人教版八年级数学下册:期末测试卷(一)
2020人教版八年级下册数学《期末检测试卷》(附答案解析)
人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。
新部编人教版八年级数学下册期末考试卷及参考答案
新部编人教版八年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、C8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、22()1y x =-+3、2x (x ﹣1)(x ﹣2).4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)3.5、24°.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
【人教版】八年级下册数学《期末考试试题》附答案解析
人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共计30分)1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠.B. m 1=.C. m 1≥D. m 0≠. 2.下列各曲线中,不表示...y 是x 的函数是( ). A.B. C. D. 3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25B. 3,2,5C. 2,5,6D. 13,14,154.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A . m≥1 B. m≤1 C. m >1 D. m <15.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等矩形是正方形8.一个三角形两边长分别为2和6,第三边长是方程28150x x -+=的根,则这个三角形的周长为( )A. 11B. 12C. 13D. 11或139.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 为CD 的中点,连接OE ,若4AB =,60BAD ∠=︒,则OCE △的面积是( )A. 4B. 23C. 2D. 3 10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.其中说法正确的是( )A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A 的坐标为(38,1400)D. 线段AB 所表示的函数表达式为40(4060)y t t =剟 二、填空题(每小题3分,共计30分) 11.在函数21x y x -=-中,自变量x 的取值范围是________. 12.在Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边AC 的长为_____. 13.若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为_____________.14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)16.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.18.如图,平面直角坐标系中,ACOD Y 的顶点O ,A ,C 的坐标分别是(0,0),(4,0),(1,2),则直线AD 的解析式为____________.19.已知CD 是△ABC 的边AB 上的高,若CD=3,AD=1,AB=2AC ,则BC 的长为_____.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.解方程:4(2)25x x +=22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB 为一边的矩形ABCD ,点C ,D 都在小正方形的顶点上,且矩形ABCD 的周长为65;(2)在方格纸中画出以EF 为边的菱形EFGH ,点G ,H 都在小正方形的顶点上,且菱形EFGH 的面积为4;连接CH ,请直接写出CH 的长.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA x P 轴,AC 是射线.(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且10BP DE =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值.答案与解析一、选择题(每小题3分,共计30分)1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠.B. m 1=.C. m 1≥D. m 0≠.【答案】A【解析】【分析】 根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.下列各曲线中,不表示...y 是x 的函数是( ). A. B. C. D.【答案】D【解析】【分析】函数有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,结合选项即可作出判断.【详解】解:A 、B 、C 选项中对于x 的每一个确定的值,y 都有唯一的值与其对应,符合函数的定义, 只有D 选项对于x 的每一个确定的值,可能会有两个y 与之对应,不符合函数的定义,故选:D .【点睛】本题考查了函数的定义,注意掌握在函数变化的过程中,对于x 的每一个确定的值,y 都有唯一的值与其对应.3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25 325 C. 2,5,6 D. 13,14,15【答案】A【解析】【分析】根据勾股定理的逆定理依次判断各选项即可.【详解】A 、2227+24=25,则能作为直角三角形的三边长,故A 选项正确;B 、()()2223+25≠,则不能作为直角三角形的三边长,故B 选项错误; C 、2222+56≠,则不能作为直角三角形的三边长,故C 选项错误;D 、22213+1415≠,则不能作为直角三角形的三边长,故D 选项错误;故选A .【点睛】本题是对勾股定理的逆定理知识的考查,熟练掌握勾股定理是解决本题的关键.4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A. m≥1B. m≤1C. m >1D. m <1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺【答案】C【解析】【分析】 首先设AC=x ,然后根据勾股定理列出方程,求解即可.【详解】设AC=x ,∵AC+AB=10,∴AB=10﹣x .∵在Rt △ABC 中,∠ACB=90°,∴AC 2+BC 2=AB 2,即x 2+32=(10﹣x )2.解得:x =4.55,即AC=4.55.故选:C .【点睛】本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图. 6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限【答案】D【解析】【分析】根据一次函数的一次项系数小于0,则函数一定过二、四象限,常数项-2<0,则一定与y 轴负半轴相交,据此即可判断.【详解】一次函数42y x =--的一次项系数为-4,∵-4<0,∴函数一定过二、四象限,∵常数项-2<0,∴函数与y 轴负半轴相交,∴一次函数42y x =--的图象经过第二、三、四象限,故选D.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数图像和解析式之间的关系是解决本题的关键. 7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A 、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A 选项错误;B 、对角线互相垂直的四边形也可能是一般四边形,故B 选项错误;C 、对角线相等的四边形有可能是等腰梯形,故C 选项错误.D 、一组邻边相等的矩形是正方形,故D 选项正确.故选D .【点睛】本题考查特殊平行四边形的判定,需熟练掌握各特殊四边形的特点.8.一个三角形的两边长分别为2和6,第三边长是方程28150x x -+=的根,则这个三角形的周长为()A. 11B. 12C. 13D. 11或13【答案】C 【解析】【分析】先解方程求出第三边,再根据三角形三边关系确定第三边,然后求出周长即可.【详解】解:28150x x -+=()()350x x --=123,5x x ==,∵2+3<6,则x=3舍去,∵2+5>6,则x=5成立,则周长为2+5+6=13,故选C.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法和三角形的三边关系是解决本题的关键.9.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若4AB=,60BAD∠=︒,则OCE△的面积是()A. 4B. 23C. 2D. 3【答案】D【解析】【分析】由已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.【详解】解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵∠BAD=60°,∴DH=4323 =∴S菱形ABCD=42383⨯=∴S△CDA=12S菱形ABCD=183432⨯=∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=14S△CDA=14334⨯=故选:D.【点睛】本题考查了菱形的性质、三角形中位线的判断和性质、相似三角形的判断和性质,能够证明OE为△ADC的中位线进而证明△CEO∽△CDA是解题的关键.10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.其中说法正确的是()A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A的坐标为(38,1400)D. 