浙教版八年级数学上册一章 三角形的初步认识
(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
浙教版八年级数学上册同步新课课件第1章 定义与命题
条件是: 一个三角形的三个角相等 结论是: 这个三角形是等边三角形 改写成: 如果一个三角形的三边相等,那么这个三角
形是等边三角形.
2 真命题与假命题
(1)三角形的内角和等于180° (2)如果两个角是对顶角,那么这两个角相等;
(3)两直线平行,同旁内角相等; (4)直角都相等; (5)经过一点确定一条直线.
(3)不相等的两个角不是对顶角;
(4)欢迎前来参观! (5)两个锐角的和是钝角;
(6)取线段AB的中点C.
注意:祈使句、疑问句、 感叹句都不是命题.
解:(2)(3)(5)是命题.像(1)(4)(6)这样对
某一件事的对错没有给出任何判断就不是命题.
试一试 1.你能举出一些命题吗? 2.能否举出一些不是命题的语句?
条件
结论
已知事项
由已知事项推断 出来的事项
归纳:命题都可以写成“如果……,那么……”的形
式,其中用“如果”开始的部分就是条件,用“那么”开
始的部分就是结论.
典例精析
新课讲解
例2 指出下列命题的条件和结论,并改写成“如果……,
那么……”的形式:
⑴同位角相等,两直线平行;
条件是: 同位角相等 结论是: 两直线平行 改写成: 如果同位角相等,那么两直线平行. ⑵三个角都相等的三角形是等边三角形.
新课讲解
根据前面的学习,我们可以判断(1)(2)(4)是正确的, 也就是说,如果条件成立,那么结论一定成立.像这样的命题,称 为真命题.
其中(3)(5)是错误的,也就是说,当条件成立时,不能保 证结论总是正确,或者说结论不成立,像这样的命题,称为假命题.
例3 哪些是真命题,哪些是假命题?
(1)一个角的补角大于这个角; 假命题
浙教版数学八年级上册第一章三角形的初步认识 《全等三角形经典模型总结》(无答案)
全等三角形相关模型总结一、角平分线模型(一)角平分线的性质模型辅助线:过点G作GE⊥射线ACA、例题1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.B、模型巩固1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.(二)角平分线+垂线,等腰三角形必呈现A、例题辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .求证:1()2BE AC AB=-.例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:1()2AM AB AC=+.(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC .A、例题1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ .2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.B、模型巩固1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC .2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC .3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC+CD=AB .。
新教材浙教版八年级数学上册第一二单元备课资料
初中数学新教材八年级上备课资料第1章三角形的初步知识第1节认识三角形第1课时:知识基础:第二学段(4—6年级)课标要求:6.认识三角形。
通过观察、操作,了解三角形两边之和大于第三边、三角形内角和为180度。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
教学建议:(1)基本概念:①三角形的严格定义,特别是“不在同一直线上”“顺次首尾相接”。
通过“不在同一直线”认识“特殊与一般”的关系;②三角形的边、内角(原教材没有严格定义),需补充“对边”、“对角”、“夹边”、“夹角”等述语。
(2)(以下按角、边展开)角(内角和为180度小学已学过,分类小学也学过)关于三角形的分类:①过去教材讲三角形的分类是在第二节课讲的内角和时提出来的,但当时教材对内角和定理也未用推理的方法说明,与小学一样,有重复之嫌,而新教材把定理的证明放在本章中讲证明时证明,而已学习了平行线也为证明作了知识储备;②在第一稿中出现了按边分类,但最后定稿是删去了,而课标对此未作说明,课标在第二学段落提出了认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形,而明确提出按角、边分类则是体现对学生能力的培养,可视作一种提升。
③可适当作此提高,让学生思考:三角形中最多有几个锐角?几个钝角?几外直角?(3)边——“三角形两边之和大于第三边”小学已学过(观察、操作,没有理性的思考)初中要提升:①渗透推理的思想——找几何依据;②用不等式表示;③在不能确定三边大小时,需三个不等式;当能确定最大边时,归结为较小两边之和大于最大边;构成三角形——表述时强调首尾相接;④任何两边之差小于第三边仍需用实验的方法,不能用不等到式性质推理。
至于是否需要补充,已知两边,第三边大于两边之差而小于这两边之和,可根据学生实际择机进行)第2课时知识基础:(1)这三个概念小学未学过,即使“高”小学也没有描述概念,只是直观的(2)在学习了线段中点、垂线、角平分线这些概念的基础上进行,原教材分两节课,中线、角平分线一节,高线一节,而新教材只一节课,会很紧张,特别是高线学生不易理解,教材采用操作、概括、比较、判断、运用相结全的办法进行。
浙教版八年级上数学三角形的性质及初步认识
考点精读1. 三角形的内角和定理与外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 直角三角形的性质与判定。
