3.5 互感和自感

合集下载

互感和自感

互感和自感

互感系数与自感系数的计算公式 互感与自感系数的物理意义 互感与自感系数的单位 互感与自感系数的比较
汇报人:XX
汇报人:XX
互感现象是电磁感应的一种 特殊情况
两个线圈之间的电磁感应现 象
当一个线圈中的电流发生变 化时,在另一个线圈中产生
感应电动势
互感现象是一种常见的物理 现象,在电力、电子等领域
有着广泛的应用
定义:当一个线圈中 的电流发生变化时, 它会在另一个线圈中
产生感应电动势
原理:变化的磁场会在 导体中产生感应电动势
产生条件:两个线圈之 间存在磁耦合
应用:变压器、感应电 机等
互感器:利用互感原理制成的测量 仪器,用于测量大电流和高压
电机:利用互感原理制成的电动机 和发电机,用于转换电能和机械能
添加标题
添加标题
添加标题
添加标题
变压器:利用互感原理制成的电力 设备,用于升高或降低电压
电磁炉:利用互感原理加热食物的 厨房电器
互感系数的定 义:表示两个 线圈之间互感
的程度
互感系数的单 位:亨利
互感系数的计 算公式:互感 系数 = 互感磁 链 / 自感磁链
互感系数与线 圈匝数、线圈 之间的距离以 及磁导率的关

自感现象:电流变化时, 自身产生磁场的现象
自感系数:描述线圈自感 能力的物理量
自感电动势:线圈中产生 的感应电动势
自感现象的应用:如电磁 炉、变压器等
线圈的自感现象 线圈的自感系数
自感电动势的产生 自感现象的应用
继电器保护系统:利用自感原理实现高压线路的继电保护 电机控制:通过自感原理实现电机的启动、调速和制动控制 电磁炉:利用自感原理产生高频交变磁场,实现高效加热 无线充电:通过自感原理实现无线充电,方便快捷

《互感和自感》教案

《互感和自感》教案

第六节互感和自感一、教材分析:互感和自感都是电磁感应现象的特例,所以在本节教学中,要注意引导学生利用电磁感应现象自己完成互感和自感现象的分析,并能利用所学知识解释实际问题。

二、教学目标:知识与技能:(1)了解互感和自感现象,了解自感现象产生的原因。

(2)知道自感现象中的一个重要概念——自感系数,了解它的单位及影响其大小的因素。

过程与方法:引导学生从事物的共性中发掘新的个性,从发生电磁感应现象的条件和有关电磁感应得规律,提出自感现象,并推出关于自感的规律。

会用自感知识分析,解决一些简单的问题,并了解自感现象的利弊以及对它们的防止和利用。

情感态度与价值观:培养学生的自主学习的能力,通过对已学知识的理解实现知识的自我更新,以适应社会对人才的要求。

三、教学重点与难点:重点:自感现象及自感系数。

难点:自感现象的产生原因分析,通、断电自感的演示实验中现象解释。

四、教学用具:通、断电自感演示装置,电池四节(带电池盒)导线若干。

五、教学过程:电路之间。

线圈之间,而且可以发生于任何两个相互靠近的电路之间。

问题情景:(互感中的能量)另一电路中能量从哪儿来的?小结:互感现象可以把能量从一个电路传到另一个电路。

3、互感的应用和防止:见课本。

二、自感现象1、问题情景:由电流的磁效应可知,线圈通电后周围就有磁场产生,电流变化,则磁场也变化,那么对于这个线圈自身来说穿过它的磁通量在此过程中也发生了变化。

是否此时也发生了电磁感应现象呢?我们通过实验来解决这个问题。

2、演示实验:实验1 出示自感演示器,通电自感。

提出问题:闭合S瞬间,会有什么现象呢?引导学生做预测,然后进行实验。

(实验前事先闭合开关S,调节变阻器R和R1使两灯正常发光,然后断开开关,准备好实验)。

开始做实验,闭合开关S,提示学生注意观察现象观察到的现象:在闭合开关S瞬间,灯A2立刻正常发光,A1比A2迟一段时间才正常发光。

学思考现象原因。

请学生分析现象原因。

总结:由于线圈L自身的磁通量增加,而产生了感应电动势,这个感应电动势总是阻碍磁通量的变化,既阻碍线圈中电流的变化,故通过A1的电流不能立即增大,灯A1的亮度只能慢慢增加,最终与A2相同。

互感和自感

互感和自感
A
一、互感现象
1、定义:当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。互感 现象中产生的感应电动势,称为互感电动势。 2、本质:一种电磁感应现象
利用互感现象,可以把能量从一个线圈传 递到另一个线圈。因此,互感现象在电工 技术和电子技术中有广泛的应用。
收音机里的磁性天线.
3、应用:变压器就是利用互感现象制成。
街头的变压器是中型的互感器
变电站的大型变压器是大型的互感器
互感现象不仅发生于绕在同一铁芯上的两个线圈之间, 且可发生于任何两个相互靠近的电路之间。在电力工程和 电子电路中,互感现象有时会影响电路的正常工作,这时 要设法减小电路间的互感。
A
1、由于导体本身的电流 变化而产生的电磁感应现 象叫自感现象。 2、自感现象中产生的电 动势叫自感电动势。
延时继电器
练习、如图所示, L为自感系数较大的线圈,电路稳定后小灯
泡正常发光,当断开开关S的瞬间会有什么现象( A.灯A立即熄灭
A