线段AB所表示的函数表达式为剟y t t40(4060)【答案】D【解析】【分析】根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B 两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【详解】解:A、根据图象信息,甲的速度为2400÷60=40米/分钟,故A选项错误;B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100-40=60米/分钟,B选项错误;C、乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A 点的坐标为(40,1600),故C 选项错误;D 、设线段AB 所表示的函数表达式为y=kt+b ,∵A (40,1600),B (60,2400),∴160040240060k b k b =+⎧⎨=+⎩, 解得:400k b =⎧⎨=⎩, ∴线段AB 所表示的函数表达式为40(4060)y t t =剟,故D 选项正确; 故选D.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,读懂题目信息,从图象中获取有关信息是解题的关键.二、填空题(每小题3分,共计30分)11.在函数21x y x -=-中,自变量x 的取值范围是________. 【答案】1x ≠【解析】【分析】 在函数21x y x -=-中分母不为0,则x-1≠0,解出x 的取值范围即可. 【详解】在函数21x y x -=-中分母不为0, 则x-1≠0,即x≠1,故答案为:1x ≠.【点睛】本题是对分式有意义的考查,熟练掌握分母不为0是解决本题的关键.12.在Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边AC 的长为_____.【解析】【分析】由在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,利用勾股定理,即可求得AC 的长;【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2×2=4 ∴AC=22213-=【点睛】本题主要考查了应用勾股定理解直角三角形,解题的关键在于用在直角三角形中30°所对的边是斜边的一半.13.若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为_____________.【答案】3x >【解析】【分析】函数y kx b =+的图象过(0,3),由函数表达式可得,0kx b +<,就是一次函数值y <0,结合图像即可得出答案.【详解】解:由图知,3x >时,y <0,即0kx b +<,则关于x 的不等式0kx b +<的解集为3x >,故答案为:3x >.【点睛】本题是对一次函数图像的考查,熟练掌握一次函数图像知识和不等式知识是解决本题的关键. 14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)【答案】真【解析】【分析】首先分清题设是:两个三角形全等,结论是:对应边相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】“全等三角形的对应边相等”的题设是:两个三角形全等,结论是:对应边相等,因而逆命题是:对应边相等的三角形全等.是一个真命题.故答案是:真【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)【答案】>【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】解:∵一次函数61y x =-+中k=-6<0,∴y 随x 的增大而减小,∵12x x <,∴12y y >,故答案为:>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.16.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.【答案】6.【解析】试题分析:设应邀请x 个队参加比赛,由题意则有:x(x-1)=15,解得x=6或x=-5(不合题意,舍去),故应邀请6个队参加比赛.考点:一元二次方程的应用.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.【答案】64【解析】【分析】根据三角形中位线定理得到EF∥AD,得到∠CEF=∠CAD,根据直角三角形的性质得到EA=EB,得到∠EAB=∠EBA,根据角平分线的定义、直角三角形的性质计算即可.【详解】解:∵点E,F分别为AC,CD 的中点,∴EF∥AD,∴∠CEF=∠CAD,∵∠ABC=90°,点E为AC的中点,∴EA=EB,∴∠EAB=∠EBA,∴∠CEB=2∠EAB,∵AC平分∠BAD,∴∠CAD=∠EAB,∴3∠DAC=78°,解得,∠DAC=26°,∵∠ACD=90°,∴∠D=90°-26°=64°,故答案为:64.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.Y的顶点O,A,C的坐标分别是(0,0),(4,0),(1,2),则直线AD的18.如图,平面直角坐标系中,ACOD解析式为____________.【答案】28y x =-【解析】【分析】先根据平行四边形的性质求出点D 坐标,再求出AD 解析式即可.【详解】∵四边形ACOD 是平行四边形,∴OC=AD ,OC ∥AD ,∵O(0,0),A(4,0),C(1,2),∴D 点坐标为(3,2)-,设AD 解析式为k y x b =+,把A(4,0),D(3,2)-代入k y x b =+中,0423k b k b=+⎧⎨-=+⎩, 解得:28k b =⎧⎨=-⎩, ∴28y x =-,故答案为:28y x =-.【点睛】本题是对平行四边形和一次函数知识的考查,熟练掌握平行四边形知识和一次函数解析式是解决本题的关键.19.已知CD 是△ABC 的边AB 上的高,若3AD=1,AB=2AC ,则BC 的长为_____. 【答案】327【解析】【分析】分两种情况:△ABC 是锐角三角形,△ABC 是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC 和BC 即可.【详解】分两种情况:①当ABC V 是锐角三角形,如图1,∵CD ⊥AB ,∴∠CDA=90°, ∵CD=3,AD=1,∴AC=2,∵AB=2AC ,∴AB=4, ∴BD=4-1=3,∴BC 2222CD BD 3(3)23+=+=;②当ABC V 是钝角三角形,如图2,同理得:AC=2,AB=4,∴2222CD BD (3)527+=+=综上所述,BC 的长为327故答案327【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.【答案】152【解析】【分析】过点F 作FH ∥BC 交CE 于点H ,设AF=a ,易证△AGF ∽△DGE ,从而可知21a ED a =+,根据勾股定理可求266a a EH +=,根据图中的等量关系列出方程可求出a 的值,从而可求出CE 的长度. 【详解】解:过点F 作FH ∥BC 交CE 于点H ,设AF=a ,∴CD=AB=a+3,∴AG=AD-GD=a+1,∵AF ∥CE ,∴△AGF ∽△DGE , ∴AF ED AG GD=, ∴21a ED a =+, 在Rt △EFH 中,由勾股定理可知:222EF EH FH =+,∴()()22233EH EH a +=++, ∴266a a EH +=, ∵21a EH ED DH a a =+=++, ∴26261a a a a a +=++, 解得::a=3或a=-4(舍去), ∴215312a CE ED CD a a =+=++=+,故答案为:152.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定以及勾股定理,本题属于中等题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.解方程:4(2)25x x += 【答案】12229229x x -+--== 【解析】【分析】 先将方程化为一般式,根据求根公式,解出方程即可.【详解】解:方程化为248250x x +-=4a =,8b =,25c =-224844(25)4640b ac ∆=-=-⨯⨯-=>方程有两个不等的实数根2484648429229b b ac x -±--±-±-±====即1222922922x x -+--==. 【点睛】本题是对一元二次方程的考查,熟练掌握公式法解一元二次方程是解决本题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的矩形ABCD,点C,D都在小正方形的顶点上,且矩形ABCD的周长为65;(2)在方格纸中画出以EF为边的菱形EFGH,点G,H都在小正方形的顶点上,且菱形EFGH的面积为4;连接CH,请直接写出CH的长.【答案】(1)详见解析;(2)详见解析,22CH=【解析】【分析】(1)作出长,宽分别为25,5的矩形即可;(2)作出对角线分别为2,4的菱形即可.【详解】解:(1)22AB=+=,125÷-=,652525则作出长,宽分别为25,5的矩形如图所示;(2)如图,菱形EFGH即为所求,222222CH=+=【点睛】本题考查作图,勾股定理,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BAP轴,AC是射线.是线段,且BA x(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?【答案】(1)330y x =-;(2)6月份上网32个小时【解析】【分析】(1)设函数解析式为y=kx+b ,把A 、C 两点坐标代入列出方程组,解方程组即可;(2)求y=66时x 的值即可.【详解】解:(1)当30x ≥时,设函数关系式为y kx b =+,则30604090k b k b +=⎧⎨+=⎩, 解得330k b =⎧⎨=-⎩, 所以330y x =-;(2)当66y =时,66330x =-,解得32x =,所以6月份上网32个小时.【点睛】此题考查一次函数的应用,解题的关键是熟练掌握待定系数法确定函数解析式,属于中考常考题型.24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.【答案】(1)详见解析;(2)85AG =【解析】【分析】(1)由折叠得:∠C=∠DFE=90°,EC=EF ,DC=DF ,根据矩形的性质,可以证出FGH BEH △≌△,得到FH BH =,FG BE =,利用等量代换可得结论;(2)设AG=m ,表示出FG ,在Rt ADG V 中,由勾股定理可求出AG 的长.