概率作业
概率论作业
第一次作业1(20分)口袋中有编号分别为1、2、3的三个球,试写出下列随机试验的样本空间。
(1)从口袋中任取2颗球,观察取到的球的编号;(2)先从口袋中取一颗球,观察其编号后放回口袋中,再从口袋中取一颗球并观察编号;(3)先从口袋中取一颗球,观察其编号后,从剩余的球中再取一颗并观察编号。
2(20分)抛三次硬币,表示第次为正面,,试用表示下列事件:(1)三次都是正面;(2)三次都是反面;(3)至少有一次是正面;(4)至少有一次是反面;(5)至少有两次是正面。
第二次作业1(20分)甲乙两只口袋各有5颗球,其中甲袋中有3颗红球2颗白球,乙袋中有2颗红球3颗白球。
现在从两个口袋中各取一球。
问:(1)取到的两颗球颜色相同的概率是多少?(2)取到的两颗球中至少有一颗是红球的概率又是多少?2(20分)10件同型号产品中有2件是次品,从中取2次,每次取1件,做不放回抽样。
求下列事件的概率。
(1)两次取到的都是正品;(2)两次都是次品;(3)一件是正品一件是次品;(4)第二次取到的是次品。
3(20分)假设你家订了一份牛奶,送奶员每天在6:30到7:30之间把牛奶送到你家,而你每天7:00到8:00之间离开家去上班。
求你在离开家之前能够喝到当天牛奶的概率。
5(20分)据以往资料表明,某三口之家患某种传染病的概率有如下规律:孩子患病的概率为0.6;如果孩子患病,那么母亲患病的概率为0.5;如果母亲及孩子都患病,那么父亲也患病的概率为0.4。
求母亲及孩子都患病但父亲未患病的概率。
第三次作业2(20分)玻璃杯成箱出售,每箱20只。
假设每箱玻璃杯中含有0、1、2只残次品的概率分别为0.8、0.1、0.1。
一顾客欲购买一箱玻璃杯,售货员随意取一箱,顾客从中随机抽取4只检查,若无残次品则买下该箱,否则退回。
(1)求顾客买下该箱玻璃杯的概率;(2)求在顾客买下的这箱玻璃杯中确无残次品的概率。
3(20分)据数据显示,每1000名50岁的低风险男性中,有3名患有结肠癌。
应用概率统计综合作业一
应用概率统计综合作业一一、填空题每小题2分,共20分 1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,则事件B A 的概率=)(B AP .2.设在三次独立试验中,随机事件A 在每次试验中出现的概率为31,则A 至少出现一次的概率为 19/27 . 3.设随机事件A,B 及其和事件B A的概率分别是,和,则积事件B A 的概率=)(B A P .4.一批产品共有10个正品和两个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 1/5 .5.设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有一件是不合格品,则另1件也是不合格品的概率为 . 6.设随机变量),3(~2σN X ,且3.0)53(=<<X P ,则=<)1(X P .7.设随机变量X 绝对值不大于1,且81)1-(==X P ,41)1(==X P ,则=<<)11-(X P 7/16 .8.设随机变量X 的密度函数为⎩⎨⎧<<=,其他,010,x 2)(f x x 以Y 表示对X 的三次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X出现的次数,则{}2=Y P 9/64 . 9.设随机变量X 的概率分布为2.0)1(==X P ,3.0)2(==X P ,5.0)3(==X P ,则随机变量X 的分布函数=)(x F fx= x=1x=2 x=30 x 不为1、2、3之中的任一个 .10.设随机变量X 的密度函数为)1(1)(f2x x +=π,求随机变量31X-=Y 的密度函数=)y (Y f 3/π1+1 y 3. .二、选择题每小题2分,共20分1.同时抛掷3枚均匀对称的硬币,则恰有2枚正面向上的概率为 D A B C D2.某人独立地投入三次篮球,每次投中的概率为,则其最可能失败没投中的次数为 A A2 B2或3 C3 D13.当随机事件A 与B 同时发生时,事件C 必发生,则下列各式中正确的是B A 1)()()(-+≤B P A P C P B 1)()()(-+≥B P A P C P C )()(AB P C P = D )()(B A P C P =4.设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则BA 事件A 和B 互不相容 B 事件A 和B 互相对立C 事件A 和B 互不独立D 事件A 和B 相互独立 5.设A 与B 是两个随机事件,且1)(0<<A P ,0)(>B P ,)|()|(A B P A B P =,则必有 C A )|()|(B A P B A P = B )|()|(B A P B A P ≠C )()()(B P A P AB P =D )()()(B P A P AB P ≠6.设随机变量X 的密度函数为)(f x ,且)(f )(f x x =-,)(F x 为X 的分布函数,则对任意实数a ,有BA dx x f a⎰-=0)(1)-a (F B dx x f a⎰-=0)(21)-a (F C )a (F )-a (F= D 1)a (F 2)-a (F -= 7.设随机变量X 服从正态分布),(2σμN ,则随着σ的增大,概率{}σμ<-XP 为 CA 单调增大B 单调减少C 保持不变D 增减不定8.设两个随机变量X 和Y 分别服从正态分布)4,(2μN 和)5,(2μN ,记{}41-≤=μX P P ,{}52+≥=μX P P ,则 AA 对任意实数μ,都有21P P =B 对任意实数μ,都有21P P <C 只对μ的个别值,才有21P P =D 对任意实数μ,都有21P P >9.设随机变量X 服从正态分布)4,0(N ,则=<)1(X P B Adxx e81221-⎰πBdxxe41041-⎰ C2121-eπDdxx e221221-∞-⎰π10.设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≤<≤<=,5,1,50,251,0x ,0)(F 2x x x x 则=<<)53(X P C A254 B 259 C 2516D 1 三、10分摆地摊的某赌主拿了8个白的、8个黑的围棋子放在一个签袋里,并规定凡愿摸彩者每人交一元钱作手续费,然后一次从口袋口摸出5个棋子,中彩情况如下:摸棋子 5个白 4个白 3个白其他彩金20元2元纪念品价值5角同乐一次无任何奖品试计算:①获得20元彩金的概率; ②获得2元彩金的概率; ③获得纪念品的概率;④按摸彩1000次统计,赌主可望净赚多少钱解:1.2.3.4.净赚大哟为1000-692=308元.四、10分已知连续型随机变量X 的密度函数为⎩⎨⎧<≥=-,0,0,0,)(22x x e Ax x f x 试求:1常数A ;2);20(,)2(<<=X P XP 3X 的分布函数;解答:1由于∫+∞∞fx d x=1,即∫0∞ke x d x+∫2014d x=k+12=1∴k=122由于Fx=PXx=∫x∞fx d x,因此当x<0时,Fx=∫x∞12e x d x=12e x;当0x<2时,Fx=∫0∞12e x d x+∫x014d x=12+14x;当2x时,Fx=∫0∞12e x d x+∫2014d x=1∴Fx=12e x12+14x1,x<0,0x<2,x23由于连续型随即变量在任意点处的概率都为0,因此P{X=1}=0而P{1<X<2}=F2F1=14.五、10分设10件产品中有5件一级品,3件二级品,2件次品,无放回地抽取,每次取一件,求在取得二级品之前取得一级品的概率;解:先取得一级品的概率为5÷10=1/2那么当取出一级品再取得二级品的概率就为3÷10-1=1/3所以在取二级品之前取得一级品的概率为1/2×1/3=1/6六、10分某地抽样调查结果表明,考生的外语成绩X百分制近似服从正态分布,平均成绩为72分,96分以上的占考生总数的%,试求考生的外语成绩X在60分至84分之间的概率;.),(1841Φ=ΦΦ=1(=)2.977).(,5)933.