400W大功率稳压逆变器电路
采用TL494的400W大功率稳压逆变器电路
采用TL494的400W大功率稳压逆变器电路采用TL494的400W大功率稳压逆变器电路笔者曾用过300W逆变器,利用12V/60AH蓄电池向上述家用电器供电,一次充满电后,可使用近5小时。
标称功率300W的逆变电源,用于家庭电风扇、电视机,以及日常照明等是不成问题的。
不过,即使蓄电池电压充足,启动180立升的电冰箱仍有困难,因启动瞬间输出电压下降为不足180V而失败。
电冰箱压缩机标称功率多为100W 左右,实际启动瞬间电流可达2A以上,若欲使启动瞬间降压不十分明显,必须将输出功率提高至600VA。
如在增大输出功率的同时,采用PWM稳压系统,可使启动瞬间降压幅度明显减小。
无论电风扇还是电冰箱,应用逆变电源供电时,均应在逆变器输出端增设图1中的LC滤波器,以改善波形,避免脉冲上升沿尖峰击穿电机绕组。
采用双极型开关管的逆变器,基极驱动电流基本上为开关电流的1/β,因此大电流开关电路必须采用多级放大,不仅使电路复杂化,可靠性也变差而且随着输出功率的增大,开关管驱动电流需大于集电极电流的1/β,致使普通驱动IC无法直接驱动。
虽说采用多级放大可以达到目的,但是波形失真却明显增大,从而导致开关管的导通/截止损耗也增大。
目前解决大功率逆变电源及UPS的驱动方案,大多采用MOS FET管作开关器件。
一、MOSFET管的应用近年来,金属氧化物绝缘栅场效应管的制造工艺飞速发展,使之漏源极耐压(VDS)达kV以上,漏源极电流(IDS)达50A已不足为奇,因而被广泛用于高频功率放大和开关电路中。
除此而外,还有双极性三极管与MOS FET管的混合产品,即所谓IGBT绝缘栅双极晶体管。
顾名思义,它属MOS FET管作为前级、双极性三极管作为输出的组合器件。
因此,IGBT既有绝缘栅场效应管的电压驱动特性,又有双极性三极管饱合压降小和耐压高的输出特性,其关断时间达到0.4μs以下,VCEO达到1.8kV,ICM达到100A的水平,目前常用于电机变频调速、大功率逆变器和开关电源等电路中。
逆变器电路原理图
逆变器电路原理图逆变器是一种将直流电转换为交流电的电子器件,广泛应用于太阳能发电系统、风能发电系统、电动汽车和UPS等领域。
逆变器电路原理图是设计和制造逆变器的重要参考资料,它展示了逆变器内部电路的连接和工作原理,对于工程师和技术人员来说具有重要的参考价值。
逆变器电路原理图通常由多个部分组成,包括整流器、滤波器、逆变器、控制电路等。
首先,整流器部分将输入的直流电源转换为平稳的直流电压,然后经过滤波器进行滤波处理,去除电压中的杂波和谐波,使输出的直流电压更加稳定。
接下来,经过逆变器部分的处理,直流电压被转换为交流电压,输出到负载端使用。
控制电路则对整个逆变器系统进行监控和控制,确保逆变器的稳定运行和保护系统的安全。
在逆变器电路原理图中,不同的部分通过线路连接起来,形成一个完整的电路系统。
各个元件的选型和连接方式都对逆变器的性能和稳定性产生重要影响。
因此,在设计逆变器电路原理图时,需要充分考虑各个部分之间的匹配和协调,确保整个系统能够正常工作。
逆变器电路原理图的设计需要结合具体的应用场景和要求,选择合适的元件和电路拓扑结构。
不同类型的逆变器,如单相逆变器、三相逆变器、桥式逆变器等,其电路原理图也会有所不同。
同时,逆变器的功率级别和输出波形类型也会对电路设计产生影响,需要根据具体情况进行调整和优化。
总的来说,逆变器电路原理图是逆变器设计和制造的关键参考资料,它直接影响着逆变器的性能和稳定性。
工程师和技术人员需要对逆变器的工作原理和电路结构有深入的理解,才能设计出高性能、高可靠性的逆变器系统。
通过不断的实践和研究,逆变器电路原理图将会得到不断的完善和优化,推动逆变器技术的发展和应用。
直流12V转交流220V电路图
采用TL494的直流12V转交流220V逆变器电路图采用TL494的400W直流12V转交流220V逆变器电路图目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。
仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。
虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOSFET开关管的设备,利用外设灌流电路,也广泛采用TL494。
其内部电路功能、特点及应用方法如下:A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(kΩ)·C (μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOSFET开关管。
B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。
当第4脚电平升高时,死区时间增大。
C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。
D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。
E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。
双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。