B.灯A慢慢熄灭
C.灯A突然闪亮一下再慢慢熄灭 D.灯A突然闪亮一下再突然熄灭
A
自感电动势的作用:
阻碍导体中原来的电流变化。
注意: “阻碍”不是“阻止”,电流 原来怎么变化还是怎么变,只是变化 变慢了,即对电流的变化起延迟作用。
1、物 横截面越大、匝数越多自感系数越大,有铁芯比无 铁芯自感系数大得多。
3、单位:亨利。符号 H。
1 应用: 在交流电路中、在各种用电设备 和无线电技术中有着广泛的应用。如日光灯 的镇流器,LC振荡电路等。 2 防治:在切断自感系数很大、电流很强的 电路的瞬间,产生很高的电动势,形成电弧, 在这类电路中应采用特制的开关。
6、自感 现象的应 用与防止

互感和自感

互感和自感
中的电流大于灯泡中的 电流,断开开关的瞬间灯泡才会闪亮一下, 电流,断开开关的瞬间灯泡才会闪亮一下,所以必 须满足灯泡的电阻大于线圈的电阻才能使断开开关 的瞬间灯泡闪亮一下。 的瞬间灯泡闪亮一下。
三、自感系数 1.自感电动势 自感电动势 2.L叫自感系数,简称自感或电感,它 叫自感系数, 叫自感系数 简称自感或电感, 与线圈的大小、形状、 与线圈的大小、形状、圈数以及是 否有铁芯等因素有关。 否有铁芯等因素有关。 3.L的单位是亨利,简称亨,符号是 的单位是亨利, 的单位是亨利 简称亨,符号是H. 常用的单位还有毫亨、微亨. 常用的单位还有毫亨、微亨
四、磁场的能量
互感和自感
一、互感现象 1.当一个线圈中的电流变化时,它所 当一个线圈中的电流变化时, 当一个线圈中的电流变化时 产生的变化的磁场会在另一个线圈 中产生感应电动势的现象叫互感现 象。 2.由于互感产生的感应电动势叫互感 由于互感产生的感应电动势叫互感 电动势。 电动势。
二、自感现象 1.当线圈中的电流变化时,它所产生 当线圈中的电流变化时, 当线圈中的电流变化时 的变化的磁场在它本身也会激发感 应电动势,这种现象叫自感现象。 应电动势,这种现象叫自感现象。 2.由于自感而产生的感应电动势叫自 由于自感而产生的感应电动势叫自 感电动势。 感电动势。 3.自感电动势的作用:阻碍原来电流 自感电动势的作用: 自感电动势的作用 的变化。 的变化。

3.5 自感与互感

3.5 自感与互感

W = A + A = −∫ε21i1dt − ∫ε12i2dt 互 1 2
di2 di1 = ∫ M21i1 + M12i2 dt dt dt 0
=
I1I2 0
∞ 0
∞ 0

∫ Md(i1i2 )
= MI1I2 ——互感磁能 ——互感磁能 1 1 = M12I1I2 + M21I1I2 ——对称形式 ——对称形式 2 2 2 2 总磁能 W = 1 L I1 + 1 L2I2 + 1 M12I1I2 + 1 M21I1I2 m 1 2 2 2 2
3、利弊 应用:镇流器, 流圈,谐振电路, 1) 应用:镇流器,扼(抑)流圈,谐振电路,· · · 2) 害处:上电迟延,断电影响,分布参数,· · · 害处:上电迟延,断电影响,分布参数,
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
物理系:杨友昌 编
两个线圈所产生的互感系数与其各自的自感系数有一定的联系 条件 :当两个线圈中每一个线圈所产生的磁通量对于每一匝来 说都相等,并且全部穿过另一个线圈的每一匝, 说都相等,并且全部穿过另一个线圈的每一匝,即无漏磁
L = 1 NΦ 1 1 I1 L = 2 N2Φ2 I2
M=
N Φ2 N2Φ 1 1 = I2 I1

M2 = L L 1 2

M=
LL 1 2
【例4】:同轴电缆单位长度之电感 】 两柱面 间
µ0 b Φ= ∫ Bldr = ⋅ I l ln 2 a π a
a
µ0I B= 2 r π
(a ≤ r ≤ b)
N1Φ21 N2Φ12 M= = I2 I1
M2 = N1Φ21 N2Φ12 I2 I1

《互感和自感》 讲义

《互感和自感》 讲义

《互感和自感》讲义一、引言在电学的世界里,互感和自感是两个非常重要的概念。

它们在电路分析、电磁感应等领域都有着广泛的应用。

理解互感和自感,对于我们深入掌握电磁学的知识,解决实际的电路问题,具有至关重要的意义。

二、互感(一)互感的定义互感是指当两个相邻的线圈中,一个线圈中的电流发生变化时,在另一个线圈中产生感应电动势的现象。

比如说,有线圈 A 和线圈 B 靠得很近。

当线圈 A 中的电流发生变化时,这个变化的磁场会穿过线圈 B,从而在线圈 B 中产生感应电动势。

(二)互感系数为了定量地描述互感现象的强弱,我们引入了互感系数这个概念。

互感系数 M 取决于两个线圈的几何形状、大小、匝数、相对位置以及周围磁介质的磁导率等因素。

(三)互感电动势{dt}$,其中$E_{2}$是在线圈 2 中产生的互感电动势,$I_{1}$是线圈 1 中的电流,$dI_{1}/dt$ 是线圈 1 中电流的变化率。

