3 kPa 压力下,水凝结为同温、同压的冰.答I (1)H 2O(1,298K,101. 3kPa)― H 2O(g,298K,101. 3kPa)等压可逆升温] I 等压可逆降温H 2O(h373K,101. 3kPa)空鯉凹理翌JH2O(g,373K,lOl. 3kPa).⑵H2()(l,268K,101.3kPa)― H 2O(s,268KΛ01. 3kPa)等压可逆升温5.判断下列各过程中的Q,W,0U 和可能知道的值,用>0,VO 或=O 表示.(1) 如图2-5所示,当电池放电后,选择不同的对象为研究系统,① 以水和电阻丝为系统_② 以水为系统③ 以电阻丝为系统④ 以电池和电阻丝为系统⑤ 以水、电池和电阻丝为系统; ⑵Van der WaiiS 气体等温自由膨胀;(3) 密闭非绝热容器中盛有锌粒和盐酸,容器上部有可移动的活⑷ C 6 H 6 (s, 101. 3 kPa∙7})— C 6H 6(hl01.3 kPa, T f );(5) 恒容绝热容器中发生如下反应H 2(g)+Cl 2 (g)― 2HCl(g)(6) 恒容非绝热容器中,发生与(5)相同的反应,反应前后温度相同;(7) 在大量的水中,有一个含有H2(g),Q(g)的气泡,通一电火花使其化合变为水,以H2(g),Q(g)混 合气为系统,忽略电火花能量;(8) 理想气体JOUle-ThOmSOn 的节流过程.答:(1)①W>0,水和电阻丝为一整体看待Q=O,2=Q+W>0.② 以水为系统•对外不做功,W=O,系统吸热Q>0,故∆U=W+Q>O..等压可逆降温 H 2O(1,273K,101. 3kPa) 等温等压可逆凝结 H 2O(s,273K,101.3kPa).③以电阻丝为系统•电阻丝的状态未发生改变.所以∆L7=0.系统放热QCO,所以W>0.④以电池电阻丝为系统,不存在对外做功,W=O.系统为放热反应,Q<0,α=Q+WV0.⑤以电池水和电阻丝为系统•该系统成为孤立系统,2=0,Q=O,W=O.(2)外压为零的膨胀过程为自由膨胀,W=O.膨胀后体积增加,温度升高,是吸热反应,Q>0.所以可知,M∕=Q+W>0.(3)由于Zn÷2HCl==ZnCl2+ H2↑体积增加,活塞移动,对外做功,WV0.此反应为放热反应,所以Q<0.同理,∆U=Q+WV0.*(4)由固体变为液体,在凝固点和等压条件下,吸热.Q=Q f) =∆H>0. W= -^PV) = -P(V l-V t )< 0,Δ(7=Q÷UO0.(5)恒容绝热的容器中发生反应,Q=Q=0,W=0故∆T=0;因为该反应为放热反应,反应后温度升高•由理想气体状态方程可知P= 帶:V不变"随T增加而增加.又因AH=∆U+MpV)=V(3)>0.(6)恒容容器内W=O;由十是非绝热容器,该反应为放热反应,故Q=QVO;同理M<0. ΔH = ΔU< 0(由于系统最终能恢复原状态,Δ(pV)=O).(7)2H2÷O2—2H2O,W=-∕>(V2-V1)反应后气体体积滅血(以H2、Q为系统)所以W>0.该反应为吸热反应,Q<0热力学能减少,AUVO.(8)节流过程的特点是:①绝热过程②前后焙值相等.故Q=O,AH=O.又因为理想气体节流前后温度未发生改变,Δl∕=05同理由∆U=Q+W,可知W=O.6. 请列举4个不同类型的等熔过程.答:几种不同类型的等熔过程分别为:自由膨胀;等温可逆膨胀;等温可逆压缩Jo u Ie-Thomson节流过程.7. 在下列关系式中,请指出哪几个是准确的,哪几个是不准确的,并简单说明理由.