教学设计《二次函数的应用.2课时 邢洁霞

合集下载

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

第二章二次函数2.4二次函数的应用第2课时一、教学目标1.经历计算最大利润问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学是应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,增强解决问题的能力.二、教学重点及难点重点:1.探索销售中的最大利润问题.2.能分析并表示实际问题中变量之间的二次函数关系,运用二次函数的相关知识解决实际问题中的最大(小)值,提高解决实际问题的能力.难点:运用二次函数的知识解决实际问题.三、教学用具多媒体课件、直尺或三角板。

四、相关资源《生产服装》动画,,.五、教学过程【情境导入】【情景演示】生成服装,描写工厂生产服装的场景。

服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?同学们,你们能解决这个问题吗?这就是我们今天要研究的内容——何时获得最大利润.师生活动:教师出示问题,引出本节课所学内容.设计意图:通过问题情境引出本节课要研究的内容,激发学生的学习兴趣.【探究新知】教师引导学生分析问题中的数量关系,设出未知数,将销售量、销售额、获得的利润用含未知数的式子表示出来,然后利用二次函数模型确定获得的最大利润.设厂家批发单价是x元时可以获利最多,获得的最大利润为y元.那么销售量可表示为1350005000.1x-⎛⎫+⨯⎪⎝⎭件.所以销售额为1350005000.1xx-⎛⎫+⨯⎪⎝⎭;所获利润135000500(10)0.1xy x-⎛⎫=+⨯-⎪⎝⎭.整理,得y=-5000(x-14)(x-10)=-5000(x2-24x+140)=-5000(x-12)2+20000.∵a=-5000<0,∴二次函数有最大值.当x=12时,y最大值=20000.答:厂家批发单价是12元时可以获利最多.设计意图:培养学生把文字语言转化为数学符号的能力.议一议在本章开始“种多少棵橙子树”的问题中,我们得到表示增种橙子树的数量x (棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?师生活动:教师出示问题,学生画出函数的图象并回答问题.解:(1)列表:描点、连线,如下图所示,由图象知,当0≤x≤10时,橙子的总产量随橙子树的增种而增加;当x≥10时,橙子的总产量随橙子树的增种而减少.(2)由图象知,当增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵时,都可以使橙子的总产量在60400个以上.设计意图:进一步用图象刻画橙子的总产量与增种橙子树之间的关系,并利用图象解决问题.通过运用函数模型让学生体会数学的实际价值,通过建模学会用函数的观点认识问题,解决问题,体会数形结合思想,激发学生的探索精神,并提高学生解决问题的自信心.【典例精析】例某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?旅馆的客房师生活动:教师出示问题,学生小组讨论,师生共同完成解题过程.解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x)=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.当x=2时,y最大=19440.这时每间客房的日租金为160+10×2=180(元).因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.设计意图:培养学生分析问题和解决问题的能力.【课堂练习】1.某民俗旅游村为接待游客住宿,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位每天可全部租出,若每张床位每天的收费每提高2元,则相应地每天就减少了10张床位的租出.如果每张床位每天以2元为单位提高收费,为使每天租出的床位少且总租金高,那么每张床位每天最合适的收费是().A.14元B.15元C.16元D.18元2.某产品进货单价为90元,按每个100元售出时,每周能售出500个,如果这种商品的销售单价每上涨1元,其每周的销售量就减少10个,那么为了获得最大利润,其销售单价应定为().A.130元B.120元C.110元D.100元3.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.销售单价为多少元时,半月内获得的利润最大?4.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?5.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y= -10x+500.(1)设李明每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.C.2.B.3.销售单价为35元时,半月内可以获得最大利润4500元.4.解:(1)因为单价上涨x元后,每件商品的利润是(80+x-60)元,每月售出的件数为(300-10x)件,所以y与x之间的函数关系式为y=(x+20)(300-10x)=-10x2+100x+6 000.(2)将y=-10x2+100x+6 000配方,得y=-10(x-5)2+6250.因为a=-10<0,所以y有最大值.因为300-10x≥0,且x≥0,所以0≤x≤30.所以当x=5时,y有最大值,最大值为6 250.所以当单价定为85元时,每月销售该商品的利润最大,最大利润为6 250元.5.解:(1)由题意,得w=(x-20)·y=(x-20)·(-10x+500)= -10x2+700x-10 000.当x=7003522(10)ba-=-=⨯-时,w有最大值,符合题意,所以当销售单价定为35元时,每月可获得最大利润.(2)由题意,得-10x2+700x-10 000=2 000.解这个方程,得x1=30,x2=40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结利用二次函数解决实际问题的一般步骤:(1)根据题意,列出二次函数表达式,注意实际问题中自变量x的取值范围;(2)将二次函数表达式配方为顶点式的形式;(3)根据二次函数的图象及其性质,在自变量的取值范围内求出函数的最值.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.4二次函数的应用(2)1.一般步骤。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计【教学设计】一、教学目标1.知识目标:掌握解决二次函数应用问题的基本方法,了解二次函数在现实生活中的应用。