详细内容请参考本站相关文章(TL494开关集成电路原理及应用介绍)图采用TL494的400W直流12V转交流220V逆变器电路TL494的各脚功能及参数如下:第1、16脚为误差放大器A1、A2的同相输入端。
最高输入电压不超过VCC+0.3V。
如何直流电(DC)变交流电(AC知识分享
查看文章如何直流电(DC)变交流电(AC)?---逆变器-有电路图(最下)2010-01-16 16:31逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ 正弦或方波)。
应急电源,一般是把直流电瓶逆变成220V交流的。
通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
它由逆变桥、控制逻辑和滤波电路组成.利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
TL494的直流12V逆变220V交流电路图
采用TL494的400W直流12V转交流220V逆变器电路图目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。
仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。
虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOSFET开关管的设备,利用外设灌流电路,也广泛采用TL494。
其内部电路功能、特点及应用方法如下:A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(kΩ)·C (μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOSFET开关管。
B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。
当第4脚电平升高时,死区时间增大。
C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。
D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。
E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。
双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。
图采用TL494的400W直流12V转交流220V逆变器电路TL494的各脚功能及参数如下:第1、16脚为误差放大器A1、A2的同相输入端。
最高输入电压不超过VCC+0.3V。
第2、15脚为误差放大器A1、A2的反相输入端。
可接入误差检出的基准电压。
第3脚为误差放大器A1、A2的输出端。
一种性能优良的家用逆变电源电路
一种性能优良的家用逆变电源电路这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。
本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。
输出波形方波。
这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。
电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。
变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。
安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。
大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。
功率管要加适当的散热片,例如用100*100*3MM铝板散热。
如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。
个人建议:前级推动部分:电源提供可选择7809稳压电源块。
后级BG6—BG7也可选择IRFP150。
因为本机工作频率300HZ,只能用于一般电器,若要提高逆变效率要用磁心变压器,同时把电源工作频率调在20—40KHZ,为保证输出级为50HZ220V。
输出级须再把(AC—DC—AC)高频交流变直流,再直流变成50HZ交流才能适用于家里所有电器使用。
不要觉得这样麻烦,但做出的电源体积小、重量轻、效率高、无噪音。
所以此电路并不是一种理想的电路,作为家庭要求不高的场合还行,但它简单实用。
逆变器的设计计算方法晶体管的选择:考虑到安全因素,要具有一定的安全系素。
经验资料如下:直流电源电压:晶体管集射极耐压BV CEO6~8V≥20~30V12~14V≥60~80V24~28V≥80~100V计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。
逆变原理部分原理
逆变器DC/DC逆变器变换由48V铅酸蓄电池输出通过Boost电路升压至360V,采用UC3825PWM控制芯片,其产牛PWM频率高,且造价低。
DC/AC逆变器主电路由H桥式ICBT构成,还包括熔断器、抗干扰的滤波器、保护二极管等。
逆变器控制电路由控制环节和保护环节两部分构成智能管理核心作为控制环节对主电路的输入电压、输出电压、输出频率和输出波形进行校正控制。
保护环节分为硬件保护部分和软件保护部分,完成对系统的短路、过载、失压、过压、缺相等的保护。