(1)∆e⅛ (石墨,s) = Δ(Ht(CQ,g),(2)∆c肚(H2,g) = ∆f H=(HCXg),(3)ΔeH-(N2,g) = Δf H∙(2NO2,g),(4)∆c Hm(SC)2 ,g)=0,(5)Δ∣H^(H2O,g)=ΔfH∙(H2OJ)+∆,,p⅛(H2OJ),(6)Δc½(()2,g)=Δf H∙ (H2OJ).答:根据标准摩尔生成熔和标准摩尔燃烧的定义可知均指生成1 InOI纯物质的熔变.由此可知(1)和(2)正确;(3)错误.⑷由于so2÷yθ2-sα,so2在o2中可以完全燃烧生成sα,所以∆c H^(so2,g)≠o.(5)H2O(I)— H2O(g) ∆r⅛(373 K) = ∆vβp⅛(H2OJ) = ∆f H∙ (H2O,g)^∆f(H2OJ)结果正(6)根据定义ΔC W(H2,g) = Δf⅛(H2O,g)等式成立•所以题中表示结果错误•是否恒大于Cv.m?有一个化学反应,所有的气体都可以作为理想气体处理,若反应的∆Q,ro>0,则反应的AQm也一定大于零吗?≡:C^CV=(^-(^)V=(歌+(霍h (f⅛+M霁)厂(f⅛v= [?+(韵r](霁),对于理想气体T (黑)r = CL (等)广竽© -CY=nR C^rtI -CV hnl=J R可知永远大于C Vral⅛ C PllII>0时•则厲问也一■定大于零.第三章热力学第二定律∣∙指出下列公式的适用范围.<l)Δr⅛sιS =—尺工^Rlnj(2)∆S=nRln E+Ch ⅛= KRh ⅛ 十GlrL ⅞ JPΞJ 1 Vt 1 1C3)dL r^≡Td5-PtfVJC4)M∕ = IVιJ∕>;(3)∆S.∆A/G作为判据时必须満足的条件・答:门)理想气体的等温等压过程,井符合分体积定律•心=訂■存在的每种气体的压力祁粕等*且等于气体的总压力.(即适用于非等温过程中爛的变化值.在计算一定量的理想气体由狀态1 <Pit¼t LJ⅛变到状态U(∕⅛,Fp ,玛)时*可由两种可逆过程的加和而求得.等号两边是两种不同的分步计算方法.〔3)对于封闭系统只做体积功时适用.(4)对于等溫条杵下'封闭系统只做体积功时适用.(G購判撼:对于隔离系统或绝热系统.dS≥0Hdmhoi∣∕自曲能判据在等温等容下做其他功的条杵下,若系统任其自然+叫自发变化总是朝向A减少的方向进行,直至系统达到平衡.Gih氏自由能判据:在等温等压下,不做其他功,任期自然进行,则自发变化長朝G减少的方向进行,直至奈统达到平衡.1.判斷F列说法尼否正确*并说明原因.d)不可逆过程一定是处肆的,而自发过程一定是不可逆的*(2)Λ⅛增加过程都是⅛发过程;(3)不可逆过程的端永不减少:(4)系统达平衡时,爛值最大.Gibbs自由能最小;(G当某系统的热力学能和休积恒定时,△$<()的过程不可能发生匚<S)M⅛统从始态经过一个绝热不可逆过程到达终态*现在要在相同的始、终态之间设计一个绝热可逆过程;U)在一个绝热系统中.发主了一个可逆过程.系统从状态1变到『狀态2.不论用什么方法,系统再也回不到原来状态了*©)理想气休的等温膨胀过程,ZJJ=S系统所吸的热全部变成『功■这与KeIVin的说法不符匚(9)冷冻机可以从低温热源吸热放给髙温热源,这与CIa US iuS 的说法不符;(10) G 恒大于Cv.答:(1)错.自发过程一定是不可逆过程,而不是所有的不可逆过程都是自发的,有时需要环境对系统做 功,才可进行不可逆过程.(2) 错.爛判据使用是有条件的,适用于隔离系统或绝热系统.(3) 错.在隔离系统中,如果发生了不可逆变化,则爛增加.(4) 错.不应笼统的全部定义为系统.在绝热系统或隔离系统,当系统达到平衡状态之后,炳值最大;在 等温等压不做其他功的条件下,直至系统达到平衡后,Gibbs 自由能最小.