2.能力目标:能够运用二次函数的知识解决与现实生活相关的问题,培养学生的应用数学思维和解决问题的能力。

3.情感目标:培养学生对数学的兴趣,激发学生的学习热情。

二、教学重点和难点重点:掌握应用二次函数解决实际问题的方法。

难点:运用二次函数解决生活中的实际问题。

三、教学内容1.二次函数的基本知识回顾2.二次函数在现实生活中的应用四、教学步骤与教学过程1.由教师布置一个小组讨论的问题:“在现实生活中,你能举出哪些例子可以用到二次函数?”鼓励学生积极参与,思考多个方面,并将问题记录在小组讨论总结表上。

2.整理讨论总结表,让每个小组派出一名代表将总结结果向全班进行汇报和讨论。

教师逐一帮助学生分析总结的例子是否能用二次函数进行模型建立和求解。

3.在学生了解和感兴趣的基础上,教师从中选取一个例子进行详细讲解,以便让学生深入理解二次函数在实际问题中的应用。

如:发射炮弹问题。

4.给学生展示一个炮弹发射的视频,并引导学生分析视频中炮弹的抛射轨迹。

通过观察和分析,引导学生发现炮弹的抛射轨迹可以用二次函数来描述。

5.示范讲解炮弹抛射问题的建模与求解过程:首先,引入二次函数的标准形式,并解释各个参数的意义;其次,根据问题的条件,列出二次函数的方程;最后,根据解方程的方法,求得抛射物的落地点和飞行时间。

6.将示例问题交给学生进行练习,鼓励学生思考并解答问题。

分析解决问题的方法,并帮助学生找出解决问题的关键步骤,培养学生灵活应用数学知识解决实际问题的能力。

7.针对其他生活例子,鼓励学生展开独立思考,提出二次函数的思考问题,并给予必要的指导。

8.课堂小结:对本节课所学知识进行总结,重点强调二次函数在现实生活中的应用和解决问题的方法。

五、课后作业1.思考二次函数的其他应用,并写一篇小短文进行总结。

2.练习本单元其他相关题目。

青岛版数学九年级下册5.7《二次函数的应用》教学设计2

青岛版数学九年级下册5.7《二次函数的应用》教学设计2

青岛版数学九年级下册5.7《二次函数的应用》教学设计2一. 教材分析青岛版数学九年级下册5.7《二次函数的应用》是学生在学习了二次函数的图象和性质的基础上进行的一节应用性课程。

本节内容主要让学生学会如何运用二次函数解决实际问题,提高学生的数学应用能力。

教材通过例题和练习题引导学生运用二次函数解决生活中的问题,例如最大利润问题、最短路径问题等。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识和图象性质,对二次函数有一定的认识。

但是,将二次函数应用于实际问题中,解决生活中的问题,对学生来说还是一个新的挑战。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.让学生掌握二次函数在实际问题中的应用方法。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.通过对实际问题的分析,培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:二次函数在实际问题中的应用方法。

2.难点:如何将实际问题转化为二次函数模型,并求解。

五. 教学方法采用案例分析法、问题驱动法、合作交流法等,引导学生主动探究,提高学生的数学应用能力。

六. 教学准备1.准备相关的实际问题案例,用于教学导入和巩固环节。

2.准备PPT,展示二次函数的应用实例和操作步骤。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如最大利润问题、最短路径问题等,引导学生思考如何运用二次函数解决这些问题。

让学生认识到二次函数在实际生活中的重要性。

2.呈现(10分钟)教师通过PPT展示二次函数的应用实例,讲解如何将实际问题转化为二次函数模型,并求解。

例如,最大利润问题可以转化为二次函数的最值问题。

在这个过程中,教师要重点讲解二次函数的性质和图象在解决问题中的应用。

3.操练(10分钟)教师学生进行小组讨论,让学生尝试解决一些实际的例子。

教师可提供一定的指导,但要注意让学生独立思考和解决问题。

【公开课】《二次函数的应用》教学设计

【公开课】《二次函数的应用》教学设计

《二次函数的应用》教学设计一、教学目标:1、通过数形结合,由二次函数的图象,进一步熟练二次函数解析式的求法;2、能利用二次函数的性质去解决实际问题,初步掌握运用数学知识解决问题的基本方法;3、感知各知识之间的联系,增强学生对二次函数本质的理解,提高学生提出问题及解决问题的能力。

