高中物理第一章碰撞与动量守恒1.2动量动量守恒定律教案粤教版选修3_5
高中物理第一章碰撞与动量守恒1.1物体的碰撞1.2动量动量守恒定律课件粤教版选修3_5
目标导航
预习导引
一
二
三
四
五
四、冲量和动量 物理学中,物体受到的力与力的作用时间的乘积叫做力的冲量,而 运动物体的质量和它的速度的乘积叫做物体的动量.动量是一个矢 量,用符号p表示.它的方向和速度的方向相同.在国际单位制中,动 量的单位是千克米每秒,符号是kg· m· s-1. 物体所受合力的冲量等于物体动量的改变量,其表达式为 F·Δt=mv'-mv,这个关系叫动量定理.
目标导航
预习导引
一
二
三
四
五
一、什么是碰撞 碰撞是两个或两个以上的物体在相遇的极短时间内产生的非常大 的相互作用的过程,主要特点是相互作用时间短、作用力变化快、 作用力峰值大等.
目标导航
预习导引
一
二
三
四
五
二、正碰和斜碰 物体间碰撞的形式多种多样.两小球碰撞,作用前后沿同一直线运 动,称为正碰.两小球碰撞,作用前后不沿同一直线运动,称为斜碰.
目标导航
预习导引
一
二
三
四
五
三、弹性碰撞和非弹性碰撞 1.若两球碰撞后形变能完全恢复,则没有能量损失,碰撞前后两小球 构成的系统的动能相等,我们称这种碰撞是弹性碰撞. 2.若两球碰撞后它们的形变不能完全恢复原状,这时将有一部分动 能最终会转变为其他形式的能.碰撞前后系统的动能不再相等,我 们称这种碰撞是非弹性碰撞.
目标导航
预习导引
一
二
三
四
五
五、动量守恒定律 精确实验表明:物体在碰撞时,如果系统所受到的合外力为零,则系 统的总动量保持不变,这就是动量守恒定律.设两个质量分别为m1 和m2的物体组成的系统,碰撞前后速度分别由v1、v2变为v1'、v2',则 一维运动的动量守恒定律可以表示为m1v1+m2v2=m1v1'+m2v2' 动量守恒定律并不限于两个物体间的相互作用,一个系统里可以包 括任意数目的物体,只要整个系统受到的合外力等于零,系统的总 动量就守恒.
高中物理第一章碰撞与动量守恒章末盘点教学案粤教版选修3_5
第一章碰撞与动量守恒碰撞与动量守恒⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧冲量⎩⎪⎨⎪⎧定义式:I =Ft适用于恒力冲量的计算方向:若F 的方向不变,冲量的方向与F 的方向一致物理意义:表示力对时间的累积效应,是过程量运算法则:平行四边形定则动量⎩⎪⎨⎪⎧定义式:p =mv方向:动量的方向与速度的方向一致物理意义:表示物体运动状态的物理量,是状态量动量定理⎩⎪⎨⎪⎧内容:物体所受合力的冲量等于物体动量的变化表达式:F 合t =p 2-p 1=mv 2-mv 1矢量等式:合力的冲量与物体动量的变化大小相等, 方向相同动量守恒定律⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧内容:系统不受外力或所受外力之和为零时,这个 系统的总动量就保持不变研究对象:相互作用的物体组成的系统公式⎩⎪⎨⎪⎧①p ′=p ,作用前后总动量相同②Δp =0,作用前后总动量不变③Δp 1=-Δp 2,相互作用的两个物体动量的变化大小相等,方向相反守恒条件⎩⎪⎨⎪⎧①系统不受外力的作用或系统所受的外力之和 为零②内力远大于外力,且作用时间短,系统动量近似守恒③系统某一方向的外力之和为零,系统在该方向上动量守恒应用⎩⎪⎨⎪⎧碰撞——作用时间短,内力远大于外力,动量守恒反冲——一般合外力不为零,内力远大 于外力,总动量守恒自然界中的守恒定律⎩⎨⎧守恒与不变:守恒对应着某个物理量保持不变守恒与对称⎩⎪⎨⎪⎧ 守恒来源于对称三大守恒定律体现物质世界和谐美1.(1)动量与冲量的区别:(2)动量、动量变化量、动量变化率的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量:如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。
(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。
高中物理 第一章 碰撞与动量守恒 第二节 动量动量守恒定律 粤教版选修3-5
[典例❶] 质量为 1 kg 的小球从离地面 5 m 高处自 由下落,与地面碰撞后,上升的最大高度为 3.2 m,设小 球与地面作用时间为 0.2 s,则小球与地面撞击过程中动 量的变化量为(g 取 10 m/s2)( )
A.2 kg·m/s 方向竖直向上 B.2 kg·m/s 方向竖直向下 C.18 kg·m/s 方向竖直向下 D.18 kg·m/s 方向竖直向上
知识点一 动量及其改变
提炼知识 1.动量. (1)定义:运动物体的质量和它的速度的乘积叫作物 体的动量,用符号 p 表示. (2)定义式:p=mv. (3)单位:在国际单位制中,动量的单位是千克米每 秒,符号是 kg·m/s.
(4)矢量性:动量是矢量,它的方向与速度的方向相 同.
2.冲量. (1)定义:物体受到的力和力的作用时间的乘积叫作 力的冲量,用符号 I 表示. (2)定义式:I=F·t. (3)单位:在国际单位制中,冲量的单位是牛·秒,符 号是 N·s.
小试身手
2.(多选)下列说法正确的是( ) A.只要系统所受到合外力的冲量为零,动量就守恒 B.物体动量发生变化,则物体的动能一定变化 C.系统加速度为零,动量不一定守恒 D.系统所受合外力为零,则系统的动量一定守恒
解析:根据动量定理,如果系统所受到合外力的冲量 为零,则系统的动量不变,即动量守恒,选项 A 对.动 量是矢量,方向与速度方向相同,动量变化可能是速度大 小变化也可能是速度方向变化,而动能与速率大小有关, 速度大小只要不变化,动能就不变,而动量可能改变,选 项 B 错.
★题后反思 动量是矢量,要规定正方向,用带正负的数值表示 动量;动量变化量也是矢量,同样要注意方向.
1.(多选)关于物体的动量,下列说法哪些是正确的 ()
高中物理第一章碰撞与动量守恒实验验证动量守恒定律同步备课教学案粤教版选修3_5
实验:验证动量守恒定律[学习目标] 1.掌握验证动量守恒定律的方法和基本思路.2.掌握直线运动物体速度的测量方法.一、实验目的验证碰撞中的动量守恒定律二、实验原理为了使问题简化,这里研究两个物体的碰撞,且碰撞前两物体沿同一直线运动,碰撞后仍沿这一直线运动.设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向相同取正值,相反取负值.根据实验求出两物体碰前动量p=m1v1+m2v2,碰后动量p′=m1v1′+m2v2′,看p与p′是否相等,从而验证动量守恒定律.三、实验设计实验设计需要考虑的问题:(1)如何保证碰撞前后两物体速度在一条直线上.(2)如何测定质量和速度.①测量质量用天平.②测定碰撞前后的速度,这是实验成功的关键.四、实验案例气垫导轨上的实验器材:气垫导轨、气泵、光电计时器、天平等.气垫导轨装置如图1所示,由导轨、滑块、挡光片、光电门等组成,在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上(如图2所示,图中气垫层的厚度放大了很多倍),这样大大减小了由摩擦产生的影响.图1 图2设Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间,则v =Δx Δt. 五、实验步骤1.调节气垫导轨,使其水平.是否水平可按如下方法检查:打开气泵后,导轨上的滑块应该能保持静止.2.按说明书连接好数字计时器与光电门.3.如图3所示,把中间夹有弯形弹簧片的两滑块置于光电门中间保持静止,烧断拴弹簧片的细线,测出两滑块的质量和速度,将实验结果记入设计好的表格中.图34.如图4所示,在滑块上安装好弹性碰撞架.将两滑块从左、右以适当的速度经过光电门后在两光电门中间发生碰撞,碰撞后分别沿各自碰撞前相反的方向运动再次经过光电门,光电计时器分别测出两滑块碰撞前后的速度.测出它们的质量后,将实验结果记入相应表格中.图45.如图5所示,在滑块上安装好撞针及橡皮泥,将装有橡皮泥的滑块停在两光电门之间,装有撞针的滑块从一侧经过光电门后两滑块碰撞,一起运动经过另一光电门,测出两滑块的质量和速度,将实验结果记入相应表格中.。
【名校专用】高中物理第一章碰撞与动量守恒1.1物体的碰撞教案粤教版选修3_5
1.1物体的碰撞课堂互动三点剖析一、碰撞碰撞:当两个物体非常接近时,它们的相互作用改变了它们的运动状态,即引起动量和能量的交换,我们就说,它们发生了碰撞.由此可知,发生碰撞必须要满足两个条件:一是这种相互作用在较短的时间内发生,二是使两个质点的运动发生显著的变化.这是广义上的碰撞,例如两个微观粒子的碰撞.在宏观现象中,碰撞意味着两物体直接接触,其特点是:相碰的物体在接触前和分离后没有相互作用,接触的时间很短,接触时发生的相互作用比较强烈,因而在接触过程中可以忽略外力.二、碰撞的形式1.碰撞的研究:最早研究碰撞的是马西尔,随后,伽利略、马略特、牛顿、笛卡尔、惠更斯先后用大量的实验进行了研究,总结了碰撞的规律,形成了动量守恒的思想.并应用到了对微观粒子的研究上,发现了新的粒子.2.碰撞的形式有正碰、斜碰.3.区分正碰和斜碰主要看碰撞前两球的相对速度的方向与连心线的关系,与各小球自身的运动状态无关,与碰撞的位置无关.三、弹性碰撞与非弹性碰撞1.完全弹性碰撞如果两个物体(以两个弹性小球为例)在碰撞过程中,没有机械能的损失,这样的碰撞称为完全弹性碰撞。
此时两个物体之间的力是弹性力,在开始接触后的前一阶段,两球互相压缩,弹性力做负功,这时有一部分动能转化为弹性势能,在两球的速度相等时,压缩停止,此时系统的弹性势能最大,系统的动能最小;然后立即转为互相推开,弹性力做正功,此时弹性势能转化为动能.当全部分开时,弹性势能为零,全部转化为动能.2.非弹性碰撞两球碰撞后形变不能完全恢复.碰撞前后两小球的总动能不相等,有损失,损失的机械能转化为内能.3.完全非弹性碰撞两球碰撞后完全不反弹,动能损失最大.很多情况下表现为两球合为一体,或达到共同速度.各个击破【例1】下列说法正确的是()A.s两小球正碰就是从正面碰撞B.两小球斜碰就是从侧面碰撞C.两小球正碰就是对心碰撞D.两小球斜碰就是非对心碰撞解析:两小球碰撞时的速度沿着连心线方向,称为正碰,即对心碰撞;两小球碰前的相对速度不在连心线上,称为斜碰,即非对心碰撞.答案:CD类题演练1在光滑的水平面上,一个运动的小球去碰撞一个静止的小球,则这个属于()A.正碰B.斜碰C.可能是正碰,也可能是斜碰D.条件不明,无法说明解析:判断正碰还是斜碰与各物体的运动状态无关,只与两球碰前相对速度的方向与两球连心线方向的关系相关.当相对速度的方向和连心线在同一直线上是正碰;当相对速度的方向与连心线不在一直线上是斜碰.则C选项正确.答案:C【例2】如图1-1-2所示,两小球在同一轨道槽内发生了碰撞,两小球都是弹性小球,则它们的碰撞属于()图1-1-2A.正碰B.斜碰C.弹性碰撞D.非弹性碰撞解析:两小球在同一槽内,两球相对运动速度的方向在两球的连心线上,是正碰.则选项A 正确;两小球都是弹性小球,属于弹性碰撞,故选项C正确.答案: AC类题演练2举例说明生活中哪些碰撞是完全非弹性碰撞.解析:完全非弹性碰撞的两物体碰后完全不反弹,动能损失最大,如一块泥巴摔在地上,一把刀插入木头中拔不出来,子弹射入木块中没有射出,火车站里,一列火车以一定的速度碰撞一列静止的车厢后共同前进,实现挂接等.。
高中物理第一章碰撞与动量守恒第一节物体的碰撞学案粤教版选修3-5
第一节物体的碰撞1.知道历史上对碰撞问题的研究和生活中的各种碰撞现象.2。