(5) 错.不完全正确,这种说法只适用于隔离系统且不做非膨胀功的条件下才可以成立.(6) 错.绝热不可逆过程∆S>0.绝热可逆过程∆S=0.爛是一个状态函数,由于两过程有同样的始态. 同时∆S 值不同,则可以认为最终到达的终态的性质不同.故题中说法不能实现.(7〉对.在绝热系统中,从状态】到状态2 ∆S,2>0;而同样在该条件下,由状态2到状态1 S 21 >0.系统 的爛永远增加,故系统再也回不到原来状态了.(8) 错.Kelvin :不可能从单热源取出热使之完全变为功・而不发生其他变化.理想气体等温膨胀过程 中,AU=O,系统,所吸的热全部变成了体枳膨胀所做的体积功.这与keWin 记述相符.(9) 错.从低温热源吸热放给高温热源的过程中•环境对低温热源做功.这一过程与CI a U S i US 说法:不可 能把热从低温物体传到高温物体,而不引起其他的变化.相符.(ID)错.Cp-Cv V_ Z a(U+∕>p)、 (au、 一(dτ . (aT )V但HzO 在277. 15时,(等»=0・故Cp=G 故,题中说法过于武断.3.指岀下列各过程中,Q,W∙∆L∕dH∙∆S,∆A 和2等热力学函数的变供哪些为零•哪些绝对值相等?(1) 理想气体真空膨胀;(2) 理想气体等温可逆膨胀:(3) 理想气体绝热节流膨胀;(4) 实际气体绝热可逆膨胀;(5) 实际气体绝热节流膨胀;<6)H 2(g)和O 2(g)在绝热钢瓶中发生反应生成水;(7) H 2(g)和O2(g)在绝热钢瓶中发生反应生成HCKg)J(8) H 2Od,373 K,101 kPa)^H 2O(g,373 KUOl kPa);(9) 在等温、等压、不作非膨胀功的条件下,下列反应达到平衡3H 2 (g)+N 2(g)-2NH 3(g)G 恒大于GZ=(執+(執(10)绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应.答:(1)理想气体真空膨胀W=Q=M=AH=O.(2)理气等温可逆膨胀ΔI7=0,∆H=0;Q=V V J∆G=∆A,∆S=0.(3)理气节流膨胀AH=0,∆U=0.(4)实际全体绝热可逆Q= AS=^=0,W=Q+W=W.(5)实气绝热节流Q I=O,Δ(7=0,Δ∕∕=0.(6)恒容过程∆L∕=O∆A=-WR=Q .(7)H2 (g)+Cl2 (^)=2HCL(g) 体积与压力不变.Δ(7=Q=^H, W=O .AA=AG(8)∆A = -W R4G=0,Δl 丿=O QH=O.(S)∆L∕=O.∆H=Qρ*∆A=∆G,(Io)Q=Oa=W.4. 将下列不可逆过程设计为可逆过程.(1)理想气体从压力为P向真空膨胀为仇;(2)将两块温度分别为T l ,T2的铁块(T1>T2)相接解•最后终态温度为T t(3)水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为AH20( 1,303 KJOO kPa)— H2O(g,303 KJOO kPa)(4)理想气体从∕>1 ,W .T1经不可逆过程达到PZ,X∙E ,可设计几条可逆路线•画出示意图・答:(i)等温可逆膨胀.(2)以无限小且无限缓慢的速度dT降温•最终达到T的终态,则此过程为可逆过程.O图3-1φ∕(pι .v1,T1AA,W,T2)仝亘樂∏(Z>2,V2,T2)③“ Q ・ W ・T l p2,½∙, T I∏(∕>2,V2,T2)Z . Tr T、等溫可逆Z-” T、等容可逆n/ . “ T、④1( p∖ ,V) , TI ) DC PD . V2 , Tl ) *, Ii(P2,v^2 , 了2 )5. 