二、教学重点、难点:1、重点:培养学生的问题意识和利用二次函数知识解决综合问题;2、难点:熟练掌握知识之间的关联与转化,提升思维的灵活性与深刻性;三、教学手段:多媒体教学、探究式教学四、教学过程:(一)知识回顾师:前面我们已经学习了二次函数解析式的解法,包括一般式2yax bx c 、顶点式2()y a x h k 、交点式12()()y a x x x x ,对于各类题型,同学们要能够选择恰当的方法,进行解题。

(1)一般式:y ,顶点( ),对称轴是直线x ;当x ,y 最大(小)值 .(2)顶点式:y ,顶点( ),对称轴是直线x ;当x ,y 最大(小)值.它可以对二次函数2(0)y ax a 通过 而得到.(3)交点式:若抛物线与x 轴交于点)0,(1x 、)0,(2x ,则它的解析式还可以写成: y .说明:由于二次函数(或说抛物线)的解析式有一般式、顶点式和交点式这三种表示形式,因此,在求二次函数(或说抛物线)的解析式时,要根据已知条件,设适当的解析式的形式再求解.(二)例题讲解:例1、如图,抛物线232y x bx c 与x 轴交于A (-1,0),B (2,0)两点,与y 轴交于点C . (1)求该抛物线的解析式; (2)若直线yx n 与线段BC 交于点E ,且BE =4EC ,求n 的值.2、已知二次函数2(0)y ax bx c a的图象经过A (﹣1,0)、B (4,0)、C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;xy B A C O3、二次函数2(0)y ax bx c a的图象交x轴于A,B两点,交y轴于点D,点B为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B D、的点Q,使BDQ中BD边上的高为点Q的坐标;若不存在请说明理由.(四)课堂小结1、二次函数解析式的求法;2、二次函数与全等、相似、最大(小)面积、周长等问题结合时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数模型,从而解决问题;(五)课后作业《二次函数的应用补充练习(四)》(六)课后反思二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数与全等、相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数的模型,从而使问题得到解决。

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c (a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

《二次函数的应用》教案

《二次函数的应用》教案

5.7二次函数的应用(1)教材分析:本节课的主要内容是利用二次函数图象的性质,确定二次函数的最大值或最小值,并利用这些知识,解决生产实际中的最大值与最小值问题,培养学生将数学知识应用于实际问题中的能力.教学设想:本节课主要采用师生合作的学习方式,在整节课的教学过程中,注重学生分析问题、解决问题能力的培养,能够将实际问题转化为数学中的建模思想.教学目标:知识与技能:1.经历“问题情境——建立模型——求解验证”的过程,获得利用二次函数解决实际问题的经验,感受函数模型思想和数学的应用价值.2.会利用二次函数的图象和性质求实际问题中的最大或最小值问题.过程与方法:经历探索利用二次函数的图象与性质解决实际问题中的最大或最小值的过程,培养学生分析问题和解决问题的能力.情感态度和价值观:良好的师生关系下,创设轻松的学习氛围,使学生在数学应用中获得成功的体验,增强自信心,在合作学习中增强集体责任感.教学重难点:重点:利用二次函数的图像与性质求实际问题中的最大或最小值.难点:正确分析问题,找到解决问题的途径,建立设当的数学模型解决实际问题.课前准备教具准备教师准备PPT课件课时安排:2课时教学过程:知识回顾:二次函数解析式的一般形式:化成y=a(x-h)2+k为:当横坐标为()时,纵坐标有最大(小)值( )例题讲解:例1.用篱笆围成一个有一条边靠墙的矩形菜园,已知篱笆的长度为60m.应该怎样设计才使菜园的面积最大?最大面积是多少?解:如图,设矩形菜园的宽为x m ,则菜园的长为(60-2x )m ,面积为y m 2,根据题意得:y =x (60-2x )=-2x 2+60x =-2(x -15)2+450,因为a =-2<0,所以函数有最大值.所以,当x=15时,y 最大,最大值为450. 60-2x =30.即当垂直于墙的一边长为为15m ,另一边为30m 时,矩形菜园的面积最大,最大面积为450m 2. 归纳:一般的,因为抛物线y=ax ²+bx+c 的顶点是抛物线的最低(高)点,所以当时,二次函数有最小(大)值,最小(大)值为 例2.如图,ABCD 是一块边长为2m 的正方形铁板,在边AB 上选取一点M ,分别以AM 和MB 为边截取两块相邻的正方形板料,当AM 的长为何值时,截取的板料面积最小?解:设AM 的长为x (m),则BM 的长为(2-x )m,以AM 和BM 为边的两个正方形面积之和为y (m 2). 根据题意,y 与x 之间函数的表达式为 y =x 2+(2-x )2=2x 2-4x +4=2(x -1)2+2因为a =2>0,于是,当x =1时,是y 有最小值,最小值2.根据实际意义,自变量x 可以的取值范围是0<x <2,由于x =1在这个范围内,所以二次函数y =x 2+(2-x )2的最小值就是该实际问题的最小值.所以,当AM =1m 时截取的板材面积最小,最小面积为2m 2归纳:利用二次函数解应用题的一般步骤1.设未知数(确定自变量和函数);2.找等量关系,列出函数关系式;3.化简,整理成标准形式(一次函数、二次函数等);4.求自变量取值范围;5.利用函数知识,求解(通常是最值问题);6.写出结论.【设计意图】:通过例1与例2的交流与探索,要注意让学生掌握对于实际问题中的最值问题,首先要找出对应的函数关系式,利用对应函数的性质进行求解,达到培养学生应用意识与转化的思想. 当堂检测:1.小明的爷爷用一段长30m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?2b a -a b ac 442-2.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?课堂小结:利用二次函数解应用题的一般步骤:1.设未知数(确定自变量和函数);2.找等量关系,列出函数关系式;3.化简,整理成标准形式(一次函数、二次函数等);4.求自变量取值范围;5.利用函数知识,求解(通常是最值问题);6.写出结论.作业:课本P.52第1题板书设计:5.7二次函数的应用(1)知识回顾:例l例2归纳:。

