高中数北师大必修5课时作业:第1章 数列 05 Word含答案

合集下载

高中数学必修5北师大版 1.1 数列的概念 作业(含答案)

高中数学必修5北师大版 1.1 数列的概念 作业(含答案)
∴a34=.
答案:C
6.若数列{an}满足关系:an+1=1+,a8=,则a5=()
A.B.C.D.
解析:a7==,a6==,a5==.
答案:C
7.“开心辞典”中有这样的问题:给出一组数,要你根据前面几个数的变化规律填出后面的数,现给出一组数:,-,,-,,…,则它的第8个数应当是__________.
解析:(1)设an=an+b,∴a1=a+b=2,①
a17=17a+b=66,②
由②-①得16a=64,∴a=4,b=-2,∴an=4n-2.
(2)令4n-2=88,得n=∉N*,∴88不是数列{an}中的项.
11.已知数列{an}的前n项和Sn满足log2(Sn+1)=n+1,求数列{an}的通项公式.
解析:当n=1时,a1=S1=-8,n≥2时,an=Sn-Sn-1=2n-10,∵a1=-8,适合上式,∴an=2n-10.又5<2k-10<8,
∴<k<9,∴k=8.
答案:2n-108
10.已知数列{an}中,a1=2,a17=66,通项公式是项数n的一次函数.
(1)求数列{an}的通项公式;
(2)88是否是数列{an}中的项?
D.an=1+(-1)n-1+(n-1)(n-2)
解析:将选项中各通项公式写出前4项,看是否为题干中的数即可.
答案:D
3.已知数列的通项公式an=则a2·a3等于()
A.70 B.28
C.20 D.8
解析:数列的通项公式为分段函数形式,a2=2×2-2=2,a3=3×3+1=10,故a2·a3=20.
∴(n-1)2an-1=(n2-1)an,
即==(an-1≠0),
∴an=··…··a1
=··…··a1

高中数学北师大版必修5课时作业第1章 数列 02 Word版含答案

高中数学北师大版必修5课时作业第1章 数列 02 Word版含答案

§数列的函数特性
时间:分钟满分:分
班级姓名分数
一、选择题:(每小题分,共×=分)
.设数列{}的前项和=,则的值为( )
..
..
.已知+--=,则数列{}是( )
. 递增数列 . 递减数列
. 常数项 . 不能确定
.下列说法中不正确的是( )
.数列,,,…是无穷数列.数列{()}就是定义在正整数集+上或它的有限子集{,…,}上的函数值
.数列,-,-,-,…不一定是递减数列
.已知数列{},则{+-}也是一个数列
.已知数列{}满足=,+=(∈+),则的值是( )
..-
.设数列{}中,=,+=+,则通项可能是( )
.-.·--
.-.·--.已知数列{}满足+=
若=,则的值为( )
. .
. .
二、填空题:(每小题分,共×=分)
.数列{}的通项公式为=-,则它的最小项是.
.已知数列{}中,=,+=+(-),则=.
.已知数列{}的前项和=-,第项满足<<,则=.
三、解答题:(共分,其中第小题分,第、小题各分).根据函数=的单调性,求数列{}的最大项与最小项的值.。

高中数学北师大版必修5 第一章1.1 数列的概念 作业 Word版含解析

高中数学北师大版必修5 第一章1.1 数列的概念 作业 Word版含解析

[学业水平训练]1.下列说法正确的是( )①一个数列的通项公式可以有不同的形式.②数列的通项公式也可用一个分段函数表示.③任何数列都存在通项公式,若不存在通项公式也就不是一个数列了.A .①②B .①③C .②③D .①②③答案:A2.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-(n -1)B .a n =n 2-1C .a n =n (n +1)2D .a n =n (n -1)2解析:选C.数列1,3,6,10,…可写成1×22,2×32,3×42,4×52,…,故选C. 3.已知数列12,23,34,…,n n +1,则0.96是该数列的( ) A .第20项B .第22项C .第24项D .第26项解析:选C.由a n =n n +1知0.96=n n +1,解得n =24,故选C. 4.下列说法中,正确的是( )A .数列3,5,7,9可表示为{3,5,7,9}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +2n }的第k 项为1+2kD .数列1,3,5,7,…可记为{2n +1}解析:选C.A 错;选项B 中数的顺序不同,表示的是不同的数列,故B 错;选项D 中数列应记为{2n -1},故D 错.5.数列的通项公式是a n =⎩⎪⎨⎪⎧2(n =1),n 2-2(n ≥2),则该数列的前两项分别是( ) A .1,2 B .2,0C .2,2D .2,4解析:选C.当n =1时,a 1=2;当n =2时,a 2=22-2=2.6.已知数列1,3,5,7,…,2n -1,…,则35是该数列的第________项. 解析:由题意知a n =2n -1,又35=45,∴45=2n -1,n =23,即35是该数列的第23项.答案:237.数列1×2,2×3,3×4,4×5,…的第24项为________.解析:易知该数列的通项公式为a n =n (n +1),令n =24,得a 24=600.答案:6008.数列{a n }的通项公式为a n =1n +1+n ,则10-9是此数列的第________项. 解析:a n =1n +1+n =n +1-n =10-9,观察可得:n =9. 答案:99.已知数列{a n }的通项公式为a n =2n 3n +2, (1)求a 3;(2)若a n =813,求n . 解:(1)将n =3代入a n =2n 3n +2,得a 3=2×33×3+2=611. (2)将a n =813代入a n =2n 3n +2,得813=2n 3n +2,解得n =8. 10.已知数列{a n }中,a 1=3,a 10=21,通项a n 是项数n 的一次函数,求数列{a n }的通项公式,并求a 2 014.解:设a n =kn +b (k ≠0),把a 1=3,a 10=21代入得⎩⎪⎨⎪⎧k +b =3,10k +b =21,解得⎩⎪⎨⎪⎧k =2,b =1. 于是a n =2n +1.a 2 014=4 029.[高考水平训练]1.已知数列{a n }的前四项分别为1,0,1,0,则下列各式可作为数列{a n }的通项公式的个数为( )(1)a n =12[1+(-1)n +1]; (2)a n =sin 2 n π2; (3)a n =12[1+(-1)n +1]+(n -1)(n -2); (4)a n =1-cos n π2; (5)a n =⎩⎪⎨⎪⎧1,n 为偶数,0,n 为奇数. A .1 B .2C .3D .4解析:选C.对于(3),将n =3代入,a 3=3≠1,易知(3)不是通项公式.通过观察、猜想、辨认的办法,根据半角公式可知(2)和(4)实质是一样的.数列1,0,1,0,…的通项公式,可猜想为12+12(-1)n +1,这就是(1)的形式.另外我们可以联想到单位圆与x 轴,y 轴交点的横坐标依次为1,0,-1,0,根据三角函数的定义,可以猜想通项公式为sin n π2(n ∈N +),这样1,0,1,0,…的通项公式可猜想为a n =sin 2 n π2(n ∈N +).对于(5),易看出它不是数列{a n }的一个通项公式.综上,可知可作为数列{a n }的通项公式的有三个,即有三种表示形式.故选C.2.已知数列{a n }的通项公式a n =n 2-4n -12(n ∈N +),则这个数列的第4项是________,65是这个数列的第________项.解析:a 4=42-4×4-12=-12.令n 2-4n -12=65,解得n =11或n =-7(舍去). 答案:-12 113.数列{a n }的通项公式为a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解:(1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或=-9(舍去),故150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去).故从第7项开始各项都是正数.4.已知数列{a n }中,a 1=1,对所有的n ∈N +且n ≥2都有a 1·a 2·…·a n =n 2.(1)求a 3+a 5的值;(2)判断256225是不是此数列中的项; (3)试比较a n 与a n +1(n ≥2)的大小.解:(1)法一:∵a 1·a 2·…·a n =n 2对所有n ≥2的自然数都成立,且a 1=1,∴令n =2,得a 1a 2=22=4,故a 2=4a 1=41=4; 令n =3,得a 1a 2a 3=32=9,故a 3=9a 1a 2=94; 令n =4,得a 1a 2a 3a 4=42=16,故a 4=16a 1a 2a 3=169; 令n =5,得a 1a 2a 3a 4a 5=52=25,故a 5=25a 1a 2a 3a 4=2516. 从而a 3+a 5=94+2516=6116. 法二:由a 1·a 2·…·a n =n 2(n ≥2)且a 1=1满足上式,可得a 1·a 2·…·a n -1=(n -1)2(n ≥2),以上两式相除,得通项公式a n =n 2(n -1)2(n ≥2), ∴a 3=32(3-1)2=94,a 5=52(5-1)2=2516, ∴a 3+a 5=94+2516=6116. (2)由(1)知,当n ≥2时,a n =n 2(n -1)2, 令256225=n 2(n -1)2,解得n =16,∵n =16∈N +,∴256225是此数列中的第16项. (3)∵n ≥2,∴a n +1-a n =(n +1)2n 2-n 2(n -1)2=-2n 2+1n 2(n -1)2<0,∴a n +1 <a n (n ≥2).。

北师大版高中数学必修五课时作业1 数列的概念.doc

北师大版高中数学必修五课时作业1 数列的概念.doc

高中数学学习材料马鸣风萧萧*整理制作课时作业1 数列的概念时间:45分钟 满分:100分一、选择题(每小题5分,共35分) 1.下列说法错误的是( ) A .数列4,7,3,4的第一项是4B .在数列{a n }中,若a 1=3,则从第2项起,各项均不等于3C .数列-1,0,1,2与数列0,1,2,-1不相同D .-1,1,2,0,-3是有穷数列 【答案】 B2.下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1 B .a n =(-1)n +12 C .a n =2-|sin n π2| D .a n =(-1)n -1+32【答案】 C【解析】 由a n =2-|sin n π2|可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C.3.已知数列{a n }的通项公式是a n =12n (n +2),则220是这个数列的( )A .第19项B .第20项C .第21项D .第22项【答案】 B【解析】 由a n =12n (n +2)=220,解得n =20(n =-22舍去). 4.设数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第8项 D .第9项 【答案】 B【解析】 数列通项公式为a n =3n -1,令3n -1=25,解得n =7.5.已知数列{a n }的通项公式是a n =(-1)n (n +1),则a 1+a 2+…+a 10=( )A .-55B .-5C .5D .55 【答案】 C【解析】 由{a n }的通项公式a n =(-1)n (n +1)得a 1=-2,a 2=3,a 3=-4,a 4=5,a 5=-6,a 6=7,a 7=-8,a 8=9,a 9=-10,a 10=11,∴a 1+a 2+…+a 10=5.6.已知数列{a n }的通项公式为a n =n 2-14n +65,则下列叙述正确的是( )A .20不是这个数列中的项B .只有第5项是20C.只有第9项是20D.这个数列第5项、第9项都是20【答案】 D【解析】令a n=20,得n2-14n+45=0,解得n=5或n=9,故选D.7.如图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,由图中结构可知第n个图中有化学键()A.6n个B.(4n+2)个C.(5n-1)个D.(5n+1)个【答案】 D【解析】由图形观察可得,第(1)个图中有6个化学键,第(2)个图中有(6+5)个化学键,第(3)个图中有(6+5+5)个化学键,……,第n个图中有6+5(n-1)=(5n+1)个化学键,故选D.二、填空题(每小题5分,共15分)8.数列-1,8,-27,64,…的通项为________.【答案】(-1)n·n3【解析】据前4项数字的规律可得a n=(-1)n·n3.9.在数列{a n}中,a n+1=2a n2+a n对所有正整数n都成立,且a7=12,则a5=________.【答案】 1【解析】由a n+1=2a n2+a n,得1a n=1a n+1-12,所以1a5=1a6-12=(1a7-12)-12=1.所以a5=1.10.根据下图中的5个图形及相应点的个数的变化规律,试猜测第n个图中有________个点.【答案】n2-n+1【解析】第n个图有n个分支,每个分支上有(n-1)个点(不含中心点),再加中心1个点,则图中共有点的个数为n(n-1)+1=n2-n+1.三、解答题(共50分,解答应写出必要的文字说明、证明过程或演算步骤)11.(15分)根据数列的前四项的规律,写出下列数列的一个通项公式.(1)-1,1,-1,1;(2)-3,12,-27,48;(3)35,12,511,37;(4)23,415,635,863.【解析】 (1)各项绝对值为1,奇数项为负,偶数项为正,故通项公式为a n =(-1)n .(2)各项绝对值可以写成3×12,3×22,3×32,3×42,…,又因为奇数项为负,偶数项为正,故通项公式为a n =(-1)n 3n 2.(3)因为12=48,37=614,各项分母依次为5,8,11,14,为序号3n +2;分子依次为3,4,5,6为序号n +2,故通项公式为a n =n +23n +2.(4)因为分母3,15,35,63可看作22-1,42-1,62-1,82-1,故通项公式为a n =2n (2n )2-1=2n4n 2-1.12.(15分)已知数列的通项公式为a n =4n 2+3n (1≤n ≤10,n ∈N +),试问110和1627是不是它的项?如果是,是第几项?【分析】 由于数列的通项公式已知,故可将110和1627分别代替a n =4n 2+3n 中的a n ,建立关于n 的方程,然后判断n 是否是正整数即可;考虑到该数列共有10项,故也可采用列表法将数列表示出来,然后再对照即可.【解析】 令4n 2+3n =110,则n 2+3n -40=0,解得n =5或n =-8,注意到n ∈N +,故将n =-8舍去, 所以110是该数列的第5项.再令4n 2+3n =1627,则4n 2+12n -27=0,解得n =32或n =-92, 注意到n ∈N +,所以1627不是此数列中的项.13.(20分)已知数列{a n }满足a 1=1,a n +1-a n =1n +1+n,求a n .【解析】 ∵1n +1+n =n +1-n (n +1+n )(n +1-n )=n +1-n .∴a n +1-a n =n +1-n .当n ≥2时,(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=(2-1)+(3-2)+(4-3)+…+(n -n -1)=n -1. 即a n -a 1=n -1.又a 1=1, ∴a n =n .而a 1=1也适合a n =n . ∴数列{a n }的通项公式为a n =n .。