判断下列恒温、恒压过程中,爛值的变化,是大于零•小于零还是等于零,为什么?(1)将食盐放入水中;(2)HCKg)溶于水中生成盐酸溶液;(3)NH J Cl(S)― NH3 (g) + HCKg);(4)H2 (g) Q(g)— H2 O(I);(5) 1 dm3 (N2 ^g)÷l dm3(Ar,g)—2 dm3 (N2 ÷Ar,g);(6) 1 dm'(N2 ∙g) + l dn√(Ar,g)— 1 dm3 (N2÷Ar,g);(7) 1 dm3(N2,g)÷l dm3(N2,g)— 2 dm3(N2,g);(8)1 dm3(N2∙g) + l dm3(N2,g)― 1 dm3(N2,g).答:(1)盐溶解于水中,为放热过程Q<0,dS-^,∆S<0.(2)同理,HCKg)溶水中,Q<O,∆S<O.(3〉此化学反应过程为吸热过程Q>O,∆S>O.(4)此化学反应过程为放热过程QVo,ASVO.9V 9V 2V(5)∆S=∆S4V2+∆S zv=Wn y+/?lny = 2Rln ~>0.(6)两气体的始态,经态未发生改变AS=O.(7)同种气体等温等压下压缩,前后状态未发生改变AS=O.(8)∆S=r i Kln 彩=2Rn 寺VO.6. ⑴在298 K和IOO kPa时,反应H2()(l)― H2(g)÷y()2(g)的Sm>0∙说明该反应不能自发进行.但在实验室内常用电解水的方法制备氢气,这两者有无矛盾?(2〉请将CarnOt循环分别表达在以如下坐标表示的图上:T- p, T — S,S-U,U-S, T- H答:⑴这两者没有矛盾HO⑴一H2(g)+∙∣()2(g)是指在隔离系统内,不做其他非膨胀功的条件下,A<im>0.实验室内用电解水的方法剔备氢气•这个过程中存在电流做功的电功形式•这一反应不是自发进行的.(2)Carnet缩环表达坐标如图3—2.。

物理化学傅献彩下册第五版课后习题答案

物理化学傅献彩下册第五版课后习题答案

物理化学傅献彩下册第五版课后习题答案 6 / 26
物理化学傅献彩下册第五版课后习题答案 7 / 26
物理化学傅献彩下册第五版课后习题答案 8 / 26
物理化学傅献彩下册第五版课后习题答案 9 / 26
物理化学傅献彩下册第五版课后习题答案 10 / 26
物理化学傅献彩下册第五版课后习题答案 11 / 26
物理化学傅献彩下册第五版课后习题答案 12 / 26
物理化学傅献彩下册第五版课后习题答案 13 / 26
物理化学傅献彩下册第五版课后习题答案 14 / 26
物理化学傅献彩下册第五版课后习题答案 15 / 26
物理化学傅献彩下册第五版课后习题答案 16 / 26
物理化学傅献彩下册第五版课后习题答案 17 / 26
物理化学傅献彩下册第五版课后习题答案 24 / 26
物理化学傅献彩下册第五版课后习题答案 25 / 26
物理化学傅献彩下册第五版课后习题答案 26 / 26
物理化学傅献彩下册第五版课后习题答案
物理化学傅献彩下册第五版课后习题答案
第九章 可逆电池的电动势及其应用
1 / 26
物理化学傅献彩下册第五版课后习题答案 2 / 26
物理化学傅献彩下册第五版课后习题答案 3 / 26
物理化学傅献彩下册第五版课后习题答案 4 / 26
物理化学傅献彩下册第五版课后习题答案 5 / 26
物理化学傅献彩下册第五版课后习题答案 18 / 26
物理化学傅献彩下册第五版课后习题答案 19 / 26
物理化学傅献彩下册第五版课后习题答案 20 / 26