九年级数学上册《二次函数的应用》教案、教学设计

九年级数学上册《二次函数的应用》教案、教学设计
2.利用多媒体和实物展示,帮助学生形象地理解二次函数的图像与性质。
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计

沪科版数学九年级上册21.4《二次函数的应用》(第2课时)教学设计一. 教材分析沪科版数学九年级上册第21.4节《二次函数的应用》(第2课时)的内容,主要围绕二次函数在实际问题中的应用进行展开。

本节课的内容是在学生已经掌握了二次函数的图像和性质的基础上进行的,旨在培养学生运用数学知识解决实际问题的能力。

教材通过丰富的例题和练习题,引导学生学会如何将实际问题转化为二次函数模型,并利用二次函数的性质解决问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有了初步的了解。

但是,学生在应用二次函数解决实际问题时,往往会因为对实际问题理解不深、对二次函数模型掌握不牢固而遇到困难。

因此,在教学过程中,教师需要注重引导学生深入理解实际问题,将实际问题转化为二次函数模型,并巩固学生对二次函数性质的掌握。

三. 教学目标1.理解二次函数在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。

2.巩固学生对二次函数图像和性质的理解,提高学生对二次函数模型的掌握程度。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.重点:二次函数在实际问题中的应用,如何将实际问题转化为二次函数模型。

2.难点:对实际问题进行合理建模,灵活运用二次函数的性质解决问题。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探究二次函数的应用。

2.案例分析法:分析典型例题,让学生学会如何将实际问题转化为二次函数模型。

3.小组讨论法:引导学生进行团队协作,共同解决问题,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作包含实际问题、例题和练习题的PPT,方便学生直观地理解和学习。

2.教学素材:准备一些与生活相关的实际问题,作为教学案例。

3.练习题:准备一些针对本节课内容的练习题,帮助学生巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生回顾二次函数的图像和性质,为新课的学习做好铺垫。

二次函数的应用教案(教学设计) (2)

二次函数的应用教案(教学设计) (2)

教课基本信息课题二次函数的应用学科数学学段:初中年级九年级有关领域二次函数、本质应用指导思想与理论依照世界有名的数学教育家弗赖登塔尔以为,“数学教育要指引学生认识四周的世界,四周的世界应当是学生研究的源泉,而数学课本从构造上应当从与学生生活体验亲密有关的问题开始,发现数学看法和解决本质问题,实现数学化。

”法国有名数学家笛卡儿所说:“我们所解决的每一个问题,将成为一个模式,以用于解决其余问题”。

经过模型从而利用一次函数或反比率函数或二次函数、方程(组)、不等式、三角函数等知识设计不一样的方案,或拟订一个最正确方案解决本质问题。

它既切合素质教育提出的“培育学生应企图识”的新要求,同时也有益于培育学生剖析问题和解决问题的能力,解这种数学应用题的要点是经过对问题原始形态的剖析、联想和抽象,将本质问题转变为一个数学识题,即建立一个函数数学模型。