【详解】(1)证明:∵四边形ABCD 为矩形,∴90B C ∠=∠=︒,∵CDE △与FDE V 关于DE 对称,∴CDE FDE △≌△,∴90DFE C ∠=∠=︒,EF EC =, DF DC =,在FGH V 和BEH △中 F B FHG BHE GH EH ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FGH BEH △≌△,∴FH BH =,FG BE =,∴FH EH BH GH +=+,即BG EF =,∴BG CE =;(2)∵四边形ABCD 为矩形,∴90A ∠=︒,3BC AD ==,4DF CD AB ===,令AG m =,则4CE BG m ==-,∴3(4)1FG BE m m ==--=-,4(1)5DG m m =--=-,在Rt ADG V 中,∵90A ∠=︒,∴222AD AG DG +=,∴2223(5)m m +=-,解得85m =, ∴85AG =. 【点睛】考查矩形的性质、轴对称的性质、三角形全等的性质和判定以及直角三角形的勾股定理等性质,合理地转化到一个三角形中是解决问题常用的方法.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)2017年该地投入异地安置资金为18000000元;(2)2017年该地至少有1650户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据2016年投入资金给×(1+增长率)2=2018年投入资金,列出方程,即可求得x 的值,从而可以求得2017年该地投入异地安置资金的数额;(2)设今年该地有y 户享受到优先搬迁租房奖励,根据前1000户获得的奖励总数+1000户以后获得的奖励总和不低于2017年该地投入异地安置资金的25%,可以列出相应的不等式,从而可以解答本题.【详解】解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21200(1)12001500x +=+,解得120.550%, 2.5x x ===-(舍),∴12000000(150%)18000000⨯+=(元),则2017年该地投入异地安置资金为18000000元;(2)设2017年该地有y 户享受到优先搬迁租房奖励,根据题意得81000400540(1000)1800000025%y ⨯⨯+⨯-≥⨯,解得1650y ≥,∴2017年该地至少有1650户享受到优先搬迁租房奖励,则2017年该地至少有1650户享受到优先搬迁租房奖励.【点睛】本题考查一元二次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,这是一道典型的增长率问题.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且10BP =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.【答案】(1)45°;(2)详见解析;(3)25MN =【解析】【分析】(1)令EBC α∠=,由矩形的性质可得902DCE BCE BCD α∠=∠-∠=︒-,由三角形外角性质和角平分线的性质可得1452FCE DCE α∠=∠=︒-,从而求出∠BFC 的大小; (2)过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,先证明BR BT =,再证NBR CBT △≌△,从而证明BN AD =;(3)延长CF 交AE 于点L ,先证明MEF CEF △≌△,得到EM EC BC ==,再证Rt AHB Rt DLC △≌△,得AH DL =,根据MCG △的周长与BPH V 的周长的差为2,求出1AP MD ==,设10BP a =,则4DE a =,10CM BP a ==,在Rt CDM V中和Rt EDC V 中,根据勾股定理求出a 的值,从而求出MN 的长度.【详解】(1)解:如图,令EBC α∠=,∴四边形ABCD 是矩形ABCD ,∴90BCD ∠=︒∵BC CE =,∴BEC EBC α∠=∠=,∴1801802BCE EBC BEC α∠=︒-∠-∠=︒-,∴902DCE BCE BCD α∠=∠-∠=︒-,又∵CF 平分DCE ∠, ∴1452FCE DCE α∠=∠=︒-, ∴45BFC FCE BEC ∠=∠+∠=︒;(2)证明:如图,过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,∵四边形ABCD 是矩形,∴90ABC ∠=︒, AD BC = ,∵FN CF ⊥,∴90NFC ∠=︒,∵45BFC ∠=︒,∴45BFN BFC ∠=∠=︒ ,∴BR BT =,在四边形BTFR 中,36090909090RBT ∠=︒-︒-︒-︒=︒ ,∴90CBT CBR ∠+∠=︒,∵90NBR CBR ∠+∠=︒,∴CBT NBR ∠=∠,又∵90T BRN ∠=∠=︒,∴NBR CBT △≌△,∴BN BC AD ==;(3)解:如图,延长CF 交AE 于点L ,∵四边形ABCD 是矩形,∴AD BC ∥,AB CD =,90BAD CDA ∠=∠=︒,∴AEB EBC BEC α∠=∠=∠=,∴45EMF ECF α∠=︒-=∠,又∵EF EF =,∴MEF CEF △≌△,∴EM EC BC ==,∴四边形BCEM 是平行四边形,∴BM CE BC BN ===,∵Q 为MN 中点,∴BQ MN ⊥,∴90CFG BQM ∠=∠=︒ ,∴BH CL ∥,∴四边形BCLH 为平行四边形,∴CL BH =,∵MEG CEL ∠=∠,EM EC =,MEG CEL ∠=∠,∴MEG CEL △≌△ ,∴MG CL BH == ,LE GE =,∴ME LE EC EG -=-,∴ML CG =,又∵ME AD =,∴AM DE =,又∵PD DE =,∴AM PD =,∴AM PMPD PM -=-, ∴AP MD =,∴APB DMC △≌△,∴BP CM =,∵AB CD =,BH CL =,∴Rt AHB Rt DLC △≌△,∴AH DL =,又∵MCG △的周长与BPH V 的周长的差为2,∴()()2CM MG CG BP BH PH ++-++=,∴2CG PH -=,∴2ML PH -=,∴()22MD DL AH AP MD +--==,∴1AP MD ==, ∵104BP DE =, 设10BP a =,则4DE a =,10CM BP a ==,∴14CE ME a ==+,在Rt CDM V 中,22222(10)1CD CM DM a =-=-,在Rt EDC V 中,22222(14)(4)CD CE DE a a =-=+-,∴2222(10)1(14)(4)a a a -=+-解得11a =,215a =-(舍), ∴44DE a ==,5AD CE BC BN ====,∴223AB CD CE DE ==-=,∴2AN BN AB =-=,4AMAD MD =-=, ∴2225MN AM AN =+=.【点睛】本题是四边形综合题,考查了矩形的性质,菱形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,勾股定理等知识,求出MD 的长是本题的关键.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值. 【答案】(1)8y x =-+;(2)1816023S EG DQ t t ⎛⎫=⨯=--< ⎪⎝⎭…;(3)32 【解析】【分析】(1)先求C 的坐标,再代入解析式可求出k ;(2)根据点E 关于y 轴的对称点为点F 和EG=2FG 可以得出OG 与OE 的关系,从而得出GE 与t 的关系,再根据三角形面积公式即可算出S ;(3)令BD n =,则5CD n =,8AD n =-,在Rt ACD V 中,根据勾股定理求出n ,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R ,令BNM α∠=,则,2ENP BEF αα∠=∠=,从而证出4EG EL m ==,在Rt BOE △中,根据勾股定理求出m ,从而求出S.【详解】解:(1)当0x =时,8y =,∴(8,0)B ,∴8OB =,∵四边形ABOC 是正方形,∴8BO CO ==,∴(8,0)C ,代入解析式得088k =+,解得1k =-,∴8y x =-+;(2)如图,过点D 作DQ x ⊥轴于点Q ,∴90DQO QOB OBD ∠=∠=∠=︒,∴四边形BOQD 是矩形,∴8DQ BO ==,∵点E 与点F 关于y 轴对称,∴OF OE =,令3OE m =,∴6EF m =,∵2EG FG =, ∴243EG EF m ==, ∴OG EG OE m t =-==-,∴1184816160223S EG DQ m m t t ⎛⎫=⨯=⨯⨯==--< ⎪⎝⎭…;(3)如图,令BD n =,则5CD n =,8AD n =-, 在Rt ACD V 中,222AD AC CD +=,∴222(8)8(5)n n -+=,解得12n =,283n =-(舍), ∴2BD =,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R , 令BNM α∠=,则,2ENP BEF αα∠=∠=, ∴2EPN ENP ααα∠=-==∠,。
人教版八年级下册数学期末测试卷(模拟题)
人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为()A.8B.9.5C.10D.11.52、下列说法中正确的个数为()①如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;②对角线相等的平行四边形是菱形;③如果一个一元二次方程有实数根,那么;④三个角相等的四边形是矩形.A.1个B.2个C.3个D.4个3、一次函数y1=kx+b与y2=x+a的图象如图,则kx+b≥x+a的解集是()A.x>﹣2B.x≥﹣2C.x≤﹣2D.无法确定4、如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )A. B.2 C.3 D.55、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B.1 C. D.26、使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥17、在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)8、某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6 m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16个B.15个C.14个D.13个9、下列结论错误的是()A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直且相等的平行四边形是正方形10、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5B.6C.7D.811、如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为( )A.9.5B.10C.12.5D.2012、如图,,,则图中一共有平行四边形()A.7个B.8个C.9个D.10个13、如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH,给出下列结论:①AF⊥DE;②DG= ;③HD∥BG;④△ABG∽△DHF,其中正确的结论有()个A.1B.2C.3D.414、函数中自变量的取值范围是()A. B. C. D.15、如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论不正确的是()A.AE=BFB.