解答:因为F96=∮96-72/x===∮2所以x=12成绩在60至84分之间的概率:F84-F60=∮84-72/12-∮60-72/12=∮1-∮-1=2∮1-1=2×=七、10分设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份;随机地取一个地区的报名表,从中先后抽出2分;试求:1先抽出的一份是女生表的概率p;2若后抽到的一份是男生表,求先抽到的一份是女生表的概率q;解答:设事件:Hi={抽到的报名表示i区考生的}i=1,2,3;事件:Hj={第j次抽到的报名表是男生报名表}j=1,2,3.事件:A={第一次抽到的报名表示女生的}事件:B={第二次抽到的报名表示男生的}显然有,抽到三个区的概率是相等的,即:PH1=PH2=PH3=13PA|H1=310;PA|H2=715PA|H3=525=151根据全概率公式有:PA=PA|H1PH1+PA|H2PH2+PA|H3PH3=13×310+13×715+13×15=2 9902根据全概率公式,第二次抽到男生的概率为:PB=pB|H1×PH1+pB|H2×PH2+pB|H3×PH3显然:pB|H1=710;pB|H2=815;pB|H3=2025=45故:PB=pB|H1×PH1+pB|H2×PH2+pB|H3×PH3=710×13+815×13+45×13=6190第一次抽到女生,第二次抽到男生的概率为:PAB=PAB|H1×PH1+pAB|H2×PH2+pAB|H3×PH3而PAB|H1=310×79=730;PAB|H2=715×814=415;PAB|H3=525×2024=16故:PAB=PAB|H1×PH1+pAB|H2×PH2+pAB|H3×PH3=730×13+415×1 3+16×13=29根据条件概率公式有:pA|B=PABpB=29÷6190=2061即:p=2061故第一份抽到的是女生的概率为2990,在第二份抽到是男生的前提下,第一次抽到是女生的概率p为2061.的泊松分八、10分假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为t布,1求相继两次故障之间间隔时间T的概率分布;2求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率q;解答:1由泊松过程的定义,时间间隔分布为参数是λ的指数分布.即PT02PN16=0|N8=0=PN16=0/PN8=0=exp-16λ/exp-8λ=exp-8λ。
概率论作业习题
概 率 论 作 业1.写出下列随机试验的样本空间:(1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)在单位圆内任取一点,记录它的坐标;(3)一射手射击,直到击中目标为止,观察射击情况。
(4)把A ,B 两个球随机地放到3个盒子中去,观察球的分布情况(假设每个盒子可容纳球的个数不限)。
2.一工人生产了四件产品,以A 表示他生产的第i 件产品是正品)4,3,2,1i (=,试用A 表示)4,3,2,1i (=下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品; (3)恰有一件产品是次品; (4)至少有两件产品不是次品。
3.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机} C={恰有一弹击中飞机},D={至少有一弹击中飞机},E={两弹都击中飞机}。
(1)试用事件A ,B ,表示事件C ,D ,E 。
(2)C 与E 是互逆事件吗?为什么?4.从一批产品中任意抽取5件样品进行质量检查。
记事件A 表示“发现i 件次品”)5,,2,1,0i (Λ=,试用A 来表示下列事件:(1)发现2件或3件次品;(2)最多发现2件次品;(3)至少发现1件次品。
5.把事件B A ⋃与C B A ⋃⋃分别写成互不相容事件和的形式。
6.指出下列命题中哪些成立,哪些不成立?(1)B B A B A Y Y =;(2)C B A C B A I I Y =)(;(3)φ=)B A )(AB (;(4)若B A ⊂,则A B A =;(5)若φ=AB 且A C ⊂,则φ=BC 。
7.设}2x 0|x {S ≤≤=,1}21|{≤<=x x A ,}x x B 2341|{<≤=。
具体写出下列各事件: (1)B A ; (2)B A ⋃; (3)B A ⋂ (4)AB8.一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。
概率论作业3
概率论作业(3)一、单选题1.设二维随机变量(X ,Y )的概率密度为f(x,y),则P{X<Y}=( B ) A.()yxdx f x,y dy+∞-∞⎰⎰ B. ()xdx f x,y dy+∞+∞-∞⎰⎰C.()yxdx f x,y dy+∞-∞⎰⎰D.()yxdy f x,y dx+∞-∞⎰⎰2.设随机变量X 和Y 都服从正态分布且相互独立,则Z=X+Y( A ) A. 服从正态分布 B. 服从指数分布C. 服从均匀分布D. 不一定服从正态分布3.设二维连续型随机变量(X,Y)的联合分布函数为F(x,y),则以下结论中错误..的是( A ) A. F(-∞,+∞)=0 B. F(-∞,y)=0 C. F(-∞,-∞)=0D. F(+∞,+∞)=14.设X~U(1,4),Y~E(2),则E(X+Y -1)=( C ) A. 0 B. 1 C. 2 D. 35.随机变量X 和Y 的相关系数协方差ρ=0是X 和Y( A ) A. 不相关的充分条件,但非必要条件 B. 不相关的充分和必要条件 C. 独立的充分条件,但非必要条件D. 独立的充分和必要条件二、填空题1、若袋子中有5个红球,2个白球,从中不放回地取2次,每次随机取一个,则 (1)第一次取到白球,且第二次取到红球的概率为215; (2)两次取得的球中,一个是白球,另一个是红球的概率为2110。
2、设随机变量X 在(1,6)上服从均匀分布,则方程012=++Xx x 有实根的概率为 0.8 。
3. 设随机变量,99.0,1),,(~==DX EX p n b X 则.01.0,100==p n 。
三、计算题1.设飞机雷达上的某种型号的发射管的寿命X (单位:小时)服从指数分布,参数θ为180。
求该发射管使用不到90小时的概率。
1、解:寿命X 服从指数分布,其密度函数为⎪⎩⎪⎨⎧<≥=-0001801)(1801x x ex f x ,则P (某发射管使用不到90小时)=393.01801901801=⎰-dx e x2.设二维随机变量),(Y X 服从园)0(222>≤+r r y x 内的均匀分布,具有联合概率密度函数),(y x f :当222r y x ≤+时,21),(ry x f π=,否则0),(=y x f 。
XXX《概率论X》在线平时作业2
XXX《概率论X》在线平时作业2《概率论X》在线平时作业21:关于独立性,下列说法错误的是A、若A1,A2,A3,……,An相互独立,则其中任意多个事件仍然相互独立B、若A1,A2,A3,……,An相互独立,则它们之中的任意多个事件换成其对立事件后仍相互独立C、若A与B相互独立,B与C相互独立,C与A相互独立,则A,B,C相互独立D、若A,B,C相互独立,则A+B与C 相互独立答案:C2:A,B两事件的概率均大于零,且A,B对立,则下列不成立的为A、A,B互不相容B、A,B独立C、A,B不独立D、A,B相容答案:B3:设离散型随机变量X的分布列为P{X=i}=a|N,i=1,2,...,N则a=A、B、1C、2D、3答案:B4:答案:D答案:D6:设随机变量X1,X2,…Xn(n>1)独立漫衍,且其方差σ2>0.令随机变量Y=1/n(X1+X2…+Xn),则A、D(X1+Y)=(n+2)/nσ2B、D(X1-Y)=(n+1)/nσ2C、cov(X1,Y)=σ2/nD、cov(X1,Y)=σ2答案:C7:已知事件A与B相互独立,A不发生的概率为0.5,B 不发生的概率为0.6,则A,B至少有一个发生的概率为A、0.3B、0.7C、0.36D、0.25答案:B8:已知随机变量X的密度为当0<X<1时,f(x)=x+b,在其他情况下,f(x)=0,则b=A、1D、2答案:B9:若二变乱A和B同时呈现的几率P(AB)=,则A、A 和B不相容(相斥)B、A,B是不可能事件C、A,B未必是不可能事件D、P(A)=或P(B)=答案:C10:设随机变量X~N(2,4),且P{2<X<4}=0.3,则P{X<0}=()A、0.8B、0.2C、0.5D、0.4答案:B11:在某学校学生中任选一名学生,设事件A:选出的学生是男生”;B选出的学生是三年级学生"。