数学课程的设计,充足考虑本阶段的学生学习数学的特色,切合学生的认知规律和心理特色,有益于激发学生的学习兴趣,引起学生的数学思虑;充足考虑数学自己的特色,表现数学的本质;在表现作为知识与技术的数学的结果的同时,重视学生的已有经验,使学生体验从本质背景中抽象出数学识题,建立数学模型、追求结果、解决问题的过程。

为了适应时代对人材培育的需要,数学课程还要特别着重发展学生的模型思想与应企图识和创新意识。

本节课是学习了二次函数后的一个研究建模课,学生小组合作,实地操作,研究投篮时的篮球运动轨迹,也为学生供给一些丈量工具,踊跃指引学生利用所学知识设计解决问题的方案。

从分享学生丈量、研究篮球运动轨迹是哪一种曲线(课前已经实地丈量估量),这一世活情境激发学生兴趣导入;再到利用二次函数成立模型,对提高本质投篮命中率进行剖析,提出建议,步步深入。

使学生形成把本质问题经过成立数学模型,变换成数学识题进行求解的思想,使学生领会到数形联合、数学建模思想、转变等数学思想方法的本质意义,同时培养学生研究知识,理论联系本质的能力,培育发展学生的模型思想与应企图识和创新意识,确实领会数学根源于生活,同时服务于生活的真理。

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计
一、教学内容及内容解析
分析实际变量中的二次函数的关系,运用二次函数求出最大(小)值问题.二、教学目标
1.知识与技能:经历探索销售中最大利润等问题的过程,体会用二次函数解决最优化问题的过程,并感受数学的应用价值.
2.过程与方法:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
3.情感、态度与价值观:经历销售中最大利润问题的探究过程,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.三、教学问题诊断分析
根据教学目标确定重难点如下:
重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题.四、教学过程设计(脚本)。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计教学设计:二次函数的应用(2)一、教学目标1.理解二次函数在现实生活中的应用。

2.掌握将实际问题转化成二次函数模型的能力。

3.能够解决实际问题,并给出相应的解释。

二、教学内容1.理解二次函数在现实生活中的应用。

a.抛物线的形状和参数意义。

b.坐标轴划分的表示方法。

2.实际问题转化成二次函数模型的能力。

a.确定问题中的自变量、因变量和关系。

b.用实际数据进行模型的构建。

c.利用二次函数的性质和模型求解问题。

3.解决实际问题,并给出相应的解释。

a.利用二次函数模型预测未知数据。

b.利用二次函数图像分析问题。

三、教学过程1.导入新课,复习二次函数的基本概念和性质。

2.引入二次函数在现实生活中的应用,并进行示例分析。

示例:一辆汽车从静止开始行驶,行驶的距离和时间的关系可用二次函数表示。

已知汽车在5秒时行驶了20米,在10秒时行驶了45米,请问汽车在15秒和20秒时行驶了多少米?a.确定自变量和因变量:自变量为时间,因变量为距离。

b.确定关系:汽车行驶的距离和时间之间存在二次函数关系。

c.用已知数据构建二次函数模型:设汽车行驶的距离为y,时间为x,则有二次函数y=ax^2+bx+c。

根据已知数据,在x=5时,y=20;在x=10时,y=45将这两个点代入二次函数模型,可以得到两个方程:20=25a+5b+c45=100a+10b+c解这个方程组,可以得到a=0.5,b=0.5,c=0。

d.利用二次函数模型求解问题:当x=15时,代入二次函数模型,求得y=57.5当x=20时,代入二次函数模型,求得y=90。

e.解释结果:汽车在15秒时行驶了57.5米,在20秒时行驶了90米。

3.练习:学生独立解决类似问题。

示例:一个烟花发射器以一定的角度发射烟花,烟花的高度与时间的关系可用二次函数表示。

已知烟花在1秒时高度为10米,在3秒时高度为30米,请问烟花在5秒和7秒时的高度分别是多少?a.确定自变量和因变量:自变量为时间,因变量为高度。

《二次函数的应用》教案

《二次函数的应用》教案

《二次函数的应用》教学设计一、教学背景分析:1.教学内容分析:二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。

因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。

而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。

2.学生情况分析:本节课的授课对象是九年级的学生。

在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。

但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。

二、教学重点:建立适当的坐标系解决实际问题.三、教学难点:正确理解实际问题中的量与坐标系中的点的对应关系.四、教学目标:1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题.2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识.3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.五、教学方式:引导发现、合作探究六、教学手段:多媒体、学案七、教学过程:教学环节师生活动设计意图一、情境引入教师用多媒体展示颐和园图片:同学们知道这是哪儿吗?颐和园是目前中国最大、现存最完整的皇家园林。