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF二、填空题(共10题,共计30分)16、在中,,底边上的高为6,则底边为________.17、如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=________ .18、如图所示,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有________个平行四边形.19、在四边形ABCD中,有以下四个条件:①AB∥CD;②AD=BC;③AC=BD;④∠ADC=∠ABC.从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是________.20、如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为________.21、已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是________ 三角形.22、数据6,5,x,4,7的平均数是5,那么这组数据的方差为________;23、如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的周长为________。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
【人教版】数学八年级下册《期末检测试题》含答案
17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;
新人教版八年级数学下册期末测试卷及答案【必考题】
新人教版八年级数学下册期末测试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。
人教版数学八年级下册《期末检测题》附答案
A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:
人教版数学八年级下册期末达标测试卷 (含答案)
期末达标测试卷一、选择题(每题3分,共30分)1.函数y=xx-2的自变量x的取值范围是()A.x≥0且x≠2B.x≥0 C.x≠2D.x>2 2.下列二次根式中,最简二次根式是()A. 2B.12C.15 D.a23.下面各组数中,是勾股数的是()A.9,16,25 B.0.3,0.4,0.5 C.1,3,2 D.7,24,254.在体操比赛评分时,要去掉一个最高分和一个最低分,这样做的目的是() A.使平均数不受极端值的影响B.使众数不受极端值的影响C.使中位数不受极端值的影响D.使方差不受极端值的影响5.【2022·仙桃】下列各式计算正确的是()A.2+3= 5 B.43-33=1C.2×3= 6D.12÷2= 66.如图,平行四边形ABCD中,对角线AC、BD交于点E,点F是CD的中点,若AD=10 cm,则EF的长为()A.3 cm B.4 cm C.5 cm D.6 cm(第6题)(第7题)(第8题)(第9题) 7.赵老师是一名健步走运动的爱好者,她用微信运动记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天健步走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3C .1.4,1.35D .1.3,1.38.【教材P 43练习T 2变式】【2022·赤峰】如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .AD =CDC .四边形ABCD 的面积不变 D .AD =BC9.【直观想象】如图,一只蚂蚁绕着圆柱向上螺旋式爬行,假设蚂蚁绕圆柱外壁从点A 爬到点B ,圆周率π取近似值3,则蚂蚁爬行路线的最短路径长为( )A .6 2 cmB .6 5 cmC .213 cmD .10 cm10.【新考法题】【2022·安徽】甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是( )A .甲B .乙C .丙D .丁二、填空题(每题3分,共24分)11.计算:(-4)2=________.12.【2022·广州】在甲、乙两位射击运动员的10次考核成绩中,两人的考核成绩的平均数相同,方差分别为s 甲2=1.45,s 乙2=0.85,则考核成绩更为稳定的运动员是________(填“甲”“乙”中的一个).13.如图,直线y =x -3与直线y =mx (m ≠0)交于点P ,则关于x ,y 的二元一 次方程组⎩⎨⎧y =x -3,y =mx 的解为__________.(第13题) (第15题) (第17题) (第18题)3 14.【立德树人】【2022·青岛】小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项得分分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为________分.15.【教材P 67复习题T 5改编】【2022·黔东南州】如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD .若AC =10,则四边形OCED 的周长是________.16.已知一次函数y =(k +3)x +k -2,y 随x 的增大而增大,且图象与y 轴交于负半轴,则k 的取值范围是__________.17.【2022·江西】沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为________.18.【教材P 109复习题T 14变式】已知A 地在B 地正南方向3 km 处,甲、乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s (km)与所行时间t (h)之间的函数关系图象如图中的OC 和FD 所示.当他们行走3 h 后,他们之间的距离为________km.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.计算:(1)()32+48()18-43;(2)(2-3)2 024·(2+3)2 023-2⎪⎪⎪⎪⎪⎪-32-(-2)0.20.已知a ,b ,c 满足|a -7|+b -5+(c -42)2=0.(1)求a,b,c的值;(2)判断以a,b,c为边能否构成三角形,若能构成三角形,此三角形是什么形状?21.【2022·厦门双十中学模拟】如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.【2022·达州】“防溺水”是校园安全教育工作的重点之一,某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.根据以上信息,解答下列问题:(1)上述图表中a=________,b=________,m=________.(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可).(3)该校七、八年级共1 200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少.23.如图,在矩形ABCD中,点E,F分别在边CD,AB上,且DE=BF,∠ECA5=∠FCA.(1)求证:四边形AFCE是菱形;(2)若AB=8,BC=4,求菱形AFCE的面积.24.【2022·衡阳】冰墩墩、雪容融分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国,小雅在某网店选中两种玩偶.决定从该网店进货并销售,第一次小雅用1 400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进价分别是多少;(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍,小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润?最大利润是多少元?25.已知四边形ABCD是正方形,点F在边AB,BC上运动,DE⊥DF,且DE =DF,M为EF的中点.(1)当点F在边AB上时(如图①).①求证:点E在直线BC上;②若BF=2,则MC的长为________.(2)当点F在BC上时(如图②),求BFCM的值.7答案一、1.A 2.A 3.D 4.A 5.C 6.C 7.B8.D 9.A10.A 点拨:∵经过30 min 甲比乙步行的路程多,经过50 min 丁比丙步行的路程多,∴甲的平均速度大于乙的平均速度,丁的平均速度大于丙的平均速度.∵步行3 km 时,甲比丁用的时间少,∴甲的平均速度大于丁的平均速度.∴走得最快的是甲.二、11.4 12.乙13.⎩⎨⎧x =1y =-214.8.3 15.2016.-3<k <2 17. 5点思路:根据图形可得长方形的长等于正方形的对角线长,为2;长方形的宽等于正方形对角线长的一半,为1,然后利用勾股定理即可解决问题. 18.1.5三、19.解:(1)原式=(32+43)(32-43)=(32)2-(43)2=18-48=-30;(2)原式=[(2-3)(2+3)]2 023·(2-3)-3-1=2-3-3-1=1-2 3.20.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -42)2=0,∴|a -7|=0,b -5=0,(c -42)2=0,解得a =7,b =5,c =4 2.(2)∵a =7,b =5,c =42,∴a +b =7+5>4 2.∴以a ,b ,c 为边能构成三角形.∵a 2+b 2=(7)2+52=32=(42)2=c 2,∴此三角形是直角三角形.9 21.