逆变器逆变后的单项交流电通过电压、电流传感器,把状态返回智能管理中心,以便对波形实行校正。
逆变器的电路构成。
逆变器原理?悬赏分:30 - 解决时间:2007-9-9 13:36希望百度友们回答得易懂些,我只学过初中物理。
近来看到有卖车载点烟器用逆变器的,可将24V转为220V,有以下问题:1.其原理是什么?家用变压器是将大电流通过线圈转为小电流,这好理解,比如,我们把一个哗哗流水的水龙头堵上一半,水流就小了,那反过来,一个开到最大值的水龙头,又怎么能再开大呢?2.一个车上的电瓶应该不算很大,这时用逆变器产生的220V,能和家里的插座一样使用吗?若充个手机电池可以,那我接个微波炉,或家用空调行不行?3.我有辆电动车,是四块电瓶组成的电池即总电压48V,我想接一个车载的逆变器,可以吗?如果可以,怎么把适用24V的逆变器改为适用48V的?不要改我的电动车。
提问者:henanlouhe - 助理二级最佳答案逆变器,必须是一种逆变装置组成的东西才能那么叫,他和变压器有直接区别,也就是说,他可以实现直流输入,然后输出交流,工作原理和开关电源一样,但震荡频率在一定范围内,比如如果这个频率为50HZ,输出则为交流50HZ。
逆变器是可以改变其频率的设备。
变压器一般是指特定频率段的设备,比如工频变压器,就是我们一般见到的那些变压器,他们输入和输出都必须在一定范围内,比如40-60HZ范围内才可以工作。
TL494的标准应用参数
TL494的标准应用参数 - 大功率逆变器电路设计过程详解TL494的标准应用参数:Vcc(第12脚)为7~40V,Vcc1(第8脚)、Vcc2(第11脚)为40V,Ic1、Ic2为200mA,RT 取值范围1.8~500kΩ,CT取值范围4700pF~10μF,最高振荡频率(fOSC)≤300kHz图4为外刊介绍的利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:图4 400W大功率稳压逆变器电路第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
逆变器工作原理电路图
逆变器工作原理电路图逆变器是一种可以将直流电转换成交流电的电子设备,它在许多领域都有着广泛的应用,比如太阳能发电系统、风力发电系统、电动车充电系统等。
逆变器的工作原理电路图是了解逆变器工作原理的基础,下面我们就来详细了解一下逆变器的工作原理电路图。
逆变器的工作原理电路图主要包括输入端、控制电路、功率电路和输出端四个部分。
首先是输入端,通常是直流电源,比如太阳能电池板、蓄电池等。
然后是控制电路,它主要包括PWM控制器、逻辑电路、保护电路等,用来控制逆变器的工作状态和保护逆变器的安全。
接着是功率电路,它包括开关管、电感、电容等元件,用来实现直流电到交流电的转换。
最后是输出端,通常是交流电负载,比如家用电器、工业设备等。
在逆变器的工作原理电路图中,控制电路起着决定性的作用。
控制电路通过采集输入端的电压和电流信号,经过处理后控制功率电路的开关管,从而实现对输出端交流电的控制。
同时,控制电路还负责监测逆变器的工作状态,一旦出现异常情况,如过流、过压、短路等,控制电路会及时采取保护措施,确保逆变器和负载的安全运行。
功率电路是实现直流到交流转换的核心部分,它通过开关管的开关控制,将直流电源经过电感和电容的滤波,最终输出成为纯正弦波的交流电。
功率电路的设计和选型对逆变器的性能和效率有着重要的影响,合理的功率电路设计可以提高逆变器的转换效率和输出波形质量。
最后是输出端,它是逆变器的最终目的地。
逆变器的输出端通常连接各种不同的负载,比如家用电器、工业设备、电动车等。
不同的负载对逆变器的要求也不同,比如家用电器对输出波形的纯度要求较高,而电动车对输出电流的稳定性要求较高。
因此,在逆变器的设计中,需要根据不同的应用场景来选择合适的输出端设计方案。
综上所述,逆变器的工作原理电路图是逆变器设计的重要基础,它涉及到输入端、控制电路、功率电路和输出端四个部分。
在实际的逆变器设计中,需要综合考虑这四个部分的特性和要求,以实现逆变器的高效、稳定和安全运行。
TL494标准的应用参数
TL494的标准应用参数 - 大功率逆变器电路设计过程详解TL494的标准应用参数:Vcc(第12脚)为7~40V,Vcc1(第8脚)、Vcc2(第11脚)为40V,Ic1、Ic2为200mA,RT 取值范围1.8~500kΩ,CT取值范围4700pF~10μF,最高振荡频率(fOSC)≤300kHz图4为外刊介绍的利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:图4 400W大功率稳压逆变器电路第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
文秘写作 交流电变直流原理
交流电变直流原理如何将交流电变成直流电将交流电变成直流电的过程叫做“交流电的整流”。
整流可分为半波整流、全波整流、桥式整流等几种形式。
通常的整流装置都是利用电子管和晶体二极管的单向导电的性能来整流的。
例如,用锗、硅等半导体材料做成的整流器,已在许多方面得到广泛应用。
为了适应较高电压的整流,可将许多单个整流器串联在一起封在一块绝缘材料中,称之为“硅堆”。
整流器可将交流负半周的波形除去,使交流变成脉动直流。
因此通过整流后的输出波形,只含有正弦波的正半周波形。
一个理想的整流器可视为一个开关,正半周的交流输入时,就有电压输出,如同开关接通一样;反之,如果负半周交流输入,则无电压输出,也就相当于开关切断一样。