则P(A|B)的含义是:A、选出的学生是三年级男生的概率B、已知选出的学生是三年级的,他是男生的几率C、已知选出的学生是男生,他是三年级学生的几率D、选出的学生是三年级的或他是男生的几率答案:B12:若X与Y独立,且X与Y均服从正态漫衍,则X+Y 服从A、匀称漫衍B、二项漫衍C、正态分布D、泊松分布答案:C13:设随机变量X服从参数为λ的泊松分布,且已知E[(X-1)(X-2)]=1,则λ=A、1B、-1C、2D、-2答案:A14:假设事件A和B满足P(B|A)=1,则A、A是必然事件B、A,B独立C、A包含BD、B包含A答案:D15:已知P(A)=0.8 P(A-B)=0.2 P(AB)=0.15,则P(B)=A、0.4B、0.5C、0.6D、0.75答案:D16:设随机事件A发生的概率为0.4,B发生的概率为0.3及A,B两事件至少有一件发生的概率为0.6,那么A发生且B 不发生的概率为A、0.2B、0.3C、0.4D、0.6答案:B17:一袋子中装有6只黑球,4个白球,又放回地随机抽取3个,则三个球同色的几率是A、0.216B、0.064C、0.28D、0.16答案:C答案:D19:设随机变量X和Y的方差存在且不等于,则D (X+Y)=D(X)+D(Y)是X和Y的A、不相关的充分条件,但不是必要条件B、独立的必要条件,但不是充分条件;C、不相关的充分必要条件;D、独立的充裕需要条件答案:C20:设表示10次独立重复射击命中次数,每次命中的概率为0.4,则E(X2)=A、18.4B、16.4C、12D、16答案:A21:设电灯泡使用寿命在2000h以上的概率为0.15,如果要求3个灯泡在使用2000h以后只有一个不坏的概率,则只需用()即可算出A、全概率公式B、古典概型计算公式C、贝叶斯公式D、XXX公式答案:D22:设在一次试验中事件A发生的概率为P,现重复进行n 次独立试验,则事件A至多发生一次的概率为A、1-PnB、PnC、1-(1-P)nD、(1-P)n+nP(1-P)n-1答案:D23:设随机变量X与Y相互独立,X服从“0-1”分布,p=0.4;Y服从λ=2的泊松分布,则E(X+Y)=A、0.8B、1.6C、2.4D、2答案:C24:将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率C、5!/7!答案:BB、1C、10D、100答案:A26:几率是-1~1之间的一个数,它告诉了我们一件事产生的常常度。
统计学第5章概率论作业
一、选择1、一项试验中所有可能结果的集合称为()A事件 B简单事件 C样本空间 D基本事件2、每次试验可能出现也可能不出现的事件称为()A必然事件 B样本空间 C随机事件 D不可能事件3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=()A{000,001,010,100,011,101,110,111}B{1,2,3}C{0,1}D{01,10}4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=()A{t=0} B{t<0} C{t>0} D{t≥0}5、观察一批产品的合格率P,其样本空间为Ω=()A{0<P<1} B{0≤p≤1} C{p≤1} D{p≥0}6、若某一事件取值的概率为1,则这一事件被称为()A随机事件 B必然事件 C不可能事件 D基本事件7、抛掷一枚骰子,并考察其结果。
其点数为1点或2点或3点或4点或5点或6点的概率为( )。
A.1 B.1/6 C.1/4 D.1/28、一家计算机软件开发公司的人事部门最近做了一项调查,发现在最近两年内离职的公司员工中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。
设A一员工离职是因为对工资不满意;B一员工离职是因为对工作不满意。
则两年内离职的员工中.离职原因是因为对工资不满意、或者对工作不满意、或者二者皆有的概率为( )。
A. B.0.30 C. D.9、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。
设A一顾客购买食品,B一顾客购买其他商品。
则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。
A. B.0.60 C. 5 D.10.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如下表所示:设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。
从这200个配件中任取一个进行检查,取出的一个为正品的概率()A .B . 0.45C .D .11.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况同第10题所示:设A一取出的一个为正品;B一取出的一个为供应商甲供应的配件。
福师《概率论》在线作业二
福师《概率论》在线作业二共50道题总分: 100分单选题一、单选题共50题,100分1.设X与Y是相互独立的两个随机变量,X的分布律为: X=0时,P=0.4; X=1时,P=0.6。
Y 的分布律为: Y=0时,P=0.4, Y=1时,P=0.6。
则必有( )A.X=YB. B.P{X=Y}=0.52C. C.P{X=Y}=1D. D.P{X#Y}=0正确答案:B2.A. 1/9B.1/8C.8/9D.7/8正确答案:A3.A.4/10B.3/10C.3/11D.4/11正确答案:D4.A.1/3,1/3,1/6,1/6B.1/10,2/10,3/10,4/10C.1/2,1/4,1/8,1/8D.1/3,1/6,1/9,1/12正确答案:D5.A.2/10!B.1/10!C.4/10!D.2/9!正确答案:A6.A.a=3/5 b=-2/5B.a=-1/2 b=3/2C.a=2/3 b=2/3D.a=1/2 b=-2/3正确答案:A7.A.0.761B.0.647C.0.845D.0.464正确答案:D 8.A.标准正态分布B.般正态分布C.项分布D.泊淞分布正确答案:A9.A.1/6B.5/6C.4/9D.5/9正确答案:B 10.A.0.6B.0.7C.0.3D.0.5正确答案:B11.A.1/8B.3/8C.3/9D.4/9正确答案:B12.A.15/28B.3/28C.5/28D.8/28正确答案:A13.A.P(A)+P(B)B.P(A)+ P(B)-P(AB)C.P(A)-P(B)D.P(A)+P(B)+ P(AB)正确答案:A14.A.9.5B.6C.7D.8正确答案:A 15.A.点估计B.区间估计C.参数估计D.极大似然估计正确答案:C16.现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女姓25人。
则样本容量为()A.2B.21C.25D.46正确答案:D17.如果随机变量X和Y满足D (X+Y) =D (X-Y) ,则下列式子正确的是( )A.X与Y相互独立B.X与Y不相关C.DY=0D.DX*DY=0正确答案:B18.点估计( )给出参数值的误差大小和范围A.能B.不能C.不一定D.以上都不对正确答案:B19.设随机变量X服从正态分布,其数学期望为10,X在区间(10,20) 发生的概率等于0.3。
概率论作业
概率论作业本姓名:任课教师:专业:班级:学号:黑龙江八一农垦大学文理学院数学系第一章 随机事件与概率1、设C B A 、、为已知事件,用C B A 、、表示以下事件:(1) 不发生发生,、C B A (2) C B A 、、都不发生(3)C B A 、、至少有一个发生 (4) C B A 、、恰有一个发生(5) C B A 、、至多有一个发生 (6)C B A 、、至少有两个发生2、设有一批产品共有100件,其中95件合格品,5件次品。