理解碰撞的特点,明确正碰和斜碰的含义.3.理解弹性碰撞、非弹性碰撞和完全非弹性碰撞的含义.一、历史上对碰撞问题的研究1.最早发表有关碰撞问题研究成果的是物理学教授马尔西.2.近代,由于加速器技术和探测技术的发展,通过高能粒子的碰撞,实验物理学家相继发现了许多新粒子.二、生活中的各种碰撞现象物体间碰撞的形式多种多样.若两个小球的碰撞,作用前后沿同一直线运动,这样的碰撞称为正碰;若两个小球的碰撞,作用前后不沿同一直线运动,则称为斜碰.三、弹性碰撞和非弹性碰撞1.弹性碰撞:任何两个小球碰撞时都会发生形变,若两个小球碰撞后形变能完全恢复,则没有能量损失,碰撞前后两个小球构成的系统的动能相等,我们称这种碰撞为弹性碰撞.2.非弹性碰撞:若两个球碰撞后它们的形变不能完全恢复原状,这时将有一部分动能最终会转变为其他形式的能(如热能),碰撞前后系统的动能不再相等,我们称这种碰撞为非弹性碰撞.自然界中,多数的碰撞实际上都属于非弹性碰撞.3.完全非弹性碰撞:如果碰撞后完全不反弹,比如湿纸或一滴油灰,落地后完全粘在地上,这种碰撞则是完全非弹性碰撞.碰撞是如何分类的?提示:按碰撞过程中机械能是否损失,可分为弹性碰撞和非弹性碰撞;按碰撞前后,物体的速度方向是否沿同一直线可将碰撞分为正碰和斜碰.探究碰撞的特点及形式1.碰撞的特点(1)相互作用力为变力,作用时间短,作用力很大,且远远大于系统所受的外力.(2)根据能的转化和守恒可知:在碰撞过程中,系统的总动能是不可能增加的.(3)由于碰撞作用时间很短,因此作用过程中物体的位移很小,一般可忽略不计,可以认为物体在相互作用前的瞬间位置以新的速度开始运动.2.碰撞的形式(1)正碰:两物体碰撞前的相对速度沿着连心线方向,即碰撞前后两物体的速度方向在同一条直线上.(2)斜碰:两物体碰撞前的相对速度不在连心线上,即碰撞前后两物体的速度方向不在同一条直线上.3.弹性碰撞和非弹性碰撞(1)弹性碰撞:如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞.弹性碰撞过程一般可分为两个阶段,即压缩阶段和恢复阶段.弹性碰撞两物体的动能之和完全没有损失,可表示为:错误!m1v错误!+错误!m2v错误!=错误!m1v错误!+错误!m2v错误!。
高中物理第一章碰撞与动量守恒第二节动量动量守恒定律一同步备课课件粤教版选修3_5
这样做的目的是为了什么?
答案 为了缓冲以减小作用力.
答案
2.如图1所示,假定一个质量为m的物体在碰撞时受到另一个物体对它的力 是恒力F,在F作用下,经过时间t,物体的速度从v变为v′,应用牛顿第二
定律和运动学公式推导物体的动量改变量Δp与恒力F及作用时间t的关系.
答案 这个物体在碰撞过程中的加速度 v′-v a= t
②若初、末动量不在同一直线上,运算时应遵循平行四边形定则.
3.公式I=Ft只适用于计算恒力的冲量,若是变力的冲量,可考虑用以下
方法求解:
(1)若力随时间均匀变化,则可用平均力求冲量.
(2) 若给出了力 F 随时间 t 变化的图象,可用 F - t 图象与 t 轴所围的面积求
冲量 .
例1
羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达
1 2 4.动量p=mv与动能Ek= 2 mv 的区别 (1)动量是矢量动量发生变化,而动能 不一定 (填“一定”
或“不一定”)发生变化.
即学即用 判断下列说法的正误.
(1)质量大的物体的动量一定大.( × )
(2)动量相同的物体,运动方向一定相同.( √ )
(3)质量和速率都相同的物体的动量一定相同.( × )
(4)一个物体的动量改变,它的动能一定改变.( × )
(5)动量变化量为正,说明它的方向与初始时的动量方向相同.( × )
二、动量定理 导学探究
1.在日常生活中,有不少这样的事例: 跳远时要跳在沙坑里; 跳高时在下落处要放海绵垫子; 从高处往下跳,落地后双腿往往要弯曲; 轮船边缘及轮渡的码头上都装有橡胶轮胎„„
题型探究
一、对动量、动量变化量、冲量的理解
1.动量p=mv,描述物体运动状态的物理量,是矢量,方向与速度的方向 相同. 2.动量的变化量
高中物理 第一章 碰撞与动量守恒 1.2 动量动量守恒定律教案 粤教版选修35
1.2 动量动量守恒定律课堂互动三点剖析一、动量和动量的变化1.动量众所周知,运动的剧烈程度,即运动的“量”的大小是与运动速度有关的,但速度是不是唯一决定因素呢?一个足球和一个铅球以相同的速度从远处飞来,运动员可以用头将足球顶回去,却不敢去顶铅球.可见,运动的“量”的大小不仅与运动速度有关,还与物体的质量有关.物理学上用两者的乘积表示这个量,称为动量,故有p=mv.从公式可以看出,由于质量m为一标量,只有大小的变化,故动量p的一些特点主要是由速度v引起的.平常所说的速度v是指物体的瞬时速度,对应的是某一时刻,故谈到物体的动量一般是指某一时刻的动量,但这不是绝对的,如果取速度v为某一段时间内的平均速度,则这时的动量应为这一段时间内的平均动量;由于速度具有相对性,选用不同的参考系,同一物体的动量也可能不同,在通常情况下,取地面为参考系.2.动量的变化动量的变化即动量的变化量,用Δp来表示,一个量的变化,一般指末状态的值减初状态的值,动量变化也不例外,应为末动量减初动量,即Δp=p′-p,p′为末动量,p为初动量.p′=mv′,p=mv,故Δp=mv′-mv=mΔv(注这是矢量式),故动量的变化量也是个矢量,其方向不一定与p或p′相同,而是与Δv的方向相.当然,这个结论的前提是质量不变,当质量也变时,Δp的方向与Δv的方向不一定相同,但有一点是肯定的,Δp′-p为矢量式,当p′、p在同一直线上,可以先规定正方向,用正、负号表示p′、p的方向,将矢量运算转化为代数运算.二、冲量冲量是力与力的作用时间的乘积,I=Ft,它反映了力在时间上的积累效果.在力特别大的情况下,作用时间很短,也会产生很大的冲量.由于I=Ft,某一个冲量I必然对应着一个时间t,故冲量是一个过程量.如果力F为恒力,求冲量时只需按公式I=Ft来计算就行,但要分清所求的是某个分力的冲量还是合力的冲量.若是求合力的冲量要分清这几个力是否同时作用于物体;若同时作用可先求合力再求冲量,也可以先求各个力的冲量,再求合冲量;若几个力不同时作用,只能先求每个力的冲量,再求合冲量.如果作用力是变力,在中学阶段不能直接用I=Ft求解冲量,但可以根据Ft=Δ(mv)求解.三、动量守恒定律1.动量守恒定律是研究两个或两个以上的物体相互作用过程中的动量变化情况的,它的研究对象是这些相互作用的物体组成的系统.动量守恒定律的成立条件是系统不受外力或所受合外力为零,因此选择哪些物体组成系统就显得尤为重要了,只有选择了系统才能分清哪些力是外力,哪些力是内力,才能确定动量是否守恒.选择某一系统,动量可能守恒,选择另外的物体组成系统时,动量可能就不守恒了.2.动量守恒是指总动量在物体相互作用的过程中一直不变,并不是只有初、末两态的动量守恒.解题时可根据题意适当选择相互作用过程中的两个状态列方程求解.3.动量守恒定律的特点(1)动量守恒定律的研究对象是相互作用的物体组成的系统,在应用动量守恒定律解题之前,必须明确这个系统是由哪些物体组成,只有恰当地划分系统才能正确、有效地运用动量守恒定律.(2)动量守恒定律的表达式是矢量式.若相互作用的物体沿同一直线运动,注意设定方向,将矢量运算转化为代数运算.(3)动量守恒定律表达式中的速度必须是相对于同一参考系的.如果题设条件中各物体的速度不是相对同一参考系的,必须适当转换参考系,使其成为相对同一参考系(通常选地面)的速度.(4)注意动量守恒定律表达式中速度的同时性.式中的v 1、v 2是作用同一时刻的瞬时速度,v 1′、v 2′是作用后同一时刻的瞬时速度.各个击破【例1】 关于动量的概念,下列说法正确的是( )A.动量大的物体惯性一定大B.动量大的物体运动一定快C.动量相同的物体运动方向一定相同D.动量相同的物体速度小的惯性大解析:物体的动量是由速度和质量两个因素决定的.动量大的物体质量不一定大,惯性也不一定大,A 项错;同样,动量大的物体速度也不一定大,B 项也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C 项对;动量相同的物体,速度小的质量大,惯性大,D 项也对.答案:CD类题演练1若一个物体的动量发生了变化,则物体运动的(质量不变)( )A.速度大小一定改变了B.速度方向一定改变了C.速度一定变化了D.加速度一定不为零解析:动量p=mv ,动量发生了变化(质量不变),必定是速度发生了变化,而速度的改变包括大小和方向.故A 、B 两项不正确,C 项正确;速度变化了必然有加速度,故D 正确. 答案:CD变式提升质量为0.1 kg 的弹性小球,从高1.25 m 处自由落向一光滑而坚硬的水平木板,碰后弹回到0.8 m 高,求:(1)小球与水平板碰撞前后的动量;(2)小球与水平板碰撞前后的动量变化.解析:(1)由于小球做自由落体运动,设碰前小球速度为v 1,则v 1=25.11022⨯⨯=gh m/s=5 m/s,方向竖直向下,于是小球与水平板碰前的动量p 1=mv 1=0.1×5 kg·m/s=0.5 kg·m/s,方向竖直向下.碰后,小球做竖直上抛运动的最大高度为0.8 m ,则碰后小球速度为v 2=8.0102'2⨯⨯=gh m/s=4 m/s,方向竖直向上,此时小球的动量p 2=mv 2=0.1×4 kg·m/s=0.4 kg·m/s,方向竖直向上.(2)设竖直向下为正方向,则p 1=5 kg·m/s,p 2=-0.4 kg·m/s,Δp=p 2-p 1=(-0.4 -0.5) kg·m/s=-0.9 kg·m/s,即碰撞前后小球动量变化的大小为0.9 kg·m/s,方向竖直向上. 答案:(1)0.5 kg·m/s,竖直向下;0.4 kg·m/s,竖直向上.(2)0.9 kg·m/s,竖直向上.【例2】 关于冲量的概念,以下说法正确的是( )A.作用在两个物体上的力大小不同,但两个物体所受的冲量大小可能相同B.作用在物体上的力很大,物体所受的冲量一定也很大C.作用在物体上的力的作用时间很短,物体所受的冲量一定很小D.只要力的作用时间和力的乘积相同,物体所受的冲量一定相同解析:力的冲量I=F·t,力F的大小虽然不同,只要力F的作用时间t也不同,则力F与时间t的乘积可能相同,所以A项正确;力F很大,如果力F的作用时间很短,则力F的冲量仍然可以很小,故B项错;当力F的作用时间很短时,如果力F很大,则力F的冲量仍可以很大,因此C项错;由于冲量是矢量,而矢量相同包括大小相同,方向也相同,因此既使力的大小F和作用时间t的乘积相同,也只能说明冲量的大小相同,如果力的方向不同,则冲量的方向不同,因此我们说冲量不同,所以D项不正确.答案:A【例3】在光滑水平面上A、B两小车中间有一弹簧,如图1-2-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是()图1-2-1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A项对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B项错;先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C项对;其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开后的总动量就与放开最后一只手后系统所具有的总动量相等,即不为零,D项对.答案:ACD类题演练2如图1-2-2所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg,游戏时,甲推着一个质量m=15 kg的箱子,和他一起以大小为v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住,若不计冰面的摩擦,问甲至少要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞.图1-2-2解析:设甲推出箱子后速度为v甲,乙抓住箱子后速度为v乙,则由动量守恒定律,得甲推箱子过程:(M+m)v0=Mv甲+mv ①乙抓箱子过程:mv-Mv0=(M+m)v乙②甲、乙恰不相碰条件:v甲=v乙③代入数据可解得v=5.2 m/s.答案:5.2 m/s。
「精品」高中物理第一章碰撞与动量守恒1.2动量动量守恒定律教案粤教版选修35