知识点概要1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。
4、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(2)三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
5、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)题型分类1:三角形例1:如图所示,图中三角形的个数共有()A.1个 B.2个 C.3 个 D.4个例2:下列长度的三条线段能组成三角形的是( )A.1cm, 2cm, 5cm B.4cm, 8cm, 12cmC.5cm, 5cm, 15cm D.6cm,8cm, 9cm例3:如图,在△ABC中,∠A= .∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2008BC与∠A2008CD的平分线相交于点A2009,得∠A2009.则∠A2009=.练习1. 下列长度的三条线段能组成三角形的是()A .1cm , 2cm , 3.5cmB .4cm , 5cm , 9cmC .5cm ,8cm , 15cmD .6cm ,8cm , 9cm2.如图,△ABC 中,∠A =60°,∠C =40°,延长CB 到D ,则∠ABD = 度.答案:1. D 2. 100° 最新考题1.如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是( )A .4B .4.5C .5D .5.52.将一副三角板按图中方式叠放,则角α等于( ) A .30° B .45° C .60°D .75°3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( )A .70°B .80°C .90°D .100°4. 如图是一个任意的五角星,它的五个顶角的和是( )A. 50B. 100C. 180D. 200CBB 'A '例1:如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于() A .60B .50C .45D .30例2:如图2,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度. 练习1.如图,ACB A C B '''△≌△,BCB '∠=30°,则ACA '∠的度数为( )A .20°B .30°C .35°D .40°2.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD =OEA B DC例1ABCDCBA 例2B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF 的周长是 cm .答案:1.C 2.C 3. 6; 最新考题1. 如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°2如图,ABC △的周长为32,且 AB AC AD BC =⊥,于D ,ACD △的周长为24,那么AD的长为 .3. 已知△ABC 中,AB=BC≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 答案:1.B 2 .8 3. 7 知识点3:等腰三角形例1:等腰直角三角形的一个底角的度数是( ) A .30°B .45°C .60°D .90°例2:如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部, 则阴影部分图形的周长为 cm .练习:1.已知等腰△ABC的周长为10,若设腰长为x ,则x 的取值范围是 .2.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为 .答案: 1. 2.5<x<5; 2. 6. 最新考题1.如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( ) A .20B .30C .35D .402. 如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知 10=∠BAE ,则C ∠的度数为( ) A .30 B .40 C .50 D .603.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A.13 B.14 C.15 D.16答案:1.B 2.B 3.A过关检测一、选择题1.如图1,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A.22.5°角 B.30°角 C.45°角 D.60°角2.时钟8点整,时针与分针之间的夹角为()A.120° B.100° C.180° D.160°3.一张长方形纸ABCD,如图2,将C角折起到E处,作∠EFB的平分线FH,则∠HFG为()A.锐角 B.直角 C.钝角 D.无法确定图1 图2 图34.现有长分别为16cm,34cm的两根木棒,要从下列木棒中选取一根钉一个三角形的木架,应选取哪一根()A.16cm B.34cm C.18cm D.50cm5.在△ABC中,∠C=90°,AB=BC,AD是∠BAC的平分线,•DE•⊥AB•垂足为E,•若AB=20cm,则△DBE的周长为()A.20cm B.16cm C.24cm D.18cm8.如图4,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB、•AC于点M、N,若AB=12,AC=18,BC=24,则△AMN的周长为()A.30 B.36 C.39 D.42图4 图5 图69.如图5,沿AC方向小山修路,为加快施工进度,•要在小山的另一边同时施工,•从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于()A....105m10.