从中任取10件,试求:(1)样本空间所含基本事件个数n 。
(2)设"10"1件全是合格品所取=A 所含基本事件个数1m 。
(3)设"10"2件恰有两件次品所取=A 所含基本事件个数2m 。
3、把10本书任意地放在书架上,求其中指定的3本书放在一起的概率。
4、一盒中装有60个零件。
其中甲厂生产的占31,乙厂生产的占32。
现随机地从盒中取3 个,求其中恰有一支是甲厂生产的概率。
5、一份试卷上有6道试题。
某位学生在解答时,由于粗心随机地犯了4处不同的错误。
试求:(1)这4处错误发生在最后一道题上的概率。
(2)这4处错误发生在不同题上的概率。
(3)至少有3道题全对的概率。
6、将数字54321、、、、写在5张卡片上。
任意取出三张排成三位数,则这三位数是奇数的概率。
7、将4个小球随机地投入3个盒内,求有空盒的概率和没有空盒的概率。
8、将3个球随机地放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率各是多少?9、,B A ⊂5.0)(,1.0)(==B P A P ,试求)(),(),(B A P B A P AB P ⋃⋃。
10、6.0)(,3.0)(==B P A P ,7.0)(=⋃B A P 。
求)()(B A P B A P 和。
11、某射手在三次射击中至少命中一次的概率为875.0,试求该射手在一次射击中命中的概率。
12、五名篮球运动员独立地投篮,每个运动员投篮的命中率都是8.0。
概率论大作业
1.运用所学概率知识,举例说明概率在日常生活中的应用概率论来源于生活,最终也将运用于生活。
伴随着科技的发展和计算机的普及,概率论已被广泛的应用于各行各业,对于分析社会现象、研究自然科学,以及处理工程和公共事业提供了极大的帮助。
近年来,人们的生活水平越来越高,对身体健康锻炼越来越重视,对于体育比赛关注和热爱的程度也普遍提高。
掌握好概率论对于现代许多体育比赛有很大的帮助.比如射击时,可以按照运动员平时的水平估算成绩概率,以及根据位置估算射中的概率等等。
例:设向一目标连射三枪,A i表示第i枪击中目标(i=1,2,3),则下列事件可表示为:1)只有第一枪击中:A1A2̅̅̅ A3̅̅̅=A1−A2−A32)只击中一枪:A1A2̅̅̅ A3̅̅̅∪A1̅̅̅A2A3̅̅̅∪A1̅̅̅ A2̅̅̅A33)三枪都未击中:A1̅̅̅ A2̅̅̅ A3̅̅̅=A1∪A2∪A3̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅4)至多击中一枪:A1̅̅̅ A2̅̅̅∪A2̅̅̅ A3̅̅̅∪A1̅̅̅ A3̅̅̅5)至少击中一枪:A1∪A2∪A3此例运用到了和事件、对立事件。
例:甲、乙两人射击,射击技术如下:问甲、乙谁的水平高?解:设射击N枪甲总环数8×0.3N+9×0.1N+10×0.6N=9.3N乙总环数8×0.3N+9×0.5N+10×0.2N=8.9N∴甲水平高此例运用数学期望来分析甲乙的射击水平。
例:靶子半径2m圆盘,击中靶上任一同心圆上的点的概率与同心圆的面积成正比,设射击都能中靶,X为弹着点与圆心的距离,求F(x)该例求随机变量的分布函数解:①若x<0,P{X≤x}=0 F(x)=0②若0≤x≤2,P{0≤X≤x}=kx2x=2时,P{0≤x≤2}=1=4k ∴k=14F(x)=P{X≤x}=P{X<0}+P{0≤X≤x}=0+14x2=14x2③x>2时,P{X≤x}=1 F(x)=1∴F(x)={0,x<014x2,0≤x<21,x≥2日常生活中,不管什么东西都需要根据使用情况来设置大小等等,如何估算合适的尺寸才能基本让所有人都能正常使用,这就需要用到概率论中随机变量的分布。
数量单项作业题【5】(概率)
数学运算单项课后作业题(五)(概率)1 .花生老师从家去单位一共要遇到四组信号灯,假设遇到红灯概率均为40%,若至少碰到一个绿灯的概率是多少?2.从1、2、3、4、5中随机抽取3个数,问这3个数之和至少能被其中一个数整除的概率是多少?3.两个不透明的布袋A和B里面各放着6个球。
其中,布袋A中的球有3个标为数字1, 2个标为数字2, 1个标为数字3;而布袋B中的球分别标为1、2、3、4、5、6。
若某人分别从布袋A和B里取出一个球,问这两个球的数字之和不大于3 的概率是多少:4.盒子里有红、黄、绿三种颜色的大小相等的球,其屮红球有7个,黄球有5个, 从盒屮任意拿出一个球,拿到黄球的可能性为1/3,问拿到绿球的可能性是多少:5.出租车司机李师傅有午睡的习惯,一天,他睡午觉醒来,发现手机没电,手表停了,于是他只能打开收音机等待交通电台整点报时,如果他等待报时时间不超过15分钟,则这种可能性的大小为:6.某商场为招揽顾客,推出转盘抽奖活动。
如下图所示,两个数字转盘上的指针都可以转动,且可以保证指针转到盘面上的任一数字的机会都是相等的。
顾客只要同时转动两个转盘,当盘面停下后,指针所指的数相乘为奇数即可以获得商场提供的奖品,则顾客获奖的概率是:7.一件产品要经过三道工序,每道工序的合格率分别为99. 98%、99. 95%、99. 93%, 该产品的合格率是多少:8.甲某打电话时忘记了对方的电话号码最后一位数字,但记得这个数字不是“0七甲某尝试用其他数字代替最后一位数字,恰好第二次尝试成功的概率是:9.桌子中有编号为rio的io个小球,每次从中抽出1个记下后放回,如是重复3次,则3次记下的小球编号乘积是5的倍数的概率是多少:10.根据天气预报,未来4天屮每天下雨的概率约为0.6,则未来4天屮仅有1 天下雨的概率P为:11.四海同学做对一道题的概率为80%,若在一次五题测试屮,某位同学只错一题的概率是多少:A. 20. 48%B. 40. 96%C. 81. 92%D. 80%申论讲师各五人,选出3人带班,问恰好有2个行测1个申论13. 四海有行测、申论讲师各五人,其中行测有3名男老师,2名女老师;申论 有2名男老师、3名女老师,现欲安排行测、申论老师各两人带班授课,则至少 包含一名女老师的概率为:A. 73/81B.49/100C.97/100D.207/210 14. 龙飞老师和柳岩老师比赛速吃包子,龙飞老师获胜的概率为95%,问5局3 胜制比赛,柳岩老师获胜的概率是:15. 势均力敌的甲乙参加象棋比赛,七局四胜制,前4局战成2:2平局,则乙最 终获胜的概率为:12.四海有行测、老师的概率:。
《概率论》作业题
《概率论》作业题一、填空题。
1.集合{}1,2A =,{}3,4B =,分别在A 和B 中任取一个数记为x 和y ,组成点(,)x y 。
写出基本事件空间 .2.一超市在正常营业的情况下,某一天内接待顾客的人数。
则此随机试验的样本空间为 .3.同时投掷三颗骰子,记录三颗骰子点数之和。
此随机试验的样本空间为 .4.记录电话交换台1分钟内接到的呼唤次数。
此随机试验的基本事件空间为 .5.设A ,B ,C 是三个事件,用A ,B ,C 的运算关系将A ,B ,C 恰有一个发生可表示为 .A ,B ,C 至多发生两个可表示为 . A ,B ,C 至少发生两个可表示为 . 6. 设()0.4P A =,()0.7P A B +=,那么(1)若, A B 互斥,则()P B = .(2) 若, A B 相互独立,则()P B = . 7.设A ,B 是两个事件,其中()0.5P A =,()0.6P B =,()0.8P B A =,则()P A B += .8.设()0.4P A =,()0.3P B =,()0.6P A B +=,那么,()P AB = .9.一射击运动员对一个目标独立的进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为 .10. 设随机变量2~(32)X N ,,(1)0.8413Φ=,则{15}P X <<= . 11. 设随机变量2~(,)X N μσ,(3)0.0013Φ-=,则{33}P X μσμσ-<<+= .12.设随机变量X 的概率分布为:()1,(1,2,,)3k P X k k ===L ,则(12)P X -<≤= .(3)P X >= .13.设随机变量~(1,6)K U ,则方程210x Kx ++=有实根的概率为 .设随机变量~[24]KU -,,则方程22230x Kx K +++=无实根的概率为 .14. 设随机变量X 的密度函数为(0,2)()0axx f x ∈⎧=⎨⎩其它,则常数a = ,{24}P X <<= 。