1.2 动量动量守恒定律课堂互动三点剖析一、动量和动量的变化1.动量众所周知,运动的剧烈程度,即运动的“量”的大小是与运动速度有关的,但速度是不是唯一决定因素呢?一个足球和一个铅球以相同的速度从远处飞来,运动员可以用头将足球顶回去,却不敢去顶铅球.可见,运动的“量”的大小不仅与运动速度有关,还与物体的质量有关.物理学上用两者的乘积表示这个量,称为动量,故有p=mv.从公式可以看出,由于质量m为一标量,只有大小的变化,故动量p的一些特点主要是由速度v引起的.平常所说的速度v是指物体的瞬时速度,对应的是某一时刻,故谈到物体的动量一般是指某一时刻的动量,但这不是绝对的,如果取速度v为某一段时间内的平均速度,则这时的动量应为这一段时间内的平均动量;由于速度具有相对性,选用不同的参考系,同一物体的动量也可能不同,在通常情况下,取地面为参考系.2.动量的变化动量的变化即动量的变化量,用Δp来表示,一个量的变化,一般指末状态的值减初状态的值,动量变化也不例外,应为末动量减初动量,即Δp=p′-p,p′为末动量,p为初动量.p′=mv′,p=mv,故Δp=mv′-mv=mΔv(注这是矢量式),故动量的变化量也是个矢量,其方向不一定与p或p′相同,而是与Δv的方向相.当然,这个结论的前提是质量不变,当质量也变时,Δp的方向与Δv的方向不一定相同,但有一点是肯定的,Δp′-p为矢量式,当p′、p在同一直线上,可以先规定正方向,用正、负号表示p′、p的方向,将矢量运算转化为代数运算.二、冲量冲量是力与力的作用时间的乘积,I=Ft,它反映了力在时间上的积累效果.在力特别大的情况下,作用时间很短,也会产生很大的冲量.由于I=Ft,某一个冲量I必然对应着一个时间t,故冲量是一个过程量.如果力F为恒力,求冲量时只需按公式I=Ft来计算就行,但要分清所求的是某个分力的冲量还是合力的冲量.若是求合力的冲量要分清这几个力是否同时作用于物体;若同时作用可先求合力再求冲量,也可以先求各个力的冲量,再求合冲量;若几个力不同时作用,只能先求每个力的冲量,再求合冲量.如果作用力是变力,在中学阶段不能直接用I=Ft求解冲量,但可以根据Ft=Δ(mv)求解.三、动量守恒定律1.动量守恒定律是研究两个或两个以上的物体相互作用过程中的动量变化情况的,它的研究对象是这些相互作用的物体组成的系统.动量守恒定律的成立条件是系统不受外力或所受合外力为零,因此选择哪些物体组成系统就显得尤为重要了,只有选择了系统才能分清哪些力是外力,哪些力是内力,才能确定动量是否守恒.选择某一系统,动量可能守恒,选择另外的物体组成系统时,动量可能就不守恒了.2.动量守恒是指总动量在物体相互作用的过程中一直不变,并不是只有初、末两态的动量守恒.解题时可根据题意适当选择相互作用过程中的两个状态列方程求解.3.动量守恒定律的特点(1)动量守恒定律的研究对象是相互作用的物体组成的系统,在应用动量守恒定律解题之前,必须明确这个系统是由哪些物体组成,只有恰当地划分系统才能正确、有效地运用动量守恒定律. (2)动量守恒定律的表达式是矢量式.若相互作用的物体沿同一直线运动,注意设定方向,将矢量运算转化为代数运算.(3)动量守恒定律表达式中的速度必须是相对于同一参考系的.如果题设条件中各物体的速度不是相对同一参考系的,必须适当转换参考系,使其成为相对同一参考系(通常选地面)的速度.(4)注意动量守恒定律表达式中速度的同时性.式中的v 1、v 2是作用同一时刻的瞬时速度,v 1′、v 2′是作用后同一时刻的瞬时速度.各个击破【例1】 关于动量的概念,下列说法正确的是( )A.动量大的物体惯性一定大B.动量大的物体运动一定快C.动量相同的物体运动方向一定相同D.动量相同的物体速度小的惯性大解析:物体的动量是由速度和质量两个因素决定的.动量大的物体质量不一定大,惯性也不一定大,A 项错;同样,动量大的物体速度也不一定大,B 项也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C 项对;动量相同的物体,速度小的质量大,惯性大,D 项也对.答案:CD类题演练1若一个物体的动量发生了变化,则物体运动的(质量不变)( )A.速度大小一定改变了B.速度方向一定改变了C.速度一定变化了D.加速度一定不为零解析:动量p=mv ,动量发生了变化(质量不变),必定是速度发生了变化,而速度的改变包括大小和方向.故A 、B 两项不正确,C 项正确;速度变化了必然有加速度,故D 正确.答案:CD变式提升质量为0.1 kg 的弹性小球,从高1.25 m 处自由落向一光滑而坚硬的水平木板,碰后弹回到0.8 m 高,求:(1)小球与水平板碰撞前后的动量;(2)小球与水平板碰撞前后的动量变化.解析:(1)由于小球做自由落体运动,设碰前小球速度为v 1,则v 1=25.11022⨯⨯=gh m/s=5 m/s,方向竖直向下,于是小球与水平板碰前的动量p 1=mv 1=0.1×5 kg·m/s=0.5 kg·m/s,方向竖直向下.碰后,小球做竖直上抛运动的最大高度为0.8 m ,则碰后小球速度为v 2=8.0102'2⨯⨯=gh m/s=4 m/s,方向竖直向上,此时小球的动量p 2=mv 2=0.1×4 kg·m/s=0.4 kg·m/s,方向竖直向上.(2)设竖直向下为正方向,则p 1=5 kg·m/s,p 2=-0.4 kg·m/s,Δp=p 2-p 1=(-0.4 -0.5) kg·m/s=-0.9 kg·m/s,即碰撞前后小球动量变化的大小为0.9 kg·m/s,方向竖直向上.答案:(1)0.5 kg·m/s,竖直向下;0.4 kg·m/s,竖直向上.(2)0.9 kg·m/s,竖直向上.【例2】 关于冲量的概念,以下说法正确的是( )A.作用在两个物体上的力大小不同,但两个物体所受的冲量大小可能相同B.作用在物体上的力很大,物体所受的冲量一定也很大C.作用在物体上的力的作用时间很短,物体所受的冲量一定很小D.只要力的作用时间和力的乘积相同,物体所受的冲量一定相同解析:力的冲量I=F·t,力F 的大小虽然不同,只要力F 的作用时间t 也不同,则力F 与时间t 的乘积可能相同,所以A 项正确;力F 很大,如果力F 的作用时间很短,则力F 的冲量仍然可以很小,故B 项错;当力F 的作用时间很短时,如果力F 很大,则力F 的冲量仍可以很大,因此C 项错;由于冲量是矢量,而矢量相同包括大小相同,方向也相同,因此既使力的大小F 和作用时间t 的乘积相同,也只能说明冲量的大小相同,如果力的方向不同,则冲量的方向不同,因此我们说冲量不同,所以D项不正确.答案:A【例3】在光滑水平面上A、B两小车中间有一弹簧,如图1-2-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是()图1-2-1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A项对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B项错;先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C项对;其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开后的总动量就与放开最后一只手后系统所具有的总动量相等,即不为零,D项对.答案:ACD类题演练2如图1-2-2所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg,游戏时,甲推着一个质量m=15 kg的箱子,和他一起以大小为v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住,若不计冰面的摩擦,问甲至少要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞.图1-2-2解析:设甲推出箱子后速度为v甲,乙抓住箱子后速度为v乙,则由动量守恒定律,得甲推箱子过程:(M+m)v0=Mv甲+mv ①乙抓箱子过程:mv-Mv0=(M+m)v乙②甲、乙恰不相碰条件:v甲=v乙③代入数据可解得v=5.2 m/s.答案:5.2 m/s。
2012高中物理_1.1_物体的碰撞_1.2动量_动量守恒定律学案_粤教版选修3-5
第一节 物体的碰撞导学案知识与回顾:我们学过的运动有哪些:一 课堂新知识学习1.碰撞定义: 碰撞就是两个或两个以上的物体在相遇的极短时间内产生非常之强的相互作用,2.碰撞特点:相互作用时间____,作用力变化____,作用力峰值____,相互作用力远远______外力.3.碰撞分类:(1)按碰撞前后物体的运动方向是否沿同一直线可将碰撞可分为:①正碰:两物体碰撞时的速度沿着________方向,称为正碰.②斜碰:两物体碰撞前的相对速度____________上,称为斜碰.(2)按碰撞过程中机械能是否损失,可将碰撞分为:①完全弹性碰撞:两物体碰后形变能__________,且没有能量________,碰撞前后两小球构成的系统的动能________,这种碰撞称为完全弹性碰撞.②非弹性碰撞:若两物体碰撞后它们的形变______________原状,这时将有一部分动能最终会转变为______,碰撞前后系统的动能__________,这种碰撞是非弹性碰撞.③完全非弹性碰撞.当两物体碰后合为一体,具有______速度时,系统损失的能量最大,这种碰撞称为完全非弹性碰撞.1下列的碰撞各属于什么碰撞:①如下图所示,光滑水平面上有质量相等的A 和B 两物体,B 上装有一轻弹簧,B 原来静止,A 以速度v 正对B 滑行,当弹簧压缩到最短,再次复原的过程。
属于________________碰撞②用细线悬挂一质量为M 的木块,木块静止,如下左图所示.现有一质量为m 的子弹自左方水平地射穿此木块,穿透前后子弹的速度分别为v 0和v .属于________________碰撞③如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内。
属于________________碰撞、④如图所示,一质量M =3.0kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m=1.0kg 的小木块A 。
高中物理 第一章 碰撞与动量守恒 1.3 动量守恒定律在碰撞中的应用教案 粤教版选修35
1.3 动量守恒定律在碰撞中的应用课堂互动三点剖析一、动量守恒定律的应用1.应用动量守恒定律解决问题关键要注意两点:第一是根据动量守恒的条件选取合适的系统,第二是分清系统初、末状态的动量.2.动量定理通常选某单个物体为研究对象,而动量守恒定律是以两个或两个以上相互作用的物体系为对象,并分析此物体系是否满足动量守恒的条件,即这个物体系是否受外力作用,或合外力是否为零(或近似为零).显然物体系内力(即系统内物体间相互作用)仍然存在,这些相互作用的内力,使每个物体的动量变化,但这物体系的总动量守恒.3.应用动量守恒定律表达式列方程时,必须明确过程的初状态和末状态,对于碰撞过程来说,初状态是指刚开始发生相互作用时的状态,末状态是指相互作用刚结束时的状态,只要抓住过程的初末状态,而无须考虑过程的细节,根据动量守恒定律即可求解碰撞问题.4.动量守恒定律应用的思路(1)确哪几个物体组成的系统为研究对象;(2)分析受力和物理过程,判断动量是否守恒;(3)规定正方向,确定初、末状态各物体的动量,并把矢量化成标量;(4)利用动量守恒定律列方程求解.二、碰撞及碰撞过程的特点1.碰撞特点(1)时间特点:在碰撞、爆炸现象中,相互作用时间很短.(2)相互作用力特点:在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大.(3)动量守恒条件特点:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒.(4)位移特点:碰撞、爆炸过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞、爆炸的瞬间,可忽略物体的位移,可以认为物体在碰撞、爆炸前后仍在同一位置.(5)能量特点:碰前总动能E k 与碰后总动能E k′满足:E k ≥E k′.(6)速度特点:碰后必须保证不穿透对方.2.追及碰撞满足的关系(1)碰撞过程满足动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′;(2)碰撞前,后面物体速度大于前面物体速度:v 1>v 2;(3)碰撞后,后面物体的速度小于等于前面物体的速度:v 1′≤v 2′;(4)碰撞后的总动能小于等于碰撞前的总动能.三、碰撞的类型碰撞的过程由于作用时间短,内力远大于外力,不论相互碰撞的物体所处的平面是否光滑都可以认为系统动量守恒,但根据碰撞过程中机械能的损失情况可将碰撞分为三种类型.1.完全非弹性碰撞:两物体碰后合为一个整体,以共同的速度运动,这种碰撞机械能损失最多.满足:m 1v 1+m 2v 2=(m 1+m 2)v 损失的机械能:ΔE=221222211)(212121v m m v m v m +-+. 2.