高中数学北师大版必修5 40分钟课时作业第一章 数列:1-1-1 数列的概念

高中数学北师大版必修5  40分钟课时作业第一章 数列:1-1-1 数列的概念

第5页
返回首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
解析:A 中,{1,3,5,7}表示集合,所以 A 不正确;数列中的 各项是有顺序的,所以 B 不正确;D 中,数列应记为{2n-2}, 所以 D 不正确;很明显 C 正确.
答案:C
第6页
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
第一章
数列
第1页
返回首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
§1 数 列
第2页
返首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
第15页
返回首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
9.已知数列{an},an=cosnθ,0<θ<6π,a5=12,则 a10= __________.
第16页
返回首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
答案:an=n+n23+21-1
第14页
返回首页
第一章 §1 课时作业(01)
状元之路 北师大版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
8.数列{an}的通项公式为 an=logn+1(n+2),则它前 14 项的 积为__________.
解析:log23·log34·log45·…·log1516=log216=4. 答案:4

北师大高中数学必修五精讲精练作业:课时1 数列的概念 含解析

北师大高中数学必修五精讲精练作业:课时1 数列的概念 含解析

课时作业(一)1.下列说法中,正确的是( )A .数列2,4,6,8可表示为{2,4,6,8}B .数列3,0,-1,-3与数列-3,-1,0,3是相同的数列C .数列{n +1n }的第k 项为1+1k D .数列0,2,4,6,8,…可记为{2n} 答案 C解析 A 中,{2,4,6,8}表示集合,所以A 不正确;数列中的各项是有顺序的,所以B 不正确;D 中,数列应记为{2n -2},所以D 不正确;很明显C 正确.2.数列23,45,67,89,…的第10项是( ) A.1617 B.1819 C.2021 D.2223答案 C3.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( ) A .1个 B .2个 C .3个 D .4个 答案 C4.2n 是数列1,2,4,…,2n ,…的第几项( )A .nB .n +1C .n -1D .都不是答案 B5.已知数列{a n }前三项分别为-1,0,1下列各式:①a n =n -2;②a n =(-1)n -12;③a n =(n -2)5;④a n =(n -2)+(n -1)(n -2)(n -3). 其中能作为数列{a n }的通项公式的有( ) A .1个 B .2个 C .3个 D .4个答案 C解析 验证选项.6.数列12,16,112,120,…的一个通项公式是( ) A .a n =1n (n -1)B .a n =12(2n -1)C .a n =1n -1n +1D .a n =1-1n 答案 C解析 联系基本数列:2,6,12,20,…的通项为a n =n(n +1),而1n (n +1)=1n -1n +1.7.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( ) A.19(10n-1) B.13(10n-1) C.13(1-110n )D.310(10n -1)答案 C8.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14答案 C9.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),则a n +1-a n 等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2 答案 D10.下图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,按图中结构第n 个图有化学键( )A .6n 个B .4n +2个C .5n -1个D .5n +1个答案 D解析 每个结构简图去掉最左边的一个化学键后,每个环上有5个化学键,故第n 个结构简图有5n +1个化学键.11.有以下说法:①{0,1,2,3,4}是有穷数列;②所有的自然数只要按照一定的顺序排列,就能构成数列;③-3,-1,1,6,5,7,10,11是一个项数为8的数列;④数列1,2,3,4,…,200是无穷数列.其中正确的是________. 答案 ②③12.数列152,245,3510,4817,6326,…的一个通项公式为________. 答案 a n =(n +3)2-1n 2+1解析 此数列各项都是分式,且分母都减去1为1,4,9,16,25,…,故分母可用n 2+1表示,若分子各项都加1为16,25,36,49,64,…,故分子可用(n +3)2-1表示,故其通项公式为a n =(n +3)2-1n 2+1. 13.如图1是第七届国际数学教育大会的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图2中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.答案n解析 因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,所以a n =n.14.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式:(1)34,23,712,( ),512,13,… (2)53,( ),1715,2624,3735,… (3)2,1,( ),12,… (4)32,94,( ),6516,…答案 (1)12 a n =10-n 12 (2)108 a n =(n +1)2+1(n +1)2-1 (3)23 a n =2n (4)258 a n =n +12n解析 (1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号数 1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓ 912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号.故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1,1715=16+116-1,2624=25+125-1,3735=36+136-1.只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108,通项公式为a n =(n +1)2+1(n +1)2-1. (3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n .(4)先将原数列变形为112,214,( ),4116,…,所以应填318,数列的通项公式为a n =n +12n . 15.已知数列{n(n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项? 解析 (1)a n =n(n +2)=n 2+2n ,所以a 8=80,a 20=440. (2)由a n =n 2+2n =323,解得n =17或n =-19(舍). 所以323是数列{n(n +2)}中的项,是第17项. 16.在数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)在区间(13,23)内有无数列的项?若有,有几项?解析 (1)a 7=7272+1=4950.(2)因为a n =n 2n 2+1=1-1n 2+1,所以0<a n <1.故数列的各项都在区间(0,1)内. (2)因为13<n 2n 2+1<23,所以12<n 2<2.又n ∈N *,所以n =1,即在区间(13,23)内有且只有一项a 1.。

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1894.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 5.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .86.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏7.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或8.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .459.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.15.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 16.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3nn a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 17.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.18.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.19.若数列{}n a 满足:15n n a a n ++=,11a =,则2020a =________________. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列;(2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.在①242n n n S a a =+,②12a =,12n n na S +=这两个条件中任选一个,补充到下面横线处,并解答.已知正项数列{}n a 的前n 项和为n S , . (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足131log 12n n b a =-,且n n n c a b =,求数列{}n c 的前n 项和n M . 注:如果选择多个条件分别进行解答,按第一个解答进行计分.24.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+;(Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D . 25.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.26.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C.本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值6.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.7.B解析:B结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.8.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.9.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=,即116255204a b +=,当且仅当16b a a b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.14.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩.故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.15.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.16.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n nnc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.17.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.18.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.19.【分析】根据写出相减以后可得可以判断出数列是等差数列然后判断出首项和公差即可得【详解】两式相减得故是首项为公差为的等差数列的第项故故答案为:【点睛】要注意等差数列的概念中的从第项起与同一个常数的重要解析:5049. 【分析】根据15n n a a n ++=写出155n n a a n -+=-,相减以后可得115n n a a +--=,可以判断出数列{}2n a 是等差数列,然后判断出首项和公差,即可得2020a . 【详解】11555n n n n a a n a a n +-+=⇒+=-.两式相减,得115n n a a +--=.12254a a a +=⇒=.故2020a 是首项为4,公差为5的等差数列的第1010项, 故()202041010155049a =+-⨯=. 故答案为:5049. 【点睛】要注意等差数列的概念中的“从第2项起”与“同一个常数”的重要性,巧妙运用等差数列的性质,可化繁为简;如果1n n a a +-是常数,则{}n a 是等差数列,如果11n n a a +--是常数,则数列中的奇数项或者偶数项为等差数列,所以需要注意等差数列定义的推广应用.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,①()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)条件性选择见解析,2n a n =;(2)1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭.【分析】(1)若选①,先求出12a =,由242n n n S a a =+可得111242n n n S a a +++=+,两式相减可得()()1120n n n n a a a a +++--=,从而12n n a a +-=得出答案; 若选②,由12n n na S +=可得1(1)2n n n a S --=,两式相减可得11n n a n a n++=,由累乘法可得答案. (2)由(1)可得13log 1n b n =-,则113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,由错位相减法可求和得出答案. 【详解】(1)选①时,当1n =时,211142a a a =+,因为10a >,所以12a =, 由242n n n S a a =+,① 可得111242n n n S a a +++=+,②②-①得,22111422n n n n n a a a a a +++=-+-, 整理得2211220n n n n a a a a ++---=,所以()()1120n n n n a a a a +++--= 因为0n a >,所以12n n a a +-=,所以数列{}n a 是首项为2,公差为2的等差数列, 所以2n a n =; 选②时, 因为12n n na S +=①所以当2n ≥时,1(1)2n n n a S --=② ①-②得:1(1)n n na n a +=+,即11n n a n a n++= ①中,令1n =,得2124a a ==,212a a =适合上式 所以当2n ≥时,1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅12322212321n n n n n n n --=⋅⋅⋅⋅⨯⨯=--- 又1n =,1221a ==⨯ 所以对任意*N n ∈,2n a n = (2)因为13log 12nn a b =-即13log 1n b n =-所以113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭③2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭④ ③-④得231211111222222333333n nn M n -⎫⎫⎫⎫⎛⎛⎛⎛=+⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪⎪⎝⎝⎝⎝⎭⎭⎭⎭1111212333n nn -⎡⎤⎫⎫⎛⎛=⨯++⋯+-⨯⎢⎥ ⎪ ⎪⎝⎝⎭⎭⎢⎥⎣⎦1113221313nnn ⎫⎛- ⎪⎫⎛⎝⎭=⨯-⨯ ⎪⎝⎭-所以1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭【点睛】关键点睛:本题考查求数列的通项公式和应用错位相减法求数列的前n 项和,解答本题的关键是按照步骤求解,考查计算能力,由2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭,得出2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,两式相减再化简得出答案,属于中档题.24.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】(Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+. 所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解)25.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=,因为数列{}2n n a -是等差数列,且公差为2, 所以()22212n n a n n -=+-=,则22n n a n =+. (2)选①:设公比为q ,由3248a a -=,得24448qq -=, 解得4q =或3-,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选②:设公比为q ,由364a =,得2464q =,解得4q =±,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4n n a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3;【分析】 先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案.【详解】 设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212n n a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d =所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭ 所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得12k +>,由1232+<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.。

