图以及深度优先和广度优先
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。
本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。
1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。
它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。
深度优先算法的时间复杂度与图的深度有关。
在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。
2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。
与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。
广度优先算法的时间复杂度与图中边的数量有关。
在最坏情况下,广度优先算法的时间复杂度为O(V+E)。
3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。
但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。
在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。
4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。
如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。
要根据具体的问题来选择合适的算法。
5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。
通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。
深度优先搜索和广度优先搜索
二、 重排九宫问题游戏
在一个 3 乘 3 的九宫中有 1-8 的 8 个数及一个空格随机摆放在其中的格子里。如下面 左图所示。现在要求实现这样的问题:将该九宫调整为如下图右图所示的形式。调整规则是: 每次只能将与空格(上,下或左,右)相临的一个数字平移到空格中。试编程实现。
|2|8 |3|
|1|2|3|
from = f; to = t; distance = d; skip = false; } } class Depth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) {
下面是用深度优先搜索求解的程序:
// Find connections using a depth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo {
String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) {
int dist; FlightInfo f; // See if at destination. dist = match(from, to); if(dist != 0) {
2023年高考信息技术专题20 图结构、深度优先搜索、广度优先搜索 知识点梳理选修(浙教版2019)
附录:图结构、深度优先搜索和广度优先搜索
1.图结构时一种比线性结构和树形结构更为复杂的线性结构。
线性结构中每个节点最多只有一个前驱节点和一个后继节点;树形结构中每个节点最多只有一个前驱节点,可以有多个后继节点;而图结构每个节点的前驱节点和后驱节点的个数都不是唯一的。
2.图结构根据节点之间的关系可以分为有向图、无向图、连通图和非连通图。
3.图结构处理——深度优先搜索和广度优先搜索
例题:公司安排小张到H市出差,从小张所在的A市到H市没有直达公交,需要中转若干个城市,但中转方式不唯一。
如图所示,从A市到H市有多种方案,请编写代码找出中转次数最少的方案。
用二维数组来存储城市之间的中转方案图,城市A-H分别编号为0-7。
用数值1来表示表格
①广度优先搜索(BFS)—找到最短路径
首先将起点入队,然后取出队首元素X,将X市可达的所有城市依次入队,不断重复次操
经过的节点都存放在同一个队列中,需要输出最短路径经过的节点时,需要在节点入队时就存储前向指针,构建节点间的逻辑关系。
②深度优先搜索(DFS)——找出全部路径
首先将起点入栈,然后取出栈顶元素X市,将X市可达的城市中的一个入栈,不断重复操
故在到达目的地时,栈空间中存储的就是换乘路线。
广度优先和深度优先的例子
广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。
它们在解决许多问题时都能提供有效的解决方案。
本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。
一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。
例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。
现在我们需要找到从起始房间到目标房间的最短路径。
可以使用广度优先搜索算法来解决这个问题。
例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。
可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。
例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。
爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。
例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。
可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。
例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。
可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。
二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。
例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。
通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。
例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。
回溯算法常用于解决组合问题、排列问题和子集问题。
例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。
图的各种算法(深度、广度等)
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3
【算法】广度优先算法和深度优先算法
【算法】⼴度优先算法和深度优先算法⼴度(BFS)和深度(DFS)优先算法这俩个算法是图论⾥⾯⾮常重要的两个遍历的⽅法。
下⾯⼀个例⼦迷宫计算,如下图解释:所谓⼴度,就是⼀层⼀层的,向下遍历,层层堵截,看下⾯这幅图,我们如果要是⼴度优先遍历的话,我们的结果是V1 V2 V3 V4 V5 V6 V7 V8。
⼴度优先搜索的思想: ①访问顶点vi ; ②访问vi 的所有未被访问的邻接点w1 ,w2 , …wk ; ③依次从这些邻接点(在步骤②中访问的顶点)出发,访问它们的所有未被访问的邻接点; 依此类推,直到图中所有访问过的顶点的邻接点都被访问; 说明: 为实现③,需要保存在步骤②中访问的顶点,⽽且访问这些顶点的邻接点的顺序为:先保存的顶点,其邻接点先被访问。
这⾥我们就想到了⽤标准模板库中的queue队列来实现这种先进现出的服务。
步骤: 1.将V1加⼊队列,取出V1,并标记为true(即已经访问),将其邻接点加进⼊队列,则 <—[V2 V3] 2.取出V2,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V3 V4 V5]3.取出V3,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V4 V5 V6 V7]4.取出V4,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V5 V6 V7 V8]5.取出V5,并标记为true(即已经访问),因为其邻接点已经加⼊队列,则 <—[V6 V7 V8]6.取出V6,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V7 V8]7.取出V7,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V8]8.取出V8,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[]区别:深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。
浅析深度优先和广度优先遍历实现过程、区别及使用场景
浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
广度优先算法,深度优先算法
广度优先算法,深度优先算法
广度优先算法(BFS)和深度优先算法(DFS)是两种常用的图遍历算法。
广度优先算法(BFS)从图的起始节点开始,先访问其所有直接邻居节点,然后再访问邻居节点的邻居节点,以此类推,直到访问到图中所有可达节点。
深度优先算法(DFS)从图的起始节点开始,首先访问其一个邻居节点,然后再依次递归地访问该邻居节点的邻居节点,直到访问到某个节点的所有邻居节点为止,然后再回退到上一个节点,继续访问其他未被访问的邻居节点。
两种算法的主要区别在于遍历的顺序和使用的数据结构。
BFS通常使用队列(Queue)来实现,通过先进先出的原则保证节点的访问顺序。
DFS通常使用栈(Stack)或递归来实现,通过先进后出的原则进行节点的访问。
广度优先算法适用于寻找最近的目标节点或在无权图中查找路径等问题。
深度优先算法适用于判断图中是否存在特定节点或搜索图中的所有路径等问题。
需要注意的是,在有环图中,深度优先算法有可能陷入死循环,需要额外的处理来避免重复访问节点。
深度优先和广度优先算法
深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。
它们的策略不同,各有优缺点,可以在不同的场景中使用。
一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。
该算法使用栈来实现。
1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。
2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。
以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。