所以当正半周的交流输入,此开关的有效电阻为零;而在负半周的交流输入时,有效电阻为无穷大。
实际上的整流器,不可能这样理想,但相差不远。
电子管整流器未导电时,其电阻极大,此时的电阻称为逆向电阻;整流器导电时,其电阻很小,此时的电阻为顺向(正向)电阻。
无论任何情况,所有的整流器都只允许一个方向导电。
此种特性称为单向传导或单向特性,二极管(包括晶体管)就具有此种单向特性。
任何含有射极或阴极及集极或阳极的电子另件,都称为二极体(包括电子二极管和晶体二极管)。
因为二极体中的电子只能向一个方向流。
故所有二极体都有整流特性。
篇二:《220v交流电转5v12v直流电》220V交流电转±5V、±12V直流电源设计报告一、设计目的制造出以220V市电为输入,输出为±5V、±12V幅值稳定的直流电源。
二、设计思路直流电源的输入为220V的电网电压,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压。
再通过整流电路将正弦波电压转换为单一方向的脉动电压。
为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。
理想情况下是可以将交流分量全部滤掉,但是因为受负载影响,加之滤波电路并不能达到理想效果。
用TL494做400W大功率稳压逆变器电路图教学内容
用T L494做400W大功率稳压逆变器电路图用TL494做400W大功率稳压逆变器电路图目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。
仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。
虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOS FET 开关管的设备,利用外设灌流电路,也广泛采用TL494。
为此,本节中将详细介绍其功能及应用电路。
其内部方框图如图3所示。
其内部电路功能、特点及应用方法如下:A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(kΩ)·C(μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOS FET开关管。
B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。
当第4脚电平升高时,死区时间增大。
C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。
D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。
E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。
双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。
TL494的各脚功能及参数如下:第1、16脚为误差放大器A1、A2的同相输入端。
最高输入电压不超过Vcc+0.3V。
第2、15脚为误差放大器A1、A2的反相输入端。
可接入误差检出的基准电压。
通信基站太阳能供电系统
通信基站太阳能供电系统太阳能组件(俗称:太阳能电池板)太阳能组件示意图组成结构:太阳能电池片(整片的两种规格125*125mm、156*156mm)或由激光机切割开的不同规格的太阳能电池组合在一起构成。
由于单片太阳能电池片的电流和电压都很小,然后我们把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。
并且把他们封装在一个不锈钢金属体壳上,安装好上面的玻璃、充入氮气、密封。
整体称为组件,也就是光伏组件或说是太阳能电池组件。
制作流程:组件制作流程经电池片分选-单焊接-串焊接-拼接(就是将串焊好的电池片定位,拼接在一起)-中间测试(中间测试分:红外线测试和外观检查)-层压-削边-层后外观-层后红外-装框(一般为铝边框)-装接线盒-清洗-测试(此环节也分红外线测试和外观检查.判定该组件的等级)-包装.制阵列支架汇线盒充放电控制器描述一、特点:本控制器特点在于智能调节太阳能发电板的工作电压,使太阳能板始终工作在V-A特性曲线的最大功率点。
比较普通太阳能控制器,对太阳能板发电功率的利用率提高了10-30%。
二、基本功能:本控制器除具备以上特别功能外,同时具备完善的控制和保护功能:1.防止蓄电池过度充电。
2.防止蓄电池过度放电。
3.防止夜间蓄电池向太阳能板反向放电。
4.过载保护。
5.短路保护。
6.电池防反。
三、原理:如图2所示为一典型的12V蓄电池太阳能充电系统V-A特性曲线图:使用普通控制器:太阳能板工作在A点状态,工作电压略高于蓄电池电压。
充电电压UA=13.2V,充电电流IA=9.8A充电功率PA=13.2*9.8=129.36w图中面积①+③使用最大功率跟踪控制器:太阳能板工作在B点状态,工作电压远高于蓄电池电压。
充电电压UB=18.4V,充电电流IB=9.3A充电功率PB=18.4*9.3=171.12w图中面积①+②比较:后者比前者充电功率增加:△P/PA=(PB-PA)/PA=32.3%由于太阳能板制作的不同,太阳照度的变化,温度的变化,控制器效率等居多因数的影响,实际可得到的增加率约在10-30%之间。
如何制作一个400W的正弦波逆变器?