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)(1)

(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)(1)

一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .63.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列4.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20205.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫⎪⎝⎭6.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( )A .2B .3C .269D .2598.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .459.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题10.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .511.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan9θ=,则点A 的坐标为________. 15.数列{}n a 的通项()sin2n n a n n N π*=⋅∈,则前10项的和12310a a a a ++++=______16.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a =,则n a =_____.17.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____18.已知数列{}n a 满足112a =,()*112n n a a n +=∈N .设2n n n b a λ-=,*n ∈N ,且数列{}n b 是递增数列,则实数λ的取值范围是________.19.若数列}{n a2*3()n n n N =+∈,则n a =_______.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.22.已知数列{}n a 的前n 项和是2n S n =.(1)求数列{}n a 的通项公式; (2)记12n n n b a a +=,设{}n b 的前n 项和是n T ,求使得20202021n T >的最小正整数n . 23.已知数列{}n a 满足:121(21)n n n a q ---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 24.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ;(Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<. 25.己知数列{}n a 中,11a =,点1(,)n n P a a +,n *∈N 在直线10x y -+=上. (1)求数列{}n a 的通项公式;(2)设1n nb a =,S n 为数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,若存在,写出()g n 的表达式,并加以证明,若不存在,说明理由.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.3.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.4.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.5.C解析:C 【分析】由1112222n n n n a a a Y n -+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.C解析:C【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.8.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=11n =-+. 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.9.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.10.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.11.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩, 可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭, 故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.5【分析】利用的周期性求解即可【详解】的周期当时的值为10-10则前10项的和故答案为:5【点睛】本题考查利用数列的周期性求和属于基础题解析:5 【分析】利用()sin2n n N π*∈的周期性求解即可. 【详解】()sin 2n n N π*∈的周期2=42T ππ=,当1,2,3,4n =时sin 2n π的值为1,0,-1,0,则前10项的和123101+0305070905a a a a ++++=-+++-+++=,故答案为:5 【点睛】本题考查利用数列的周期性求和,属于基础题.16.【分析】由两本同除以可构造是等差数列由此可求出再利用即可求得【详解】由得是以为首相1为公差的等差数列当时故答案为:【点睛】本题主要考查了由数列的递推关系式求数列的通项公式是常考题型属于中档题解析:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【分析】由11n n n n S S S S ++=⋅-,两本同除以1n n S S +⋅,可构造1n S ⎧⎫⎨⎬⎩⎭是等差数列,由此可求出a 1n S n =,再利用1n n n a S S -=-,即可求得n a 【详解】 由11n n n n S S S S ++=⋅-,得1111n nS S +-= ()n N *∈ 1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=, 1n S n∴=, 当2n ≥ 时,11111(1)n n n a S S n n n n -=-=-=---, 1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【点睛】本题主要考查了由数列的递推关系式,求数列的通项公式,是常考题型,属于中档题.17.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34-【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值. 【详解】当2n ≥时,1133n nnn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=,即14n n a a +=,并且数列{}n a 是等比数列, 所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34- 【点睛】关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.18.【分析】根据题意可得数列的通项公式代入表示根据数列是递增数列所以得恒成立参变分离以后计算【详解】由可得数列是首项和公比均为的等比数列所以则又因为是递增数列所以恒成立即恒成立所以所以故答案为:【点睛】解析:3,2⎛⎫-∞ ⎪⎝⎭【分析】根据题意可得数列{}n a 的通项公式,代入表示n b ,根据数列{}n b 是递增数列,所以得10n n b b +->恒成立,参变分离以后计算.【详解】 由()*112n n a a n +=∈N 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a λλ-==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n λλλ++=+---=+->-恒成立,即220n λ+->恒成立,所以()min 223n λ<+=,所以32λ<. 故答案为:3,2⎛⎫-∞ ⎪⎝⎭.【点睛】关于数列的单调性应用的问题,一般需要计算1n n a a +-判断其正负,将不等式再转化为恒成立问题,通过参变分离的方法求解min ()a f n <或者max ()a f n >.19.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法. 22.(1)21n a n =-;(2)1011. 【分析】(1)利用1n n n a S S -=-可得答案; (2)求出112121n b n n =--+利用裂项相消可得答案. 【详解】 (1)111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,1a 符合上式,所以21n a n =-. (2)()()21121212121n b n n n n ==--+-+, ∴11111111335212121n T n n n =-+-++-=--++, 令120201212021n ->+,解得1010n >,所以最小正整数n 为1011. 【点睛】数列求和的方法技巧:( 1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. ( 2)错位相减:用于等差数列与等比数列的积数列的求和. ( 3)分组求和:用于若干个等差或等比数列的和或差数列的求和.( 4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.23.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】 (Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为nS ,利用122n n nn S S a -=-可求2n a . (2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项. 【详解】 解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122nS n n =+, ∴2131(1)(1)22n S n n -=-+-.则12231(2)n n nn S S n n a -=-=-≥, 故()22231n na n n =≥-,当1n =,21a =,也符合此式, ∴2231n na n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-,∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+-()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-, 又()1112121q q q +=+--,∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小.而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.24.(Ⅰ)2nn a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明. 【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.25.(1)n a n =;(2)存在,()g n n =,证明见解析. 【分析】(1)根据点1(,)n n P a a +在直线10x y -+=上,将点坐标代入方程,可得1n a +与n a 的关系,根据等差数列的定义,即可求得数列{}n a 的通项公式; (2)由(1)可得n b ,进而可求得n S 的表示式,化简整理,可得11(1)1n n n nS n S S ----=+,利用累加法,即可求得121n S S S -++的表达式,结合题意,即可得答案. 【详解】(1)因为点1(,)n n P a a +,n *∈N 在直线10x y -+=上, 所以110n n a a +-+=,即11n n a a +-=,且11a =, 所以数列{}n a 是以1为首项,1为公差的等差数列,所以1(1)1,()n a n n n *=+-⨯=∈N ;(2)11n n b a n ==,所以111123n S n=+++⋅⋅⋅+, 所以11111111(1)(1)(2)23231n n S S n n n n--=+++⋅⋅⋅+-+++⋅⋅⋅+=≥-,即11n n nS nS --=,所以11(1)1n n n nS n S S ----=+,(2)n ≥122(1)(2)1n n n n S n S S ------=+, 233(2)(3)1n n n n S n S S ------=+⋅⋅⋅21121S S S -=+所以112311n n nS S S S S S n --=+++⋅⋅⋅++-所以1231(1)(2)n n n S S S S nS n n S n -+++⋅⋅⋅+=-=-≥, 根据题意121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,所以()g n n =,所以存在关于n 的整式()g n n =,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立, 【点睛】解题的关键是根据n S 表达式,整理得n nS 与1(1)n n S --的关系,再利用累加法求解,若出现1()n n a a f n +-=(关于n 的表达式)时,采用累加法求通项,若出现1()n na f n a +=(关于n 的表达式)时,采用累乘法求通项,考查计算化简的能力,属中档题.26.见解析【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T .【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =,故等差数列的公差422d =-=,故()2212n a n n =+-=,所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯ 故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131n n T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。

高中数学北师大版必修5课时作业:第1章 数列 章末检测 Word版含答案

高中数学北师大版必修5课时作业:第1章 数列 章末检测 Word版含答案

第一章章末检测班级__________ 姓名__________ 考号__________ 分数__________本试卷满分100分,考试时间90分钟.一、选择题:本大题共10题,每题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.若在数列{a n }中,a 1=1,a n +1=a 2n -1,(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .22.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 2+a 6=( ) A .8 B .12 C .16 D .283.记等差数列{a n }的前n 项和为S n .若a 1=12,S 4=20,则S 6=( )A .16B .24C .36D .484.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A. 2 B. 4 C. 8 D. 165.设数列{a n }是等差数列且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则( ) A .S 5=S 6 B .S 5=S 8 C .S 7=S 5 D .S 7=S 66.已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=( ) A. -16 B. 16 C. 31 D. 327.在等比数列{a n }中,若a 4a 7+a 5a 6=20,则此数列的前10项之积等于( ) A .50 B .2010C .105D .10108.数列12,24,38,…,n2n ,…的前n 项和为( )A .2-n +22nB .1-12nC .n (1-12n )D .2-12n -1+n 2n 9.在△ABC 中,a cos 2C 2+c cos 2A 2=32b ,则( )A .a ,b ,c 依次成等差数列B .b ,a ,c 依次成等差数列C .a ,c ,b 依次成等差数列D .a ,b ,c 既成等差数列,也成等比数列10.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18二、填空题:本大题共3小题,每小题4分,共12分.把答案填在题中横线上. 11.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 12.已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2·a 8=2,则a 11a 7=________. 13.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________;a 2 014=________.三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.14.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3…). 求证:数列{S n n}是等比数列.15.等差数列{a n }中a 7=4,a 19=2a 9, (1)求{a n }的通项公式. (2)设b n =1na n,求数列{b n }的前n 项和S n .16.已知等差数列{a n }的通项公式为a n =10-3n ,求|a 1|+|a 2|+…+|a n |.17.已知数列{a n }满足,a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.18.已知数列{a n }满足a 1=1,且a n =2a n -1+2n(n ≥2且n ∈N +). (1)求证:数列{a n2n }是等差数列;(2)求数列{a n }的通项公式;(3)设数列{a n }的前n 项和为S n ,求证:S n2n >2n -3.一、选择题1.A 由递推关系得:a 1=1,a 2=0,a 3=-1,a 4=0,a 5=-1,∴a 1+a 2+a 3+a 4+a 5=-1.2.A3.D 设公差为d ,由 ⎩⎪⎨⎪⎧a 1=12S 4=20⇒⎩⎪⎨⎪⎧ a 1=124a 1+6d =20⇒⎩⎪⎨⎪⎧a 1=12d =3⇒S 6=6a 1+6×52×3=48.4.B 由a n a n -1=16n,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0.∴q =4.5.C 由题意知a 1+3d =-4,a 1+8d =4, ∴5d =8,d =85,a 1=-445.∴a n =a 1+(n -1)·d =85n -525,S 5=5a 1+a 52=5⎣⎢⎡⎦⎥⎤-445+⎝ ⎛⎭⎪⎫-1252=-28,S 7=7a 1+a 72=7⎝ ⎛⎭⎪⎫-445+452=-28.6.B 因为S 4=2a n -1(n ∈N *),则a n =2a n -1,且a 1=1,故a 5=24=16. 7.C8.A S n =12+24+38+…+n2n ,①12S n =122+223+324+…+n -12n +n2n +1,② 由①-②,得12S n =12+122+123+124+…+12n -n 2n +1=121-12n1-12-n2n +1=1-12n -n2n +1=1-n +22n +1,∴S n =2-n +22n.9.A ∵a cos 2C 2+c cos 2A 2=32b ,∴a ·1+cos C 2+c ·1+cos A 2=32b ,∴12(a +c )+12(a cos C +c cos A )=32b , ∵a cos C +c cos A =b , ∴12(a +c )+12b =32b . ∴a +c =2b ,∴a ,b ,c 依次成等差数列.10.B 由a 1+a 3+a 5=105得3a 3=105,即a 3=35,由a 2+a 4+a 6=99得3a 4=99,即a 4=33,∴d =-2,a n =a 4+(n -4)×(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0得n =20,故选B.二、填空题 11.2解析:由题意得2q 2-2q =4,解得q =2或q =-1.又{a n }单调递增,得q >1,∴q =2. 12.2解析:由等比数列的性质有a 2·a 8=a 3a 7=2,∵a 3+a 7=3,∴a 3,a 7是一元二次方程x 2-3x +2=0的两根,解得⎩⎪⎨⎪⎧a 3=1,a 7=2,或⎩⎪⎨⎪⎧a 3=2,a 7=1,(舍),∴a 11a 7=a 7a 3=2. 13.1 0解析:依题意,得a 2 009=a 4×503-3=1,a 2 014=a 2×1 007=a 1 007=a 4×252-1=0.∴应填1,0. 三、解答题14.证明:∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n =2(n +1)S n , 所以S n +1n +1=2S n n .故{S nn}是以2为公比的等比数列. 15.解:(1)设等差数列{a n }的公差为d∵a 7=4,a 19=2a 9,∴⎩⎪⎨⎪⎧a 1+6d =4a 1+18d =2a 1+8d解得:a 1=1,d =12,∴a n =1+(n -1)·12=n +12.(2)∵b n =1na n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1 ∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 16.解:当a n =10-3n ≥0时,n ≤3, 所以|a 1|+|a 2|+…+|a n | =⎩⎪⎨⎪⎧a 1+a 2+…+a n n ≤3a 1+a 2+a 3-a 4-…-a nn ≥4=⎩⎪⎨⎪⎧n a 1+a n 2n ≤32a 1+a 2+a 3-a 1+a 2+…+a n n ≥4=⎩⎪⎨⎪⎧-3n 2+17n2n ≤3,3n 2-17n +482n ≥4.17.解:(1)证明:b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -2=53-23⎝ ⎛⎭⎪⎫-12n -1,当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).18.解:(1)∵a n =2a n -1+2n(n ≥2且n ∈N +), ∴a n 2n =a n -12n -1+1,即a n 2n -a n -12n -1=1(n ≥2且n ∈N +), ∴数列{a n 2n }是等差数列,且公差d =1,首项a 121=12.(2)由(1)得a n 2n =12+(n -1)·1=n -12,∴a n =(n -12)·2n.(3)∵S n =12×21+32×22+52×23+…+(n -12)·2n,∴2S n =12×22+32×23+52×24+…+(n -12)·2n +1,两式相减得-S n =1+22+23+…+2n -(n -12)·2n +1=2+22+23+…+2n -(n -12)·2n +1-1=21-2n1-2-(n -12)·2n +1-1=(3-2n )·2n-3,得S n =(2n -3)·2n+3>(2n -3)·2n,∴S n2n >2n -3.。