(四)互感的应用互感在变压器、互感器等设备中得到了广泛的应用。

变压器就是利用互感原理来实现电压的变换。

通过不同匝数的初级线圈和次级线圈,当输入交流电压在初级线圈中产生变化的电流时,在次级线圈中就会感应出不同大小的交流电压。

互感器则用于测量大电流或高电压,将高电压或大电流通过互感变成较小的易于测量的电压或电流。

三、自感(一)自感的定义自感是指当通过线圈本身的电流发生变化时,在线圈中产生感应电动势的现象。

简单来说,就是自己的电流变化影响自己。

(二)自感系数自感系数 L 也称为电感,它反映了线圈产生自感电动势的能力。

自感系数与线圈的匝数、形状、大小以及有无铁芯等因素有关。

(三)自感电动势中$E$ 是自感电动势,$I$ 是线圈中的电流,$dI/dt$ 是电流的变化率。

(四)自感的应用自感在日光灯、电感镇流器等中有着重要的应用。

在日光灯中,镇流器就是一个电感。

在日光灯启动时,镇流器产生一个高电压,帮助灯管中的气体电离导通;在日光灯正常工作时,镇流器又起到限流的作用,保证灯管稳定发光。

互感和自感 课件

互感和自感 课件
(4)电路断开瞬间,回路中电流从L中原来的电流开始减小.
题型二 自感现象的图象问题 如图所示的电路中,电源的电动势为E,内阻为r,电感L
的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭 合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B 两点间电压UAB随时间t变化的图象中,正确的是( B )
内的磁场能转化为电能用以维持这个闭合回路中保持一定时间 的电流,电流逐渐减小,线圈中的磁场减弱,磁场能减少,当 电流为零时,线圈中原储存的磁场能全部转化为电能并通过灯 泡(或电阻)转化为内能.所以,在自感现象中是电能转化为线 圈内的磁场能或线圈内的磁场能转化为电能的过程,因此自感 现象遵循能量转化和守恒定律.
知识点二 自感现象 1.定义:由于导体本身的电流发生变化而产生的电磁感应
现象. 2.本质分析:由法拉第电磁感应定律知道,穿过线路的磁
通量发生变化时,线路中就产生感应电动势.在自感现象中, 由于流过线圈的电流发生变化,导致穿过线圈的磁通量发生 变化而产生自感电动势.
3.从能量角度分析:在断电自感实验中,S断开前,线圈L
零.故选B. 点评:本题考查了综合运用楞次定律和欧姆定律分析自感现 象的能力,要注意电势差的正负.
线圈中电流开始减小,即从IA减小,故LA慢慢熄灭,LB闪亮后
才慢慢熄灭,C错误、D正确.
点评:(1)本题是通电自感和断电自感问题,根据是明确线圈中 自感电动势的方向是阻碍电流的变化,体现电流的“惯性”.
(2)分析自感电流的大小时,应注意“L的自感系数足够大,其
直流电阻忽略不计”这一关键语句. (3)电路接通瞬间,自感线圈相当于断路.
(3)自感电动势E感与哪些因素有关. 自感电动势E感可以写成E感=n ,由于磁通量的变化是电

互感和自感 课件

互感和自感  课件
图5
(1)若开始 I1>I2,则灯 LA 会闪亮一下(I1、I2 差别越大闪亮越明显, 但差别过大有可能会烧坏灯泡);即当线圈的直流电阻 RL<RLA 时, 会出现 LA 灯闪亮的情况。 (2)若 RL≥RLA,I1≤I2,则不会出现 LA 灯闪亮一下的情况,但灯 泡会逐渐熄灭。
因而电流 I0 保持不变
D.有阻碍电流增大的作用,
但电流最后还是增大到 2I0
图2
解析 当 S 合上时,电路的电阻减小,电路中电流要增大,故 L 要产生自感电动势,阻碍电路中的电流增大,但阻碍不是阻止; 当 S 闭合电流稳定后,L 的阻碍作用消失,电路的电流为 2I0,D 项正确。 答案 D
名师点睛 自感问题的求解策略 自感现象是电磁感应现象的一种特例,它仍遵循电磁感应定律。 分析自感现象除弄清这一点之外,还必须抓住以下三点:(1)自感 电动势总是阻碍电路中原来电流的变化。(2)“阻碍”不是“阻 止”。“阻碍”电流变化的实质是使电流不发生“突变”,使其 变化过程有所延缓。(3)当电路接通瞬间,自感线圈相当于断路; 当电路稳定时,相当于电阻,如果线圈没有电阻,相当于导线(短 路);当电路断开瞬间,自感线圈相当于电源。
2.公式:E
=L
ΔI Δt
,其中
L
是自感系数,简称自感或电感,单
位: 亨利 。符号: H 。1 mH=10-3 H,1 μH=10-6 H。
3.决定因素:与线圈的大小、形状、 匝数 ,以及是否有铁芯等
因素有关,与 E、ΔI、Δt 等无关。
[要 点 精 讲] 要点1 对自感现象的理解
(1)对自感现象的理解 自感现象是一种电磁感应现象,遵循法拉第电磁感应定律和楞次定 律。
要点2 对两类自感现象的理解