物理化学傅献彩下册第五版课后习题答案 21 / 26
物理化学傅献彩下册第五版课后习题答案 22 / 26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百分误差为(3059-3057)/3057×100%=0.065%
(3)W=-pVg=-nRT=-1×8.314×373kJ=-3.10kJ (4)△vapHm=Qp=40.63kJ·mol
△vapUm=(Qp+W)/n=(40.63-3.057)kJ·mol-1=37.57kJ·mol-1 (5)水在蒸发过程中吸收的热量一部分用于膨胀体积对外作功。另一部分克服分子间的引力,增
解:
n=1molNH3,T=423K,p V1
(1)可逆压缩过程所作功最少
dT=0
n=1molNH3,T, p2 V2=10dm3
V1
8.314 423 101325
m3
0.0347m 3
34.7dm 3
(1)
W V2 pdV nRT ln V2 8.314 423ln 10 J 4375J
V1
V1
15.证明:
U T
p
C
p
pV T
并证明对于理想气体有 H
p
V
=0, CV T V
0 T
证:
U T
P
H T
pV p T
p
CP
pV T
P
H V
= T
U V
T pVV
T
0
nVRT
T
0
11
热力学第一定律
CV V
UT
T
V
V
V
U T
V T
T UV
又∵
VT
p
Vp
T
p T
V
代入 J T
Tp H
Hp T H
1 Cp
Hp T 得
T P
J T
1 Cp
V
T
Tp
V Vp
T
U T p p T p U p 和 U U T 则
V T T V
T V V T
V T T V V U
J T
1 Cp
V
UV
T
pVp
T C1p
34.7
(2)
(
p1
a V12
)(V1
b)
RT
101325
0.417 V12
V1
3.71 10 5
8.314 423
用尝试法求得求 V1 , V1 34.64dm3
W
V2 V1
VRTb
a V2
dV
[RT
ln V2 V1
b b
aV12
1 V1
] 4345J
6.已知在 373K 和 p时。1kg 液态水的体积为 1.043dm3,1kg 水汽的体积为 1677dm3,水的等
热力学第一定律
1mol,T1,
p1=2×101.325kPa V1=11.2dm3
pT=常数 可逆
(1)T1=(p1V1)/(nR)=273K
∵ p1T1 p2T2 c

2
101325
2
101325 0.0112 8.314
K
4
101325T2
1mol,T2 p2=4×101.325kPa
V2
T2 136.6K
南大习题 1. 如果一个体重是 70kg 的人能将 40g 巧克力的燃烧热(628kJ)完全转化为垂直位移所作的功, 那么这点热量可支持他爬多少高度?
解:
W mgh , h 628 103 m 915m 70 9.8
2 . 在 291k 和 p压力下,1molZn(S)溶于足量稀盐酸中,置换出 1molH2 并放热 152kJ 若以 Zn 和盐酸为系统,求该反应所作的功及系统热力学能的变化。
Q U W [2.09 0.831]kJ 1.26kJ
22. 1mol 单原子理想气体从始态 298K、202.65kPa 经下列途径使其体积加倍,试计算每种途 径的终态压力及各过程的 Q、W、ΔU 值,
(1)等温可逆。
(2)绝热可逆。 (3)沿着 p=10132.5V+b 的途径可逆变化,式中 b 为常数,p 和 V 的单位分别为 Pa 和 dm3·mol-1.