高中数学1.1数列第1课时练习北师大必修5

高中数学1.1数列第1课时练习北师大必修5

第一章 §1 第1课时一、选择题1.下列有关数列的说法正确的是( )①同一数列的任意两项均弗成能相同;②数列-1,0,1与数列1,0,-1是同一个数列;③数列中的每一项都与它的序号有关.A .①②B .①③C .②③D .③[答案] D[解析] ①是错误的,例如无穷个3构成的常数列3,3,3,…的各项都是3;②是错误的,数列-1,0,1与数列1,0,-1各项的按次分歧,即暗示分歧的数列;③是正确的,故选D .2.下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3……,n})上的函数. ②数列若用图像暗示,从图像上看都是一群孤立的点.③数列的项数是无限的.④数列通项的暗示式是独一的.其中正确的是( )A .①②B .①②③C .②③D .①②③④[答案] A[解析] 数列的项数可以是有限的也可以是无限的.数列通项的暗示式可以不独一.例如数列1,0,-1,0,1,0,-1,0……的通项可以是an =sin nπ2,也可以是an =cos n +3π2等等. 3.已知an =n2+n ,那么( )A .0是数列中的项B .20是数列中的项C .3是数列中的项D .930不是数列中的项[答案] B[解析] ∵an =n(n +1),且n ∈N +,∴an 的值为正偶数,故排除A 、C ;令n2+n =20,即n2+n -20=0,解得n =4或n =-5(舍去).∴a4=20,故B 正确; 令n2+n =930,即(n +31)(n -30)=0.∴n =30或n =-31(舍去),∴a30=930,故D 错.4.数列2,5,22,11,…,则25是该数列的( )A .第6项B .第7项C .第10项D .第11项[答案] B[解析] 数列2,5,22,11,…的一个通项公式为an =3n -1(n ∈N +),令25=3n -1,得n =7.故选B .5.数列1,-3,5,-7,9,…的一个通项公式为( )A .an =2n -1B .an =(-1)n(1-2n)C .an =(-1)n(2n -1)D .an =(-1)n(2n +1)[答案] B[解析] 当n =1时,a1=1排除C 、D ;当n =2时,a2=-3排除A ,故选B .6.已知数列12,23,34,45,…,n n +1,则0.96是该数列的( ) A .第22项B .第24项C .第26项D .第28项[答案] B [解析] 因为数列的通项公式为an =n n +1, 由n n +1=0.96得n =24,故选B . 二、填空题 7.已知数列3,3,15,21,33,…,32n -1,…,则9是这个数列的第________项.[答案] 14[解析] 数列可写为3,3×3,3×5,3×7,3×9,…,32n -1,…,所以an =32n -1,令32n -1=9.∴n =14.8.已知数列{an}的通项公式是an =n2+n +1n +1,则它的前4项为________. [答案] 32,73,134,215[解析] 取n =1,2,3,4,即可计算出结果.当n =1时,a1=1+1+11+1=32, 当n =2时,a2=4+2+12+1=73, 当n =3时,a3=9+3+13+1=134, 当n =4时,a4=16+4+14+1=215. 三、解答题9.按照下面数列{an}的通项公式,写出它的前5项.(1)an =n2-12n -1;(2)an =sin nπ2;(3)an =2n +1. [解析] (1)在通项公式中依次取n =1,2,3,4,5,获得数列{an}的前5项为0,1,85,157,83;(2)在通项公式中依次取n =1,2,3,4,5,获得数列{an}的前5项为:1,0,-1,0,1;(3)在通项公式中依次取n =1,2,3,4,5,获得数列{an}的前5项为3,5,9,17,33.10.写出下列各数列的一个通项公式:(1)4,6,8,10,…;(2)12,34,78,1516,3132,…; (3)23,-1,107,-179,2611,-3713,…;(4)3,33,333,3 333, ….[解析] (1)各项是从4开始的偶数,所以an =2n +2;(2)每一项分子比分母少1,而分母可写成21,22,23,24,25,…,分子分别比分母少1,故所求数列的通项公式可写为an =2n -12n ;(3)数列中正、负数相间,故每项中必需含有一个(-1)n +1这个因式,而后去掉负号,观察可得.将第二项-1写成-55.分母可化为3,5,7,9,11,13,…,为正奇数,而分子可化为12+1,22+1,32+1,42+1,52+1,62+1,…,故其通项公式可写为an =(-1)n +1·n2+12n +1; (4)将数列各项写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1).一、选择题1.数列2,-83,4,-325,…的通项公式是( )A .an =2n(n ∈N +)B .an =-2n 2n -1(n ∈N +) C .an =-2n +1n +1(n ∈N +) D .an =2n 2n -1(n ∈N +) [答案] C[解析] 观察数列前n 项的变化规律,即可得出.2.已知数列{an}的通项公式为an =n2-14n +65,则下列叙述正确的是( )A .20不是这个数列中的项B .只有第5项是20C .只有第9项是20D .这个数列第5项、第9项都是20[答案] D[解析] 令an =20,得n2-14n +45=0,解得n =5或n =9,故选D .3.数列2,0,4,0,6,0,…的一个通项公式是( )A .an =n 2[1+(-1)n]B .an =n +12[1+(-1)n +1]C .an =n 2[1+(-1)n +1]D .an =n +12[1+(-1)n] [答案] B[解析] 经验证可知B 符合要求.4.已知数列{an}的通项公式是an =⎩⎪⎨⎪⎧ 3n +1n 为奇数2n -2n 为偶数,则a2a3等于( )A .70B .28C .20D .8[答案] C[解析] 由通项公式可得a2=2,a3=10,∴a2a3=20.二、填空题5.在数列{an}中,a1=2,a2=1,且an +2=3an +1-an ,则a6+a4-3a5=________.[答案] 0[解析] 解法一:∵a1=2,a2=1,an +2=3an +1-an ,∴a3=3a2-a1=3×1-2=1,a4=3a3-a2=3×1-1=2,a5=3a4-a3=3×2-1=5,a6=3a5-a4=3×5-2=13,∴a6+a4-3a5=13+2-3×5=0.解法二:∵an +2=3an +1-an ,令n =4,则有a6=3a5-a4,∴a6+a4-3a5=0.6.已知数列{an}的通项公式an =n2-4n -12(n ∈N +)则(1)这个数列的第4项是________;(2)65是这个数列的第________项;(3)这个数列从第________项起各项为正数.[答案] (1)-12 (2)11 (3)7[解析] (1)由a4=42-4×4-12=-12,得第4项是-12;(2)由an =n2-4n -12=65,得n =11或n =-7(舍去),∴65是第11项;(3)设从第n 项起各项为正数,由⎩⎪⎨⎪⎧ an>0,an -1≤0,得⎩⎪⎨⎪⎧n2-4n -12>0,n2-6n -7≤0,解得6<n≤7. 又∵n 是正整数,∴n =7,即从第7项起各项为正数.三、解答题7.已知数列{an}中,a1=2,a17=66,通项公式是项数n 的一次函数.(1)求数列{an}的通项公式;(2)88是否是数列{an}中的项?[解析] (1)设an =an +b ,∴a1=a +b =2,①a17=17a +b =66,②②-①得16a =64,∴a =4,b =-2,∴an =4n -2(n ∈N +).(2)令4n -2=88,∴4n =90,n =452∉N +(舍去), ∴88不是数列{an}中的项.8.(1)在数列1,5,3,13,17,…中,35是数列的第几项?(2)已知无穷数列:1×2,2×3,3×4,…,n(n +1),…,判断420与421是否为该数列的项?若是,应为第几项?[解析] (1)∵a1=1=1,a2=5=1+4,a3=1+4×2,a4=1+4×3,由此归纳得an =1+4n -1=4n -3.令an =4n -3=35,∴n =12.故35是此数列的第12项.(2)由an =n(n +1)=420,解得n =20或n =-21(舍去),故420是此数列的第20项.由an =n(n +1)=421,得n2+n -421=0,此方程无正整数解,故421不是该数列中的项.[方式总结] 数列{an}的通项公式为an =f(n),对于一个数m ,若m 是此数列中的项,则方程f(n)=m 必有正整数解;反之,若f(n)=m 无正整数解,则m 必定不是此数列中的项.。

(常考题)北师大版高中数学必修五第一章《数列》测试卷(包含答案解析)(5)