《互感和自感》课件

《互感和自感》课件

互感和自感的相互作用
互感和自感的相互作用
当电流通过一个线圈时,会产生磁场,这个磁 场会影响到周围的线圈。当电流在这些线圈之 间变化时,就会引起它们之间的互感。
利用互感和自感构建电路
互感和自感的相互作用可以用来构建各种电路, 如共振电路、变压器、电感器等。
互感和自感的功率损耗
铜损
线圈中的电流会随着时间变化而导致磁场的变化, 这会在线圈中产生感应电动势,从而产生铜损。
互感和自感的衍生概念及应用
1
互感感应
利用互感关系来产生感应电动势。
高频晶振
2
利用线圈的自感和电容的容抗来构成高
精度的谐振电路。
3
超导体材料
超导体的电学特性很大程度上是由于其 自感的降低和互感的增加。
互感和自感的常见误区
1 互感和感应电动势等同
互感和感应电动势虽然有关联,但并不等同。
2 互感和自感不会相互影响
2 磁场的方向
磁场的方向与电流的方向和线圈的结构有关。
互感和自感的影响因素
1
线圈之间的距离
线圈之间的距离越近,互感系数就越大,自感系数就越小。
2
线圈的结构
线圈的结构和线圈的匝数、长度、直径等因素有关。
3
介质和材料
线圈周围的介质和材料对磁场的分布和影响有很大的影响。
互感和自感的实际应用示例
电力传输
互感和自感之间存在相互作用,互相影响。
互感和自感的未来发展方向
应用拓展
互感和自感技术还有很大的应用空间,尤其是 在新兴领域。
效率提升
提高互感和自感技术的效率,实现能源的更好 转换和利用,对于未来发展至关重要。
互感和自感PPT课件
本课件将为您介绍互感和自感的定义、区别、应用、公式、电路图示、相互 作用、功率损耗、频率响应、实际电路模型、磁场特性、影响因素、实际应 用示例、数据测量及分析、发展历程、发展趋势、应用前景、衍生概念及应 用、常见误区、未来发展方向。让你深入了解互感和自感这一有趣的话题。

自感与互感的概念及计算

自感与互感的概念及计算

自感与互感的概念及计算自感(Self-inductance)和互感(Mutual inductance)是电磁学中重要的概念,它们描述了电流和磁场之间的相互作用关系。

本文将对自感和互感的概念进行详细解析,并讨论其计算方法。

1. 自感的概念自感是指通过一根导线中的电流激发出的磁场引起的自身感应电动势。

当电流通过导线时,其周围会形成一个磁场,而这个磁场又会影响导线中的电流。

自感的大小取决于导线的几何形状和电流的变化速率。

自感可以用以下公式来表示:L = (μ0 * N^2 * A) / l其中,L代表自感的系数,单位为亨利(H);μ0是真空中的磁导率,约等于4π×10^(-7) H/m;N表示导线的匝数;A是导线截面积;l是导线的长度。

2. 互感的概念互感是指两根导线之间的电流激发出的磁场引起的互相感应电动势。

当两根导线靠近并且电流变化时,它们之间会产生互感现象。

互感的大小取决于导线之间的几何关系、电流的变化速率以及它们之间的距离。

互感可以用以下公式来表示:M = k * sqrt(L1 * L2)其中,M代表互感的系数,单位为亨利(H);k是一个比例常数,0 < k ≤ 1,表示两根导线之间的耦合系数;L1和L2分别代表两根导线的自感系数。

3. 计算示例假设有两根平行的长直导线,它们之间的距离为d,导线1的电流为I1,导线2的电流为I2。

现在我们来计算它们之间的互感系数M。

首先,我们需要计算导线1和导线2的自感系数L1和L2:L1 = (μ0 * N1^2 * A1) / l1L2 = (μ0 * N2^2 * A2) / l2其中,N1和N2分别代表两根导线的匝数,A1和A2分别代表导线1和导线2的截面积,l1和l2分别代表导线1和导线2的长度。

然后,根据互感的计算公式:M = k * sqrt(L1 * L2)通过以上计算,我们可以得到两根导线之间的互感系数M。

互感系数的大小反映了导线之间的电磁相互作用的强度。

人教版选修3《互感和自感》说课稿

人教版选修3《互感和自感》说课稿

人教版选修3《互感和自感》说课稿一、教材概述《互感和自感》是人教版选修3中的一篇重要文章,主要介绍了互感和自感这两个物理概念以及它们在电磁感应和电路中的应用。

通过本篇文章的学习,学生能够深入理解互感和自感的原理,并掌握它们在实际应用中的作用。

二、教学目标1.知识目标–了解互感和自感的概念和意义;–掌握互感和自感的计算公式;–理解互感和自感在电磁感应和电路中的应用。

2.能力目标–能够运用互感和自感的理论知识解决相关问题;–能够设计简单的电路实验来观察互感和自感的现象。

3.情感目标–培养学生对物理知识的兴趣和热爱;–培养学生动手实践、思维创新的能力;–培养学生合作与交流的能力。

三、教学重点•了解互感和自感的概念和意义;•掌握互感和自感的计算公式。

四、教学内容1. 互感和自感的概念和意义互感是指两个或多个线圈或线圈与导体之间通过磁场的相互作用而产生的电磁感应现象。

当一个线圈的电流变化时,将引起另一个线圈中的感应电动势的变化,这种现象就是互感。

自感是指线圈中的自身电流变化所产生的感应电动势。

当线圈中的电流变化时,由于电流的变化会引起磁场的变化,从而产生自感电动势。

互感和自感在电磁感应和电路中起着重要的作用。

例如,在变压器中,利用互感的原理将电能从一个线圈传递到另一个线圈;在RLC电路中,自感会导致电路的阻抗发生变化。

2. 互感和自感的计算公式互感的计算公式为:$$ M = N_1 \\cdot N_2 $$其中,M表示互感,N1和N2分别表示两个线圈的匝数。

自感的计算公式为:$$ L = \\frac{{\\Phi}}{{I}} $$其中,L表示自感,$\\Phi$表示磁通量,I表示电流。

3. 互感和自感的应用互感和自感在实际应用中有着广泛的应用。

例如:•变压器:利用互感的原理将电能从一个线圈传递到另一个线圈,实现电压或电流的变换;•电动机:利用自感的原理,在电动机中产生转矩;•电子电路:在电子电路设计中,利用互感和自感来调节电流和电压;•电磁波的传播:电磁波的传播也与互感和自感密切相关。