在颐和园的湖区景点中,有一座非常著名的桥就是——十七孔桥,它是乾隆年间修建的,全长150米,宽8米,全长150米,宽8米;因有十七个桥洞而得名,是圆内最大的一座石桥。

九年级数学下册《二次函数的应用》教案、教学设计

九年级数学下册《二次函数的应用》教案、教学设计
(2)设计一些综合性的题目,让学生运用二次函数的顶点式、交点式进行求解,提高学生的问题解决能力。
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。

二次函数的应用教案

二次函数的应用教案

二次函数的应用教案教案题目:二次函数的应用教案内容:一、教学目标:1. 了解二次函数的基本定义和一般形式;2. 掌握二次函数的图像、顶点、轴对称、最值等基本概念;3. 理解二次函数在现实生活中的应用。

二、教学重难点:1. 掌握二次函数的图像、顶点、轴对称、最值等基本概念;2. 理解二次函数在现实生活中的应用。

三、教学过程:Step 1:导入新知1. 引导学生回顾二次函数的定义和一般形式;2. 提问:二次函数的图像长什么样?一般的形状是什么样?Step 2:二次函数的图像和基本概念1. 介绍二次函数的图像:开口方向、顶点、轴对称等概念;2. 示意图:绘制二次函数的图像,引导学生观察和描述。

Step 3:二次函数的最值1. 引导学生思考:二次函数的最值在哪些情况下出现?如何求解最值?2. 解答:当二次函数的开口方向向下时,最大值出现;当二次函数的开口方向向上时,最小值出现。

Step 4:二次函数在现实生活中的应用1. 引导学生思考:二次函数在现实生活中的应用有哪些?2. 给出实例:如抛物线的运动轨迹、喷泉的水柱高度随时间的变化等,让学生理解二次函数在实际问题中的应用。