弹性碰撞:两物体碰后很短时间内分开,发生的是弹性形变,机械能无损失.满足:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′2222'11222211'21212121v m v m v m v m +=+ 当两小球的质量相等时,碰撞后交换速度.3.非弹性碰撞:两物体碰后虽能分开,但碰撞时间较长,机械能有损失,但不如完全非弹性碰撞的机械能损失大.这种类型的碰撞在练习题中出现得不多.各个击破【例1】两只小船平行逆向航行,如图1-3-2所示,航线邻近,当它们头尾相齐时,由每一只船上各投质量m=50 kg 的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v=8.5 m/s 的速度向原方向航行,设两只船及船上的载重量分别为m 1=500 kg 及m 2=1 000 kg,问:在交换麻袋前两只船的速率为多少?(水的阻力不计)图1-3-2解析:选取小船和从大船投过的麻袋为系统,并以小船的速度为正方向,根据动量守恒定律有:(m 1-m)v 1-mv 2=0即450v 1-50v 2=0 ①选取大船和从小船投过的麻袋为系统有:-(m 2-m)v 2+mv 1=-m 2v即-950v 2+50v 1=-1 000×8.5 kg·m/s ②选取四个物体为系统有:m 1v 1-m 2v 2=-m 2v即500v 1-1 000v 2=-1 000×8.5 kg·m/s ③联立①②③式中的任意两式解得v 1=1 m/s,v 2=9 m/s.答案:大船速度1 m/s,小船速度9 m/s.类题演练1甲乙两人均以2 m/s 的速度在冰上相向滑行,m 甲=50 kg ,m 乙=52 kg ,甲拿着一个质量Δm=2kg 的球,当甲将球传给乙,乙再传给甲,这样传球若干次后,乙的速度变为零,球在甲手中,求甲的速度.解析:无论传球多少次,甲、乙两人和球组成的系统动量守恒.(m 甲+Δm)v-m 乙v=(m 甲+Δm)v 甲即(50+2)×2-52×2=(50+2)v 甲 得v 甲=0.答案:0【例2】 在光滑水平面上,质量为m 的小球A 以速度v 0与质量为3m 的静止小球B 发生正碰,碰后A 球的速率为021v ,试求碰后B 球的速度v B 的大小. 解析:设A 球初速度方向为正,假设碰后A 球仍沿原方向运动,则据动量守恒定律知:mv 0=20v m+3mv B 得v B =60v由于碰后A 、B 两球都沿正方向运动,且B 球在前A 球在后,应有:v A <v B ,而实际计算结果是v A >v B ,因此,不会出现这种情况,即碰后A 球不能沿原方向运动,因此碰后A 球被反弹,据动量守恒定律有:mv 0=20v m -+3mv B 得v B =20v . 答案:20v 变式提升如图1-3-3所示,水平桌面上放着一个半径为R 的光滑环形轨道,在轨道内放入两个质量分别是M 和m 的小球(均可看作质点),两球间夹着少许炸药.开始时两球接触,点燃炸药爆炸后两球沿轨道反向运动一段时间后相遇.到它们相遇时,M 转过的角度θ是多少?图1-3-3解析:在炸药爆炸瞬间,两球作为一个系统的总动量守恒,以后两小球在轨道外壁弹力作用下在水平轨道内做匀速圆周运动,经过一段时间相遇.设炸药爆炸后,M 的速度为v 1,m 的速度为v 2,两球的运动方向相反,由动量守恒定律有Mv 1-mv 2=0,即Mv 1=mv 2 ①以后两球各自沿圆轨道做圆周运动,由于两球都只受外壁压力(方向指向环中心),因此两球都做匀速圆周运动.设经过时间t 两球再次相遇,则由运动学公式有v 1t+v 2t=2πR ②由①式有v 2=1v m M ,代入②,得v 1t=mM Rm +π2 ③ v 1t 就是小球M 在圆环轨道内移过的距离(即弧长).因此,M 球转过的角度θ=m M m R t v +=π21. 答案:mM Rm +π2 【例3】 如图1-3-4所示,在水平面地上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(1)子弹射入后,木块在地面上前进的距离;(2)射入的过程中,系统的机械能损失.图1-3-4解析:(1)设子弹射入木块时,二者的共同速度为v′,取子弹的初速度方向为正方向,则有:mv=(M+m)v′ ①二者一起沿平面滑动,前进的距离为s ,由动能定理:μ(M+m)gs=21(M+m)v′2 ②由①②两式解得s=gm M v m μ222)(2+. (2)射入过程中的机械能损失ΔE=21mv 2-21(M+m)v′2 ③ 将①代入③式解得ΔE=)(22m M Mmv +. 答案:(1)gm M v m μ222)(2+ (2))(22m M Mmv + 类题演练2质量为m 1的小球以速度v 0与质量为m 2的小球发生弹性正碰,求碰后两个小球的速度. 解析:设碰后m 1球的速度为v 1,m 2球的速度为v 2,由系统动量守恒有m 1v 0=m 1v 1+m 2v 2 ① 由系统动能守恒有:222211*********v m v m v m += ② 将②变形为m 1(v 02-v 12)=m 2v 22 ③将①变形为m 1(v 0-v 1)=m 2v 2 ④ ③/④得v 0+v 1=v 2 ⑤ 将⑤代入①得v 1=02121v m m m m +- ⑥ 将⑥代入⑤得v 2=02112v m m m + ⑦ 答案:碰后m 1球的速度为02121v m m m m +-,m 2球的速度为02112v m m m +.。
高中物理第一章碰撞与动量守恒第2节动量动量守恒定律教案2粤教版选修35
【教学内容分析】本节课从生活方面入手认识物体碰撞中物体动量的变化规律,通过实验验证动量定理和动量守恒定律,进而将动量定理和动量守恒定律扩大到宏观和围观各个领域。
本节内容是全国卷高考必考重点,经常与动能定理联系一起运用,这将构成一个难点。
【教学目标——物理学科核心素养的培养】 (一)物理观念1.能写出动量表达式p=mv ,知道动量的单位和矢量性; 2.能写出冲量表达式I =FΔt ,知道冲量的单位和矢量性;3.能写出动量定理表达式=F t mv mv '∆-合,知道式子的物理意义,并能将应用在简单的碰撞情境中。
(二)科学思维基于小球受力加速的经验事实建构理想模型,逐步引导学生认知动量变化过程的规律并抽象概括出动量定理。
(三)科学探究通过鸡蛋撞布与足球弹高棒球的实验,培养学生对物理情境的观察分析探究能力。
引导学生利用所学知识解释实验现象。
(四)科学态度和责任通过对实验现象的探究以及学生对问题的讨论,培养同学们的实事求是的科学素养以及合作探究的意识。
【学生情况分析】1.学生已有的知识:学生已经学习过动能定理。
2.学生已有的能力及年龄特征:好奇心强,喜欢观察事物,大多数物理思维都建构在现实观察的基础上。
通过观察现实情景而进行分析,得出结论。
【教学重难点】 (一)教学重点1.动量和冲量概念的讲解,动量的变化量的讲解。
2.能写出并实际运用动量定理,注意设定正方向。
(二)教学难点1.实际运用动量定理。
【教学过程设计】动量变化量讲解回顾以前算匀变速直线运动设定正方向的解题习惯。
时间速度大小变成v’=6m/s那么它的速度变化量是多少?速度的变化量(末减初)为5m/sv v v'∆=-=那么动量的变化量又是多少呢?动量的变化量为5kg m/sp mv mv'∆=-=⋅板书:动量的变化量为p mv mv'∆=-问题:速度的变化量和动量变化量有什么关系呢?大家能不能写出它们的关系式呢?师:以前我们在计算匀变速直线运动时,一旦遇到速度反向,我们一般会设一个正方向。
高中物理第一章碰撞与动量守恒1.2动量动量守恒定律素材粤教版选修3-5(new)
第二节 动量 动量守恒定律情景导入星期天,我们到溜冰场溜冰,我们会发现这样一个问题,大人和小孩相撞了,是小孩被撞倒了,大人则安然无事.根据前面所学习的牛顿第三定律知,大人和小孩受到的作用力的大小是相等的,那么两者为什么出现了不同的情况?简答:由牛顿第二定律知,质量是惯性大小的量度.质量大的状态难以改变,质量小的状态易改变,所以,小孩被碰倒,这也说明了决定物体状态的应是质量和速度,这样,我们把质量和速度合在一起引入一个新的概念——动量.知识预览⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧+=+=⎪⎩⎪⎨⎧∆==⎪⎩⎪⎨⎧∆=∆-=∆=''':::::,:,:::.:2211221112v m v m v m v m p p p I Ft I v m p p p p mv p 或表达式和为零不受外力或外力的矢量适用条件系统研究对象是相互作用的恒定律动量守冲量与动量的关系相同方向与物体受力的方向矢量表达式积力与力的作用时间的乘定义冲量或动量的变化方向与速度的方向相同矢量表达式为积物体的质量与速度的乘定义动量恒守量动尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
高中物理 第一章 碰撞与动量守恒 第二节 动量 动量守恒定律学案 粤教版选修3-5-粤教版高二选修3
第二节动量动量守恒定律1.理解冲量的概念,知道冲量是矢量.2.理解动量的概念,知道动量是矢量.3.知道动量的改变量是矢量,会正确计算一维动量的改变量.4.理解动量定理的确切含义,会用动量定理解释现象、解决问题.5.理解动量守恒定律的确切含义和表达式,知道定律的适用条件,并能区分内力、外力.一、动量及其改变1.冲量(1)定义:物体受到的力与力的作用时间的乘积.(2)定义式:I=Ft.(3)物理意义:冲量是反映力对时间累积效果的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛顿·秒,符号是N·s.(5)方向:如果力的方向恒定,则冲量I的方向与力的方向相同;如果力的方向是变化的,则冲量的方向应与相应时间内物体速度变化量的方向相同.1.(1)用力推物体但没推动,则这个力对物体的冲量为零.( )(2)跳高比赛时,在运动员落地处放置很厚的海绵垫子可以减小冲量.( )提示:(1)×(2)×2.动量(1)定义:运动物体的质量和它的速度的乘积.(2)定义式:p=mv.(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m·s-1.(4)方向:动量是矢量,其方向与物体的速度方向相同.3.动量的变化量物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).2.(1)物体的质量越大,动量一定越大.( )(2)物体的速度大小不变,动量一定不变.( )(3)物体动量大小相同,动能一定相同.( )提示:(1)×(2)×(3)×4.动量定理(1)内容:物体所受合力的冲量,等于物体动量的改变量.(2)公式:I=Δp或Ft=mv2-mv1.用一条细线悬挂着一个重物,把重物拿到悬挂点附近,然后释放,重物可以把细线拉断.如果在细线上端拴一段橡皮筋,再把重物拿到悬挂点附近释放,细线就不会被拉断了.想想这是什么道理?提示:拴上橡皮筋后,延长了力的作用时间,由动量定理可知,细线上的张力减小,细线就不会被拉断了.二、碰撞中的动量守恒定律1.系统内力和外力(1)系统:两个(或多个)相互作用的物体称为系统.(2)内力:系统内各物体间的相互作用力叫做内力.(3)外力:系统外部的其他物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果系统所受到的合外力为零,则系统的总动量保持不变.(2)成立条件:系统所受到的合外力为零.(3)表达式:m1v1+m2v2=m1v1′+m2v2′.3.(1)一个系统初、末状态动量大小相等,即动量守恒.( )(2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.( )(3)系统动量守恒也就是系统的动量变化量为零.( )提示:(1)×(2)√(3)√对冲量和动量的理解1.对冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,取决于力和时间这两个因素,所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同,如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同.2.