由于该算法使用栈来实现,因此空间复杂度为O(V)。
二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。
该算法使用队列来实现。
1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。
2. 算法实现广度优先遍历算法可以使用队列来实现。
深度优先算法与广度优先算法的比较
深度优先算法与广度优先算法的比较深度优先算法以深度为优先,从一个节点开始,逐个遍历其邻居节点直至最深处,然后回溯到上一个节点,再继续遍历其他分支。
它是通过栈来实现的,先进后出的特性决定了深度优先算法是一个递归算法。
深度优先算法在过程中,不需要记住所有的路径,只需要记住当前路径上的节点即可。
对于树而言,深度优先算法通常沿着左子树一直深入,直到最深的叶节点,然后再回溯到前一个节点继续右子树的遍历。
广度优先算法以广度为优先,从一个节点开始,逐层遍历其所有邻居节点,然后再遍历下一层的节点,直至遍历完所有节点。
它是通过队列来实现的,先进先出的特性决定了广度优先算法是一个非递归算法。
广度优先算法在过程中,需要记住每一层的节点,并且按照先进先出的顺序进行遍历。
对于树而言,广度优先算法会先遍历根节点,然后是根节点的子节点,再然后是子节点的子节点,按照层次逐层遍历。
以下是深度优先算法和广度优先算法的比较:1.方式:深度优先算法通过一条路径一直遍历到最深处,然后回溯到上一个节点,再继续遍历其他分支。
广度优先算法逐层遍历,先遍历当前层的节点,再遍历下一层的节点。
2.存储结构:深度优先算法使用栈进行遍历,而广度优先算法使用队列进行遍历。
3.内存占用:深度优先算法只需要记住当前路径上的节点,所以内存占用较小。
而广度优先算法需要记住每一层的节点,所以内存占用较大。
4.时间效率:深度优先算法通常适用于解决单个解或路径的问题,因为它首先深入其中一个分支,整个分支再回溯,因此它可能会浪费一些时间在不必要的路径上。
而广度优先算法通常适用于解决最短路径或最小步数的问题,因为它遍历一层后再遍历下一层,所以找到的解很可能是最优解。
5.应用场景:深度优先算法适用于解决迷宫问题、拓扑排序和连通性等问题。
广度优先算法适用于解决最短路径、社交网络中的人际关系、图的遍历和等问题。
总结起来,深度优先算法和广度优先算法都有各自的特点和适用场景。
深度优先算法适合解决单个解或路径的问题,而广度优先算法适合解决最短路径或最小步数的问题。
深度优先搜索和广度优先搜索的区别
深度优先搜索和⼴度优先搜索的区别1、深度优先算法占内存少但速度较慢,⼴度优先算法占内存多但速度较快,在距离和深度成正⽐的情况下能较快地求出最优解。
2、深度优先与⼴度优先的控制结构和产⽣系统很相似,唯⼀的区别在于对扩展节点选取上。
由于其保留了所有的前继节点,所以在产⽣后继节点时可以去掉⼀部分重复的节点,从⽽提⾼了搜索效率。
3、这两种算法每次都扩展⼀个节点的所有⼦节点,⽽不同的是,深度优先下⼀次扩展的是本次扩展出来的⼦节点中的⼀个,⽽⼴度优先扩展的则是本次扩展的节点的兄弟点。
在具体实现上为了提⾼效率,所以采⽤了不同的数据结构。
4、深度优先搜索的基本思想:任意选择图G的⼀个顶点v0作为根,通过相继地添加边来形成在顶点v0开始的路,其中每条新边都与路上的最后⼀个顶点以及不在路上的⼀个顶点相关联。
继续尽可能多地添加边到这条路。
若这条路经过图G的所有顶点,则这条路即为G的⼀棵⽣成树;若这条路没有经过G的所有顶点,不妨设形成这条路的顶点顺序v0,v1,......,vn。
则返回到路⾥的次最后顶点v(n-1).若有可能,则形成在顶点v(n-1)开始的经过的还没有放过的顶点的路;否则,返回到路⾥的顶点v(n-2)。
然后再试。
重复这个过程,在所访问过的最后⼀个顶点开始,在路上次返回的顶点,只要有可能就形成新的路,知道不能添加更多的边为⽌。
5、⼴度优先搜索的基本思想:从图的顶点中任意第选择⼀个根,然后添加与这个顶点相关联的所有边,在这个阶段添加的新顶点成为⽣成树⾥1层上的顶点,任意地排序它们。
下⼀步,按照顺序访问1层上的每⼀个顶点,只要不产⽣回路,就添加与这个顶点相关联的每个边。
这样就产⽣了树⾥2的上的顶点。
遵循同样的原则继续下去,经有限步骤就产⽣了⽣成树。
图的遍历深度优先遍历和广度优先遍历
4
5
f
^
对应的邻接表
终点2作为下次的始点, 由于1点已访问过,跳过, 找到4,记标识,送输出, 4有作为新的始点重复上 述过程
1 2 4
5
输出数组 resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。 //v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间 long nNodes, i; TGraphEdgeAL<TEdgeElem> *p; nNodes=1;
1 2
4
图 20-1有向图
5
3
1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 0 1 0 0
1 2 3 4 5
1 1 0 1 1
1 2 4 5
所示图的邻接矩阵g
访问标识数组 visited
输出数组 resu
例如从1点深度优先遍历,先把1设置访问标志,并置入输出数组resu,然后从邻接 矩阵的第一行,扫描各列,找到最近的邻接点2,将其设置访问标志,并进入输出数 组,接着从邻接矩阵的2行扫描,找到第一个构成边的点是1,检查访问标识数组, 发现1已经访问过,跳过,找第二个构成边 的点4,设置访问标识,进入输出数组, 再从邻接矩阵的第4行扫描,寻找构成边的点,除1外在无其他点,返回2行,继续 寻找,也无新点,返回1,找到5,将5置访问标志,进入输出数组,1行再无其他新 点,遍历结束,返回遍历元素个数为4 。