(常考题)北师大版高中数学必修五第一章《数列》测试卷(包含答案解析)(5)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列3.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20474.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .435.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 7.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a8.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,9.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .910.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .511.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .512.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在二、填空题13.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.14.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.15.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 18.已知数列{}n a 的首项为2,且满足1231+=+n n n a a a ,则1n a =__________. 19.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.给出以下三个条件:①11a =,22121n n a a n +-=+,*n N ∈;②22n n S a n =+,*n N ∈;③数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n .请从这三个条件中任选一个,将下面题目补充完整,并求解.设数列{}n a 的前n 项和为n S ,0n a >,________. (1)求数列{}n a 的通项公式;(2)若12n a nn nS b a +=,*n N ∈,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.23.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 24.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .25.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .26.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+.(1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><>即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.3.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.4.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==.故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n na a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.8.C解析:C 【分析】先利用1,1,2n n n S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----, 所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.9.C【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.10.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A.该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.11.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.12.C解析:C 【解析】设等差数列{}n a 的公差为d ∵310S S = ∴()()113319913922a d a d ⨯-⨯-+=+∴160a d += ∴70a = ∵10a >∴当n S 取最大值时,n 的值为6或7 故选C二、填空题13.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.14.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.15.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.18.【分析】由已知整理得可得答案【详解】由题知则所以因为所以数列是以为首项为公比的等比数列所以则故答案为:【点睛】本题考查了由递推数列求通项公式的问题关键点是构造数列为等比数列定义形式考查了学生的推理能 解析:532-n 【分析】由已知整理得1111332+⎫⎛-=-⎪ ⎝⎭n n a a 可得答案. 【详解】由题知,113131222++==+n n n n a a a a ,则1111332+⎫⎛-=-⎪ ⎝⎭n n a a ,所以1131123+-=-n na a ,因为11532-=-a , 所以数列13⎧⎫-⎨⎬⎩⎭n a 是以52-为首项,12为公比的等比数列,所以1151135222-⎫⎫⎛⎛-=-⨯=-⨯ ⎪ ⎪⎝⎝⎭⎭n n n a ,则1532=-n n a .故答案为:532-n . 【点睛】本题考查了由递推数列求通项公式的问题,关键点是构造数列为等比数列定义形式,考查了学生的推理能力、计算能力.19.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.(1)条件性选择见解析,n a n =;(2)12n n T n +=⋅.【分析】(1)选择①,由累加法求得2n a ,从而得n a ;选择②,由当2n ≥时1n n n a S S -=-得出数列{}n a 的递推关系,利用0n a >排除一个,由另一个得出通项公式n a ;选择③,类似选择②求出通项2211n n a ++,从而得n a .(2)由(1)可得n b ,然后用错位相减法求和n T . 【详解】 (1)选择①,因为22121n n a a n +-=+,*n ∈N , 所以2n ≥时,2221211a a -=⨯+, 2232221a a -=⨯+,()221211n n a a n --=-+,2n ≥,所以当2n ≥时,()()221212311n a a n n -=++++-+-⎡⎤⎣⎦,因为11a =,所以当2n ≥时,22n a n =,当1n =时,也满足上式. 因为0n a >,所以n a n =. 选择②,因为22n n S a n =+,所以当2n ≥时,21121n n S a n --=+-,两式相减,得22121n n n a a a -=-+,即()2211n n a a --=,所以11n n a a --=或11n n a a --=,因为21121a a =+,所以11a =,因为0n a >,所以11n n a a --=舍去, 所以11n n a a --=,即11n n a a --=,2n ≥, 所以n a n =. 选择③,因为数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n ,所以当2n ≥时,()221111n n n n a +=--=+,即22n a n =, 当1n =时,211111a +=+,即211a =,也满足上式, 所以22n a n =,因为0n a >,所以n a n =. (2)()()11122212n n a n nn nn n S b n a n+++⨯===+⋅, 所以()1212223212n n n T b b b n =+++=⋅+⋅+++⋅,()23122232212n n n T n n +=⋅+⋅++⋅++⋅,所以()()231422212n n n T n +-=++++++⋅()()1141241212n n n -+-=+-+⋅-12n n +=-⋅,所以12n n T n +=⋅.【点睛】方法点睛:本题考查累加法求通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式;(2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x-'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增即7n =时,min 297n S n ⎛⎫= ⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值.24.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】(1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,令12n nx t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n nn n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n nn n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222......22222222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 25.(1)选①②③均有2nn a =,*n N ∈;(2)32342(1)(2)n n T n n +=-++. 【分析】(1)选①,运用等比数列的通项公式解方程可得公比,可得所求通项公式;选②,运用构造等比数列,以及数列的递推式,可得所求通项公式;选③,将n 换为1n -,两式相减,结合等比数列的定义和通项公式,可得所求通项公式; (2)求得22211111()(2)22n n n b log a log a n n n n +===-⋅++,由数列的裂项相消求和,化简整理可得所求和. 【详解】(1)选①数列{}n a 为递增的等比数列,且2312a a +=,设等比数列{}n a 的公比为q ,(0)q >,则1(1)2(1)12a q q q q +=+=,解得2(3q =-舍去),所以2nn a =;选②数列{}n a 满足122n n S S +-=,可得122(2)n n S S ++=+,数列{2}n S +是首项为124S +=,公比为2的等比数列,则122n n S ++=,即为122n n S +=-,当2n 时,1122222n n n n n n a S S +-=-=--+=,12a =也满足上式,所以2nn a =,*n N ∈;选③1121222n n n n a a a na -+++⋯+=(1),当2n 时,12121222(1)n n n n a a a n a ---++⋯+=-(2),由(2)2⨯-(1)可得122(1)n n n a na n a +=--,即12n n a a +=, 又因为12a =,2124a a ==,也满足上式,故数列{}n a 为首项为2,公比为2的等比数列,所以2n n a =,*n N ∈;(2)由(Ⅰ)可得2n n a =,22211111()(2)22n n n b log a log a n n n n +===-⋅++, 所以1111111111(1)232435112n T n n n n =-+-+-++-+--++ 1111323(1)221242(1)(2)n n n n n +=+--=-++++. 【点睛】方法点睛:本题考查等比数列的定义、通项公式和求和公式的运用,考查数列的求和,数列求和的方法总结如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.26.(1)1322n n a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T .【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①, 又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去), 由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322n n a -=;(2)1322log 24172n n b n -=+=-, 若0n b ,可得172n,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大, 又由115b =,可得887158(2)642T ⨯=⨯+⨯-=,故n T 的最大值为64.【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T ,(1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=).。

高中数学北师大版必修5 第一章1.1 数列的概念 作业 Word版含解析

高中数学北师大版必修5 第一章1.1 数列的概念 作业 Word版含解析

[学业水平训练].下列说法正确的是( )①一个数列的通项公式可以有不同的形式.②数列的通项公式也可用一个分段函数表示.③任何数列都存在通项公式,若不存在通项公式也就不是一个数列了..①②.①③.②③.①②③答案:.数列,,,,…的一个通项公式是( ).=-(-) .=-.=.=解析:选.数列,,,,…可写成,,,,…,故选..已知数列,,,…,,则是该数列的( ).第项.第项.第项.第项解析:选.由=知=,解得=,故选..下列说法中,正确的是( ).数列,,,可表示为{,,,}.数列,,-,-与数列-,-,,是相同的数列.数列{}的第项为+.数列,,,,…可记为{+}解析:选错;选项中数的顺序不同,表示的是不同的数列,故错;选项中数列应记为{-},故错..数列的通项公式是=则该数列的前两项分别是( ).,.,.,.,解析:选.当=时,=;当=时,=-=..已知数列,,,,…,,…,则是该数列的第项.解析:由题意知=,又=,∴=-,=,即是该数列的第项.答案:.数列×,×,×,×,…的第项为.解析:易知该数列的通项公式为=(+),令=,得=.答案:.数列{}的通项公式为=,则-是此数列的第项.解析:==-=-,观察可得:=.答案:.已知数列{}的通项公式为=,()求;()若=,求.解:()将=代入=,得==.()将=代入=,得=,解得=..已知数列{}中,=,=,通项是项数的一次函数,求数列{}的通项公式,并求.解:设=+(≠),把=,=代入得解得于是=+=.[高考水平训练].已知数列{}的前四项分别为,,,,则下列各式可作为数列{}的通项公式的个数为( )()=[+(-)+];()=;()=[+(-)+]+(-)(-);()=π);()=....解析:选.对于(),将=代入,=≠,易知()不是通项公式.通过观察、猜想、辨认的办法,根据半角公式可知()和()实质是一样的.数列,,,,…的通项公式,可猜想为+(-)+,这就是()的形式.另外我们可以联想到单位圆与轴,轴交点的横坐标依次为,,-,,根据三角函数的定义,可以猜想通项公式为(∈+),这样,,,,…的通项公式可猜想为=(∈+).对于(),易看出它不是数列{}的一个通项公式.综上,可知可作为数列{}的通项公式的有三个,即有三种表示形式.故选..已知数列{}的通项公式=--(∈+),则这个数列的第项是,是这个数列的第项.解析:=-×-=-.令--=,解得=或=-(舍去).答案:-.数列{}的通项公式为=-+.()这个数列的第项是多少?()是不是这个数列的项?若是这个数列的项,它是第几项?()该数列从第几项开始各项都是正数?解:()当=时,=-×+=-.()令=,即-+=,解得=或=-(舍去),故是这个数列的第项.()令=-+>,解得>或<(舍去).故从第项开始各项都是正数..已知数列{}中,=,对所有的∈+且≥都有··…·=.()求+的值;()判断是不是此数列中的项;()试比较与+(≥)的大小.解:()法一:∵··…·=对所有≥的自然数都成立,且=,∴令=,得==,故===;令=,得==,故==;令=,得==,故==;令=,得==,故==.从而+=+=.法二:由··…·=(≥)且=满足上式,可得··…·-=(-)(≥),以上两式相除,得通项公式=(≥),∴==,==,。

高中数学必修5(北师版)第一章数列1.5(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修5(北师版)第一章数列1.5(与最新教材完全匹配)知识点总结含同步练习题及答案
将这 n − 1 个式子等号两边分别相乘,得
(n + 1)(n + 2) an = , 2×3 a1
又因为 a1 = 2 ,所以
an =
(n + 1)(n + 2) . 3 (n + 1)(n + 2) . 3
当 n = 1 时,a1 = 2 满足通项公式,所以 an =
4.待定系数法 描述: 若数列的递推公式形如 an+1 = pan + q (p 、q 为常数),p ≠ 0. 1. 当 p = 1 时,数列 {an } 是公差为 q 的等差数列. 2. 当 q = 0 且 a1 ≠ 0 时 ,数列 {an } 为公比为 p 的等比数列. 3. 当 p ≠ 1 且 q ≠ 0 时,构造 an+1 + x = p(an + x),使得数列 {an + x} 是一个等比数 列.
5.辅助数列法 描述: 通过观察数列递推公式的结构特征,并对它进行适当的变形,构造辅助数列,使问题转化为我们 熟悉的等差或等比数列. 例题: 已知数列 {an } 中,a1 = 1 ,an+1 = 解:因为 an+1 =
an ,等式两边同时取倒数,得 2an + 1 an+1 1 =
an ,求数列 {an } 的通项公式. 2an + 1 2an + 1 1 = + 2, an an
an+1 n+3 ,所以 n+1 an
n+3 ,其中 n ∈ N + ,求通项公式 an . n+1 n+3 .当 n ⩾ 2 时,则 = n+1 , , , , n+1 , n−1 n+2 . n

(常考题)北师大版高中数学必修五第一章《数列》测试题(含答案解析)

(常考题)北师大版高中数学必修五第一章《数列》测试题(含答案解析)