解:(1)把A (-2,-1),B (1,3)两点的坐标分别代入y =kx +b ,得⎩⎨⎧-2k +b =-1,k +b =3,解得⎩⎪⎨⎪⎧k =43,b =53.∴该一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53, ∴点D 的坐标为⎝ ⎛⎭⎪⎫0,53. ∴S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.22.解:(1)30;96;93(2)八年级学生掌握防溺水安全知识较好.理由:虽然七、八年级的平均分均为92,但八年级的众数高于七年级.(合理即可)(3)1 200×6+10×30%20=540(人). 答:估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人.23.(1)证明:∵四边形ABCD 是矩形,∴CD ∥AB ,CD =AB .∵DE =BF ,∴EC =AF .又∵EC ∥AF ,∴四边形AFCE 是平行四边形.∵CD ∥AB ,∴∠ECA =∠F AC .∵∠ECA =∠FCA ,∴∠F AC =∠FCA ,∴F A =FC . ∴平行四边形AFCE 是菱形.(2)解:设FB =x ,则AF =CF =8-x .在Rt △BCF 中,42+x 2=(8-x )2,解得x =3.∴菱形的边长AF =8-3=5.∴菱形AFCE 的面积为5×4=20.点要点:矩形与菱形的区别:1.矩形和菱形都是建立在平行四边形的基础上,矩形是附加一直角,而菱形是附加一组邻边相等;2.矩形的两条对角线把矩形分割成四个面积相等的等腰三角形,而菱形的两条对角线把菱形分割成四个全等的直角三角形;3.矩形的对称轴是两条过两组对边中点的直线,而菱形的对称轴是两条对角线所在的直线.24.解:(1)设冰墩墩玩偶的进价为x 元/个,雪容融玩偶的进价为y 元/个.根据题意,得⎩⎨⎧15x +5y =1 400,x +y =136,解得⎩⎨⎧x =72,y =64.答:冰墩墩玩偶的进价为72元/个,雪容融玩偶的进价为64元/个.(2)设冰墩墩玩偶购进a 个,则雪容融玩偶购进(40-a )个,利润为w 元. 根据题意,得w =28a +20(40-a )=8a +800.∵8>0,∴w 随a 的增大而增大.∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍, ∴a ≤1.5(40-a ),解得a ≤24.∴当a =24时,w 取得最大值,此时w =992,40-a =16.答:冰墩墩玩偶购进24个,雪容融玩偶购进16个时,才能获得最大利润,最大利润是992元.25.(1)①证明:如图①,连接CE .∵DE ⊥DF ,∴∠FDE=90°.∵四边形ABCD是正方形,∴∠ADC=∠DAF=∠DCB=90°,DA=DC.∴∠ADC-∠FDC=∠FDE-∠FDC,即∠ADF=∠CDE.又∵DF=DE,∴△DAF≌△DCE(SAS).∴∠DAF=∠DCE=90°.∴∠DCE+∠DCB=180°.∴点E在直线BC上.② 2(2)解:如图②,在DC上截取DN=FC,连接MN,DM,设EF,CD相交于点H.∵△FDE为等腰直角三角形,M为EF的中点,∴DM=12EF=FM,DM⊥EF.∴∠DMF=∠FCD=90°.∴∠CDM+∠DHM=∠MFC+∠CHF.又∵∠DHM=∠CHF,∴∠CDM=∠MFC.∴△DNM≌△FCM(SAS).∴MN=MC,∠DMN=∠FMC.∴∠DMN+∠FMN=∠FMC+∠FMN,即∠DMF=∠NMC=90°.∴△CNM是等腰直角三角形.∴CN=2CM.又∵DC=BC,DN=CF,11∴CN=BF.∴BF=2CM,即BFCM= 2.。
人教版八年级数学下册期末学情评估附答案 (1)
人教版八年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列是最简二次根式的是()A. 2B.12C.15 D.a22.下列计算正确的是()A.4 5-3 5=1 B.2+5=7 C.6÷3=2 D.(-2)2=2 3.已知(1,y1),(2,y2)是直线y=3x+2上的两点,则y1,y2的大小关系是() A.y1>y2B.y1=y2C.y1<y2D.无法比较4.当b<0时,一次函数y=x+b的图象大致是()5.若直角三角形的两边长分别为12和5,则第三边长为()A.13 B.13或119 C.13或15 D.1196.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天健步走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3C.1.4,1.35 D.1.3,1.3(第6题)(第8题) (第9题)7.已知数据a,b,c,d的方差是2,则数据a+3,b+3,c+3,d+3的方差是()A.2 B.5 C.6 D.98.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,要判定四边形DBFE 是菱形,下列所添加条件不正确的是( ) A .AB =AC B .AB =BC C .BE 平分∠ABC D .EF =CF9.如图,点P 是边长为1的菱形ABCD 的对角线AC 上的一个动点,点M ,N分别是AB ,BC 边的中点,则MP +PN 的最小值是( ) A.12 B .1 C. 2 D .210.已知直线y 1=kx +1(k <0)与直线y 2=mx (m >0)的交点坐标为⎝ ⎛⎭⎪⎫12,12m ,则不等式组mx -2<kx +1<mx 的解集为( ) A .x >12 B.12<x <32 C .x <32 D .0<x <32 二、填空题(本题共6小题,每小题4分,共24分) 11.计算:27-13=________.12.如图,要使平行四边形ABCD 是正方形,则应添加的一组条件是__________________(添加一组即可).(第12题) (第15题) (第16题)13.某校规定学生的数学综合成绩由平时、期中和期末三项成绩按3∶3∶4的比计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期的数学综合成绩是__________分.14.已知一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是____________.15.如图是两个大小完全相同的矩形ABCD 和矩形AEFG ,连接FC ,若AB =4 cm ,BC =3 cm ,则FC =__________.16.如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点(点E 不与A ,B 重合),EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.下列结论:①∠GEB 与∠GFB 一定互补; ②点G 到边AB ,BC 的距离一定相等; ③点G 到边AD ,DC 的距离可能相等; ④点G 到边AB 的距离的最大值为2 2. 其中正确的是________.(填序号)三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)12-3 3+|3-2|; (2)32×2-2 6÷2+12;(3)(2-3)2 023·(2+3)2 022-2⎪⎪⎪⎪⎪⎪-32-(-2)0.18.(8分)已知a ,b ,c 满足|a -7|+b -5+(c -4 2)2=0. (1)求a ,b ,c 的值;(2)判断以a ,b ,c 为边能否构成三角形,若能构成三角形,此三角形是什么形状?若不能构成三角形,请说明理由.19.(8分)阅读下面例题的解题过程.例:已知a=12+3,求2a2-8a+1的值.解:∵a=12+3=2-3(2+3)(2-3)=2-3,∴a-2=-3,∴(a-2)2=3,即a2-4a+4=3,∴a2-4a=-1,∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 请仿照上述方法,解决下列问题:(1)计算:12 023+ 2 022=________;(2)若a=110-3,求3a2-18a+5的值.20.(8分)某制衣厂加工车间为了调动员工的积极性,计划采用等级基本工资加计件工资的薪酬制度,基本方案是:按工人平均日制衣件数将他们分成初级工、中级工、高级工三个等级,分别给予每月2 500元、3 000元和4 000元的基本工资,另外再按每件衣服5元计算计件工资.为确定工人等级,制衣厂统计了车间30名工人最近三个月每人每天平均制衣件数(每月工作25天),数据如下表:(1)求这30名工人最近三个月每人每天平均制衣件数的中位数、众数和平均数;(2)制衣厂计划每月工人的工资总额不超过18万元,若以最近三个月平均每天制衣的件数为依据,将平均每天制衣18件以下(含18件)的工人确定为初级工,平均每天制衣29件以上(含29件)的工人确定为高级工,其余的工人确定为中级工.请通过计算判断该等级划分是否符合制衣厂要求.21.(8分)如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,DE∥AC交BA 的延长线于点E.(1)求证:DB=DE;(2)若∠AOB=60°,BD=4,求四边形BCDE的面积.23.(10分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.24.(12分)A、B两个蔬菜基地要向C、D两城市运送蔬菜,已知A基地有蔬菜200吨,B基地有蔬菜300吨,C城市需要蔬菜240吨,D城市需要蔬菜260吨.从A基地运往C、D两城市的费用分别为每吨20元和每吨25元,从B 基地运往C、D两城市的费用分别为每吨15元和每吨18元,设从B基地运往C城市的蔬菜为x吨,A、B两个蔬菜基地的总运费为w元.(1)求w与x之间的函数解析式,并写出x的取值范围;(2)写出总运费最小时的运送方案,并求出此时的总运费;(3)如果从B基地运往C城市的费用每吨减少m元(0<m<15且m≠2),其余线路的运费不变,请直接写出总运费最小时的运送方案.25.(14分)如图,正方形ABCD中,E,F是对角线AC上的两点,∠EBF=45°,△ABE和△GBE关于直线BE对称.点G在BD上.(1)求∠FBC的度数.(2)延长BF交CD于点H,连接HG,FG.①求证:四边形GHCF是菱形;②CDCH的值为________.答案一、1.A 2.D 3.C 4.B 5.B 6.B 7.A 8.A 9.B10.B 提示:把点⎝ ⎛⎭⎪⎫12,12m 的坐标代入y 1=kx +1,可得12m =12k +1,解得k =m -2,∴y 1=(m -2)x +1.令y 3=mx -2,当y 3<y 1时,mx -2<(m -2)x +1,解得x <32;当y 1<y 2时,(m -2)x +1<mx ,解得x >12.∴不等式组mx -2<kx +1<mx 的解集为12<x <32. 