磨光机工作中
好了就这些啦,本机经十几小时满载老化测试,一切Biblioteka K5。额定满载效率为95%以上
6.输入有BT欠压,过压,超温等保护
7。输出有短路,过载,漏电等保护
好了,废话不多说,上图:
先上一张裸机照
先带200W
负载为灯泡
带200W的波形和各参数
带满载400W时的参数
再来几张
满载400W测试
机机输出的波形,还漂亮吧
接下来带带感性负载,一个600W的磨光机
启动毫不费劲,
如何制作一个400W的正弦波逆变器?
本机机BT输入电压为48V,是专门方便48V电动车用而设计的。也可家用,不过要另配48V电池哦。有电动的车的烧友就可直接有了呀,
本机的参数如下:
1.输入DC为48V,范围为40至60V
2.输出电压AC为220V,正负5V
3.输出频率为50HZ,正负2HZ
4。输出额定持续功率为400W,峰值功率为800W
400W开关电源原理图
AN983/DA Simplified Power Supply Design Using the TL494Control CircuitPrepared by: Jade H. Alberkrack ON Semiconductor Bipolar IC DivisionThis bulletin describes the operation and characteristics of the TL494 SWITCHMODE t V oltage Regulator and shows its application in a 400–watt off–line power supply.The TL494 is a fixed–frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1). An internal linear sawtooth oscillator is frequency–programmable by two external components, R T and C T . The oscillator frequency is determined by:f osc ^ 1.1R T @C TOutput pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C T to either of two control signals. The NOR gates,which drive output transistors Q1 and Q2, are enabled only when the flip–flop clock–input line is in low state. Thishappens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control–signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2).The control signals are external inputs that can be fed into the dead–time control (Figure 1, Pin 4), the error amplifier inputs (Pins 1, 2, 15, 16), or the feedback input (Pin 3). The dead–time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth–cycle time. This would result in a maximum duty cycle of 96% with the output mode control (Pin 13) grounded, and 48% with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead–time control input to a fixed voltage, ranging between 0 to 3.3 V .Figure 1. TL494 Block DiagramThis document may contain references to devices which are no longer offered. Please contact your ON Semiconductor representative for information on possible replacement devices.APPLICATION NOTEFigure 2. TL494 Timing DiagramCapacitor CFeedback/P The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on–time, established by the dead–time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V . Both error amplifiers have a common mode input range from –0.3 V to (V CC –2V), and may be used to sense power supply output voltage and current. The error amplifier outputs are active high and are ORed together at the inverting input of the pulse width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.When capacitor C T is discharged, a positive pulse is generated on the output of the dead–time comparator, which clocks the pulse steering flip–flop and inhibits the output transistors, Q1 and Q2. With the output mode control connected to the reference line, the pulse–steering flip–flop directs the modulated pulses to each of the two output transistors alternately for push–pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single–ended operation with a maximum on–time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing.When higher output drive currents are required for single–ended operation, Q1 and Q2 may be connected in parallel, and the output mode control pin must be tied to ground to disable the flip–flop. The output frequency will now be equal to that of the oscillator.The TL494 has an internal 5 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of ±5% witha thermal drift of less than 50 mV over an operating temperature range of 0 to 70°C.APPLICATION OF THE TL494 IN A 400 OFF–LINE POWER SUPPLYA 5 V , 80 A line operated 25 kHz switching power supply,designed around the TL494, is shown in Figure 3, and the performance data is shown in Table 1. A brief explanation of each section of the power supply is as follows:AC Input SectionThe operating ac line voltage is selectable for nominal of 115 or 230 volts by moving the jumper links to their appropriate positions. The input circuit is a full wave voltage doubler when connected for 