概率论作业习题及答案
1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则 (1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω(2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”. 解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω}.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯= (2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率.解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率.解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++=)7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率.解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P 故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作出正确决策的概率. 解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++=901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布.解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X 的概率分布为四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈ 设随机变量X 的概率分布为 2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x+可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数. (2)设211)(xx F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形.解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度. 解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F ξP(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数. 解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率. 解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰ee dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-e X P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f yyY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X 落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有 ⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx2713)322(92922132102=-++=x x x x .9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY 求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意YX ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyXY ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki i n i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p Ck P k n n k i n n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z四、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ 从而有)3,2,1( =i i η的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321ηηη=Z .从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为于是有3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为于是有4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.09.04091.0)(22=-=-=EX EX DX565.03191.0≈==DX X σ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX ni i ni i ni i 1)1()1()(211111=-='-='===∑∑∑==-=- 2X 的分布为p pp p q q p q p q q p pqi EX ni i n i i ni i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑===- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx xx dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-122112221211)()(ππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY 2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---eee EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x 0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),( 010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--=于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理三、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,。
概率论与数理统计作业与解答
概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。
人教A版高中数学必修二 第十章概率复习课 作业(含答案)
人教A版高中数学必修二第十章概率复习课作业11.任意抛两枚一元硬币,记事件A=“恰好一枚正面朝上”;B=“恰好两枚正面朝上”;C=“恰好两枚正面朝下”;D=“至少一枚正面朝上”;E=“至多一枚正面朝上”,则下列事件为对立事件的是()A.A与BB.C与DC.B与CD.C与E2.某人忘了电话号码的最后一个数字,因而他随意拨号,假设拨过的号码不再重复,若用A i=“第i次拨号接通电话”,i=1,2,3.则事件第3次拨号才接通电话可表示为,拨号不超过3次而接通电话可表示为.3.甲、乙、丙三人参加某电视台的一档节目,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是.4.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是16,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=()A.12B.13C.23D.565.某医院一天要派出医生下乡义诊,派出的医生人数及其概率如下表所示:人数012345人及5人以上概率0.10.160.30.20.20.04(1)求派出医生至多2人的概率;(2)求派出医生至少2人的概率.答案:A中,A与B不能同时发生,但能同时不发生,是互斥但不对立事件,故A错误;在B中,C 与D不能同时发生,也不能同时不发生,是对立事件,故B正确;在C中,B与C不能同时发生,但能同时不发生,是互斥但不对立事件,故C错误;在D中,C与E能同时发生,不是互斥事件,故D错误.A3A1∪ 1A2∪ 1 2A3,共有三种情况,甲C,乙A,丙B;(2)甲A,乙B,丙C;(3)甲A,乙C,丙B.可见,取得礼物B可能性最大的是丙.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是16,∴P(A)=36 12,P(B)=36 12,P(AB)=26 13,P(A∪B)=P(A)+P(B)-P(AB)=12 12 13 23.故选C.“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F 彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.方法二“派出医生至少2人”的概率为1-P(A∪B)=1-0.1-0.16=0.74.人教A版高中数学必修二第十章概率复习课作业21.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.162.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于()A.12B.23C.35D.253.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(—表示一根阳线,——表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为()A.18B.14C.38D.124.种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为()A.pqB.p+qC.p+q-pqD.p+q-2pq5.在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条道路上匀速行驶,则三处都不停车的概率为()A.21192B.25192C.35192D.355766.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗卫星预报准确的概率是.7.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是.8.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率.(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.9.甲、乙二人进行一次围棋比赛,一共赛5局,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.答案:1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的有(1,3),(2,4),故所求概率是26 13.,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含2个基本事件,故所求概率为25.,基本事件总数n=8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m=3,∴所求概率为P=38.故选C.p(1-q)+(1-p)q=p+q-2pq.,每个交通灯开放绿灯的概率分别为512,712,34.在这条道路上匀速行驶,则三处都不停车的概率为512 712 34 35192.902甲、乙、丙预报准确依次记为事件A,B,C,不准确记为事件 , , ,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P( )=0.2,P( )=0.3,P( )=0.1,至少两颗预报准确的事件有AB ,A C, BC,ABC,这四个事件两两互斥.∴至少两颗卫星预报准确的概率为P=P(AB )+P(A C)+P( BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.7.,甲、乙、丙出的方法种数都有2种,所以总共有8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为28 14.甲校2名男教师分别用A,B表示,1名女教师用C表示;乙校1名男教师用D表示,2名女教师分别用E,F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=49.(2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出2名教师来自同一所学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,所以选出的2名教师来自同一所学校的概率为P=615 25.A i表示事件“第i局甲获胜”,i=3,4,5,B j表示事件“第j局乙获胜”,j=3,4,5.(1)记A表示事件“再赛2局结束比赛”.A=(A3A4)∪(B3B4).由于各局比赛结果相互独立,故P(A)=P((A3A4)∪(B3B4))=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(2)记事件B表示“甲获得这次比赛的胜利”.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=(A3A4)∪(B3A4A5)∪(A3B4A5),由于各局比赛结果相互独立,故P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.64 8.。
概率统计作业题
《概率统计》习题(一)一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率统计作业
1.6 已知 N 件产品中有 M 件是不合格品,今从中随机地抽取 n 件.试求,(1) n 件中恰有 k 件不合格品的概 率;(2) n 件中至少有一件不合格品的概率.假定 k ≤ M 且 n − k ≤ N − M . 1.10 在长度为 T 的时间段内,有两个长短不等的信号随机地进入接收机.长信号持续时间为 t1 (≤ T ) ,短
2.18
已知随机变量 X , Y 的联合概率函数如下.当 α , β 取何值时 X 与 Y 相互独立?
X Y
1 2
1 1/6 1/3
2 1/9
α
3 1/18
β
2.15 两名水平相当的棋手奕棋三盘.设 X 表示某名棋手获胜的盘数, Y 表示他输赢盘数之差的绝对值. 假定没有和棋,且每盘结果是相互独立的.试求(1) X 与 Y 的联合概率函数;(2) X , Y 的边缘概率函数.
3.2
设 F ( x) 是分布函数.验证 F 2 ( x) 满足定理 3.1 的 4 条特征性质,从而证明 F 2 ( x) 必定是某个随机变量的
分布函数.