二、11.8 33 12.AB =BC ,且AB ⊥BC (答案不唯一)13.88 14.m <12 15.5 2 cm 16.①②④三、17.解:(1)原式=2 3-3 3+2-3=2-2 3.(2)原式=3-2 3+2 3= 3.(3)原式=[(2-3)(2+3)]2 022·(2-3)-3-1=2-3-3-1=1-2 3. 18.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -4 2)2=0,∴|a -7|=0,b -5=0,(c -4 2)2=0, 解得a =7,b =5,c =4 2. (2)能构成三角形.∵a 2+b 2=(7)2+52=32,c 2=(4 2)2=32, ∴a 2+b 2=c 2,∴此三角形是直角三角形. 19.解:(1) 2 023- 2 022(2)∵a =110-3=10+3(10+3)(10-3)=10+3, ∴a -3=10,∴(a -3)2=10,∴a 2-6a +9=10,∴a 2-6a =1.∴3a 2-18a +5=3(a 2-6a )+5=3×1+5=8. 20.解:(1)中位数为21+222=21.5.众数为16.平均数为16×4+17×2+…+31×3+33×130=23.(2)因为这30名工人每月的基本工资总额为2 500×(4+2+2)+3 000×(1+3+3+3+2+2)+4 000×(2+2+3+1)=94 000(元), 这30名工人每月的计件工资总额为 23×30×25×5=86 250(元), 所以这30名工人每月的工资总额为 94 000+86 250=180 250(元). 因为180 250>180 000,所以该等级划分不符合制衣厂要求.21.解:(1)把A (-2,-1),B (1,3)的坐标代入y =kx +b ,得⎩⎨⎧-2k +b =-1,k +b =3,解得⎩⎪⎨⎪⎧k =43,b =53.∴该一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,53.∴OD =53.∴易得S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.22.(1)证明:∵四边形ABCD 是矩形,∴AC =BD ,AB ∥CD ,又∵DE ∥AC ,∴四边形ACDE 是平行四边形, ∴DE =AC ,∴DE =BD . (2)解:∵四边形ABCD 是矩形,∴AB =CD ,AO =BO =DO =12BD =2,∠BAD =90°, 又∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =AO =2,∴CD =2,AD =BD 2-AB 2=16-4=2 3, ∵四边形ACDE 是平行四边形, ∴AE =CD =2.∴BE =4.∴四边形BCDE 的面积=12×(2+4)×2 3=6 3. 23.(1)证明:∵AD ∥BC ,AE ∥DC ,∴四边形AECD 是平行四边形.∵∠BAC =90°,E 是BC 的中点,∴EC =AE . ∴四边形AECD 是菱形.(2)解:如图,过点A 作AH ⊥BC 于点H .在Rt △ABC 中,∠BAC =90°,AB =6,BC =10, ∴由勾股定理得AC =8.∵S △ABC =12BC ·AH =12AB ·AC ,∴AH =245. ∵四边形AECD 是菱形,∴CD =CE .∵S 菱形AECD =CD ·EF =CE ·AH ,∴EF =AH =245.24.解:(1)由题意得w =20(240-x )+25[260-(300-x )]+15x +18(300-x )=2x+9 200,其中40≤x ≤240.(2)∵w =2x +9 200,且40≤x ≤240,∴当x =40时,w 最小,为2×40+9 200=9 280,∴总运费最小时的运送方案为:A 往C 运200吨,不往D 运,B 往C 运40吨,往D 运260吨,此时的总运费为9 280元.(3)当0<m <2时,总运费最小的运送方案为:A 往C 运200吨,不往D 运,B 往C 运40吨,往D 运260吨;当2<m <15时,总运费最小的运送方案为:A 往D 运200吨,不往C 运,B 往C 运240吨,往D 运60吨.25.(1)解:∵四边形ABCD是正方形,∴∠ABD=45°,∠ABC=90°,∵△ABE和△GBE关于直线BE对称,∴∠ABE=∠GBE=12∠ABD=22.5°,又∵∠EBF=45°,∴∠FBC=90°-22.5°-45°=22.5°.(2)①证明:∵四边形ABCD是正方形,∴∠BAC=∠ACD=45°,AB=BC,AC⊥BD,∵△ABE和△GBE关于直线BE对称,∴∠BGE=∠BAE=45°,AB=GB,∴GB=BC.又∵∠GBF=45°-22.5°=22.5°=∠CBF,BF=BF,∴△GBF≌△CBF.∴GF=CF.∵∠EBG=∠DBF=22.5°,AC⊥BD,∴∠BEF=∠BFE=67.5°,BD是EF的垂直平分线,∴易得∠BGF=∠BGE=45°,∴∠GFE=180°-90°-45°=45°=∠ACD,∴GF∥HC,∵∠CFH=∠BFE=67.5°,∠CHF=180°-90°-22.5°=67.5°,∴∠CFH=∠CHF,∴HC=CF,∴HC=GF,∴四边形GHCF是平行四边形,又∵HC=CF,∴四边形GHCF是菱形.②1+ 211。
新人教版八年级数学下册期末测试卷含答案
新人教版八年级数学下册期末测试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、D6、C7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、(3,7)或(3,-3)3、如果两个角互为对顶角,那么这两个角相等4、x>3.5、96、20三、解答题(本大题共6小题,共72分)1、x=32、11a ,1.3、(1)1;(2)m>2;(3)-2<2m-3n<184、略(2)∠EBC=25°5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
期末考试模拟试卷(1)(原卷版)-2020-2021学年八年级数学下册精讲精练(人教版)
期末考试模拟试卷(1)(满分100分,考试时间120分钟)一、单项选择题(本题8个小题,每题3分,共24分)1.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B. 1 C.2a﹣3 D.3﹣2a2.(2019•山东聊城)下列各式不成立的是()A.﹣=B.=2C.=+=5 D.=﹣3.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA =6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.964.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.1013√13B.913√13C.813√13D.713√135.(2020•黑龙江)一组从小到大排列的数据:x ,3,4,4,5(x 为正整数),唯一的众数是4,则该组数据的平均数是( ) A .3.6B .3.8或3.2C .3.6或3.4D .3.6或3.26.(2019广西桂林)如图,四边形ABCD 的顶点坐标分别为(4,0)A -,(2,1)B --,(3,0)C ,(0,3)D ,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+ C .1y x =+ D .5342y x =+ 7.(2020•上海)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行( )A.150B.250C.350D.4508.(2020•温州)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°二、填空题(本题9个小题,每空3分,共27分)9.(2020•哈尔滨)计算√24+6√16的结果是 . 10.若=3﹣x ,则x 的取值范围是 .11.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____. 12.(2019•四川绵阳)单项式x -|a -1|y 与2xy 是同类项,则a b =______.13.实数a ,b 在数轴上对应点的位置如图所示,化简||a 的结果是 .14.(2020•湖州)计算:√8+|√2−1|=_______15.(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为 .16.(2020•甘孜州)如图,在▱ABCD 中,过点C 作CE ⊥AB ,垂足为E ,若∠EAD =40°,则∠BCE 的度数为 .17.(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数 7次及以上6 5 4 3 2 1次及以下人数81231241564这次调查中的众数和中位数分别是 , .三、解答题(本题6个题,18题6分、19题8分、20题8分、21题8分、22题9分、23题10分,共49分)18.用拆解法化简)23)(25(24335++++19.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.20.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+2=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?21.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,求□ABCD的周长.22.小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明.小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.23.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.。
新人教版八年级数学下册期末测试卷(完美版)
新人教版八年级数学下册期末测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.21273=___________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、523、32或424、10.5、36、15.三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)12,32-;(2)略.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