对动量的理解(1)动量是状态量:进行动量运算时,要明确是哪一物体在哪一状态(时刻)的动量,p =mv中的速度v是瞬时速度.(2)动量的矢量性:动量的方向与物体的瞬时速度的方向相同.有关动量的运算,如果物体在一条直线上运动,则选定一个正方向后,动量的矢量运算就可以转化为代数运算.(3)动量的相对性:物体的动量与参考系的选择有关.选不同的参考系时,同一物体的动量可能不同,通常在不说明参考系的情况下,物体的动量是指物体相对地面的动量.(4)动量是矢量,动量的变化量也是矢量.Δp=p2-p1为矢量表达式,当p2、p1在同一直线上时,可规定正方向,将矢量运算转化为代数运算;当p2、p1不在同一直线上时,应依据平行四边形定则运算.动量和动能都是描述物体运动状态的物理量,动量是矢量,动能是标量,它们之间的数值关系是:E k=p22m,p=2mE k.(多选)质量为m 的小球在光滑水平面上向右以速度v 匀速运动,与竖直挡板相撞后以v 2按原路返回,则下列说法正确的是( ) A .碰撞前后小球的动量发生了变化,变化大小为mv 2B .碰撞前后小球的动量发生了变化,变化大小为3mv 2C .如以v 方向为正,则碰撞前后小球的动量变化为正D .如以v 方向为正,则碰撞前后小球的动量变化为负[思路点拨] 本题应从以下三个方面考虑:(1)碰撞前后小球动量的大小.(2)一维方向上动量方向的表示.(3)动量变化量的计算方法:Δp =p ′-p .[解析] 物体动量的变化为末动量与初动量之差,以末速度方向为正方向,则Δp =p 末-p 初=mv 2-(-mv )=3mv 2,正值表示动量变化方向与所设正方向相同,即与末速度方向相同;如以初速度方向为正,则Δp =p 末-p 初=-mv 2-mv =-3mv 2,负号表示与所设正方向相反,即与初速度方向相反,与末速度方向相同.[答案] BD【通关练习】1.关于冲量,下列说法正确的是( )A .冲量是物体动量变化的原因B .作用在静止物体上的力的冲量一定为零C .动量越大的物体受到的冲量越大D .冲量的方向就是物体受力的方向解析:选A.力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量就发生了变化.因此说冲量是物体动量变化的原因,A 选项正确;只要有力作用在物体上,经历一段时间,这个力便有了冲量I =Ft ,与物体处于什么状态无关,物体运动状态的变化情况是所有作用在物体上的力共同产生的效果,所以B 选项不正确;物体所受冲量I =Ft 与物体的动量的大小p =mv 无关,C 选项不正确;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D 选项不正确.2.如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物体a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑.以下说法正确的是( )A .a 比b 先到达S ,它们在S 点的动量不相等B .a 与b 同时到达S ,它们在S 点的动量不相等C .a 比b 先到达S ,它们在S 点的动量相等D .b 比a 先到达S ,它们在S 点的动量相等解析:选A.a 、b 两物体到达S 点速度方向不同,故它们的动量不相等;a 物体做自由落体运动,运动时间为t 1,b 物体沿14圆弧轨道下滑的过程中(在P 点除外),其竖直方向分运动的加速度在任何高度都小于重力加速度,又a 、b 两物体竖直方向位移相等,所以b 物体下滑到S 的时间t 2>t 1,故A 正确,B 、C 、D 错误.动量定理的理解和应用1.动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.(2)动量定理中的冲量是合外力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.用动量定理定性分析有关现象(1)物体的动量变化量一定时,力的作用时间越短,力就越大,反之力就越小;例如:易碎品包装箱内为防碎而放置的碎纸、刨花、塑料泡沫等填充物.(2)作用力一定时,力的作用时间越长,动量变化量越大,反之动量变化量就越小.例如:杂耍中,铁锤猛击“气功师”身上的石板令其碎裂,作用时间很短,铁锤对石板的冲量很小,石板的动量几乎不变,“气功师”才不会受伤害.3.对于“变质量”和“连续”的流体的动量变化问题,因涉及流体的特点是连续性和变质量,因此解决该类问题的关键是研究对象的选取.一般要选用一段时间Δt 内流出的流体为研究对象,其长度为v ·Δt ,流体截面积为S ,则流体体积ΔV =Sv ·Δt ,故液柱的质量Δm =ρ·ΔV =ρ·S ·v Δt ,再对质量为Δm 的液柱应用动量定理求解.(1)应用动量定理解题时,一定要对物体进行受力分析,明确各个力和合力情况是正确应用动量定理的前提.(2)列方程时一定要先选定正方向,严格使用矢量式.(3)变力的冲量一般通过求动量的变化量来求解.命题视角1 动量定理的应用蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知运动员与网接触的时间为1.2 s .若把这段时间内网对运动员的作用力当作恒力处理,求此力的大小和方向.(g 取10 m/s 2)[解析] 法一:对运动员与网接触的过程应用动量定理.运动员刚接触网时速度的大小: v 1=2gh 1=2×10×3.2 m/s =8 m/s ,方向向下.刚离网时速度的大小:v 2=2gh 2=2×10×5.0 m/s =10 m/s ,方向向上.运动员与网接触的过程,设网对运动员的作用力为F N ,对运动员,由动量定理(以向上为正方向)有:(F N -mg )t =mv 2-m (-v 1)解得F N =mv 2-m (-v 1)t +mg =60×10-60×(-8)1.2N +60×10 N =1.5×103 N ,方向向上.法二:此题也可以对运动员下降、与网接触、上升的全过程应用动量定理.从3.2 m 高处自由下落的时间为t 1= 2h 1g = 2×3.210s =0.8 s. 运动员弹回到5.0 m 高处所用的时间为t 2= 2h 2g = 2×5.010s =1 s. 整个过程中运动员始终受重力作用,仅在与网接触的t 3=1.2 s 的时间内受到网对他向上的弹力F N 的作用,对全过程应用动量定理,有F N t 3-mg (t 1+t 2+t 3)=0,则F N =t 1+t 2+t 3t 3mg =0.8+1+1.21.2×60×10 N =1.5×103 N ,方向向上. [答案] 1.5×103 N 方向向上命题视角2 利用动量定理计算流体的冲力水力采煤时,用水枪在高压下喷出强力的水柱冲击煤层.设水柱直径d =30 cm ,水速v =50 m/s ,假设水柱射在煤层的表面上,冲击煤层后水的速度变为零,求水柱对煤层的平均冲击力.(水的密度ρ=1.0×103 kg/m 3)[解析] 设在一小段时间Δt 内,从水枪射出的水的质量为Δm ,则Δm =ρS ·v Δt . 以Δm 的水为研究对象,如图所示,它在Δt 时间内的动量变化量Δp =Δm ·(0-v )=-ρSv 2Δt .设F 为水对煤层的平均作用力,即冲力,F ′为煤层对水的反冲力,以v 的方向为正方向,根据动量定理(忽略水的重力),有F ′·Δt =Δp =-ρSv 2Δt ,即F ′=-ρSv 2.根据牛顿第三定律知F =-F ′=ρSv 2.式中S =π4d 2, 代入数值得F ≈1.77×105 N.[答案] 1.77×105 N动量定理的解题要点(1)若物体在运动过程中所受的力不是同时的,可将受力情况分成若干阶段来求解,也可当成一个全过程来求解.(2)注意动量定理中的力是合外力,而不仅是冲力.【通关练习】1.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用力大,而掉在草地上的玻璃杯受地面的冲击力小解析:选CD.两种情况下,Δp 相同,所用时间不同.由F =Δp t可知C 、D 正确. 2.一宇宙飞船以v =1.0×104 m/s 的速度进入密度为ρ=2.0×10-7 kg/m 3的微陨石流中,如果飞船在垂直于运动方向上的最大截面积S =5 m 2,且认为微陨石与飞船碰撞后都附着在飞船上.为使飞船的速度保持不变,飞船的牵引力应增加多大?解析:设t 时间内附着在飞船上的微陨石总质量为Δm ,则Δm =ρSvt ① 这些微陨石由静止至随飞船一起运动,其动量增加是受飞船对其作用的结果,由动量定理有Ft =Δp =Δmv ②则微陨石对飞船的冲量大小也为Ft ,为使飞船速度保持不变,飞船应增加的牵引力为ΔF =F ③综合①②③并代入数值得ΔF =100 N ,即飞船的牵引力应增加100 N.答案:100 N动量守恒定律的理解1.研究对象:相互作用的物体组成的系统.2.正确理解“总动量保持不变”,不仅指系统的初、末两个时刻的总动量相等,而且指系统在整个过程中任意两个时刻的总动量相等.3.动量守恒定律的不同表达式及含义(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).(2)Δp=0(系统总动量的增量为0).(3)Δp1=-Δp2(两个物体组成的系统中,各自动量的增量大小相等、方向相反).(4)m1v1+m2v2=m1v1′+m2v2′(两个物体组成的系统中,相互作用前的总动量等于相互作用后两个物体的总动量).4.动量守恒定律的“五性”(1)矢量性:定律的表达式是一个矢量式,其矢量性表现在:①该式说明系统的总动量在相互作用前后不仅大小相等,方向也相同.②在求初、末状态的总动量p=p1+p2+…和p′=p1′+p2′+…时,要按矢量运算法则计算.如果各物体动量的方向在同一直线上,要选取一正方向,将矢量运算转化为代数运算.(2)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量,必须相对于同一惯性系,各物体的速度通常均为对地的速度.(3)条件性:动量守恒定律是有条件的,应用时一定要首先判断系统是否满足守恒条件.(4)同时性:动量守恒定律中p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′…必须是系统中各物体在相互作用后同一时刻的动量.(5)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.5.动量守恒的条件(1)物体不受外力作用.(2)物体受外力作用,但合外力为零.(3)物体受外力作用,合外力也不为零,但合外力远远小于物体间的相互作用力(即系统内力远大于外力).(4)物体受外力作用,合外力也不为零,但在某一方向上合力为零,则物体在这一方向上动量守恒.如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg ,m B =1 kg ,m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.[思路点拨] 应用动量守恒定律解题时,首先应判断系统是否满足守恒的条件.其次要注意动量守恒定律的表达式是矢量式,解题时先规定正方向,与正方向相同的动量代入正值,与正方向相反的动量代入负值.[解析] 因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C③联立①②③式,代入数据得 v A =2 m/s.[答案] 2 m/s光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.解析:法一:把A 、B 、C 看成一个系统,整个过程中由动量守恒定律得m A v 0=(m A +m B +m C )vB 、C 碰撞过程中由动量守恒定律m B v B =(m B +m C )v联立解得v B =65v 0.法二:设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B① 对B 、C 木块:m B v B =(m B +m C )v ②由题意A 与B 间的距离保持不变可知v A =v③ 联立①②③式,代入数据得v B =65v 0. 答案:65v 0 实验:验证动量守恒定律1.实验器材气垫导轨,光电计时器,两辆质量相同的小车,弹簧,细线,砝码,双面胶.2.实验步骤(1)调整导轨使之处于水平状态,并使光电计时器系统正常工作.