3.5
Y 表示对 X 作三次独立重复观测中事件 { X < 2} 出现的次 设随机变量 X 服从区间(—1,4)上的均匀分布.
1.26 甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是 0.2.飞机被击中 1 弹而坠毁的概率为 0.1,被击中 2 弹而坠毁的概率为 0.5,被击中 3 弹必定坠毁.(1)试求飞机坠毁的概 率;(2)已知飞机坠毁,试求它在坠毁前只有命中 1 弹的概率.
1.24
某厂生产的钢琴中有 70%可以直接出厂,剩下的钢琴经调试后,其中 80%可以出厂,20%被定为不 1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
概率论课本作业第一章
第一章1、一般事件(复合事件):由不止一个样本点做成的事件。
以下哪些试验是随机试验。
(1)抛掷一枚硬币,观察出现的是正面在上还是反面在上;(2)记录某电话传呼台在一分钟内接到的呼叫次数;(3)从一大批元件中任意取出一个,测试它的寿命;(4)观察一桶汽油遇到明火时的情形;(5)记录一门炮向某一目标射击的弹着点位置。
:(1)(2)(3)(5)是随机试验,(4)不是随机试验。
2、写出下列随机试验的样本空间。
(1)抛掷一颗骰子,观察出现的点数;(2)抛掷二次硬币,观察出现的结果;(3)记录某汽车站在5分钟内到达的乘客数;(4)从一批灯泡中任取一只,测试其寿命;(5)记录一门炮向其目标射击的弹落点;(6)观察一次地震的震源;:(1){1,2,3,4,5};(2){(正,正),(正,反),(反,正),(反,反)};(3){0,1,2,3,4...}(4),其中x表示灯泡的寿命;(5),其中x、y分别表示弹着点的横坐标、纵坐标;(6),其中x、y、z分别表示震源的经度、纬度、离地面的深度。
3、抛掷一个骰子,观察出现的点数。
用A表示“出现的点数为奇数”,B表示“出现的点数大于4”,C表示“出现的点数为3”,D表示“出现的点数大于6”,E表示“出现的点数不为负数”,(1)写出实验的样本空间;(2)用样本点表示事件A、B、C、D、E;(3)指出事件A、B、C、D、E何为基本事件,何为必然事件,何为不可能事件。
:(1){1,2,3,4};(2){1,3,5},{5,6},{3},,{1,2,3,4,5,6};(3)C为基本事件,E为必然事件,D为不可能事件。
1.先抛掷一枚硬币,若出现正面(记为Z),则再掷一颗骰子,试验停止;若出现反面(记为F),则再抛一次硬币,试验停止,请写出样本空间。
1.答案:2.10个产品,其中2个次品,现从中任取3个产品,用A表示“取到的3个中恰有一个次品”,B表示“取到的3个中没有次品”,C表示“取到的3个都是次品”,D表示“取到的3个中次品数小于3”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012级会计学班作业《概率论与数理统计》1.03随机安排甲、乙、丙三人在星期一到星期三各学习一天,求:(1)恰好有一人在星期一学习的概率;(2)三人学习日期不相重的概率。
解:(1)设事件A 表示“恰好有一人在星期一学习”。
由题意知:安排甲、乙、丙三人在星期一到星期三各学习一天有n=33种方法;安排“恰好有一人在星期一学习”有m=223⨯种方法。
所以:94323)(32=⨯==n mA P(2)设事件A 表示“三人学习日期不相同”,安排三人在不相同日期学习有m=3⨯2⨯1种方法。
所以:9236)(3===n mA P1.08某单位同时装有两种报警系统A 与B ,当报警系统A 单独使用时,其有效的概率为0.70,当报警系统B 单独使用时,其有效的概率为0.80,在报警系统A 有效的条件下,报警系统B 有效的概率为0.84.若发生意外时,求:(1)两种报警系统都失灵的概率;(2)在报警系统B 有效的条件下,报警系统A 有效的概率;(3)两种报警系统中至少有一种报警系统有效的概率;(4)两种报警系统都失灵的概率。
解:设事件A 表示报警A 有效,事情B 表示报警B 有效,由题意得概率: P (A )=0.7 P (B )=0.8 P (B |A )=0.84(1) P (AB )=P(A)*P (B |A )=0.7*0.84=0.588(2) 所求在报警系统B 有效的条件下,报警系统A 有效的概率P (A |B ),根据乘法公式:P (A )P (B |A )= P (B )P (A |B )P (A |B )= P (A )P (B |A )/ P (B )=(0.7*0.84)/0.8=0.735(3)两种报警系统中至少有一种报警系统有效,意味着报警系统A 有效或报警系统B 有效,即事件A 发生或事件B 发生,可用和事件A+B 表示,由题意得概率:P(A+B)=P(A)+P(B)-P(AB)= 0.7+0.8-0.588=0.912(4)两种报警系统都失灵,意味着报警系统A 失灵且报警系统B 也失灵,即事件A 不发生且事件B 不发生,可用积事件P (B A )=1-P (A+B )=1-0.912 = 0.0881.09 口袋里装6个黑球和3个白球,每次任取1个球,不放回去两次,求:(1)第一次取到黑球且第二次取到白球的概率;(2)两次取到球的颜色一致的概率。
解:设事件A 表示第一次取到黑球,事件B 表示第二次渠道白球。
(1) 第一次渠道黑球且第二次取到白球,即第一次是A ,第二次取到白球B 发生,两次可用积事件AB 表示:P (AB )=P (A )P (B|A )=418396=⨯(2)P (B A B A +),由于积事件B A 和B A 互斥,则P (B A B A +)=P (B A )+P (B A )=P (A )P (B |A )+ P (A )P (B|A ) =2112612112582938596==+=⨯+⨯1.10 在一批产品中有80%是合格品,验收这批产品时规定,先从中任取1个产品,若它为合格品就放回去,然后在任取1个产品,若仍为合格品,则接收这批产品,否则拒收。
求:(1)检验第一个产品为合格品且检验第二个产品为次品的概率;(2)这批产品被拒收的概率。