新人教版八年级数学下册期末测试卷及答案【最新】
新人教版八年级数学下册期末测试卷及答案【最新】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.若613x ,小数部分为y ,则(2x 13y 的值是( )A .5-13B .3C .13 5D .-35.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、D6、B7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、22()1y x =-+3、14、20°.5、:略6、6三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、23、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)2.5、略.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
2022—2023年人教版八年级数学下册期末测试卷【及答案】
2022—2023年人教版八年级数学下册期末测试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2 B.0 C.-1 D.14.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等D.对角线互相垂直5.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4D.-40是不等式2x<-8的一个解6.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个7.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)ky k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .40二、填空题(本大题共6小题,每小题3分,共18分)181________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.分解因式:2a 3﹣8a=________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分,求3a-b+c的平方根.4.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、C6、D7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、03、2a(a+2)(a﹣2)4、a+c5、656、6三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)42,(2)13+ -3、3a-b+c的平方根是±4.4、(1)略;(25、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
人教版初中数学八年级下册期末测试题、参考答案
人教版初中数学八年级下册期末测试卷一、选择题(本大题共个小题,每小题分,共分。
在每小题给出的四个选项中,只有一项是符合题目要求的).(分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积.(分)若二次根式有意义,则x的值不可以是()A.B.C.D..(分)下列各组数中,能够作为直角三角形的三边长的一组是()A.,,B.,,C.,,D.,,.(分)如图,A D,C E是△A B C的高,过点A作A F∥B C,则下列线段的长可表示图中两条平行线之间的距离的是()A.A B B.A D C.C E D.A C.(分)下列二次根式是最简二次根式的是()A.B.C.D..(分)一组数据:,,,,若添加一个数据,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数.(分)实数不可以写成的形式是()A.B.﹣C.D.(﹣).(分)如图,在△A B C中,∠A C B=°,D是A B的中点,则下列结论不一定正确的是()A.C D=B D B.∠A=∠D C AC.B D=A C D.∠B∠A C D=°.(分)对于n(n>)个数据,平均数为,则去掉最小数据和最大数据后得到一组新数据的平均数()A.大于B.小于C.等于D.无法确定.(分)若点P(m,n)在直角坐标系的第二象限,则一次函数y=m x n的大致图象是()A.B.C.D..(分)如图,在平面直角坐标系中,已知点A(﹣,),B(,),以点A为圆心,A B长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.和之间B.和之间C.和之间D.和之间.(分)某速度滑冰队从甲、乙、丙、丁四位选手中选取一名参加省冰雪运动会,对他们进行了十次测试,结果他们的平均成绩均相同,方差如下表:选手甲乙丙丁方差(秒)a若决定发挥最稳定的丁参加省运会,则a的值可以是()A.B.C.D..(分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段O P的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D..(分)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A.直角三角形纸片的面积B.最大正方形纸片的面积C.最大正方形与直角三角形的纸片面积和D.较小两个正方形纸片重叠部分的面积二、填空题(本小题共个小题,每个空分,共分).(分)计算的结果为..(分)如图,E F是△A B C的中位线,B D平分∠A B C交E F于D,B E=,D F=,则B C的长度为..(分)在四边形A B C D中,∠B=∠B A D,∠D=°,B C=,A C=,延长B C到E,若C D平分∠A C E,则A D=;点D到B C的距离是.三、解答题(本大题共个小题,满分分,解答题应写出必要的解题步骤或文字说明).(分)已知x=﹣,y=﹣,求(x y)..(分)如图,车高m(A C=m),货车卸货时后面挡板A B弯折落在地面A处,经过测量A C=m,求B C的长..(分)某公司销售部有营业员人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这人某月的销售量,如下表所示:月销售量件数人数()直接写出这名营业员该月销售量数据的平均数、中位数、众数;()如果想让一半左右的营业员都能达到月销售目标,你认为()中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由..(分)已知矩形A B C D,A E平分∠D A B交D C的延长线于点E,过点E作E F⊥A B,垂足F在边A B的延长线上,求证:四边形A D E F是正方形..(分)如图,直角坐标系x O y中,过点A(,)的直线l与直线l:y=k x﹣相交于点C(,),直线l与x轴交于点B.()求k的值及l的函数表达式;的值;()求S△A B C()直线y=a与直线l和直线l分别交于点M,N.直接写出点M,N都在y轴右侧时a的取值范围..(分)如图,菱形A B C D中,E,F分别为A D,A B上的点,且A E=A F,连接并延长E F,与C B的延长线交于点G,连接B D.()求证:四边形E G B D是平行四边形;()连接A G,若∠F G B=°,G B=A E=,求A G的长..(分)A城有肥料t,B城有肥料t.现要把这些肥料全部运往C、D两乡,C 乡需要肥料t,D乡需要肥料t,其运往C、D两乡的运费如下表:两城两乡C(元t)D(元t)AB设从A城运往C乡的肥料为x t,从A城运往两乡的总运费为y元,从B城运往两乡的总运费为y元()分别写出y、y与x之间的函数关系式(不要求写自变量的取值范围).()试比较A、B两城总运费的大小.()若B城的总运费不得超过元,怎样调运使两城总费用的和最少?并求出最小值.参考答案.B A D B D.C B C C B.B D A D...;.解:由题意可得:x y=(﹣)(﹣)=﹣﹣=﹣,∴(x y)=(﹣)=﹣()=﹣=﹣..解:由题意得,A B=A B,∠B C A=°,设B C=x m,则A B=A B=(﹣x)m,在R t△A B C中,A C B C=A B,即:x=(﹣x),解得:x=.答:B C的长为米.解:()这名营业员该月销售量数据的平均数==(件),中位数为件,∵出现了次,出现的次数最多,∴众数是件;()如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为件,月销售量大于和等于的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标..解:∵四边形A B C D是矩形,∴∠D=∠D A B=°,∵A E平分∠D A B,∴∠E A F=°,∵E F⊥A B,∴∠D=∠D A F=∠F=°,∴四边形A F E D是矩形,∵∠E A F=°,∴∠A E F=°,∴∠E A F=∠A F E,∴A F=E F,∴矩形A D E F是正方形..解:()将C(,)代入y=k x﹣,得:=k﹣,解得:k=;设直线l的函数表达式为y=m x n(m≠),将A(,),C(,)代入y=m x n,得:,解得:,∴直线l的函数表达式为y=﹣x;()当y=时,x﹣=,解得:x=,∴点B的坐标为(,),∴A B=﹣=,∴S=A B•y C=××=;△A B C()当x=时,y=x﹣=﹣,y=﹣x=,∴M,N都在y轴右侧时a的取值范围为﹣<a<..证明:()连接A C,如图:∵四边形A B C D是菱形,∴A C平分∠D A B,且A C⊥B D,∵A F=A E,∴A C⊥E F,∴E G∥B D.又∵菱形A B C D中,E D∥B G,∴四边形E G B D是平行四边形.()过点A作A H⊥B C于H.∵∠F G B=°,∴∠D B C=°,∴∠A B H=∠D B C=°,∵G B=A E=,∴A B=A D=,在R t△A B H中,∠A H B=°,∴A H=,B H=.∴G H=,∴A G===..解:()根据题意得:y=x(﹣x)=﹣x,y=(﹣x)(﹣x)=x.()若y=y,则﹣x=x,解得x=,A、B两城总费用一样;若y<y,则﹣x<x,解得x>,A城总费用比B城总费用小;若y>y,则﹣x>x,解得<x<,B城总费用比A城总费用小.()依题意得:y=x≤,解得x≤,设两城总费用为y,则y=y y=﹣x,∵﹣<,∴y随x的增大而减小,∴当x=时,y有最小值.