3-5自感和互感 - 副本

3-5自感和互感 - 副本

3- 5互感和自感
例计算两个串联线圈的自感系数 设两个线圈的自感系数分别为L 解:设两个线圈的自感系数分别为 1
1
2
它们被这样串联放置, 和L2,它们被这样串联放置,使两个线 圈所产生的磁场彼此加强,如图。 圈所产生的磁场彼此加强,如图。
I I
可以通过计算磁通匝链数来计算串联线圈 的自感系数。 通过线圈1 的自感系数 。 通过线圈 1 的磁通匝数来自 两方面: 线圈1 两方面 : 线圈 1 的磁场对本身的磁通匝链 和线圈2 磁场对线圈1 数 Ψ 11 和线圈 2 磁场对线圈 1 的磁通匝链数 因为磁场的方向是彼此加强, Ψ12 ,因为磁场的方向是彼此加强,这两 种磁通匝链数同号,于是 种磁通匝链数同号,
n=N l
l
ψ = NΦ = NBS
N = Nµ IS l
E
3- 5互感和自感
N ψ = N µ 0 IS l 2 N ψ L = = µ0 S I l
S µ
l
E
n = N l V = lS
(一般情况可用下式 测量自感) 测量自感)
∴ L = µ0n V
2
dI EL = − L dt
自感系数只与装置的几何因素和介质有关。 自感系数只与装置的几何因素和介质有关。 4)自感的应用 稳流 , LC 谐振电路 滤波电路 ) 谐振电路, 滤波电路, 感应圈等 .
若导线如左图放置, 若导线如左图放置 根据对 称性可知 Φ = 0 得
µ Il
I
b 2 b 2
l
M =0
3- 5互感和自感
设两个线圈,如图所示,计算耦合系数。 例3 设两个线圈,如图所示,计算耦合系数。 解:线圈C1中的电流I1对线圈C1本身的磁感通量为 线圈C 中的电流I 对线圈C

高中物理之互感和自感知识点

高中物理之互感和自感知识点

高中物理之互感和自感知识点互感当一个线圈中电流变化,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象,称为互感。

互感现象中产生的感应电动势,称为互感电动势。

1应用利用互感现象可以把能量从一个线圈传递到另一个线圈(即互感现象可以把能量由一个电路传递到另一个电路),因此在电工技术和电子技术中有广泛应用。

变压器就是利用互感现象制成的。

2危害互感现象不仅发生于绕在同一铁芯上的两个线圈之间,且可发生于任何两个相互靠近的电路之间。

自感由于导体本身电流发生变化而产生的电磁感应现象。

1自感电动势自感现象中产生的感应电动势叫自感电动势。

2自感电动势的方向自感电动势的方向遵从楞次定律,由于在自感现象里,引起穿过线圈磁通量变化的原因是线圈自身的电流发生变化,因此,根据楞次定律可以得到自感电动势的方向总是“阻碍”引起自感电动势的电流的变化。

对“阻碍”含义的正确理解是:当自感电动势是由于电流增大而引起时,自感电动势阻碍电流增加,自感电动势方向与原电流方向相反;当自感电动势是由于电流减小而引起时,自感电动势阻碍电流减小,自感电动势方向与原电流方向相同。

3自感电动势的大小;L为自感系数;L跟线圈的大小,形状,圈数,以及是否有铁芯等因素有关。

线圈越粗,越长、单位长度上的匝数越密,横截面积越大,它的自感系数越大,另外有铁芯的线圈自感系数大大增加。

单位是亨利,符号是H,1H=103mH=106μH根据已知条件不同,自感电动势的大小可以有以下两种算法:由计算,其中n为线圈的匝数,为线圈中磁通量的变化率;由计算,其中L为线圈的自感系数,为线圈中电流的变化率。

自感现象的说明如图所示,当合上开关后又断开开关瞬间,电灯L为什么会更亮?①当合上开关后,由于线圈的电阻比灯泡的电阻小,因而过线圈的电流I2较过灯泡的电流I1大,当开关断开后,过线圈的电流将由I2变小,从而线圈会产生一个自感电动势,于是电流由c→b→a→d流动,此电流虽然比I2小但比I1还要大.因而灯泡会更亮。