深度优先搜索和广度优先搜索
深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。
它们是解决许多与图相关的问题的重要工具。
本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。
一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。
从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。
深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。
深度优先搜索的应用场景较为广泛。
在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。
它的主要优点是容易实现,缺点是可能进入无限循环。
二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。
从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。
广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。
广度优先搜索的应用场景也非常广泛。
在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。
它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。
三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。
深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。
广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。
需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
图的连通性检测方法
图的连通性检测方法图论是数学的一个分支,研究图形结构以及图形之间的关系。
在图论中,连通性是一个重要的概念,用于描述图中的节点或顶点之间是否存在路径相连。
连通性检测方法是用来确定一个图是否是连通图的方法。
本文将介绍几种常用的图的连通性检测方法。
一、深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,也可以用来检测图的连通性。
该方法从图中的一个顶点开始,沿着一条路径尽可能深的搜索,直到到达无法继续搜索的节点,然后回溯到上一个节点,继续搜索其他路径。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 遍历该节点的邻接节点,并标记为已访问。
3. 递归的访问未访问过的邻接节点,直到所有节点都被访问过。
4. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
DFS算法的时间复杂度为O(V+E),其中V是节点数,E是边数。
二、广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,同样可以用来检测图的连通性。
该方法从图中的一个顶点开始,先访问其所有邻接节点,然后再依次访问它们的邻接节点。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 将该节点加入一个队列中。
3. 从队列中取出一个节点,并标记为已访问。
4. 遍历该节点的邻接节点,将未访问过的节点加入队列中。
5. 重复步骤3和步骤4,直到队列为空。
6. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
BFS算法的时间复杂度同样为O(V+E)。
三、并查集并查集是一种数据结构,常用于解决图的连通性问题。
它可以高效地合并集合和判断元素是否属于同一个集合。
具体步骤如下:1. 初始化并查集,每个节点都是一个独立的集合。
2. 遍历图中的每条边,将边的两个节点合并到同一个集合中。
3. 判断图是否连通的方法是查找两个节点是否属于同一个集合。
并查集的时间复杂度为O(V+E)。
四、最小生成树最小生成树是指一个连通图的生成树,其所有边的权值之和最小。
数据结构与算法(13):深度优先搜索和广度优先搜索
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。
深度优先搜索和广度优先搜索的比较和应用场景
深度优先搜索和广度优先搜索的比较和应用场景在计算机科学中,深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图搜索算法。
它们在解决许多问题时都能够发挥重要作用,但在不同的情况下具有不同的优势和适用性。
本文将对深度优先搜索和广度优先搜索进行比较和分析,并讨论它们在不同应用场景中的使用。
一、深度优先搜索(DFS)深度优先搜索是一种通过遍历图的深度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,依次遍历该节点的相邻节点,直到到达目标节点或者无法继续搜索为止。
如果当前节点有未被访问的相邻节点,则选择其中一个作为下一个节点继续进行深度搜索;如果当前节点没有未被访问的相邻节点,则回溯到上一个节点,并选择其未被访问的相邻节点进行搜索。
深度优先搜索的主要优势是其在搜索树的深度方向上进行,能够快速达到目标节点。
它通常使用递归或栈数据结构来实现,代码实现相对简单。