(2)导轨上一小车静止,用另一小车与其碰撞,观察两小车的速度变化.(3)如图所示,将两小车用压缩的弹簧连接在一起,烧断细线,观察两小车的运动速度.(4)在一小车上贴上双面胶,用另一小车碰撞它,使两小车随后粘在一起运动,观察小车碰撞前、后速度的变化.(5)改变其中某一小车的质量,重复以上步骤.3.实验结论:物体在碰撞时,如果系统所受到的合外力为零,则系统的总动量保持不变.某同学利用气垫导轨做“探究碰撞中的不变量”的实验,气垫导轨装置如图所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.(1)下面是实验的主要步骤①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2静止放在气垫导轨的中间;⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧固定有弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门2后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为:滑块1通过光电门1的挡光时间Δt1=10.01 ms,通过光电门2的挡光时间Δt2=49.99 ms,滑块2通过光电门2的挡光时间Δt3=8.35 ms;⑧测出挡光片的宽度d=5 mm,测得滑块1(包括撞针)的质量为m1=300 g,滑块2(包括弹簧)的质量为m2=200 g.(2)数据处理与实验结论①实验中气垫导轨的作用是:A.________________________________________________________________________ ________________________________________________________________________;B.________________________________________________________________________ ________________________________________________________________________.②碰撞前滑块1的速度v1为________m/s;碰撞后滑块1的速度v2为________m/s;滑块2的速度v3为________m/s.(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们可以探究出哪些物理量是不变的?通过对实验数据的分析说明理由.(至少回答2个不变量)a.________________________________________________________________________ ________________________________________________________________________.b.________________________________________________________________________ ________________________________________________________________________.[解析] (2)①A.大大减小了因滑块和导轨之间的摩擦而引起的误差.B .保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v 1=d Δt 1=5×10-310.01×10-3m/s ≈0.50 m/s ; 滑块1碰撞之后的速度v 2=d Δt 2=5×10-349.99×10-3m/s ≈0.10 m/s ; 滑块2碰撞之后的速度v 3=d Δt 3=5×10-38.35×10-3m/s ≈0.60 m/s. ③a.系统质量与速度的乘积之和不变.原因:系统碰撞之前m 1v 1=0.15 kg ·m/s ,系统碰撞之后m 1v 2+m 2v 3=0.15 kg ·m/s. b .系统碰撞前后总动能不变.原因:系统碰撞之前的总动能E k1=12m 1v 21=0.037 5 J系统碰撞之后的总动能E k2=12m 1v 22+12m 2v 23=0.037 5 J 所以系统碰撞前后总动能相等.c .系统碰撞前后质量不变.[答案] (2)①A.大大减小了因滑块和导轨之间的摩擦而引起的误差 B .保证两个滑块的碰撞是一维的②0.50 0.10 0.60 ③见解析在“验证碰撞中的动量守恒”的实验中,入射球与被碰球的质量分别为m 1=30 g ,m 2=20 g ,由实验得出m 1碰撞前后的位移-时间图象为如图所示的Ⅰ、Ⅱ,m 2碰后的位移—时间图象为如图所示的Ⅲ,则由图可知,入射小球在碰前的动量是____ kg ·m/s ,入射小球在碰后的动量是________kg ·m/s ,被碰小球的动量为________kg ·m/s ,由此可以得出结论___________________________________________________________.解析:由图象可以知道碰撞前后小球的速度碰撞前的入射小球速度为v 1=1 m/s碰撞后的入射小球速度v 1′=0.5 m/s被碰小球的速度v 2=0.75 m/s所以碰撞前入射小球的动量p 1=m 1v 1=0.03×1 kg ·m/s =0.03 kg ·m/s碰撞后入射小球的动量p 1′=m 1v 1′=0.03×0.5 kg ·m/s =0.015 kg ·m/s碰撞后被碰小球的动量p 2=m 2v 2=0.02×0.75 kg ·m/s =0.015 kg ·m/s由以上数据可知碰撞前的总动量为0.03 kg ·m/s碰撞后的总动量为p 1′+p 2=(0.015+0.015) kg ·m/s =0.03 kg ·m/s ,所以系统的动量守恒.答案:0.03 0.015 0.015 碰撞过程中系统动量守恒[随堂检测]1.(多选)下面关于物体动量和冲量的说法正确的是( )A .物体所受合外力冲量越大,它的动量也越大B .物体所受合外力冲量不为零,它的动量一定要改变C .物体动量变化量的方向,就是它所受合外力的冲量方向D .物体所受合外力越大,它的动量变化就越快解析:选BCD.由Ft =Δp 知,Ft 越大,Δp 越大,但动量不一定大,它还与初状态的动量有关;冲量不仅与Δp 大小相等,而且方向相同.由F =p ′-p t知,物体所受合外力越大,动量变化越快.2.(多选)恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t ,下列说法正确的是( )A .拉力F 对物体的冲量大小为零B .拉力F 对物体的冲量大小为FtC .拉力F 对物体的冲量大小是Ft cos θD .合力对物体的冲量大小为零解析:选BD.恒力F 的冲量就是F 与作用时间的乘积,所以B 正确,A 、C 错误;由于物体静止,合力为零,合力的冲量也为零,故D 正确.3.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A .m 2gh t +mg B .m 2gh t -mg C .m gh t +mg D .m gh t-mg 解析:选A.设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,取竖直向下为正方向,由动量定理得(mg -F )t =0-mv ,得F =m 2gh t+mg ,选项A 正确. 4.(多选)在利用气垫导轨探究碰撞中的不变量时,下列哪些因素可导致实验误差( )A .导轨安放不水平B .小车上挡光片倾斜C .两小车质量不相等D .两小车碰后连在一起解析:选AB.导轨安放不水平,小车速度将受重力的影响,从而导致实验误差;挡光片倾斜会导致挡光片宽度不等于挡光阶段小车通过的位移,使计算速度出现误差.5.一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示,一物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .解析:(1)由动能定理,有-μmgs =12mv 2-12mv 20 可得μ=0.32.(2)由动量定理:有F Δt =mv ′-mv可得F =130 N.(3)W =12mv ′2=9 J. 答案:(1)0.32 (2)130 N (3)9 J[课时作业]一、单项选择题1.关于动量,下列说法正确的是( )A .速度大的物体,它的动量一定也大B .动量大的物体,它的速度一定也大C .只要物体运动的速度大小不变,物体的动量也保持不变D .质量一定的物体,动量变化越大,该物体的速度变化一定越大解析:选D.动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A 、B 均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C 错误;由Δp =m Δv 知D 正确.2.用水平力F 拉静止在地面上的桌子,作用了t 时间,但桌子未动.则力F 对桌子所做的功及在时间t 内的冲量分别为( )A .0,FtB .0,0C.均不为零D.无法确定解析:选A.由功的定义知,在力F的方向上无位移,故做功为零;由冲量的定义知,力F不为零,作用时间为t,故力F的冲量为Ft.应选A.3.将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/s D.6.3×102 kg·m/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050 kg×600 m/s=30 kg·m/s,选项A正确.4.如图所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推木箱,关于上述过程,下列说法正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同解析:选C.由动量守恒定律成立的条件可知男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项D错误.5.如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )。
高中物理第1章碰撞与动量守恒第2节动量动量守恒定律课件粤教版选修3_5
[再判断] 1.一个系统初、末状态动量大小相等,即动量守恒.(×) 2.只要合外力对系统做功为零,系统动量就守恒.(×) 3.系统动量守恒也就是系统的动量变化量为零.(√)
1.动量守恒定律成立的条件 (1)系统不受外力作用时,系统动量守恒. (2)若系统所受外力之和为零,则系统动量守恒. (3)系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆 炸等现象中,系统的动量可近似看成守恒. (4)系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒.但 是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守 恒.
【答案】 ABD
4.(2015·重庆高考改编)高空作业须系安全带,如果质量为 m 的高空作业人 员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为 h(可视 为自由落体运动),此后经历时间 t 安全带达到最大伸长,若在此过程中该作用 力始终竖直向上,求该段时间安全带对人的平均作用力.
【解析】 取向下为正方向.设高空作业人员自由下落 h 时的速度为 v,则 v2=2gh,得 v= 2gh,设安全带对人的平均作用力为 F,由动量定理得(mg+F)t =0-mv,得 F=-m t2gh+mg.“-”号说明 F 的方向向上.
4.动量定理的应用 (1)定性分析有关现象: ①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时 间越长,力就越小. ②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越 短,动量变化量越小.