什么是自感、互感?他们有什么区别与特点

什么是自感、互感?他们有什么区别与特点

什么是自感、互感?他们有什么区别与特点磁电感应与电磁感应,是电气领域广泛应用的能量转换方式。

比如电动机、变压器、整流器等,其转换过程离不开自感和互感两种方式。

什么是自感与互感呢?你清楚吗?很多电工虽然略懂一二,但只知皮毛。

并不能全面解释概念与熟知原理,下面我们将进行一一解答。

希望为你夯实电工基础提供支持与帮助!一、什么是自感、互感?1、自感:指当电流通过导体时,自身在电流变化的状态下,其周围产生电磁感应现象,叫做自感现象。

自感的产生与大小,与磁通匝数、自感系数、自感磁能、自感电压四个方面的因素所影响。

自感在电工、电器、无线电技术应用广泛,比如我们常见的接触器线圈、电磁阀、电感元件、电控锁等。

2、互感:当一个线圈产生电流变化时,临近线圈也随之产生电压电流变化。

人们把这种磁量转换的方式,称为互感现象。

互感的产生与大小,会受单线圈自感系数与互感系数(两个线圈的几何形状,大小,相对位置)所影响。

通过互感现象,能量可以从一次线圈传递给二次线圈。

如我们常见的变压器、感应线圈、稳压器等。

二、自感与互感的区别有哪些?1、自感是单线圈电磁感应,互感是双线圈电磁感应。

是两种不同的能量转换方式,但都是电磁感应的原理。

2、自感为电能转为磁能的性能方式,互感可实现一种电压电流转为另一种电压电流的方式。

3、自感为自身电磁感应,互感会受自感的影响因素而发生变化。

4、两种感应方式,在电子、电器中与其他电气元件相互连接,所实现的功能差异较大。

一般自感用于调频、谐振、电磁感应等作用。

互感则用于电路变压器、电压电流调节、电源稳压等用途。

通过上述内容,我们基本了解了自感、互感的含义解释与区别差异。

希望你潜心学习,应用掌握,不断巩固与提升自身的电气技术能力。

互感和自感 课件

互感和自感  课件

2.对电感线圈阻碍作用的理解 (1)若电路中的电流正在改变,电感线圈会产生自感电动势阻 碍电路中电流的变化,使得通过电感线圈的电流不能突变. (2)若电路中的电流是稳定的,电感线圈相当于一段导线,其 阻碍作用是由绕制线圈的导线的电阻引起的.
反思总结
(1)自感电动势阻碍线圈自身电流的变化,但不能阻止,即仍然 符合“增反减同”,并且自感电动势阻碍自身电流变化的结果,会 对其他电路元件的电流产生影响.
互感和自感
一、互感现象 1.互感:两个相互靠近的线圈,当一个线圈中的电流变化时, 它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现 象叫互感. 2.实质:互感现象是一种常见的电磁感应现象. 3.互感的应用:利用互感现象可以把能量由一个线圈传递到 另一个线圈,如变压器、收音机的磁性天线. 4.危害:互感现象能发生在任何两个相互靠近的电路之间, 电力工程和电子电路中,有时会影响电路正常工作.
(4)类型:通电自感和断电自感.
电路
现象
自感电动势的作用
通电 自感
接通电源的瞬间,灯 泡 A1 较慢地亮起来
阻碍电流的增加
断电 自感
(RA>RL)
断开开关的瞬间,灯 泡 B 逐渐变暗.灯泡 A 闪亮一下,然后逐
渐变暗
阻碍电流的减小
2.自感系数
(1)自感电动势的大小:E=LΔΔIt,式中 L 是比例系数,叫做自感 系数,简称自感或电感.
答案:AC
方法技巧
通、断电自感现象的判断技巧 (1)通电时线圈产生的自感电动势阻碍电流的增加且与电流方 向相反,使电流相对缓慢地增加. (2)断电时线圈产生的自感电动势与原电流方向相同,在与线圈 串联的回路中,线圈相当于电源,它提供的电流逐渐变小. (3)电流稳定时,若线圈有电阻时就相当于一个定值电阻,若不 计线圈的电阻时就相当于一根导线. (4)在分析自感现象时要抓住两点:一是线圈在电路中的位置、 结构;二是电路中电流的变化,如电流方向变化、电流大小突然变 化的情况等.

什么是自感互感他们有什么区别与特点

什么是自感互感他们有什么区别与特点

什么是自感互感他们有什么区别与特点自感和互感是两个心理概念,涉及到个体与环境之间的互动关系。

他们在定义上有所区别,并且具有不同的特点。

首先,自感是指个体主观意识中对自我感受与情绪的认知和反应。

它是个体对自己感受和体验的直接知觉与表达。

自感是个体对内在感觉、心理状态进行知觉和表达的过程,可以包括情绪、情感、疼痛、温度等。

自感是个体对自身的反应和评价,是主观感受的一种体现。

互感则是个体对他人感受的知觉和体验。

它涉及到个体对他人情绪、心理状态和需要的感知和理解。

互感是个体通过观察、倾听和培养共情能力而理解和感知他人的情感和需要。

它是个体对他人的反应和认知,是一种外向的感知与体验。

自感和互感在性质上是不同的。

自感是个体对自身的反应和评价,是个体内心的一种体验;而互感是个体对他人的情绪和需求进行感知和理解,是个体与他人之间的一种交流和联接。

此外,自感和互感还有一些不同的特点。

1.方向性:自感是个体对自身的感受与情绪的体验和表达,是自我导向的;而互感则是个体对他人的情绪和需求的感知与理解,是他人导向的。

2.内向与外向:自感是发自个体内心的感受和评价,是内向的;而互感是通过观察和感知他人的情感和需求,是外向的。

3.表达方式:自感通常通过语言、行为和身体语言等来表达;而互感则可以通过倾听、支持和共情等方式来传达。

需要注意的是,自感和互感是相互影响的。

个体的自感能力可以影响其对他人的互感能力,而个体的互感能力也可以影响其对自己的自感能力。

这两者之间互动和平衡的关系是重要的。

综上所述,自感和互感是两个心理概念,分别指个体对自身感受和他人感受的认知和体验。

它们在性质、方向性、表达方式和心理效应等方面都有所区别和特点,但又相互关联和影响。

互感和自感说课稿

互感和自感说课稿

《互感和自感》说课稿马丽萍尊敬的各位老师:大家好!我今天说课的题目是《互感和自感》1.教材的地位和要求《互感和自感》是人教版选修3-2的第一章第六节课。

互感和自感是电磁感应现象的应用特例。

学习他们的重要性在于他们具有实际的应用价值,因为在高考中是A类要求,所以我把教学重点放在(1)自感现象产生的原因。

(2)对自感现象进行解释。

难点为:自感电动势概念的理解,它如何对电流的变化进行阻碍。

知识目标为1.通过实验,了解互感和自感現象,以及对他们的利用和防止。

2.能够通过电磁感应的有关规律分析通电、断电自感现象的成因,以及磁场能量的转化问题。

情感目标1.引导学生自己动手,通过通电自感和断电自感两个实验的探究活动让学生来感知自感产生的现象。

2.通过探究活动,培养学生的观察能力和分析推理能力。

激发学生对科学的求知欲、培养学生探索与创新意识。

二学情及教法分析高二学生已经具备了一定的实验探究,分析问题、解决问题的能力。

通过实验探究更能激发学生的情感,培养他们的创造性。

为了实现目标本节课教学采用“引导—自主探究”教学法,该教学法以解决问题为中心,注重学生的独立钻研,又注重学生的合作学习,落脚于分析问题、解决问题能力的培养,充分发挥学生的主动性。