深度优先搜索适用于以下情况:1. 图中的路径问题:深度优先搜索能够在图中找到一条路径是否存在。
2. 拓扑排序问题:深度优先搜索能够对有向无环图进行拓扑排序,找到图中节点的一个线性排序。
3. 连通性问题:深度优先搜索能够判断图中的连通分量数量以及它们的具体节点组合。
二、广度优先搜索(BFS)广度优先搜索是一种通过遍历图的广度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,先遍历起始节点的所有相邻节点,然后再遍历相邻节点的相邻节点,以此类推,直到到达目标节点或者无法继续搜索为止。
广度优先搜索通常使用队列数据结构来实现。
广度优先搜索的主要优势是其在搜索树的广度方向上进行,能够逐层地搜索目标节点所在的路径。
它逐层扩展搜索,直到找到目标节点或者遍历完整个图。
广度优先搜索适用于以下情况:1. 最短路径问题:广度优先搜索能够在无权图中找到起始节点到目标节点的最短路径。
2. 网络分析问题:广度优先搜索能够在图中查找节点的邻居节点、度数或者群组。
三、深度优先搜索和广度优先搜索的比较深度优先搜索和广度优先搜索在以下方面有所不同:1. 搜索顺序:深度优先搜索按照深度优先的顺序进行搜索,而广度优先搜索按照广度优先的顺序进行搜索。
深度优先算法与广度优先算法
深度优先算法与广度优先算法
深度优先算法和广度优先算法是两种常用的图遍历算法。
它们都是基
于图的遍历来搜索图中的所有节点,并且都是基于图中节点之间的关
联性来进行搜索操作的。
首先来说深度优先算法。
深度优先算法即从一条边开始遍历,如果遇
到死路则返回上一个节点,继续从它的下一条边继续遍历。
整个搜索
的过程是以深度为优先,直到遍历所有的节点为止。
深度优先算法使
用的是栈数据结构,先访问的节点会被后访问的节点所覆盖,直到遍
历到最深处,然后回死路走回上一个节点,继续访问它的下一个节点。
深度优先算法一般用于寻找迷宫或图中的某条路径等应用场景。
接下来是广度优先算法。
广度优先算法即在图中按照一层一层的方式
遍历所有的节点,直到遍历完为止。
广度优先算法使用的是队列数据
结构,先访问的节点会先被访问到,后访问的节点会被后访问的节点
所覆盖,确保按层次进行遍历。
广度优先算法一般用于求出图中所有
节点的最短路径等应用场景。
总结起来,深度优先算法和广度优先算法都有各自的优点和应用场景。
深度优先算法主要是在有解的情况下寻找具体的解,而广度优先算法
则是在寻找最短路径的情况下使用。
在具体应用时,可以根据实际情
况选择使用哪一种算法,或者结合两种算法的优点进行优化,以达到更好的搜索效果。
因此,深度优先算法和广度优先算法都是图遍历中经典而又经典的算法,能够应用于很多具体的场景中,为寻找路径和搜索解决方案等问题提供了很好的方法和实现手段。
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用深度优先搜索和广度优先搜索是数据结构中重要的遍历算法,它们在解决各种问题时起着关键作用。
本文将介绍深度优先搜索和广度优先搜索的实现方法以及它们的应用。
一、深度优先搜索的实现和应用深度优先搜索(Depth First Search,DFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,一直沿着某一分支深入直到不能再深入为止,然后回溯到前一个节点,再沿另一分支深入,直到遍历完所有节点。
深度优先搜索可以通过递归或者栈来实现。
在实现深度优先搜索时,可以采用递归的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 从起始节点开始,将其标记为已访问。
3. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则递归调用深度优先搜索函数。
4. 重复步骤3,直到所有节点都被访问过。
深度优先搜索的应用非常广泛,以下是几个常见的应用场景:1. 图的连通性判断:深度优先搜索可以用于判断图中的两个节点是否连通。
2. 拓扑排序:深度优先搜索可以用于对有向无环图进行拓扑排序,即按照一种特定的线性顺序对节点进行排序。
3. 岛屿数量计算:深度优先搜索可以用于计算给定矩阵中岛屿的数量,其中岛屿由相邻的陆地单元组成。
二、广度优先搜索的实现和应用广度优先搜索(Breadth First Search,BFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,逐层遍历,先访问当前节点的所有邻接节点,然后再依次访问下一层的节点,直到遍历完所有节点。
广度优先搜索可以通过队列来实现。
在实现广度优先搜索时,可以采用队列的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 创建一个空队列,并将起始节点入队。
3. 当队列不为空时,取出队首节点,并标记为已访问。
4. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则将其入队。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广度优先搜索
图的搜索
广度优先搜索是最简单的图搜索算法定源定点 S的情况下,广度优先将系统的搜索 图中的边。该搜索算法之所以成为广度优先搜索,是因为它始终将已 发现和未发现定点之间的边界沿着其广度方向向外拓展。即,算法首 先会发现和S距离为K的定点,然后才会发现和S距离为K+1的其他顶 点。 假定输入图G )采用邻接 下面的广度优先搜索过程 BFS 假定输入图G = ( V,E )采用邻接 Adj表示 对于图中的每个顶点还采用几种另外的数据结构, 表示, 表Adj表示,对于图中的每个顶点还采用几种另外的数据结构,对于 每个顶点u ∈V,其标注色彩存储于color[u]中 其标注色彩存储于color[u] 每个顶点u ∈V,其标注色彩存储于color[u]中,u的父结点存于变量 p[u]中 由该算法计算出来的源顶点s 之间的距离存于变量d[u] d[u]中 p[u]中。由该算法计算出来的源顶点s和u之间的距离存于变量d[u]中。 该算法还使用了一个先进先出队列Q来管理所有的灰色顶点。 该算法还使用了一个先进先出队列Q来管理所有的灰色顶点。