一、选择题1.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .352.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 6.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .97.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .23669.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364 D .12712810.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019 B .2020 C .2021 D .202211.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .3612.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______.14.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 16.定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题: ①“等和数列”一定是常数数列;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列; ③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列; ④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =; 其中,正确的命题为__________.(请填出所有正确命题的序号)17.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0.给出下列结论:①0<q<1;②a 1a 99-1<0;③T 49的值是T n 中最大的;④使T n >1成立的最大自然数n 等于98.其中所有正确结论的序号是____________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.设无穷数列{a n }的前n 项和为S n ,下列有三个条件:①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.在①2*31,4(n S n kn n N k =-+∈为常数),②*1(,n n a a d n N d +=+∈为常数),③*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分.22.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T . 23.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 24.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T .25.已知数列{}n a 的各项均为正数,记数列{}n a 的前n 项和为n S ,数列{}2n a 的前n 项和为n T ,且232n n n T S S =+,*n N ∈.(1)求1a 的值及数列{}n a 的通项公式; (2)若有111n n b a +=-,求证:231321n b b b +++<26.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.2.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠,所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q == 故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D由2n n S a =-利用1112n nn S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}na 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T .已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.6.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 9.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A. 10.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列.∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.14.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010.【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+=⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=, 201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.②【分析】利用等和数列的定义对每一个命题逐一分析判断得解【详解】①等和数列不一定是常数数列如数列是等和数列但是不是常数数列所以该命题错误;②如果一个数列既是等差数列又是等和数列则这个数列一定是常数列解析:② 【分析】利用“等和数列”的定义对每一个命题逐一分析判断得解. 【详解】①“等和数列”不一定是常数数列,如数列1,0,1,0,1,0,1,0,1,0,是“等和数列”,但是不是常数数列,所以该命题错误;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列.如果数列{}n a 是等差数列,所以112(2)n n n a a a n +-+=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以122(2)n n a a n -=≥,所以1(2)n n a a n -=≥,所以这个数列一定是常数列,所以该命题是正确的.③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列. 如果数列{}n a 是等比数列,所以211(2)n n n a a a n +-⋅=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以221(2)n n a a n -=≥,所以1(2)n n a a n -=±≥,所以这个数列不一定是常数列,所以该命题是错误的.④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =,是错误的.举例“等和数列”1,99,1,99,1,其5201505S =≠⨯,所以该命题是错误的. 故答案为:② 【点睛】本题主要考查数列的新定义的理解和应用,考查等差数列和等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.①②③④【解析】由条件a1>1a49a50-1>0(a49-1)(a50-1)<0可知a49>1a50<1所以0<q<1①对;∵a1a99=<1②对;因为a49>1a50<1所以T49的值是Tn 中最解析:①②③④ 【解析】由条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0可知a 49>1,a 50<1,所以0<q <1,①对;∵a 1a 99=250a <1,②对;因为a 49>1,a 50<1,所以T 49的值是T n 中最大的,③对;∵T n =a 1a 2a 3…a n ,又∵a 1a 98=a 49a 50>1,a 1a 99=250a <1,所以使T n >1成立的最大自然数n 等于98.故填①②③④.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256.本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.答案见解析 【分析】选择①,由n S 求出1a 和3a ,常数k 不存在,数列不存在;选择②,得数列为等差数列,求出通项公式n a ,用裂项相消法结果; 选择③,得数列为等比数列,从而11{}n n a a +也是等比数列,由等比数列前n 项和公式可得结论. 【详解】解.如果选择①,由11332,,a S a S S =⎧⎨=-⎩即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解, 所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =-所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==,所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列,所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题考查由前n 项和n S 求通项公式n a ,解题时要注意1(2)n n n a S S n -=-≥,而11a S =,是两种不同的求法,如果要求通项公式,注意最后的结论能否统一,否则写成分段函数形式.22.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T . 【详解】(1)设等差数列{}n a 的公差为d ,则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212nn n n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.23.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式; (2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x -'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增 即7n =时,min297n S n ⎛⎫=⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值. 24.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列 所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131333233132n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.25.(1)11a =,12n n a ;(2)证明见解析.【分析】(1)已知等式中令1n =,可求得1a ,在232n n n T S S =+中用1n +代n ,然后两式相减,得出n a 的递推关系,从而可得其通项公式; (2)4n ≥时,由111212(2)2n n n ---=-11528n -≥⋅,用放缩法求出23n b b b +++后可证得不等式成立. 【详解】(1)在232n n n T S S =+中令1n =得2211132a a a =+,因为10a >,所以11a =, 又由232n n n T S S =+①得211132n n n T S S +++=+②②-①得211113()()2n n n n n n a S S S S a ++++=-++,即211113()2n n n n n a a S S a ++++=++,因为10n a +>,所以1132n n n a S S ++=++③,于是有132(2)n n n a S S n -=++≥④, ③-④得1133n n n n a a a a ++-=+,所以2n ≥时,12n na a +=, 又由222232T S S =+,即222223(1)(1)2(1)a a a +=+++,整理得22220a a -=,又20a >,所以22a =,所以212a a =. 所以12n na a +=,*n N ∈. 所以{}n a 通项公式为12n n a ;(2)由(1)111121n n n b a +==--, 4n ≥时,111112121222(2)22n nn n n n ------=⋅-=-11528n -≥⋅,所以118121152n n -≤⋅-, 所以23341118111()3715222n n b b b -+++<+++++ 11081110210313()2115422115212121n -=+-<+<+=. 【点睛】 关键点点睛:本题考查由n S 的关系式求通项公式,考查数列不等式的证明.已知n S 的关系一般可用1(2)n n n a S S n -=-≥转化为n a 的递推式,然后求解.与数列和有关的不等式的证明,在和不能直接求出时,可利用放缩法适当放缩后使得和能求出,从而证明不等式成立.26.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S . 【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

北师大版高中数学必修五本章练测:第一章数列(含答案解析).docx

北师大版高中数学必修五本章练测:第一章数列(含答案解析).docx

高中数学学习材料鼎尚图文*整理制作第一章 数 列(北京师大版必修5)建议用时 实际用时满分实际得分120分钟150分一、选择题(每小题5分,共60分)1.等差数列{ }的前n 项和为 , =-18, =-52,等比数列{ }中, = , = ,则 的值为A.64B.-64C.128D.-1282.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( ) A.(-72,+∞) B.(0,+∞)C.(-2,+∞)D.(-3,+∞) 3.设数列{ }是以2为首项,1为公差的等差数列,数列{ }是以1为首项,2为公比的等比数列,则 = A.1033B.1034C.2057D.20584.等比数列{ }的前n 项和为 , =1,若4 ,2 , 成等差数列,则 =A.7B.8C.16D.155.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项.A .2B .4C .6D .8 6.在ABC ∆中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则31lo gl oa a +++3l o g a =( ) A.12 B.10C.31log 5+D.32log 5+ 8.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A.513B.512 C.510D.82259.已知数列{ }的通项公式为 =1(1)n -- •(4n -3),则它的前100项之和为( ) A.200 B.-200 C.400 D.-40010.若数列{ }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为 ( ) A.-1,1,3 B.2,1,3 C.6,1,3 D.2,3,611.等差数列{ }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( )A.a 7B.a 8C.a 9D.a 10 12.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( ) A.)41(16n -- B.)21(16n -- C.)41(332n -- D.)21(332n --二、填空题(每小题4分,共16分)13.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =_________.14.在数列{ }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则 =_________.15.等比数列{}n a 的前n 项和为21n-,则数列{}2na 的前n 项和为______________.16.等差数列{ }的前n 项和为 ,且 - =8,+ =26.记 =,如果存在正整数M ,使得对一切正整数n , ≤M 都成立,则M 的最小值是.三、解答题(本大题共6题,共74分)17.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.18.在数列{ }中, =,并且对任意n ∈ ,n≥2都有 = - 成立,令 =(n ∈ ).(1)求数列{ }的通项公式;(2)求数列{}的前n 项和 .19.已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n项和,=2,5=2.(1)求{}和{}的通项公式;(2)设=++…+,求.20. 互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.21.已知数列{a n }满足a 1=1,1n a +=2a n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足114b -•214b -•…•14n b -=(1)n b n a + (n ∈N *),证明:{b n }是等差数列.22.已知函数f (x )=-2x 2+22x ,数列{ }的前n 项和为 ,点 (n , )(n ∈ )均在函数y =f (x )的图象上.(1)求数列{ }的通项公式 及前n 项和 ;(2)存在k ∈ ,使得++…+<k 对任意n∈ 恒成立,求出k 的最小值.第一章数列(北京师大版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13. ; 14. ;15.;16..三、解答题17.18.19.20.21.22.第一章数列(北京师大版必修5)参考答案1.B解析:因为=(+)=9=-18,=(+)=13=-52,所以=-2,=-4.又=,=,所以=2,=·=-4×16=-64.2.D 解析:由{a n }为递增数列得1n a +-a n =2n +1+λ>0恒成立,即λ>-2n -1在n ≥1时恒成立,只需λ>(-2n -1)max =-3,故选D.3.A 解析:由题意知 =n +1, = ,则 = +1,所以 + +…+ =10+=1033.4.D 解析:设公比为q ,则4 ,2 q , 成等差数列,∴4q =4+ ,∴q =2, ∴ =( )=16-1=15.5.B 解析:由题意得 ,得x =-1或x =-4, 当x =-1时,2x +2=0,故舍去,所以,所以-13,所以n =4.6.B 解析:设等差数列为{a n },公差为d ,则 =-4, =4,所以d =2,所以设等比数列为{b n },公比为q ,则, =9,所以q =3,所以 所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.7.B 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.8.C 解析:332112131(1)18,()12,,2,22q a q a q q q q q q ++=+====+得或 而q ∈Z ,∴q =2,-2=510.9.B 解析:S 100=a 1+a 2+…+a 100=1-5+9-13+17-…+(4×99-3)-(4×100-3)=(1-5)+(9-13)+…+[(4×99-3)-(4×100-3)]=-4×50=-200.10.B 解析:当n =1时,a 1=S 1=12-2×1+3=2;当n =2时,由S 2=a 1+a 2=22-2×2+3=3,得a 2=1;当n =3时,由S 3=a 1+a 2+a 3=32-2×3+3=6,得a 3=3.11.C 解析:由S 5=S 11 得2a 1+15d =0.又a 1>0,所以d <0.而2 =2a 1+2(n -1)d =(2n -17)d <0,所以2n -17>0,即n >8.5.12.C 解析: 41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --.13.)2(:1:4- 解析:22222,2,(2),540a cbc b a a b c b a a a b b +==-==--+=,又,4,2a b a b c b≠∴==-. 14.3n 2解析:将点代入直线方程得n a -1-n a =3,由定义知{n a }是以3为首项,以3为公差的等差数列,故n a =3n ,即a n =3n 2.15.413n -解析:1121121,21,2,4,n n n n n n n n S S a a ----=-=-==21144-11,4,=143n n n a q S -==∴=-. 16.2 解析:∵{ }为等差数列,由 - =8, + =26,得a 1=1,d =4,可解得 =2 -n ,∴ =2-.若 ≤M 对一切正整数n 恒成立,则只需 的最大值≤M 即可. 又 =2-<2,∴只需2≤M ,故M 的最小值是2.17.解:设这四个数为,a ,aq ,2aq -a ,则216,(2)36,a a aq qa aq aq a ⎧=⎪⎨⎪++-=⎩①② 由①,得a 3=216,a =6, ③将③代入②,得q =2 , ∴ 这四个数为3,6,12,18.18.解:(1)当n =1时, ==3.当n ≥2时,由 = - ,得-=1,所以 - =1.所以数列{ }是首项为3,公差为1的等差数列, 所以数列{ }的通项公式为 =n +2. (2)因为== (-),=(1- +- +-+…+- + - )= [ -( +)]=. 19.解:(1)设{ }的公比为q ,由 = ,得q =4,所以 = .设{ }的公差为d ,由5 =2 及 =2得d =3, 所以 = +(n -1)d =3n -1.(2)因为 =1×2+4×5+ ×8+…+ (3n -1),① 4 =4×2+ ×5+…+ (3n -1),②由②-①,得3 =-2-3(4+ +…+ )+ (3n -1)=2+(3n -2)· . 所以 =(n -)· +.20.解:设这三个数为 ,a ,aq ,∴ =-8,即a =-2,∴这三个数为-,-2,-2q .(1)若-2为-和-2q 的等差中项,则+2q =4,∴ -2q +1=0,∴q =1,与已知矛盾;(2)若-2q 为-与-2的等差中项,则+2=4q ,∴2 -q -1=0,∴q =-或q =1(舍去),∴这三个数为4,1,-2;(3)若-为-2q 与-2的等差中项,则2q +2=,∴ +q -2=0,∴q =-2或q =1(舍去),∴这三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2. 21.(1)解: ∵ =2 +1(n ∈ ),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +, {}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 -1( ).(2)证法1:12(...)42.n n b b b n nb +++-∴=122[(...)],n n b b b n nb ∴+++-=①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=③21(1)20.n n nb n b ++-++=④④-③,得2120,n n n nb nb nb ++-+=即2120,n n n b b b ++-+= , 故{b n }是等差数列.22.解:(1)因为点 (n , )(n ∈ )均在函数y =f (x )的图象上,所以 =-2 +22n .当n =1时, = =20;当n ≥2时, = - =-4n +24. 所以 =-4n +24(n ∈ ).(2)存在k ∈ ,使得 + +…+<k 对任意n ∈ 恒成立, 只需k >,由(1)知 =-2 +22n ,所以=-2n+22=2(11-n).当n<11时,>0;当n=11时,=0;当n>11时,<0. 所以当n=10或n=11时,++…+有最大值是110.所以k>110.又因为k∈,所以k的最小值为111.。