三:教学过程我对整堂课的设计如下我先设计了复习回顾,通过法拉第发现电磁感应的实验做铺垫:以例题为引子去探究互感现象,我再通过多媒体给出现实生活中互感的应用。

自感的教学也将以下实验开始,这个实验学生体验深刻,很好的激发了学生的探究欲望。

学生参与面较广,课堂气氛活跃。

并引入下一知识点自感。

一通电瞬间自感实验:教师指出我们要引入另一个电路和有线圈的电路比较,电路图如下,鼓励学生猜想实验现象并实验验证,解释原因特别提醒学生注意:“阻碍”而不是“阻止”,电流原来怎么变化还是怎么变,只是变化变慢了,即对电流的变化起延迟作用提出问题1,L中有无自感电动势,当电路断开,会观察到什么现象?解释原因从而引入断电自感二断电瞬间自感实验通过实验观察现象并解释闪亮一下的原因。

互感和自感 课件

互感和自感  课件

1.对互感现象的理解 (1)互感现象是一种常见的电磁感应现象,它不仅 发生于绕在同一铁芯上的两个线圈之间,而且可以发生 于任何相互靠近的电路之间。 (2)互感现象可以把能量由一个电路传到另一个电路。 变压器就是利用互感现象制成的。 (3)在电力工程和电子电路中,互感现象有时会影响 电路的正常工作,这时要求设法减小电路间的互感。
2.对自感现象的理解 (1)对自感现象的理解: 自感现象是一种电磁感应现象,遵守法拉第电磁感应 定律和楞次定律。 (2)对自感电动势的理解: ①产生原因: 通过线圈的电流发生变化,导致穿过线圈的磁通量发 生变化,因而在原线圈上产生感应电动势。
②自感电动势的方向: 当原电流增大时,自感电动势的方向与原电流方向相 反;当原电流减小时,自感电动势方向与原电流方向相同 (即:增反减同)。 ③自感电动势的作用: 阻碍原电流的变化,而不是阻止,原电流仍在变化, 只是使原电流的变化时间变长,即总是起着推迟电流变化 的作用。
体开始放电,于是日光灯管成为电流的通路开始发光。启 动器相当于一个自动开关。日光灯正常工作后处于断开状 态,启动器损坏的情况下可将连接启动器的两个线头作一 个短暂接触也可把日光灯启动。启动时电流流经途径是镇 流器、启动器、灯丝,启动后电流流经途径是镇流器、灯 丝、日光灯管。
4.日光灯正常工作时镇流器的作用 由于日光灯使用的是交流电源,电流的大小和方向做 周期性变化。当交流电的大小增大时,镇流器上的自感电 动势阻碍原电流增大,自感电动势与原电压反向;当交流 电的大小减小时,镇流器上的自感电动势阻碍原电流减小, 自感电动势与原电压同向。可见镇流器的自感电动势总是 阻碍电流的变化,正常工作时镇流器就起着降压、限流的 作用。
2.自感现象的分析思路 (1)明确通过自感线圈的电流的变化情况(增大还是减小)。 (2)根据楞次定律,判断自感电动势方向。 (3)分析线圈中电流变化情况,电流增强时(如通电时), 由于自感电动势方向与原电流方向相反,阻碍电流增加,因此 电流逐渐增大;电流减小时(如断电时),线圈中电流逐渐减小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N 1 21 I2
例题7:先算 再算 M ——
10
证明:以单匝线圈为例
线圈1 激发 的磁 场通 过2的 通量
M 21 M 12 M
0 I1 A1 ( p ) 4 12 I1 21 I2
12

S2
B1 d S

L2
A1 d l 2
互感磁能, 可正可负
推广到k个线圈的普遍情况
1 2 LI
2 1 1
Wm
1 2
L2 I
2 2
k 2 i
1 2

M 12 I 1 I 2
1 2
1 2
M 21 I 1 I 2
对 称 形 式
1 第i个线 圈的自感 W m 2 系数
LI
i i 1
i 1 ( ji)
M
k
ij
IiI j
di1 dt
dt

I2
0
M 12 I 1 di 1 M 12 I 1 I 2
而总磁能与电流建立的先后次序无关, A=A’,所以便证明了
M21= M12=M
16
两个线圈系统总磁能
Wm
总 磁 能

1 2
L I
2 1 1
1 2
L 2 I 2 MI 1 I 2
2
1、2的自感磁能, 大于零
A

0

I dt 21 1


0
I 1 M 21
di 2 dt
dt



I2
0
M 21 I 1 di 2 M 21 I 1 I 2
这部分功 转化成互 感磁能储 存在线圈 内
同样若先建立I2,再接通线圈2则
A'