解:设事件A 表示第一次产品为合格品,事件B 表示第二次产品为次品,由题意得:P(A)=80% P(B)=20%(1) 第一次产品为合格品即是A ,第二次取产品为次品B ,两次可用积事件AB 表示:P(AB)=80%*20%=0.16(2) 这批产品被拒收,则说明第一次与第二次均取得次品,第一次抽到次产品B ,第二次抽到此产品为积事件AB ,即事件可用和事件B+AB 表示,由题意得:P (B+AB )=0.2+0.16=0.361.11 甲、乙两厂互相独立生产同一种产品,甲厂产品次品率为0.2,乙厂产品的次品率为0.1,从甲、乙两厂生产的这种产品中各任取1个产品,求:(1)这2个产品中恰好有1个正品的概率;(2)这2个产品中至少有1个正品的概率。
解:设事件A 表示甲厂产品的次品,事件B 表示乙产品次品,由题意得到概率: P (A )=0.2 P(B)=0.1(1) 这2个产品中恰好有1个正品的概率,可用和事件B A B A +表示,且积事件BA 与B A 互斥,由于甲、乙两厂相互独立生产同一种产品,说明事件A 与B 相互独立,因而A 与B 也相互独立,事件A 与B 也相互独立,由题意得概率:P (B A B A +)=P (B A )+P (B A )=P (A )P (B |A )+ P (A )P (B |A )=0.8×0.1+0.2×0.9 = 0.08+0.18=0.26(2)甲、乙两厂中至少有1个正品,可用和事件B A +表示,由于甲、乙两厂相互独立生产,说明事件A 与B 相互独立,因而A 与B 也相互独立,又题意得:P (B A +)= P (A )+ P (B )—P (B A )=0.8+0.9—0.8×0.9=0.981.14 市场上供应的某种商品由甲厂、乙厂及丙厂生产,甲厂甲占50%,乙厂占用30%,丙厂占20%,甲厂产品的正品率为88%,乙厂产品的正品率为70%,丙厂产品的正品率为75%,求:(1) 从市场上任买1件这种商品是正品的概率;(2) 从市场上已买1件正品是甲厂生产的概率。
解:设事件A 1表示甲厂生产的商品,事件A 2表示乙厂生产的商品,事件A 3表示丙厂生产的商品,事件B 表示正品商品。
由题意得到概率P (A 1)=50% P (A 2)=30% P (A 3)=20%P(B︱A1)=88% P(B︱A1)=70% P(B︱A1)=75%(1)从市场上任买1件这种商品是正品的概率,由于事件A1,A2,A3构成一个完备事件组,从而对于事件B,有关系式B= A1B+ A2B+ A3B,即事件B发生意味着积事件A1B发生或积事件A2B发生或积事件A3B发生,于是事件B当然等于积事件A1B,A2B,A3B的和事件,根据全概公式,得到概率:P(B)= P(A1B)+ P(A2B)+ P(A3B)= P(A1)* P(B︱A1)+ P(A2)* P(B︱A1)+P(A3)* P(B︱A1)=(50%*88%)+(30%*70%)+(20%*75%)=0.44+0.21+0.15=0.8(3)从市场上已买1件正品是甲厂生产的概率,根据§1.3乘法公式:P(A1B)=P(B)P(A1︱B)得到条件概率P(A1︱B)= P(A1B)/ P(B)=(P(A1)* P(B︱A1))/ P(B)=(50%*88%)/0.8=55%1.16某种产品中有90%是合格品,用某种方法检查时,合格品被认为合格品的概率为98%,而次品被误认为合格品的概率为3%,从中任取1个产品,求它经检查被认为合格品的概率。
解:设事件A表示产品确为合格品,从而事件A表示产品确认为次品,再设事件B表示产品经检查被认为合格品,事件B当然表示产品经检查被认为次品,由题意得到概率P(A)=90% P(B︱A)=2% P(B︱A)=3%产品确为合格品经检查也被认为是合格品与产品确为次品但经检查被认为是合格两个部分,即事件B发生意味着积事件AB发生或积事件B A发生,于是事件B 当然等于积事件AB 与B A 的和事件,根据全概公式的特殊情况与§1.3加法公式的特殊情况,得到概率:P (B )=P(AB+B A )=P(AB)+P(B A )=P(A)(1- P (B ︱A ))+(1- P (A )) P (B︱A ) =90%*(1-2%)+(1-90%)*3%=88.5%2.02汽车从出发点至终点,沿路直行经过3个十字路口,每个十字路口都设有红绿交通信号灯,每盏红绿交通信号灯相互独立,皆以2/3的概率允许汽车往前通行,以1/3的概率禁止汽车往前通行,求汽车停止前进时所通过的红绿交通信号灯盏数X 的概率分布。
解:X 取值0表示没通过一个路口, X 取值1表示通过了一个路口… 所以X 取值0,1,2,3. 设A i ={第i 个路口遇红灯}, i =1,2,3(1) 一个路口也没通过的概率:P (X =0)=P (A 1)=1/3(2) 通过一个路口的概率P (X =1)=P (21A A ) 923132=⋅=(3) 通过两个路口的概率P (X =2)=P (321A A A )274313232=⋅⋅=(4) 通过三个路口的概率P (X =3)=P (321A A A )=278323232=⋅⋅=(5) 2.04题 设随机变量概率分布求(1)c 的值,(2)P { X ≥2 }解:(1)因为p 1+p 2…+ p n + …=1 . 则c +2c +4c =1,所以c =1/7,概率分布表为(2) P { X ≥ 2}表示随机变量取值大于等于2的概率P { X ≥2 }=P { X=2 }+P { X=3 }=2/7+4/7=6/72.05题. 某菜市场零售某种蔬菜,进货第一天售出概率为0.7,每斤售价为10元; 第二天售出概率为0.2,每斤售价为8元;第二天 售出概率为0.1,每斤售价为4元;;次品占1/6,每次件亏损2元. 求:每斤售价的数学期望E (X )与方差D (X ).解:随机变量X 的所有可能取值为10, 8, 4. 取这些数字的概率分别为0.7, 0.2, 0.1 .概率分布为:数学期望E(X):方差D (X ):4.841.042.087.010)(2222=⨯+⨯+⨯=X E 又 4.3814.84))(()()(22=-=-=∴X E X E X D2.06 已知离散型随机变量X 的概率分布列表如表:试求:(1)数学期望E(X);(2) 方差D (X )。
解:(1) 75.125.*325.0*25.0*1)(=++=X E(2)75.325.0325.0*25.01)(2222=⨯++⨯=X E 6875.075.175.3))(()()(222=-=-=X E X E X D。