pdV
V2 C
V V1
2
dV
VC2
C V1
pV2V2 22
p1V12 V1
nR(T2
T1 ) 831.4J
2) U nCV ,m T2 T1 120.(9 473 573)kJ 2.09kJ
H nCP,m T2 T1 1(20.9 8.314() 473 573)kJ 2.09kJ
mol 1
(3)
vap
H
m
Q
40.67kJ
mol 1
4. 理想气体等温可逆膨胀,体积由 V1 膨大到 10 V1,对外作了 41.85kJ 的功,系统的起始压力 为 202.65kPa。
(1)求 V1 (2)若气体的量为 2 mol,试求系统的温度 。 解:
n、 V1 H2O(l),T,p1=202.65kPa
解:(1) U 0
W nRT ln 2V1 8.314 298 ln 2kJ 1.72kJ Q V1
p1=202.65kPa,
p2
RT1 2V1
p1 2
101.325kPa
,T1=298K
Vm,1=RT1/p1=12.24dm3·mol-1
Vm,2=2 Vm,1=24.48 dm3·mol-1
(2)∵ T1V11 T2V21
V
UT
T V V
U
p Vp
T
12
热力学第一定律
1 Cp
V
CV
VT
U Vp
T p Vp
T
V Cp
1 CVV
T V
U
Vp
T
1 V
Vp
T
p

1 V
Vp
T ,
由上式可得
J

T V
U
J T
V Cp
CV J
p 1
T V
0
T
16.证明:
U V
p
C p
T V
p
p
证:
U V
p
H V
P
p
=
H T
T p V
p
p
=
CP
T V
p
p
证明: CP
CV
p T
V
Hp
T
V
证: CP
CV
HT
U = H p T V T
P
HT
V
V
p T
V
dH
H T
dT P
Hp
T dP
H T
V
H T
解:
Zn (s)+2 H+= Zn2++ H2(g)
VH2
RT p
8.314 291 m3 101325
0.024m 3
W pV pVg nRT 8.314 291J 2419.4J
△rUm=(Q+W)/ =(-152-2.42)kJ·mol-1
3 . 在 373.2K 和 p压力下,使 1molH2O(l)汽化。已知水在气化时吸热 40.69kJ·mol-1。
V2
8.314 136.6 4 101325
m3
2.8 103 m3
(2) U
nCV ,m T2
T1
1
3 2
8.314(136.6
273)J
1701J
H 15 8.31(4 136.6 273)J 2835J 2
(3)W pdV c d( nRT T ) nR dT 2 2nRdT
T pT
T
W 2nR(T2 T1 ) 2 8.31(4 136.6 273)J 2268J 14.设有压力为 p,温度为 293K 的理想气体 3dm3,在等压下加热,直到最后的温度为 353K 为止。计算过程中的 W、ΔU、ΔH、和 Q。已知该气体的等压热容为: Cp,m=(27.28+3.26×10-3T)J·K-1·mol-1。 解:
P
Hp
T Tp
V
代入上式
Cp
CV
HT
P
Hp
T Tp
V
V
Tp
V
Tp
V Hp
T
V
17.证明: J T
V Cp
CV J
p 1
式中 = — 1
V
Vp
T , J
T V
(焦耳系数) U
证: ∵ dH TdS Vdp

Hp
T
= T Sp T V
T VT
V P
10 2
373.15
2. 0.10kg283.2K 的 水 与 0.2kg,313.2K 的 水 混 合 , 求 △ S 。 设 水 的 平 均 比 热 为
4.184kJ·K-1·kg-1。
解:设求混合后的温度为 T
热力学第二定律
T (0.10 4.18)dT =- T (0.20 4.18)dT
20.理想气体经可逆的多方过程膨胀,pVn=C。式中 C、n 均为常数,n>1。
(1)若 n=2, 1mol 气体从 V1 膨胀到 V2, T1=573K,T2=473K,求过程中的 W。 (2)如 CVm=20.9J·K-1·mol-1,求 Q、ΔU 和 ΔH。
解:1) pV 2 C
W
V2 V1
求:(1)WR,
(2)
vapU
m
,
(3)
vap
H
m
之值各为多少?
解:
相关文档
最新文档