高中物理第一章碰撞与动量守恒第二节动量动量守恒定律二同步备课教学案粤教版选修3_5
——教学资料参考参考范本——高中物理第一章碰撞与动量守恒第二节动量动量守恒定律二同步备课教学案粤教版选修3_5______年______月______日____________________部门[学习目标] 1.理解系统、内力、外力的概念.2.知道动量守恒定律的内容及表达式,理解守恒的条件.3.了解动量守恒定律的普遍意义,会初步利用动量守恒定律解决实际问题.一、动量守恒定律[导学探究]1.如图1所示,公路上三辆汽车发生了追尾事故.如果将甲、乙两辆汽车看做一个系统,丙车对乙车的作用力是内力,还是外力?如果将三车看成一个系统,丙对乙的力是内力还是外力?图1答案内力是系统内物体之间的作用力,外力是系统以外的物体对系统以内的物体的作用力.一个力是内力还是外力关键是看选择的系统.如果将甲和乙看成一个系统,丙车对乙车的力是外力,如果将三车看成一个系统,丙对乙的力是内力.2.如图2所示,水平桌面上的两个小球,质量分别为m1和m2,沿着同一直线向相同的方向做匀速运动,速度分别是v1和v2,v2>v1.当第二个小球追上第一个小球时两球发生碰撞,碰撞后两球的速度分别为v1′和v2′.试用动量定理和牛顿第三定律推导两球碰前总动量m1v1+m2v2与碰后总动量m1v1′+m2v2′的关系.图2答案设碰撞过程中两球间的作用力分别为F1、F2,相互作用时间为t根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2).因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2,则有:m1v1′-m1v1=m2v2-m2v2′即m1v1+m2v2=m1v1′+m2v2′此式表明两球在相互作用前的总动量等于相互作用后的总动量,这就是动量守恒定律的表达式.[知识梳理]1.系统、内力与外力(1)系统:相互作用的两个或多个物体组成一个力学系统.(2)内力:系统内部物体间的相互作用力.(3)外力:系统外部物体对系统内物体的作用力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后动量相等).(3)适用条件:系统不受外力或者所受外力的矢量和为零.[即学即用] 判断下列说法的正误.(1)一个系统初、末态动量大小相等,即动量守恒.( ×)(2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.( √)(3)只要系统受到的外力的功为零,动量就守恒.( ×)(4)只要系统所受到的合力的冲量为零,动量就守恒.( √)(5)系统动量守恒也就是系统的动量变化量为零.( √)二、对动量守恒定律的认识[导学探究] 如图3所示,进行太空行走的宇航员A和B的质量分别为80 kg和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s.A将B向空间站方向轻推后,A的速度变为0.2 m/s.(1)A、B二人相互作用时动量守恒吗?(2)如果守恒,应以什么为参考系?(3)轻推后B的速度大小是多少?方向如何?图3答案(1)守恒(2)以空间站为参考系(3)0.02 m/s 远离空间站方向解析规定远离空间站的方向为正方向,则v0=0.1 m/s,vA=0.2 m/s根据动量守恒定律(mA+mB)v0=mAvA+mBvB代入数据可解得vB=0.02 m/s,方向为远离空间站方向.[知识梳理] 对动量守恒定律的理解1.对系统“总动量保持不变”的理解(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.2.动量守恒定律的“四性”(1)矢量性:动量守恒定律的表达式是一个矢量式.(2)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量必须相对于同一惯性系,各物体的速度通常均为相对于地面的速度.(3)同时性:动量守恒定律中,p1、p2……必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′……必须是系统中各物体在相互作用后同一时刻的动量.(4)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.[即学即用] 如图4所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙木块上连有一轻质弹簧.甲木块与弹簧接触后( )图4A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的机械能守恒答案C一、动量守恒条件的理解1.系统不受外力作用:这是一种理想化的情形.2.系统受外力作用,但所受合外力为零.3.系统受外力作用,但当系统所受的外力远小于系统内各物体间的内力时,系统的总动量近似守恒.例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以完全忽略不计,系统的动量近似守恒.4.系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.例1 (多选)如图5所示,A、B两物体质量之比mA∶mB=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则下列说法正确的是( )图5A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒答案BCD解析如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对于小车向左、向右滑动,它们所受的滑动摩擦力fA向右,fB向左.由于mA∶mB=3∶2,所以fA∶fB=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向上的重力和支持力,它们的合力为零,故该系统的动量守恒,B、D选项均正确.若A、B所受摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.1.动量守恒定律的研究对象是相互作用的物体组成的系统.判断系统的动量是否守恒,与选择哪几个物体作为系统和分析哪一段运动过程有直接关系.2.判断系统的动量是否守恒,要注意守恒的条件是不受外力或所受合外力为零,因此要分清哪些力是内力,哪些力是外力.3.一般来说,系统的动量守恒时,系统内各物体的动量是变化的,但系统内各物体的动量的矢量和是不变的.针对训练1 如图6所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法正确的是( )图6A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同答案C解析由动量守恒定律成立的条件可知男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项D错误.二、动量守恒定律的简单应用1.动量守恒定律不同表现形式的表达式的含义:(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律的解题步骤:例2 将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图7所示.图7(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?答案(1)1 m/s 方向向右(2)0.5 m/s 方向向右解析两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒,设向右为正方向.(1)v甲=3 m/s,v乙=-2 m/s.据动量守恒得:mv甲+mv乙=mv甲′,代入数据解得v甲′=v甲+v乙=(3-2) m/s=1 m/s,方向向右.(2)两车相距最小时,两车速度相同,设为v′,由动量守恒得:mv甲+mv乙=m v′+mv′.解得v′=== m/s=0.5 m/s,方向向右.例3 如图8所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )图8A.v0-v2 B.v0+v2C.v0-v2 D.v0+(v0-v2)答案D解析根据动量守恒定律有(m1+m2)v0=m1v1+m2v2,可得v1=v0+(v0-v2),故选D.应用动量守恒定律解题,在规定正方向的前提下,要注意各已知速度的正负号,求解出未知速度的正负号,一定要指明速度方向.针对训练2 质量m1=10 g的小球在光滑的水平桌面上以30 cm/s的速率向右运动,恰遇上质量为m2=50 g的小球以10 cm/s的速率向左运动,碰撞后,小球m2恰好停止,则碰后小球m1的速度大小和方向如何?答案20 cm/s 方向向左解析碰撞过程中,两小球组成的系统所受合外力为零,动量守恒.设向右为正方向,则v1=30 cm/s,v2=-10 cm/s;v2′=0.由动量守恒定律列方程m1v1+m2v2=m1v1′+m2v2′,代入数据解得v1′=-20 cm/s.故碰后小球m1的速度大小为20 cm/s,方向向左.1.(多选)如图9所示,在光滑水平地面上有A、B两个木块,A、B之间用一轻弹簧连接.A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态.若突然撤去力F,则下列说法中正确的是( )图9A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC解析若突然撤去力F,木块A离开墙壁前,墙壁对木块A有作用力,所以A、B和弹簧组成的系统动量不守恒,但由于A没有离开墙壁,墙壁对木块A不做功,所以A、B和弹簧组成的系统机械能守恒,选项A 错误,选项B正确;木块A离开墙壁后,A、B和弹簧组成的系统所受合外力为零,所以系统动量守恒且机械能守恒,选项C正确,选项D 错误.2.解放军鱼雷快艇在南海海域附近执行任务,假设鱼雷快艇的总质量为M,以速度v前进,现沿快艇前进方向发射一颗质量为m的鱼雷后,快艇速度减为原来的,不计水的阻力,则鱼雷的发射速度为( ) A.v B.vC.vD.v答案A解析设快艇的速度方向为正方向,根据动量守恒定律有:Mv=(M-m)v+mv′,解得v′=v.3.如图10所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则( )图10A.木块的最终速度为v0B.由于车上表面粗糙,小车和木块所组成的系统动量不守恒C.车上表面越粗糙,木块减少的动量越多D.车上表面越粗糙,小车获得的动量越多答案A解析由m和M组成的系统水平方向动量守恒易得A正确;m和M动量的变化与小车上表面的粗糙程度无关,因为车足够长,最终各自的动量与摩擦力大小无关.4.一辆质量m1=3.0×103 kg的小货车因故障停在车道上,后面一辆质量m2=1.5×103 kg的轿车来不及刹车,直接撞入货车尾部失去动力,相撞后两车一起沿轿车运动方向滑行了s=6.75 m停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g=10 m/s2)答案27 m/s解析由牛顿第二定律得a==μg=6 m/s2v==9 m/s,由动量守恒定律得m2v0=(m1+m2)vv0=v=27 m/s.一、选择题(1~7题为单选题,8~10题为多选题)1.下列情形中,满足动量守恒条件的是( )A.用铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑桌面上的木块的过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量答案B解析A中竖直方向合力不为零;C中墙壁受地面的作用力;D中棒受人手的作用力,故合外力不为零,不符合动量守恒的条件.2.如图1所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )图1A.动量守恒、机械能守恒B.动量不守恒、机械能不守恒C.动量守恒、机械能不守恒D.动量不守恒、机械能守恒答案B3.某公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,撞后两辆车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车在撞前以20 m/s的速率行驶,由此可判断卡车碰前的行驶速率( )A.小于10 m/sB.大于10 m/s,小于20 m/sC.大于20 m/s,小于30 m/sD.大于30 m/s,小于40 m/s答案A解析设长途客车和卡车的质量分别为m1、m2,撞前的速度大小分别为v1、v2,撞后共同速度为v,规定向南为正方向,根据动量守恒定律有m1v1-m2v2=(m1+m2)v,又v>0,则m1v1-m2v2>0,代入数据得v2<10 m/s,故选项A正确.4.如图2所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )图2A.v0+v B.v0-vC.v0+(v0+v) D.v0+(v0-v)答案C解析小船和救生员组成的系统满足动量守恒:(M+m)v0=m·(-v)+Mv′解得v′=v0+(v0+v)故C项正确,A、B、D项均错.5.设a、b两球相撞,碰撞前后都在同一直线上运动,若它们碰撞前的速度分别为va、vb,碰后的速度分别为va′、vb′,则两个小球的质量比ma∶mb为( )A. B.va′-vavb′-vbC. D.va-va′vb′-vb答案A解析根据动量守恒定律得mava+mbvb=mava′+mbvb′,整理得=,故A项正确,B、C、D项错误.6.