高中数学北师大版必修5课时作业:第1章 数列 01 Word版含答案

高中数学北师大版必修5课时作业:第1章 数列 01 Word版含答案

第一部分 课时作业第一章 数列§1 数列的概念时间:45分钟 满分:80分班级________ 姓名________分数________一、选择题:(每小题5分,共5×6=30分) 1.下列说法中,正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1kD .数列0,2,4,6,8,…可记为{2n }2.已知数列3,9,15,21,…,那么9是这个数列的第( ) A .12项 B .13项 C .14项 D .15项3.已知数列{a n }的通项公式为a n =15-2n ,在下列各数中( )不是{a n }的项.( ) A .-1 B .1 C .2 D .34.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( )A .1 B.12C.34D.585.数列1,-3,5,-7,9,…的一个通项公式为( ) A. a n =2n -1 B. a n =(-1)n(2n -1) C. a n =(-1)n +1(2n -1)D. a n =(-1)n(2n +1)6.以下四个数中,哪个是数列{n (n +1)}中的一项( )A .380B .39C .32D .23二、填空题:(每小题5分,共5×3=15分) 7.数列{a n }的通项公式a n =n +2n 2,则a 3=________,a 5=________. 8.已知数列{a n }的通项公式为a n =1n n +2,则1120是这个数列的第________项.9.已知数列{a n }的通项公式为a n =999…9n 个9,则a n =10n-1,那么数列{b n }的通项公式b n =888…8n 个8可化为b n =________.三、解答题:(共35分,其中第10小题11分,第11、12小题各12分) 10.写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)35,48,511,614,…; (2)1,-2,3,-4,…; (3)0.9,0.99,0.999,0.9999,….11.在数列{a n}中,a1=2,a17=66,通项公式是项数n的一次函数.(1)求数列{a n}的通项公式;(2)88是否是数列{a n}中的项.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1. (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内.一、选择题1.C 数列与集合不同,不能用集合表示数列,故A 错;由数列定义知B 错; 数列中的n 表示项数,即n ∈N +,∴n ≠0,故D 错; 当n =k 时,n +1n =k +1k =1+1k, ∴a k =1+1a k.2.C 由所给出的前4项,可归纳出通项公式为a n =32n -1,令a n =9得n =14. 3.C4.C ∵a 1=1,a n +1=12a n +12n ,∴a 2=12a 1+12=1,a 3=12a 2+14=34,故选C.5.C ∵奇数项为正,偶数项为负,∴用(-1)n +1表示,各项绝对值1,3,4,7,9为奇数,用2n -1表示,∴a n =(-1)n +1(2n -1).故选C.6.A n (n +1)是这个数列的通项公式,即a n =n (n +1). ∵380=19×20=19×(19+1),∴380是该数列中的第19项,或者令n (n +1)=380,得n =19,是个整数,符合题意.二、填空题 7.59 7258.10 解析:由1nn +2=1120,得n =10. 9.89(10n-1) 解析:绝对新的东西是没有的,我们可以把b n 中的8化成a n 中的9,然后利用{a n }的通项公式来求 {b n }的通项公式,这就是创新.b n =888…8n 个8=89×999…9n 个9=89(10n-1).三、解答题10.(1)分子依次为3,4,5,6,…,其规律是后续项等于前项加1,又首项为3=1+2,故分子的通项为n +2;分母依次为5,8,11,14,…,其规律是后续项等于前项加3,又首项为5=3×1+2,故分母的通项为3n +2.因此,数列的通项公式为a n =n +23n +2(n ∈N +).(2)a n =(-1)n +1·n .(3)将原数列变形为(1-110),(1-1102),(1-1103),(1-1104),….因此,数列的通项公式为a n =1-110n (n ∈N +).11.(1)设通项公式为a n =An +B ,由a 1=2,a 17=66,得⎩⎪⎨⎪⎧A +B =2,17A +B =66,解得⎩⎪⎨⎪⎧A =4,B =-2.∴a n =4n -2.(2)令4n -2=88,得n =452∉N +.∴88不是数列{a n }中的项.12.(1)设a n =9n 2-9n +29n 2-1=3n -13n -23n -13n +1=3n -23n +1.令n =10,得a 10=2831.(2)令a n =3n -23n +1=98101,得9n =300.此方程无正整数解,所以98101不是该数列中的项.(3)证明:∵a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *,∴0<33n +1<1,∴0<a n <1.∴数列中的各项都在区间(0,1)内.。

2019-2020学年北师大版高中数学必修五精讲精练作业:课时1 数列的概念 Word版含解析

2019-2020学年北师大版高中数学必修五精讲精练作业:课时1 数列的概念 Word版含解析

课时作业(一)1.下列说法中,正确的是( )A .数列2,4,6,8可表示为{2,4,6,8}B .数列3,0,-1,-3与数列-3,-1,0,3是相同的数列C .数列{n +1n }的第k 项为1+1k D .数列0,2,4,6,8,…可记为{2n} 答案 C解析 A 中,{2,4,6,8}表示集合,所以A 不正确;数列中的各项是有顺序的,所以B 不正确;D 中,数列应记为{2n -2},所以D 不正确;很明显C 正确.2.数列23,45,67,89,…的第10项是( ) A.1617 B.1819 C.2021 D.2223答案 C3.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( ) A .1个 B .2个 C .3个 D .4个 答案 C4.2n 是数列1,2,4,…,2n ,…的第几项( )A .nB .n +1C .n -1D .都不是答案 B5.已知数列{a n }前三项分别为-1,0,1下列各式:①a n =n -2;②a n =(-1)n -12;③a n =(n -2)5;④a n =(n -2)+(n -1)(n -2)(n -3). 其中能作为数列{a n }的通项公式的有( ) A .1个 B .2个 C .3个 D .4个答案 C解析 验证选项.6.数列12,16,112,120,…的一个通项公式是( ) A .a n =1n (n -1)B .a n =12(2n -1)C .a n =1n -1n +1D .a n =1-1n 答案 C解析 联系基本数列:2,6,12,20,…的通项为a n =n(n +1),而1n (n +1)=1n -1n +1.7.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( ) A.19(10n-1) B.13(10n-1) C.13(1-110n )D.310(10n -1)答案 C8.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14答案 C9.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),则a n +1-a n 等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2 答案 D10.下图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,按图中结构第n 个图有化学键( )A .6n 个B .4n +2个C .5n -1个D .5n +1个答案 D解析 每个结构简图去掉最左边的一个化学键后,每个环上有5个化学键,故第n 个结构简图有5n +1个化学键.11.有以下说法:①{0,1,2,3,4}是有穷数列;②所有的自然数只要按照一定的顺序排列,就能构成数列;③-3,-1,1,6,5,7,10,11是一个项数为8的数列;④数列1,2,3,4,…,200是无穷数列.其中正确的是________. 答案 ②③12.数列152,245,3510,4817,6326,…的一个通项公式为________. 答案 a n =(n +3)2-1n 2+1解析 此数列各项都是分式,且分母都减去1为1,4,9,16,25,…,故分母可用n 2+1表示,若分子各项都加1为16,25,36,49,64,…,故分子可用(n +3)2-1表示,故其通项公式为a n =(n +3)2-1n 2+1. 13.如图1是第七届国际数学教育大会的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图2中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.答案n解析 因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,所以a n =n.14.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式:(1)34,23,712,( ),512,13,… (2)53,( ),1715,2624,3735,… (3)2,1,( ),12,… (4)32,94,( ),6516,…答案 (1)12 a n =10-n 12 (2)108 a n =(n +1)2+1(n +1)2-1 (3)23 a n =2n (4)258 a n =n +12n解析 (1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号数 1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓ 912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号.故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1,1715=16+116-1,2624=25+125-1,3735=36+136-1.只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108,通项公式为a n =(n +1)2+1(n +1)2-1. (3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n .(4)先将原数列变形为112,214,( ),4116,…,所以应填318,数列的通项公式为a n =n +12n . 15.已知数列{n(n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项? 解析 (1)a n =n(n +2)=n 2+2n ,所以a 8=80,a 20=440. (2)由a n =n 2+2n =323,解得n =17或n =-19(舍). 所以323是数列{n(n +2)}中的项,是第17项. 16.在数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)在区间(13,23)内有无数列的项?若有,有几项?解析 (1)a 7=7272+1=4950.(2)因为a n =n 2n 2+1=1-1n 2+1,所以0<a n <1.故数列的各项都在区间(0,1)内. (2)因为13<n 2n 2+1<23,所以12<n 2<2.又n ∈N *,所以n =1,即在区间(13,23)内有且只有一项a 1.。