答:当从A城调往C乡肥料t,调往D乡肥料t,从B城调往C乡肥料t,调往D乡肥料t,两城总费用的和最少,最小值为元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试卷(一)(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 一组数据5,8,8,12,12,12,44的众数是(C ) A .5 B .8 C .12 D .442. 下列计算正确的是(B )A .5-3= 2B .3 5×2 3=6 15C .(2 2)2=16D .33=13. 由线段a ,b ,c 组成的三角形不是直角三角形的是(D ) A .a =7,b =24,c =25 B .a =41,b =4,c =5 C .a =54,b =1,c =34 D .a =13,b =14,c =154. 若点(3,1)在一次函数y =kx -2的图象上,则常数k =(D )A .5B .4C .3D .15. 已知甲、乙、丙三个旅行团的游客人数都相等,且每个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是s 甲2=17,s 乙2=14.6,s 丙2=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择(B )A .甲团B .乙团C .丙团D .采取抽签方式,随便选一个6. 从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD 是菱形,则这个条件是(D )A .AC ⊥BDB .AD =CDC .AB =BCD .AC =BD7. 在平面直角坐标系中,函数y =(k -1)x +(k +2)(k -2)的图象不经过第二象限与第四象限,则常数k 满足(A )A .k =2B .k =-2C .k =1D .k >18. 如图,在矩形ABCD 中,作DE ⊥AC 于点E ,若∠ADE ∶∠EDC =3∶2,则∠BDE =(D )A .36°B .9°C .27°D .18°9. 已知等腰三角形的周长是10,底边长y 是腰长x 的函数,下列图象中能正确反映y 与x 之间函数关系的图象是(D )10. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过A 作AE 的垂线交ED 于点P ,若AE =AP =1,PB =5,下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③PD =5,其中正确结论的序号是(A )A .①②B .①③C .②③D .①②③,第10题图) ,第13题图) ,第15题图) ,第16题图)二、填空题(本大题6小题,每小题4分,共24分) 11. 函数y =5-x 中,自变量x 的取值范围是x ≤5.12. 2xy·8y =4y x.13. 如图,从电线杆离地面12 m 处向地面拉一条长为13 m 的钢缆,则地面钢缆固定点A 到电线杆底部B 的距离为5 m .14. 若已知a ,b 为实数,且a -5+5-a =b -1,则a +b =6.15. 一次函数y =kx +b(k ≠0)的图象如图所示,当y>0时,x 的取值范围是x<2. 16. 如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,点E 是BC 边上一点,连接AE ,并将△AEB 沿AE 折叠,得到△AEB′,以C ,E ,B ′为顶点的三角形是直角三角形时,BE 的长为3或6cm .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:27×13-(5+3)(5-3). 解:原式=118. 如图,在▱ABCD 中,E 是BC 边的中点,连接DE 并延长交AB 的延长线于点F ,求证:AB =BF.证明:∵E 是BC 的中点,∴CE =BE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠DCE =∠FBE ,在△CED和△BEF 中,⎩⎨⎧∠DCE =∠FBE ,CE =BE ,∠CED =∠BEF ,∴△CED ≌△BEF(ASA ),∴CD =BF ,∴AB =BF19. 如图,已知Rt △ABC 与Rt △CDE 有一个公共点C ,其中∠B =∠D =90°,若AB =3,BC =2,CD =6,DE =4,AE =65.求证:△ACE 是直角三角形.证明:∵AC =AB 2+BC 2=32+22=13.CE =CD 2+DE 2=62+42=52.∵AE =65,∴AE 2=AC 2+CE 2,∴△ACE 是直角三角形四、解答题(二)(本大题3小题,每小题7分,共21分) 20. 如图,BD 是矩形ABCD 的一条对角线.(1)作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,垂足为点O(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:AF =CE.解:(1)如图,EF 即为所求:(2)∵四边形ABCD 为平行四边形,∴AD =BC ,AD ∥BC ,∴∠ADB =∠CBD ,∵EF垂直平分BD ,∴BO =OD ,在△DOE 和△BOF 中,⎩⎨⎧∠ODE =∠FBO ,OD =OB ,∠DOE =∠BOF ,∴△DOE ≌△BOF ,∴DE =BF ,∴AE =CF ,而AE ∥CF ,∴四边形AECF 为平行四边形,∴AF =CE21. 甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是8,乙的中位数是7.5;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:s 甲2=1.6,s 乙2=1.2,∵s 甲2>s 乙2,∴乙运动员的射击成绩更稳定22. 某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m 3)之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)已知某用户四、五月份共用水40 m 3.若该用户这两个月共缴纳水费79.8元,且五月份用水量较大,则该用户五月份用水多少m 3?解:(1)当0≤x ≤15时,设y 与x 的函数关系式为y =kx ,15k =27,得k =1.8,即当0≤x ≤15时,y 与x 的函数关系式为y =1.8x ,当x >15时,设y 与x 的函数关系式为y =ax +b ,⎩⎨⎧15a +b =27,20a +b =39,得⎩⎨⎧a =2.4,b =-9,即当x >15时,y 与x 的函数关系式为y =2.4x -9,综上可得,y =⎩⎪⎨⎪⎧1.8x (0≤x ≤15),2.4x -9 (x>15) (2)设四月份用水x m 3,当0≤x ≤15时,1.8x +2.4(40-x)-9=79.8,解得x =12,∴40-x =28,当15<x <20时,∵2.4×40-9=87≠79.8,∴该种情况不存在,答:五月份用水28 m 3五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF.(1)求证:△AEF ≌△DEB ;(2)若∠BAC =90°,试判断四边形ADCF 的形状,并证明你的结论.解:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,在△AEF 和△DEB 中,⎩⎨⎧∠AFE =∠DBE ,∠AEF =∠DEB ,AE =DE ,∴△AEF ≌△DEB(2)四边形ADCF 是菱形,理由如下:∵△AEF ≌△DEB ,∴AF =BD ,∵BD =DC ,∴AF =DC ,又AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,AD 是BC 边上的中线,∴AD =DC ,∴▱ADCF 是菱形24. 如图,一次函数y =kx +b 的图象经过点A(0,4)和点B(3,0),以线段AB 为边在第一象限内作等腰直角△ABC ,使∠BAC =90°.(1)求一次函数的解析式; (2)求出点C 的坐标;(3)点P 是y 轴上一动点,当PB +PC 最小时,求点P 的坐标.解:(1)设AB 直线的解析式为y =kx +b ,把(0,4)(3,0)代入可得⎩⎨⎧b =4,3k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =4,所以一次函数的解析式为y =-43x +4(2)如图①,作CD ⊥y 轴于点D.∵∠BAC =90°,∴∠OAB +∠CAD =90°,又∵∠CAD+∠ACD =90°,∴∠ACD =∠BAO.在△ABO 和△CAD 中,⎩⎨⎧∠BAO =∠ACD ,∠BOA =∠ADC =90°,AB =AC ,∴△ABO ≌△CAD(AAS ),∴OB =AD =3,OA =CD =4,OD =OA +AD =7.则C 的坐标是(7,4)(3)如图②中,作点B 关于y 轴的对称点B ′,连接CB ′交x 轴于P ,此时PB +PC 的值最小.设CB ′所在直线的解析式为y =mx +n ,∵B(3,0),C(7,4)∴B ′(-3,0),把(-3,0),(7,4)代入y =mx +n 中,可得⎩⎨⎧7m +n =4,-3m +n =0,解得⎩⎨⎧m =25,n =65,∴直线CB ′的解析式为y =25x +65,令x =0,得到y =65,∴P(0,65)25. 如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠,点A 的对应点为点G .(1)填空:如图①,当点G 恰好在BC 边上时,四边形ABGE 的形状是正方形; (2)如图②,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F.①求证:BF =AB +DF ;②若AD =3AB ,试探索线段DF 与FC 的数量关系.解:(2)①如图2,连接EF ,在矩形ABCD 中,AB =CD ,AD =BC ,∠A =∠C =∠D =90°,∵E 是AD 的中点,∴AE =DE ,∵△ABE 沿BE 折叠得到△GBE ,∴BG =AB ,EG =AE =ED ,∠A =∠BGE =90°,∴∠EGF =∠D =90°,在Rt △EGF 和Rt △EDF 中,∵EG =ED ,EF =EF ,∴Rt △EGF ≌Rt △EDF ,∴DF =FG ,∴BF =BG +GF =AB +DF②设AB =DC =a ,则DF =b ,∴AD =BC =3a ,由①得BF =AB +DF ,∴BF =a +b ,CF =a -b ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,∴(a +b)2=(3a)2+(a -b)2,∴4ab =3a 2,∵a ≠0,∴4b =3a ,即DC =43DF.∵CF =43DF -DF ,∴3CF =DF。