Step 5:综合应用1. 提供实际问题,让学生利用二次函数的知识进行分析和求解;2. 学生进行讨论和解答,并给出解题过程和答案;3. 教师进行点评和总结。

四、教学延伸与巩固1. 提供更多的实际问题,让学生进行思考和解答;2. 练习题:设计一些练习题,让学生巩固和运用所学的知识。

五、教学反思本教案通过引导学生观察和描述二次函数的图像,以及分析二次函数的最值等基本概念,帮助学生理解了二次函数在现实生活中的应用。

通过练习题的实际应用,培养了学生运用二次函数的能力。

但在教学过程中,可以增加一些互动性的环节,提高学生的参与度。

《二次函数的应用》教案

《二次函数的应用》教案

《二次函数的应用》教案教学目标一、知识与技能1.巩固并熟练掌握二次函数的性质.2.能够运用二次函数的性质解决实际问题.3.能够分析和表示实际问题中变量之间的二次函数关系,并会运用二次函数求实际问题中的最大值或最小值.增强解决问题的能力.二、能力目标建立二次函数模型,进一步体会如何应用二次函数的有关知识解决一些生活实际问题,进而提高理解实际问题、从数学角度抽象分析实际问题和运用数学知识解决实际问题的能力.三、情感态度与价值观1.从实际生活中认识到:数学来源于生活,数学服务于生活.2.培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成.3.经历求最大面积的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.教学重点能利用实际问题列出二次函数的解析式,并能利用二次函数的性质求出最大值和最小值.教学难点能利用几何图形的有关知识求二次函数的解析式.教学过程一、相关知识回顾1.函数223y x x =+-的最值是,是最(填“大”或者“小”)值.2.说说你是如何做的?3.将函数2245y x x =+-化成顶点式,并指出顶点坐标,对称轴.二、新课引入1.合作讨论,解决问题:如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角的边上. (1)如果设矩形的一边AB =x m ,那么AD 边的长度如何表示?(2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)设AD 的长度为a m ,则:BC =a mBC ∥AD (已知) ∴403040a x -= ∴3304a x =- 即3304AD x =-(2)∵223(30)433043(20)300(040)4y x ax x x x x x =⋅=⋅-=-+=--+<< 当20300x y ==最大时,2.变式训练,灵活运用议一议:如果把上题中的矩形改为如图所示的位置,其他条件不变,那么矩形的最大面积是多少?你是怎样知道的?小组成员之间相互讨论.解:由勾股定理可得,这个三角形的斜边长为50m易求得斜边上的高为24m .设矩形的一边 m AD x =,另一边AB =a m ,则有242450a x -= 解得:122425a x =-所以2212242512(25)300(050)25y x ax x x x =⋅=-=--+<< 因此,当25=x 时,300=最大y3.归纳总结解决问题的路和方法整理(1)数据(常量、变量)提取;(2)自变量、因变量识别;(3)构建函数解析式,并求出自变量的取值范围;(4)利用函数(或图像)的性质求最大(或最小)值.4.迁移运用,培养能力例1、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多?(结果精确到0.01m ),此时,窗户的面积是多少?解: 74π 15x y x ++= ∴4715x x y π--= 015x <<且1570154x x π--<< ∴0 1.48x <<设窗户的面积是S m 2.则:22+ππx 22221π221157ππ22471522715225()21456S x xy x x x x x x x =+--=+⋅=-+=--+ ∴当15 1.0714x =≈时,225 4.0256S =≈最大 因此,当x 约为1.07 m 时,窗户通过的光线最多,此时窗户的面积约为4.02m 2.例2、某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元销售,那么一个月内可售出180件.根据销售经验,提高单价会导致销售量的下降,即销售单价每上涨1元,月销售量会减少10件.当销售单价为多少时,该店能在一个月内获最大利润?5.归纳总结,探索规律.(1)对问题情景中的数量(提取常量、变量)关系进行梳理;(2)建立函数模型(求出解析式及相应自变量的取值范围等)(3)建立函数模型(求出解析式及相应自变量的取值范围等),解决问题用字母(参数)来表示不同数量(如不同长度的线段)间的大小联系;6.变式与拓展,灵活掌握练习1、如图,隧道横截面的下部是矩形,上部是半圆,周长为16米.(1)求截面积S (米2)关于底部宽x (米)的函数解析式,及自变量x 的取值范围? (2)试问:当底部宽x 为几米时,隧道的截面积S 最大(结果精确到0.01米)?练习题2、已知,直角三角形的两直角边的和为2,求斜边长可能达到的最小值,以及当斜边长达到最小值时两条直角边的长.1.解:∵隧道的底部宽为x ,周长为16,则隧道下部矩形的高为π284x +-故当48.4432≈+=πx 米时,S 有最大值 答:当隧道的底部宽度为4.48米时,隧道的面积最大2.解:设其中的一条直角边长为x ,则另一条直角边长为(2-x ),又设斜边长为y ,则:所以:当x =11练习3、如课本图,抛物线形悬索桥,已知悬索桥两端主塔高150m ,主塔之间的距离为900m ,是建立适当的直角坐标系,求出该抛物线形桥所对应的二次函数表达式.练习4、小妍想将一根72cm 长的彩带剪成两段,分别为成两个正方形,则她要怎么剪才能让这两个正方形的面积和最小?此时的面积和是多少?归纳小结:1.本节课我们主要学习了哪些知识?利用几何图形的性质,列出二次函数的解析式,并求最大(小)值y =。

二次函数运用第二课时教案

二次函数运用第二课时教案

二次函数运用第二课时教案第二课时教案,二次函数的运用。

一、教学目标。

1. 知识与技能。

(1)掌握二次函数的基本概念和性质;(2)能够应用二次函数解决实际问题;(3)能够画出二次函数的图像,并分析图像的特点。

2. 过程与方法。

(1)通过实例引入,激发学生的学习兴趣;(2)采用启发式教学方法,引导学生主动探究;(3)结合生活实际,培养学生的数学建模能力。

3. 情感态度价值观。

(1)培养学生的数学思维能力和解决问题的能力;(2)激发学生对数学的兴趣,树立正确的学习态度。

二、教学重点与难点。

1. 重点。

(1)二次函数的基本概念和性质;(2)二次函数的图像特点及其应用。

2. 难点。

(1)二次函数的实际问题应用;(2)二次函数图像的分析。

三、教学过程。

1. 导入新课。

老师通过一个生活实际问题引入二次函数的概念,比如一个抛物线运动的问题,让学生在实际问题中感受二次函数的存在和应用。

然后引出二次函数的定义和性质。

2. 概念讲解。

(1)二次函数的定义,y=ax^2+bx+c,其中a≠0;(2)二次函数的图像特点,开口方向、顶点、对称轴等;(3)二次函数的性质,顶点坐标、对称轴方程等。

3. 例题讲解。

老师通过一些例题,让学生掌握二次函数的基本应用和解题方法,比如求解二次函数的顶点、对称轴方程等。

4. 练习。

让学生进行一定数量的练习,巩固所学知识,提高解题能力。

5. 拓展。

老师可以结合实际生活中的问题,引导学生应用二次函数解决实际问题,比如抛物线运动、建筑物的设计等。

6. 总结。

总结本节课的重点内容,让学生对二次函数的基本概念和应用有一个清晰的认识。

四、教学反思。

本节课采用了启发式教学方法,通过生活实际问题引入,让学生更容易理解和接受二次函数的概念和应用。

同时,通过大量的例题练习,让学生掌握了二次函数的解题方法和技巧。

在拓展环节,结合实际问题进行应用拓展,培养了学生的数学建模能力。

但是在教学过程中,也需要注意引导学生主动思考和解决问题,培养他们的数学思维能力。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计第1课时教学过程:一、创设情境、提出问题出示引例 (将作业题第3题作为引例) 给你长8m 的铝合金条,设问: ①你能用它制成一矩形窗框吗? ②怎样设计,窗框的透光面积最大? ③如何验证?二、观察分析,研究问题演示动画,引导学生观察、思考、发现:当矩形的一边变化时,另一边和面积也随之改变。