高中数北师大必修五案:第1章 阶段复习课 Word含答案

高中数北师大必修五案:第1章 阶段复习课 Word含答案

第一课 数列[核心速填]1.a n 与S n 的关系 a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列(1)通项公式:a n =a 1+(n -1)d , a n =a m +(n -m )d . (2)前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(3)等差中项:若a ,A ,b 成等差数列,则A 叫作a ,b 的等差中项,且有a +b =2A .(4)常用性质:①若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ;②在等差数列{a n }中,若k 1,k 2,…,k n ,…成等差数列,则a k 1,a k 2,…,a k n ,…也成等差数列;③在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列. (5)等差数列的判断.①定义式:a n +1-a n =d (d 为常数); ②等差中项:a n +a n +2=2a n +1; ③通项公式:a n =dn +b ; ④前n 项和:S n =an 2+bn . 3.等比数列(1)通项公式:a n =a 1q n -1,a n =a m q n -m .(2)前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q1-q ,q ≠1.(3)等比中项:若a ,G ,b 成等比数列,则G 叫作a ,b 的等比中项,且有G 2=ab 或G =±ab .(4)等比数列的性质:①若m +n =p +q (m ,n ,p ,q ∈N +),则a m ·a n =a p ·a q ;②在等比数列{a n }中,若k 1,k 2,…,k n ,…成等差数列,则a k 1,a k 2,…,a k n ,…也成等比数列;③在等比数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列. (5)等比数列的判断:①定义式:a n +1a n=q (q 为非零常数);②等比中项:a n ·a n +2=a 2n +1;③通项公式:a n =a ·q n (a ,q 为非零常数);④前n 项和:S n =A -Aq n (A 为非零常数,q ≠0且q ≠1). 4.数列求和(1)公式法:已知数列若是等差数列或是等比数列,则按照等差或等比数列的前n 项和公式求和.(2)分组求和法:一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,求这个数列的前n 项和可用错位相减法.(4)裂项相消法:把数列的各项拆成两项之差,在求和时中间的一些项可以相互拆消,从而求得其和.[体系构建]通过前面的学习与核心知识的填写,请把本课的知识点以网络构建的形式展现出来.[题型探究]等差、等比数列的判定n n 23(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得q =-2,a 1=-2, 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13,由于S n +2+S n +1=-23+(-1)n +2·2n +33-23+(-1)n +12n +23=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列. [规律方法]判定一个数列是等差或等比数列的方法公式法,通项公式法和前n 项和公式法常在小题或分析题意时应用.[跟踪训练]1.设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a n a n -1=12(n ≥2,n ∈N *).所以数列{a n }是首项为1,公比为12的等比数列, 故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n=12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.数列通项公式的求法(1)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a n =________.(2)已知在数列{a n }中,a n +1=nn +2a n (n ∈N +),且a 1=4,则数列{a n }的通项公式a n =________.【导学号:91022123】[解析] (1)因为a 1+a 2+…+a n =n 2+3n (n ∈N *),① 所以a 1+a 2+…+a n -1=(n -1)2+3(n -1)(n ≥2),② ①-②,得a n =n 2+3n -[(n -1)2+3(n -1)]=2(n +1), 所以a n =4(n +1)2(n ≥2). 又a 1=12+3×1=4,故a 1=16, 也满足式子a n =4(n +1)2,故a n =4(n +1)2. (2)由a n +1=n n +2a n ,得a n +1a n =nn +2,故a 2a 1=13,a 3a 2=24,…,a n a n -1=n -1n +1(n ≥2),以上式子累乘得,a n a 1=13·24·…·n -3n -1·n -2n ·n -1n +1=2n (n +1),因为a 1=4,所以a n =8n (n +1)(n ≥2),因为a 1=4满足上式,所以a n =8n (n +1).[★答案★] (1)4(n +1)2 (2)8n (n +1)[规律方法] 数列通项公式的求法(1)定义法,即直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适用于已知数列类型的题目.(2)已知S n 求a n .若已知数列的前n 项和S n 与a n 的关系,求数列{a n }的通项a n 可用公式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2求解.(3)由递推式求数列通项法.对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列.(4)待定系数法(构造法).求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.[跟踪训练]2.(1)已知数列{a n }满足a 1=2,a n -a n -1=n (n ≥2,n ∈N +),则a n =________. (2)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N +),则a n =________. [解析] (1)由题意可知,a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2), 以上式子累加得,a n -a 1=2+3+…+n . 因为a 1=2,所以a n =2+(2+3+…+n ) =2+(n -1)(2+n )2=n 2+n +22(n ≥2).因为a 1=2满足上式,所以a n =n 2+n +22.(2)因为数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N +), 所以log 2a n +1=2log 2a n ,即log 2a n +1log 2a n=2,又a 1=2,所以log 2a 1=1,故数列{log 2a n }是首项为1,公比为2的等比数列,所以log 2a n =2n -1,即a n =22n -1.[★答案★] (1)12(n 2+n +2) (2)22n -1数列求和的常用方法n n n a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.【导学号:91022124】(1)求数列{a n }和{b n }的通项公式;(2)令c n =a n b n ,设数列{c n }的前n 项和为T n ,求T n . [解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则 由⎩⎨⎧ b 2+S 2=10,a 5-2b 2=a 3,得⎩⎨⎧ q +6+d =10,3+4d -2q =3+2d ,解得⎩⎨⎧d =2,q =2, ∴a n =3+2(n -1)=2n +1,b n =2n -1. (2)由(1)可知c n =(2n +1)·2n -1,∴T n =3·20+5·21+7·22+…+(2n -1)·2n -2+(2n +1)·2n -1,①2T n =3·21+5·22+7·23+…+(2n -1)·2n -1+(2n +1)·2n ,②①-②得:-T n =3+2·21+2·22+…+2·2n -1-(2n +1)·2n =1+2+22+…+2n -(2n +1)·2n =2n +1-1-(2n +1)·2n =(1-2n )·2n -1,∴T n =(2n -1)·2n +1.[规律方法] 数列求和的常用方法 (1)公式法. (2)分组求和法. (3)倒序求和法. (4)错位相减法.(5)裂项相消法.把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(6)并项求和法.一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.[跟踪训练]3.设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d , 由题意得⎩⎨⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.用函数思想解决数列问题[1.若函数f (x )=x 2+λx 在[1,+∞)上单调递增,则λ的取值范围是什么? [解] 由于f (x )=x 2+λx 是图像开口的向上的二次函数,要使其在[1,+∞)上单调递增,则需-12λ≤1.即λ≥-2,故λ的取值范围是[-2,+∞).2.当x 为何值时,函数f (x )=12⎝ ⎛⎭⎪⎫x -722+238有最小值?[解] 当x =72时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫72=238.3.数列与其对应的函数有什么区别?[解] 与数列对应的函数是一种定义域为正整数集(或它的前几个组成的有限子集)的函数,它是一种自变量“等距离”地离散取值的函数.(1)若数列{a n }的通项公式为a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是________.【导学号:91022125】(2)设数列{a n },{b n }满足a 1=b 1=6,a 2=b 2=4,a 3=b 3=3,若{a n +1-a n }是等差数列,{b n +1-b n }是等比数列.①分别求出数列{a n },{b n }的通项公式; ②求数列{a n }中最小项及最小项的值.[思路探究] (1)利用a n +1>a n 求解,或利用函数y =x 2+λx 的图像求解; (2)根据等差、等比数列的通项公式求{a n },{b n }的通项公式,然后利用函数的思想求{a n }的最小项及最小项的值.(1)[解析] 法一:a n +1-a n =(n +1)2+λ(n +1)-(n 2+λn )=2n +1+λ,由于{a n }是递增数列,故2n +1+λ>0恒成立,即λ>-2n -1,又n ∈N +,-2n -1≤-3,故λ>-3.法二:由于函数y =x 2+λx 在⎣⎢⎡⎭⎪⎫-λ2,+∞上单调递增,结合其图像可知,若数列{a n }是递增数列,则a 2>a 1,即22+2λ>1+λ,即λ>-3.[★答案★] (-3,+∞)(2)[解] ①a 2-a 1=-2,a 3-a 2=-1, 由{a n +1-a n }成等差数列知其公差为1, 故a n +1-a n =-2+(n -1)·1=n -3; b 2-b 1=-2,b 3-b 2=-1,由{b n +1-b n }成等比数列知,其公比为12, 故b n +1-b n =-2·⎝ ⎛⎭⎪⎫12n -1, a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =(n -1)·(-2)+(n -1)(n -2)2·1+6=n 2-3n +22-2n +8=n 2-7n +182,b n =(b n -b n -1)+(b n -1-b n -2)+(b n -2-b n -3)+…+(b 2-b 1)+b 1=-2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12+6=2+23-n .②因为a n =n 2-7n +182=12⎝ ⎛⎭⎪⎫n -72n +238,所以n =3或n =4时,a n 取到最小值,a 3=a 4=3.母题探究:1.(变条件)把例4(2)中的数列{a n }换为a n =n -79n -80,求其最小项和最大项.[解] a n =n -79n -80=1+80-79n -80,当n <9时,a n =1+80-79n -80递减且小于1;当n ≥9时,a n =1+80-79n -80递减且大于1,所以a 8最小,a 9最大,且a 8=8-798-80,a 9=9-799-80.母题探究:2.(变结论)例4(2)的条件不变,求数列{b n }中最大项及最大项的值.[解]由例4(2)的解析可知b n =2+23-n ,易知数列{b n }是递减数列,所以当n =1时,a n 取到最大值,a 1=2+23-1=6.[规律方法] 函数思想在数列问题中的应用数列可以看作是定义域为正整数集(或其有限子集{1,2,3,…,n })的特殊函数.运用函数思想去研究数列,就是要借助于函数的单调性、图像和最值等知识解决与数列相关的问题.等差数列与一次函数、等比数列与指数函数有着密切的关系,等差数列有n 项和公式与二次函数有密切关系,故可用函数的思想来解决数列问题.Ruize。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5 等差数列的综合应用
时间:45分钟 满分:80分
班级________ 姓名________分数________
一、选择题:(每小题5分,共5×6=30分)
1.在等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 为( ) A .48 B .49
C .50
D .51
2.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9等于( )
A .30
B .27
C .24
D .21
3.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12
等于( ) A. 310 B. 13
C. 18
D. 19
4.数列{a n }的通项公式a n =
1n +n +1,则该数列的前99项之和等于( ) A .8 B .9
C.99 D .10
5.已知a n =n -98n -99
,则这个数列的前30项中最大项和最小项分别是( ) A .a 1,a 30 B .a 1,a 9
C .a 10,a 9
D .a 10,a 30
6.已知等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2
m =0,S 2m -1=38,则m 等于( )
A .38
B .20
C .10
D .9
二、填空题:(每小题5分,共5×3=15分)
7.一个等差数列的前12项和为354,前12项中,偶数项和与奇数项和之比为3227,
则公差d =________.
8.在数列{a n }中,a n =4n -52
,S n =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab =________. 9.已知等差数列共有2n +1项,其中奇数项和为290,偶数项和为261,则a n +1=________.
三、解答题:(共35分,其中第10小题11分,第11、12小题各12分)
10.已知数列{a n },a n =2n -1,b n =a 2n -1.
(1)求{b n }的通项公式;
(2)数列{b n }是否为等差数列?说明理由.
11.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.
(1)求公差d的范围;
(2)问前几项的和最大,并说明理由.
12.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.
(1)求a n及S n;
(2)令b n=1
a2n-1
(n∈N*),求数列{b n}的前n项和T n.
一、选择题
1.C a 2+a 5=a 1+d +a 1+4d =4,且a 1=13
, ∴d =23,则a n =13+(n -1)×23
=33,解得n =50. 2.B 由2a 2=a 1+a 3,2a 5=a 4+a 6,2a 8=a 7+a 9, ∴2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9), 因此,a 3+a 6+a 9=27.
3.A 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 10
=6a 1+15d 12a 1+66d =27d 90d =310
,故选A. 4.B a n =1
n +n +1=n +1-n , S n =2-1+3-2+…+n +1-n =n +1-1.
∴S 99=99+1-1=9. 5.C ∵a n =n -99+99-98n -99=99-98n -99
+1, ∴点(n ,a n )在函数y =
99-98x -99+1的图象上,在直角坐标系中作出函数y =99-98x -99
+1的图象, ∴由图象易知当x ∈(0,99)时,函数单调递减,∴a 9<a 8<a 7<…a 1<1,当x ∈(99,+∞)时,函数单调递减,∴a 10>a 11>…a 30>1.所以,数列{a n }的前30项中最大的项是a 10,最小的项是a 9.
6.C 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,所以a m =2或a m =0,因为S 2m -1≠0,所以a m ≠0,即a m =2,又S 2m -1=38,即2m -1
a 1+a 2m -12
=38,解得m =10. 二、填空题
7.5
解析:S 奇+S 偶=354,S 偶S 奇=3227.
∴S 偶=192,S 奇=162.
又6d =S 偶-S 奇=30,
∴d =5.
8.-1
解析:∵a n =4n -52,∴a 1=32,从而S n =n ⎝ ⎛⎭⎪⎫32+4n -522
=2n 2-n 2.∴a =2,b =-12,则ab =-1.
9.29
解析:等差数列奇数项为(n +1)项,偶数项为n 项,S 奇=a 1+a 3+…+a 2n +1=
n +1a 1+a 2n +1
2=(n +1)a n +1=290,S 偶=a 2+a 4+…+a 2n =n a 2+a 2n 2=na n +1=261,两式相减,可得a n +1=29.
三、解答题
10.(1)∵a n =2n -1,b n =a 2n -1,∴b 1=a 1=1,b 2=a 3=5,b 3=a 5=9,b n =a 2n -1=2(2n -1)-1=4n -3.
(2)由b n =4n -3知b n -1=4(n -1)-3=4n -7.∵b n -b n -1=(4n -3)-(4n -7)=4,∴{b n }是首项b 1=1,公差为4的等差数列.
11.(1)∵a 3=12,∴a 1=12-2d ,∵S 12>0,S 13<0,
∴⎩⎪⎨⎪⎧ 12a 1+66d >0,13a 1+78d <0,即⎩
⎪⎨⎪⎧ 24+7>0,3+d <0,∴-247<d <-3. (2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧ a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧ a 6+a 7>0,a 7<0,
∴a 6>0,又由(1)知d <0.∴数列前6项为正,从第7项起为负.∴数列前6项和最大.
12.(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有 ⎩⎪⎨⎪⎧ a 1+2d =72a 1+10d =26,解得a 1=3,d =2, 所以a n =3+2(n -1)=2n +1;
S n =3n +n n -12
×2=n 2+2n . (2)由(1)知a n =2n +1, 则b n =1a 2n -1=12n +12-1=14×1n n +1=14×⎝ ⎛⎭
⎪⎫1n -1n +1, 所以T n =14×⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14×⎝ ⎛⎭⎪⎫1-1n +1=n 4
n +1, 即数列{b n }的前n 项和T n =n 4n +1
.。

相关文档
最新文档