质量为M的木块在光滑水平面上以速度v1水平向右运动,质量为m 的子弹以速度v2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( )A. B.错误!C. D.mv1Mv2答案C解析设发射子弹的数目为n,选择n颗子弹和木块M组成的系统为研究对象.系统在水平方向所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有:nmv2-Mv1=0,得n=,所以选项C正确.7.质量为2 kg的小车以2 m/s的速度沿光滑的水平面向右运动,若将质量为0.5 kg的砂袋以3 m/s的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A.1.0 m/s,向右B.1.0 m/s,向左C.2.2 m/s,向右D.2.2 m/s,向左答案A解析取向右为正方向,设小车质量为m1,小车速度为v1,砂袋质量为m2,砂袋速度为v2,共同速度为v共,由动量守恒定律得m1v1-m2v2=(m1+m2)v共,得v共=1 m/s,方向向右,A项正确.8.两个小木块A和B中间夹着一轻质弹簧,用细线捆在一起,放在光滑的水平桌面上,松开细线后,木块A、B分别向左、右方向运动,离开桌面后做平抛运动,落地点与桌面边缘的水平距离分别为lA=1 m,lB=2 m,如图3所示,则下列说法正确的是( )图3A.木块A、B离开弹簧时的速度大小之比vA∶vB=1∶2B.木块A、B的质量之比mA∶mB=2∶1C.木块A、B离开弹簧时的动能之比EkA∶EkB=1∶2D.弹簧对木块A、B的作用力大小之比FA∶FB=1∶2答案ABC解析A、B两木块脱离弹簧后做平抛运动,由平抛运动规律得:木块A、B离开弹簧时的速度之比为==,A对;根据动量守恒定律得:mAvA-mBvB=0,因此==,由此可知B正确;木块A、B离开弹簧时的动能之比为:==×=,C正确;弹簧对木块A、B的作用力大小之比:==1,D错.9.如图4所示,光滑的水平面上,质量为m1的小球以速度v与质量为m2的静止小球正碰,碰后两小球的速度大小都为v,方向相反,则两小球质量之比m1∶m2和碰撞前后动量变化量大小之比Δp1∶Δp2为( )图4A.m1∶m2=1∶3 B.m1∶m2=1∶1C.Δp1∶Δp2=1∶3 D.Δp1∶Δp2=1∶1答案AD10.如图5所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上.c车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地的水平速度相同.他跳到a 车上相对a车保持静止,此后( )图5A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系vc>va>vbD.a、c两车运动方向相反答案CD解析若人跳离b、c车时对地的水平速度为v,由动量守恒定律知:人和c车组成的系统:0=M车vc+m人v对人和b车:m人v=M车vb+m人v对人和a车:m人v=(M车+m人)·va所以:vc=-,vb=0,va=m人vM车+m人即vc>va>vb,并且vc与va方向相反.二、非选择题11.a、b两个小球在一直线上发生碰撞,它们在碰撞前后的x-t图象如图6所示.若a球的质量ma=1 kg,则b球的质量mb等于多少?图6答案 2.5 kg解析由题图知va=4 m/s,va′=-1 m/s,vb=0,vb′=2 m/s,根据动量守恒定律有mava=mava′+mbvb′,代入数据解得mb=2.5 kg.12.如图7所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速度释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m,A和B的质量相等,A和B整体与桌面之间的动摩擦因数μ=0.2.取重力加速度g=10 m/s2.求:图7(1)碰撞后瞬间A和B整体的速率v′;(2)A和B整体在桌面上滑动的距离L.答案(1)1 m/s (2)0.25 m解析(1)滑块A从圆弧轨道最高点到最低点机械能守恒,由mAvA2=mAgR,可得vA=2 m/s.在底部和B相撞,满足动量守恒,由mAvA=(mA+mB)v′,可得v′=1 m/s.(2)根据动能定理,对A、B一起滑动过程由-μ(mA+mB)gL=0-(mA +mB)v′2,可得L=0.25 m.13.如图8所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 的距离为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:图8(1)粘合后的两球从飞出轨道到落地的时间t;(2)小球A冲进轨道时速度v的大小.答案(1)2 (2)22gR解析(1)粘合后的两球从飞出轨道到落地做平抛运动,由平抛运动知识得,2R=gt2 ①所以t=2②(2)设球A的质量为m,碰撞前瞬间速度大小为v1,把球A冲进轨道最低点时的重力势能定为0,由机械能守恒定律知1mv2=mv12+2mgR2③设碰撞后粘合在一起的两球速度大小为v2,由动量守恒定律知mv1=2mv2 ④飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有2R=v2t⑤综合②③④⑤式得v=2.⑥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 动量动量守恒定律
课堂互动
三点剖析
一、动量和动量的变化
1.动量
众所周知,运动的剧烈程度,即运动的“量”的大小是与运动速度有关的,但速度是不是唯一决定因素呢?一个足球和一个铅球以相同的速度从远处飞来,运动员可以用头将足球顶回去,却不敢去顶铅球.可见,运动的“量”的大小不仅与运动速度有关,还与物体的质量有关.物理学上用两者的乘积表示这个量,称为动量,故有p=mv.从公式可以看出,由于质量m为一标量,只有大小的变化,故动量p的一些特点主要是由速度v引起的.平常所说的速度v是指物体的瞬时速度,对应的是某一时刻,故谈到物体的动量一般是指某一时刻的动量,但这不是绝对的,如果取速度v为某一段时间内的平均速度,则这时的动量应为这一段时间内的平均动量;由于速度具有相对性,选用不同的参考系,同一物体的动量也可能不同,在通常情况下,取地面为参考系.
2.动量的变化
动量的变化即动量的变化量,用Δp来表示,一个量的变化,一般指末状态的值减初状态的值,动量变化也不例外,应为末动量减初动量,即Δp=p′-p,p′为末动量,p为初动量.p′=mv′,p=mv,故Δp=mv′-mv=mΔv(注这是矢量式),故动量的变化量也是个矢量,其方向不一定与p或p′相同,而是与Δv的方向相.当然,这个结论的前提是质量不变,当质量也变时,Δp的方向与Δv的方向不一定相同,但有一点是肯定的,Δp′-p为矢量式,当p′、p在同一直线上,可以先规定正方向,用正、负号表示p′、p的方向,将矢量运算转化为代数运算.
二、冲量
冲量是力与力的作用时间的乘积,I=Ft,它反映了力在时间上的积累效果.在力特别大的情况下,作用时间很短,也会产生很大的冲量.
由于I=Ft,某一个冲量I必然对应着一个时间t,故冲量是一个过程量.如果力F为恒力,求冲量时只需按公式I=Ft来计算就行,但要分清所求的是某个分力的冲量还是合力的冲量.若是求合力的冲量要分清这几个力是否同时作用于物体;若同时作用可先求合力再求冲量,也可以先求各个力的冲量,再求合冲量;若几个力不同时作用,只能先求每个力的冲量,再求合冲量.如果作用力是变力,在中学阶段不能直接用I=Ft求解冲量,但可以根据Ft=Δ(mv)求解.
三、动量守恒定律
1.动量守恒定律是研究两个或两个以上的物体相互作用过程中的动量变化情况的,它的研究对象是这些相互作用的物体组成的系统.动量守恒定律的成立条件是系统不受外力或所受合外力为零,因此选择哪些物体组成系统就显得尤为重要了,只有选择了系统才能分清哪些力是外力,哪些力是内力,才能确定动量是否守恒.选择某一系统,动量可能守恒,选择另外的物体组成系统时,动量可能就不守恒了.
2.动量守恒是指总动量在物体相互作用的过程中一直不变,并不是只有初、末两态的动量守恒.解题时可根据题意适当选择相互作用过程中的两个状态列方程求解.
3.动量守恒定律的特点
(1)动量守恒定律的研究对象是相互作用的物体组成的系统,在应用动量守恒定律解题之前,必须明确这个系统是由哪些物体组成,只有恰当地划分系统才能正确、有效地运用动量守恒定律.
(2)动量守恒定律的表达式是矢量式.若相互作用的物体沿同一直线运动,注意设定方向,将矢量运算转化为代数运算.
(3)动量守恒定律表达式中的速度必须是相对于同一参考系的.如果题设条件中各物体的速度不是相对同一参考系的,必须适当转换参考系,使其成为相对同一参考系(通常选地面)的速度.
(4)注意动量守恒定律表达式中速度的同时性.式中的v 1、v 2是作用同一时刻的瞬时速度,v 1′、v 2′是作用后同一时刻的瞬时速度.
各个击破
【例1】 关于动量的概念,下列说法正确的是( )
A.动量大的物体惯性一定大
B.动量大的物体运动一定快
C.动量相同的物体运动方向一定相同
D.动量相同的物体速度小的惯性大
解析:物体的动量是由速度和质量两个因素决定的.动量大的物体质量不一定大,惯性也不一定大,A 项错;同样,动量大的物体速度也不一定大,B 项也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C 项对;动量相同的物体,速度小的质量大,惯性大,D 项也对.
答案:CD
类题演练1
若一个物体的动量发生了变化,则物体运动的(质量不变)( )
A.速度大小一定改变了
B.速度方向一定改变了
C.速度一定变化了
D.加速度一定不为零
解析:动量p=mv ,动量发生了变化(质量不变),必定是速度发生了变化,而速度的改变包括大小和方向.故A 、B 两项不正确,C 项正确;速度变化了必然有加速度,故D 正确. 答案:CD
变式提升
质量为0.1 kg 的弹性小球,从高1.25 m 处自由落向一光滑而坚硬的水平木板,碰后弹回到0.8 m 高,求:
(1)小球与水平板碰撞前后的动量;
(2)小球与水平板碰撞前后的动量变化.
解析:(1)由于小球做自由落体运动,设碰前小球速度为v 1,则v 1=25.11022⨯⨯=gh m/s=5 m/s,方向竖直向下,于是小球与水平板碰前的动量p 1=mv 1=0.1×5 kg·m/s=0.5 kg·m/s,方向竖直向下.
碰后,小球做竖直上抛运动的最大高度为0.8 m ,则碰后小球速度为v 2=8.0102'2⨯⨯=gh m/s=4 m/s,方向竖直向上,此时小球的动量p 2=mv 2=0.1×4 kg·m/s=0.4 kg·m/s,方向竖直向上.
(2)设竖直向下为正方向,则p 1=5 kg·m/s,p 2=-0.4 kg·m/s,Δp=p 2-p 1=(-0.4 -0.5) kg·m/s=-0.9 kg·m/s,即碰撞前后小球动量变化的大小为0.9 kg·m/s,方向竖直向上. 答案:(1)0.5 kg·m/s,竖直向下;0.4 kg·m/s,竖直向上.
(2)0.9 kg·m/s,竖直向上.
【例2】 关于冲量的概念,以下说法正确的是( )
A.作用在两个物体上的力大小不同,但两个物体所受的冲量大小可能相同
B.作用在物体上的力很大,物体所受的冲量一定也很大
C.作用在物体上的力的作用时间很短,物体所受的冲量一定很小
D.只要力的作用时间和力的乘积相同,物体所受的冲量一定相同
解析:力的冲量I=F·t,力F的大小虽然不同,只要力F的作用时间t也不同,则力F与时间t的乘积可能相同,所以A项正确;力F很大,如果力F的作用时间很短,则力F的冲量仍然可以很小,故B项错;当力F的作用时间很短时,如果力F很大,则力F的冲量仍可以很大,因此C项错;由于冲量是矢量,而矢量相同包括大小相同,方向也相同,因此既使力的大小F和作用时间t的乘积相同,也只能说明冲量的大小相同,如果力的方向不同,则冲量的方向不同,因此我们说冲量不同,所以D项不正确.
答案:A
【例3】在光滑水平面上A、B两小车中间有一弹簧,如图1-2-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是()
图1-2-1
A.两手同时放开后,系统总动量始终为零
B.先放开左手,再放开右手后,动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A项对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B项错;先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C项对;其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开后的总动量就与放开最后一只手后系统所具有的总动量相等,即不为零,D项对.
答案:ACD
类题演练2
如图1-2-2所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg,游戏时,甲推着一个质量m=15 kg的箱子,和他一起以大小为v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住,若不计冰面的摩擦,问甲至少要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞.
图1-2-2
解析:设甲推出箱子后速度为v甲,乙抓住箱子后速度为v乙,则由动量守恒定律,得
甲推箱子过程:(M+m)v0=Mv甲+mv ①
乙抓箱子过程:mv-Mv0=(M+m)v乙②甲、乙恰不相碰条件:v甲=v乙③代入数据可解得v=5.2 m/s.
答案:5.2 m/s。