深入探究如设矩形的一边长为x 米,则另一边长为(4-x)米,再设面积为ym 2,则它们的函数关系式为x x y 42+-=⎩⎨⎧-o x x 4040 x ∴并当x =2时(属于40 x 范围)即当设计为正方形时,面积最大=4(m 2) 引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。

步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。

三、例练应用,解决问题在上面的矩形中加上一条与宽平行的线段,出示图形设问:用长为8m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?引导学生分析,板书解题过程。

变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面积最大?(结果精确到0.01米)练习:课本作业题第4题四、知识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题的一般步骤是什么?应注意哪些问题?学到了哪些思考问题的方法?五、布置作业:作业本第2课时教学过程:一、复习:1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。

(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章二次函数(第2课时)
山西省稷山县西社初中邢洁霞
一、学生知识状况分析
通过本章前三节的学习,学生已对二次函数的概念、二次函数的图像及其性质、如何确定二次函数的解析式等问题有了明确的认识.二次函数应用的第一课时是“何时面积最大”,学生初步感受到数学模型思想及数学的应用价值.本节课将进一步利用二次函数解决实际问题.
二、教学任务分析
“何时获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴.二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.
教学目标
(一)知识与技能
1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.
2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
(二)过程与方法
经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.
(三)情感态度与价值观
1、体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值
教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值
三、教学过程分析
本节课以探究活动一、探究活动二及议一议这三个环节为主体,展开对二次函数应用的研究与探讨.
第一环节 探究活动一
活动内容:(有关利润的问题)
服装厂生产某品牌的T 恤衫成本是每件10元,根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
回顾:在学习一元二次方程的应用时遇到过有关销售利润的问题,常用相等关系是: 销售利润=单件利润×销售量
若设批发单价为x 元,则:
单件利润为 ; 降价后的销售量为 ; 销售利润用y 元表示,则
)14024(5000-2+-=x x
20000)12(50002+--=x
∵-5000<0
∴抛物线有最高点,函数有最大值.
当x =12元时,y 最大= 20000元.
)元(10-x 件)5001
.0-135000(⨯+x )5001
.0135000)(10(⨯-+-=x x y
答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 若设每件T 恤衫降a 元,则:
单件利润为 ; 降价后的销售量为 ; 销售利润用y 元表示,则
)32(5000-2--=a a
20000)1(50002+--=a
∵-5000<0
∴抛物线有最高点,函数有最大值.
当x =1元时,即批发单价是12元时,y 最大= 20000元.
答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 想一想:解决了上述关于服装销售的问题,请你谈一谈怎样设因变量更好?
活动目的:
通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值.在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析,是教学的一个重要内容.
第二环节 探究活动二
活动内容:
某旅社有客房120间,每间房的日租金为160元时,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?
分 析:相等关系是
客房日租金的总收入=每间客房日租金×每天客房出租数
解:设每间客房的日租金提高x 个10元,则每天客房出租数会减少6x 间,若客房日租金的总收入为y 元,则:
)元(1013--a 件)5001
.05000(⨯+a )(5001
.05000)(1013⨯+--=a a y
=19440)260
-2+-x ( ∵06-120,0>≥x x 且
∴200<≤x
当x =2时,y 有最大值 19440.
这时每间客房的日租金为180210160=⨯+元,客房总收入最高为19440元. 随堂练习:课本P49练习1
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
解:设销售单价提高x 元,销售利润为y 元,则
y=(30-20+x)(400-20x)
=-20x 2+200x+4000
=-20(x-5)2+4500.
答:当销售单价提高5元时,可在半月内获得最大利润4500元. 第三环节 议一议
活动内容:解决本章伊始,提出的“橙子树问题”
本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y =(600-5x)(100+x)=-5x 2+100x+60000.
(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.
(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?
(要求学生画出二次函数的图象,并根据图象回答问题)
)
6120)(10160(x x y -+=
实际教学效果:
学生可以顺利解决这个问题,答案如下
(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.
(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.
课堂小结:
请你结合本节课的内容谈谈你对二次函数应用的认识.
课后作业:
习题2.9 1、2、3。

相关文档
最新文档