深度优先搜索
与广度优先搜索类似,在深度优先算法中,也通过度定点 进行着色来表示定点的状态。开始时,每个顶点均标记为白色, 搜索过程中被发现则设置成为灰色,结束时又被设置成黑色 (即当邻接表被完全检索之后)。这一技巧可以保证每一个顶 点在搜索结束时,只存在于一棵深度优先树中,因此,这些树 是不相交的。 除了创建一个深度优先森林以外,深度优先搜索同时为每 个顶点加盖时间戳。每个顶点v有两个时间戳:当顶点v第一次 被发现的时候(并设置成灰色),记录下第一个时间戳d[v],当 结束检查v的邻接表(并设置为黑色)时,记录下第二个时间 戳f[v]。许多图的算法中都用到了时间戳,它们对推算深度优 先搜索的进行情况有很大帮助。
图的基本描述
• 顶点和边:图中的结点称作顶点,图中的第i个顶点记做vi。两个顶 点vi和vj相关联称作顶点vi和vj之间有一条边,图中的第k条边记做ek, ek =(vi,vj)或<vi,vj>。 • 有向图和无向图:在有向图中,顶点对<x ,y>是有序的,顶点对 <x,y>称为从顶点x到顶点y的一条有向边,有向图中的边也称作弧 ;在无向图中,顶点对(x,y)是无序的,顶点对(x,y)称为与顶 点x和顶点y相关联的一条边。 • 完全图:在有 n 个顶点的无向图中,若有 n(n-1)/2条边,即任意两 个顶点之间有且只有一条边,则称此图为无向完全图;在有n个顶点 的有向图中,若有n(n-1)条边,即任意两个顶点之间有且只有方向 相反的两条边,则称此图为有向完全图。
1
2 3
图的两种表示方法: 图的两种表示方法:
5
4
1 2 1 0 1 1 1 3 0 1 0 1 0 4 0 1 1 5 1 1 0 2 1 2 2 4 5 5 4 5 1 邻接表 / 3 2 / / / 3 4 / 1 2 3 4 5 0 1 0 0 1
1 2 3 4 5
0 1 1 0
邻接矩阵
两种经典的搜索方法
图的存储结构
要表示一个图,有两种标准的方法,即邻 接表和邻接矩阵。这两种表示法既可用于有向 图,也可用于无向图。 在实践中我们通常采用的是邻接表表示法, 因为这种方法表示稀疏图(图中的边远远小于 图中的结点)比较紧凑。但是,当遇到稠密图 时,或者必须很快判别两个给定的定点是否存 在连接边时,通常采用邻接矩阵表示法。
算法伪代码: 算法伪代码:
算法的一到四行是对 除了原点S以外的所有点 进行初始化操作。 算法的五到九行是对 源S进行初始化,并使其 入队。 算法的十到十七行执 行取出队列的第一个元素 并求出它的后记顶点,然 后对后记顶点的值进行修 改。 最后一行对刚出队的 元素进行颜色修改,以此 来标记在其深度上广度优 先算法完成。
下面给出的DFS 记录了何时在变量d[u]中发 现顶点u,以及何时在变量f[u]中完成对顶点u的 检索。这些时间戳为1到2|V|之间的整数,因为 对于|V|个顶点中的每一个,都对应一个发生事 件和一个完成事件。对每个顶点u有d[u]<f[u]。 顶点u在时刻d[u]之前为白色,在时刻d[u] 和f[u]之间为灰色,以后就变成了黑色。
引言: 引言:
图是一种非线性数据结构。在图结构中,数 据元素之间的关系是多对多的,即如果任选一个 顶点作为初始顶点,则图中任意一个顶点有多个 前驱顶点和多个后记顶点。这次实验课提前给大 家拓展一些图方面的知识,并在此基础之上引入 图的两种搜索方法(广度优先和深度优先)让大 家来学习。
图的基本概念
图是由顶点集合及顶点间的关系集合组成的一种 数据结构。图G的定义是: G =( V,E ) 其中, V = { x | x∈某个数据元素集合 } E = { ( x,y ) | x,y ∈ V } (x,y)表示从 x到 y的一条双向通路,即(x,y) 是无方向的;Path(x,y)表示从 x到 y的一条单 向通路,即Path(x,y)是有方向的。
算法伪代码:
一到三行把所有顶点设置为 白色,所有p域初始化为NULL。 第四行复位全局计数器,五到七 行检索V中的顶点,发现白色顶 点调用DFS-VISIT进行访问。每 次通过第七行,u成为了深度优 先森林的一棵新树的根。 下半段代码中,u设置成灰 色,然后全局时间加一,并把这 个时间记录为发现时间d[u]。四 到七行检查与u相邻的每个顶点v, 如果v是白色,则递归访问v。最 后当u为起点的所有边都被探寻 之后,设置u为黑色,并完成时 间记录f[u]中。
有向图和无向图实例
1 2 1 3 2
3
4
4
5
有向图
无向图
• 邻接顶点:在无向图G中,若(u,v)是E(G)中的一条边,则称 u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向 图G中,若<u,v>是E(G)中的一条边,则称顶点u邻接到顶点 v,顶点v邻接自顶点u,并称边<u,v>和顶点u和顶点v相关联 。 • 路径:在图G=(V,E)中,若从顶点vi出发有一组边使可到达顶 点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路 径。 • 权:有些图的边附带有数据信息,这些附带的数据信息称为权 。带权的图也称作网络或网。 • 路径长度:对于不带权的图,一条路径的路径长度是指该路径 上的边的条数;对于带权的图,一条路径的路径长度是指该路 径上各个边权值的总和。