如图6,△DAC和△EBC均是等边三角形,AE、BD分别与CD、•CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3 B.2 C.1 D.0二、填空题1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______.(1)(2)(3)2.如图2,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D•点到直线AB的距离是_______cm.3.如图3,AD、AF分别是△ABC的高和角平分线,已知∠B=36°,∠C=•76•°,则∠DAF=______度.4.(如图4,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC内,若∠1=20°,则∠2的度数为______.(4)(5)(6)5.如图5,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•交于点O,•且AO•平分∠BAC,那么图中全等三角形共有________对.6.如图6,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E•是AB边上一动点,则EC+ED的最小值是________.三、解答题1.已知:如图△ABC中,AB=AC,D为BC上一点,过点D作DE∥AB•交AC于点E,求证:∠C=∠CDE .2.已知:如图,△ABC 和△ECD 都是等腰直角三角形,•∠ACB=•∠DCE=90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)AD 2+AE 2=DE 2.3.如图,已知:在Rt △ABC 中,∠ACB=90°,sinB=35,D 是BC 上一点,DE ⊥AB ,•垂足为E ,CD=DE ,AC+CD=9,求BC 的长.4.如图所示,D 是△ABC 的边AB 上一点,E 是AC 的中点,FC ∥AB . (1)试说明△ADE ≌△CFE ;(2)若AB=7,FC=5,求BD 的长.5.如图,已知,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 是AB 中点,E 、F •分别在AC 、BC 上,且ED ⊥FD ,求证:S 四边形EDFC =12S △ABC .6.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD:(2)若AC=12cm,求BD的长.7.如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于O点,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可以判定△ABC是等腰三角形.(•用序号数写出所有情况)(2)选择(1)中的一种情况,证明△ABC是等腰三角形.。
2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)
第一章三角形的初步认识单元测试卷一、选择题1.以下列数值为长度的各组线段中,能组成三角形的是( )A.2,4,7B.3,3,6C.5,8,2D.4,5,62.下列汽车标志中,不是由多个全等图形组成的是( )A.B.C.D.3.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是( )A.2b-2c B.-2b C.2a+2b D.2a4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是( )A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°5.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=4,BD=13,则AB等于( )A.7B.8C.9D.106.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为( )A.50°B.40°C.10°D.5°7.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA = 2,则PQ的长不可能是( )A.4B.3.5C.2D.1.58.在下面四个命题是真命题的个数有( )(1)互相垂直的两条线段一定相交;(2)有且只有一条直线垂直于已知直线;(3)两条直线被第三条直线所截,同位角相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.3个B.2个C.1个D.0个9.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)10.如图,△ABC为直角三角形,∠ACB=90°,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )A.120°B.135°C.150°D.160°二、填空题11.将命题“同角的补角相等”改写成“如果……那么……”的形式为 12.如图,在△ABC和△DEF中,A、F、C、D在同一直线上,AF=DC,AB=DE,当添加条件 时,就可得到△ABC≌△DEF(只需填一个你认为正确的条件即可).13.如图,△ABC≌△CDE ,若∠D =35°,∠ACB =45°,则∠DCE 的度数为 .14.已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ;(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点P ;(3)画射线OP ,射线OP 即为所求(如图).从上述作法中可以判断△MOP≌△NOP ,其依据是 (在“SSS ”“SAS ”“AAS ”“ASA ”中选填)15.