115 V AC operation with both halves of the bridge connected in parallel for added line–surge capability. When connected for 230 V AC operation, the input circuit forms a standard full wave bridge.The line voltage tolerance for proper operation is –10,+20% of nominal. The ac line inrush current, during power up, is limited by resistor R1. It is shorted out of the circuit by triac Q1, only after capacitors C1 and C2 are fully charged,and the high frequency output transformer T1, commences operation.Power SectionThe high frequency output transformer is driven in a half–bridge configuration by transistors Q3 and Q5. Each transistor is protected from inductive turn–off voltage transients by an R–C snubber and a fast recovery clamp rectifier. Transistors Q2 and Q4 provide turn–off drive to Q3and Q5, respectively. In order to describe the operation of Q2, consider that Q6 and Q3 are turned on. Energy iscoupled from the primary to the secondary of T3, forward biasing the base–emitter of Q3, and charging C3 through CR1. Resistor R3 provides a dc path for the ‘on’ drive after C3 is fully charged. Note that the emitter–base of Q2 is reverse biased during this time. Turn–off drive to Q3 commences during the dead–time period, when both Q6 and Q7 are off. During this time, capacitor C3 will forward bias the base–emitter of Q2 through R3 and R2 causing it to turn on. The base–emitter of Q3 will now be reverse biased by the charge stored in C3 coupled through the collector–emitter of Q2.Output SectionThe ac voltage present at the secondaries of T1 is rectified by four MBR 6035 Schottky devices connected in a full wave center tapped configuration. Each device is protected from excessive switching voltage spikes by an R–C snubber, and output current sharing is aided by having separate secondary windings. Output current limit protection is achieved by incorporating a current sense transformer T4. The out–of–phase secondary halves of T1 are cross connected through the core of T4, forming a 1–turn primary. The 50 kHz output is filtered by inductor L1, and capacitor C4. Resistor R4 is used to guarantee that the power supply will have a minimum output load current of 1 ampere. This prevents the output transistors Q3 and/or Q5 from cycle skipping, as the required on–time to maintain regulation into an open circuit load is less than that of the devices storage time. Transformer T5 is used to reduce output switching spikes by providing common mode noise rejection, and its use is optional.The MC3423, U1, is used to sense an overvoltage condition at the output, and will trigger the crowbar SCR, Q8. The trip voltage is centered at 6.4 V with a programmed delay of 40 m s. In the event that a fault condition has caused the crowbar to fire, a signal is sent to the control section via jumper ‘A’ or ‘B.’ This signal is needed to shut down the output, which will prevent the crowbar SCR from destruction due to over dissipation. Automatic over voltage reset is achieved by connecting jumper ‘A’. The control section will cycle the power supply output every 2 seconds until the fault has cleared. If jumper ‘B’ is connected, SCR Q12 will inhibit the output until the ac line is disconnected. Low Voltage Supply SectionA low current internal power supply is used to keep the control circuitry active and independent from external loading of the output section. Transformer T2, Q9 and CR2 form a simple 14.3 V series pass regulator.Control SectionThe TL494 provides the pulse width modulation control for the power supply. The minimum output dead–time is set to approximately 4% by grounding Pin 4 through R5. The soft start is controlled by C5 and R5. Transistor Q11 is used to discharge C5 and to inhibit the operation of the power supply if a low ac line voltage condition is sensed indirectly by Q10, or the output inhibit line is grounded.Error amplifier 1 and 2 are used for output voltage and current–level sensing, respectively. The inverting inputs of both amplifiers are