0

12
I 2 dt
维持线圈2内 电流不变


0
I 2 M 12

L
L
6
dI dt
N I
I

1H

10 mH 10 H
4
1A
1A
例题 P193

例题8 密绕长直螺线管 例题9:求长为l 的传输线的电感 方法:求B————L

BdS
S


R2
Bldr
0 Il
2
ln
R2 R1
I
R1
L
磁通匝链数
3
自感系数


比例系数?
I (t )
=LI 比例系数为L ,称为自感系数 L只与线圈大小、几何形状、匝数、以及介质性质有关。 感应电动势还可以表示成
总是 d dI L 反抗 dt dt 回路 上电 单位:亨利(H) 流的 1 wb 1V s 3 变化
2
自感现象

R=RL,
自感应:

回路中因自身电流变化 引起的感应电动势
现象
(a)
1比S2先亮 (b) 断开瞬间,灯泡突然亮一下 为什么?
接通K或切断K,由于电流变化导致磁场变化
B I ( t ) I ( t ) I ( t )( N 匝线圈 )

2
d 12 dt
21
M 12
dI 1 dt
dI 2 dt

线圈2电流变化在线圈1 d dt 中产生的感应电动势为
1
M 21
互感系数
M 12 dI 1 dt
M 21 M 12 M
21 dI 2 dt
N 2 12 I1
可以证明

几何尺 寸相同
线圈相对位置不同,M的 值不同 ,设
12 k 2 1 0 k 2 1
21 k 1 2 0 k1 1
( a ) 12 1 21 2 ( b ) 12 1 21 2 ( c ) 12 0 21 0
13
磁能
自感磁能 开关接通1 I 增加 Ф 增加L 方向与I方向相反 电源做功 产生焦耳热 线圈中

dA L ( t ) i ( t ) dt
L L di dt
电流从 0增到 I过程 中,电 源由于 L中出 现感应 电动势 而多做 的功的 总和

因抵消感应电流多做功, 使电路中电流达到I值
8
N1
N2
互感应

互感现象

由于其它电路中电流变化在回路中引起的感应电动势 的现象 线圈1 线圈2
自感磁通匝链数 互感磁通匝链数
1 I1
21 I 2
2 I2
12 I 1
比例系数为M21和M12,其值取决于线圈大小、 匝数、几何形状、两线圈的相对位置
9
互感电动势

线圈1电流变化在线圈2中产生 的感应电动势为

电源克服感应电动势所做 di dA L idt Lidi 的功
dt
A
dA 0 Lidi
I

1 2
LI
2
K 倒 向 2, 电 流 从 I 减到0,自感电动势 做正功 =A
14
互感磁能

互感系数M
在建立电流过程中电源做功 R上产生焦耳热 抵抗自感电动势做功- WL 抵抗互感电动势做功-?


所以轴线附近的电流被削弱 表面附近的电流被加强
趋肤效应
7
趋肤效应的后果及应用



传输高频信号时,由于趋肤效应会使导线的有效截面减少 ,从而是等效电阻增加 对铁来说,由于大,即使频率不太大,趋肤效应也很明 显, 对于良导体,在高频下的趋肤深度很小,即电流仅分布在 导体表面很薄的一层 工业上可用于金属表面的淬火
L1 L 2
12 耦合系数
两个线圈串联的自感系数

L1+L2 =?L 一般情况不等,与串联方式有关 串联方式 串联顺接:1尾与2头接 L =L1+L2 +2M 串联反接:1尾与2尾接 L =L1+L2 -2M
无漏磁时
L L1 L 2 2 L1 L 2 L L1 L 2 2 L1 L 2
M 12 M
21
k 2 k 1 k 1 无漏磁 k 2 k 1 k 1 漏磁 k 2 k1 0 无耦合
k 1 k 2 L1 L 2 N 1 N 2 k1k 2 1 2 I1 I 2
M , M
2

令k
k1 k 2
M
k 1 k 2 L1 L 2 k
0
2
l ln
R2 R1
5
同轴电缆

同轴电缆中间的线是实心导体圆柱 传输线的结果也可用于同轴电缆, 为什么? 由于传输高频信号时有趋肤效应存 在电流分布在圆柱体表面 例如一根半径R=1.0cm 的铜导线, 其截面上的电流密度随频率变化的 情况如图所示
6
趋肤效应


为什么在电流变化时会有趋肤效应产生? I变——B变——I’ (涡电流) 在一个周期内大部分时间里轴线附近I与I’ 方向相反 而表面附近I和I’同向
电磁学电子教案
使用教材:
赵凯华、陈熙谋: 新概念物理学—电磁学
主讲:周贵德
沧州师范学院物电系
2012年2月制作
1
互感和自感

p205 3-25、26、31、34、35

美国物理学家亨利(J.Henry) 讨论由电流变化而引起的感应电动势中 电动势与电流变化率的关系 由于亨利的工作,人们对电磁感应现象的认识又向前跨进 了一步。电磁感应还可区分为自感应和互感应
此时线圈1和2
互相影响,情况比较复杂,可 采取以下做法计算:
先在线圈1中建立电流I1,2中无电流,故无互感 在接通线圈2
并维持1中电流I1 不变(可用一个 外接可调电源平衡掉2对1的互感)外接电源需要 抵抗互感电动势所做的功——互感电动势
15
外接电源需要抵抗互感电动势所做的功
维持线圈1内 电流不变
i、j线圈 之间的M
17

L1
d l1 r12

0 I1
4

L1 L 2
d l1 d l 2 r12
M 12

0
4

L1 L 2
d l1 d l 2 r12 d l 2 d l1 r21
同理,有
M
21

0
4

L 2 L1
单位与自感系数相同
11
耦合系数
相关文档
最新文档