connected together to a 2.5 V reference derived from Pin 14. By connecting the two inputs together, only one R–C feedback network is needed to set the voltage gain and roll off characteristics for both amplifiers. Remote output voltage sensing capability is provided, and the supply will compensate for a combined total of 0.5 V drop in the power busses to the load. The secondary of the output current sense transformer T4, is terminated into 36 W and peak detected by BR1 and C6. The current limit adjust is set for a maximum output current of 85 amperes.The oscillator frequency is set to 50 kHz by the timing components R T and C T. This results in a 25 kHz two phase output drive signal, when the output mode (Pin 13) is connected to the reference output (Pin 14).Table 1. 400 Watt Switcher Performance DataFigure 3. 400 Watt Switchmode Power SupplyTransformer DataT1Core:Bobbin:Windings:Ferroxcube EC 70–3C8, 0.002″ gap in each legFerroxcube 70PTBPrimary (Q3, Q5):Primary (Q1):Secondary, 4 each:Shield, 2 each:50 turns total, #17 AWG Split wound about secondary.4 turns, #17 AWG.3 turns, #14 AWG Quad Filar wound.Made from soft alloy copper 0.002″ thick.T2Core:Bobbin:Windings:Allegheny Ludlum EI–75–M6, 29 gaugeBobbin Cosmo EI 75Primary, 2 each:Secondary:1000 turns, #36 AWG.200 turns, #24 AWG.T3Core:Windings:Ferroxcube 846 T250–3C8Primary, 2 each:Secondary, 2 each:30 turns, #30 AWG Bifilar wound.12 turns, #20 AWG Bifilar wound.T4Core:Windings:Magnetics Inc. 55059–A2Primary, 2 each:Secondary:1 turn, #14 AWG Quad Filar wound. Taken from secondary to T1.500 turns, #30 AWG.T5Core:Windings:Magnetics Inc. 55071–A2Primary:Secondary:4 turns, #16 AWG Hex Filar wound.4 turns, #16 AWG Hex Filar wound.L1Core:Windings:TDK H7C2 DR 56 x 355 turns, soft alloy copper strap, 0.9″ wide x 0.020″ thick,6 m H.SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051Phone: 81–3–5773–3850Email: r14525@。
400W大功率稳压逆变器电路
400W大功率稳压逆变器电路400W大功率稳压逆变器电路相关元件PDF下载:TL494A1266P30NOS利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC 电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。
此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。
本人设计的适合制作又方便实用的大功率方波逆变器制作详解
本人设计的适合制作又方便实用的大功率方波逆变器制作详解本人设计的适合制作又方便实用的大功率方波逆变器制作详解这次我为大家介绍一款本人完全自主设计的大功率方波逆变器。
本逆变器具有效率高、输出功率大、稳定等优点,并且电路图简单,适合电子爱好者制作。
本逆变器是高频逆变器,彻底摒弃了笨重的工频变压器,不仅减小了体积,而且提高了效率,还没有工频变压器发出的嗡嗡声。
本逆变器是典型的高频逆变工频输出结构:DC-AC-DC-AC结构(12VDC-330VAC0 30KHz-330VDC-230VAC 50HZ)。
本逆变器设有稳压和输出过流保护功能。
首先来看DC-AC-DC部分:这一部分是由SG3525为核心的闭环PWN逆变电路。
U1的第1、2脚组成电压反馈,使输出电压稳定。
16脚是基准电压5V,经过R1、R2分压加到第二脚(内部误差放大器反向输入端),正常电压为2.5V,输出高压的经过R7、RP电位器的分压送到第一脚(内部误差放大器同向输入端)。
第五、六脚的C1和R4决定了U1振荡频率约为31KHz (本人精心选择的频率,高了会增加场效应管的高频损耗,低了变压器会出声),第七脚的R5决定了死区时间(为了两个功率管不能同时导通,在两个脉冲之间留有一段时间,此时两个功率管都关闭)。
第9脚是补偿端,用C3接地可以增强U1的工作稳定性。
第十脚的R6和IFB的后续电路组成输出过流保护电路,当第十脚电压大于0.7V 时,U1停止驱动功率场效应管。
第11、14脚是功率管驱动脚。
第12脚是IC的GND,第13脚是内部输出三极管的共用集电极,第15脚是芯片供电电源。
Q1、Q2、T1组成高频推挽逆变电路(工作于正激模式),将12VDC变成330VAC。
D1为四个快恢复整流二极管,C5是滤波电容,此部分电路的功能是将高频交流整流成直流电。
再来看最后的DC-AC部分:这一部分是以多谐振荡器和H桥为核心的DC-AC电路。
Q5、Q6、C1、C2、R1-R4组成一个晶体管基极-集电极耦合多谐振荡器,Q5、Q6的集电极输出两个相位相反的方波脉冲,占空比50%,频率约50Hz,实际比50Hz应该高一点,我的是54Hz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
400W大功率稳压逆变器电路
利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET 开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:
第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。
此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。
在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。
该逆变器采用容量为400VA的工频变压器,铁芯采用45×60mm2的硅钢片。
初级绕组采用直径1.2mm的漆包线,两根并绕2×20匝。
次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。
次级绕组按230V计算,采用0.8mm漆包线绕400匝。
开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。
VD7可用1N400X系列普通二极管。
该电路几乎不经调试即可正常工作。
当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。
如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。
需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。
建议选用100V/32A 的2SK564,或选用三只2SK906并联应用。
同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。
如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。