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =3,S △ADC =6,则CE 的长度为 .16.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为 .三、作图题17.如图,按下列要求图:(要求有明显的作图痕迹,不写作法)(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高BG.四、解答题18.某同学用10块高度都是5cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板ABD(∠ABD=90°,BD=BA),点B在CE上,点A和D分别与木墙的顶端重合.(1)求证:△ACB≌△BED;(2)求两堵木墙之间的距离.19.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.20.如图,在△ABC中,E是AB上一点,AC与DE相交于点F,F是AC的中点,AB∥CD.(1)求证:△AEF≌△CDF;(2)若AB=10,CD=7,求BE的长.21.如图,在Rt△ABC中,AC=BC,∠ACB=90°,BF平分∠ABC交AC于点F,AE⊥BF于点E,AE,BC的延长线交于点M.(1)求证:AB=BM;(2)求证:BF=2AE.22.如图,△ABC是等边三角形,点D在AC上,以BD为一边作等边△BDE,连接CE.(1)说明△ABD ≌△CBE的理由;(2)若∠BEC=82°,求∠DBC的度数.23.如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(2)若AB=7,AD=4,CD=8,S△ACD=15,求△ABE的面积.答案解析部分1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】(1)D 9.【答案】C 10.【答案】B11.【答案】如果两个角是同一个角的补角,那么这两个角相等12.【答案】BC=EF (答案不唯一)13.【答案】100°14.【答案】SSS 15.【答案】816.【答案】1或115或23517.【答案】(1)解:如图:CD 是所求的△ABC 的角平分线;(2)解:如图:BE 是所求的△ABC 的中线;(3)解:如图BG 为所求的△ABC 的高.18.【答案】(1)证明:由题意得:AB =BD ,∠ABD =90°,AC ⊥CE ,DE ⊥CE ,∴∠BED =∠ACB =90°,∴∠BDE+∠DBE =90°,∠DBE+∠ABC =90°,∴∠BDE =∠ABC ,在△ACB 和△BED 中,{∠ABC =∠BDE ∠ACB =∠BED BD =AB,∴△ACB ≌△BED (AAS );(2)解:由题意得:AC =5×3=15(cm ),DE =7×5=35(cm ),∵△ACB ≌△BED ,∴DE =BC =35cm ,BE =AC =15cm ,∴DE =DC+CE =50(cm ),答:两堵木墙之间的距离为50cm .19.【答案】证明:∵在△ABD 和△CBD 中, {AB =CB AD =CD BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.20.【答案】(1)证明:∵AB//CD∴∠A=∠DCF∵∠AFE=∠DFC∵ F是AC的中点,∴AF=CF∴△AEF≌△CDF(2)解:∵△AEF≌△CDF∴AE=CD∵BE=AB-AE=AB-CD=10-7=321.【答案】(1)证明:∵BF平分∠ABC,∴∠ABE=∠MBE,∵AE⊥BF,∴∠AEB=∠MEB=90°,∵BE=BE∴△ABE≌△MBE(ASA)∴AB=BM(2)证明:∵△ABE≌△MBE,∴AE=EM,∴AM=2AE,∵∠ACB=90°,∠MEB=90°,∴∠BCF=∠ACM=90°,∠M+∠CBF=∠M+∠CAM=90°,∴∠CBF=∠CAM,∵BC=AC,∴△BCF≌△ACM(ASA),∴BF=AM,∴BF=2AE.22.【答案】(1)解:△ABD ≌△CBE,理由如下:∵△ABC与△BDE是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∵∠DBC=∠DBC,∴∠ABD=∠CBE∴△ABD≌△CBE(SAS);(2)解:由(1)可得:△ABD ≌△CBE,∵∠BEC=82°,∴∠BEC=∠BDA=82°,∵∠ACB=60°,∠ADB=∠DBC+∠ACB,∴∠DBC=22°.23.【答案】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=∠CBE+∠ECB=90°,∴∠ACD=∠CBE.在△ADC和△CEB中{∠ADC=∠CEB∠ACD=∠CBEAC=BC∴△ADC≌△CEB;(2)解:AD=BE+DE,理由如下:∵△ADC≌△CEB,∴CD=BE,AD=CE.∴CE=CD+DE=BE+DE.∴AD=BE+DE.24.【答案】(1)证明:如图,过点E作EG⊥AD于G,EH⊥BC于H,∵EF⊥AB,∠AEF=50°,∴∠FAE=90°−50°=40°,∵∠BAD=100°,11 / 11∴∠CAD =180°−∠BAD−∠FAE =40°,∴∠FAE =∠CAD =40°,∴CA 为∠DAE 的平分线,又EF ⊥AB ,EG ⊥AD ,∴EF =EG ,∵BE 是∠ABC 的平分线,∴EF =EH ,∴EG =EH ,∴点E 在∠ADC 的平分线上,∴DE 平分∠ADC ;(2)解:设EG =x ,则EF =EH =EG =x ,∴S △ACD =S △ADE +S △CDE =12AD ⋅EG +12CD ⋅EH =15,即:12×4x +12×8x =15,解得,x =52,∴S △ABE =12AB ⋅EF =12×7×52=354,∴△ABE 的面积为354.。
浙教版八年级数学上册全册PPT课件
第3章 一元一次不等式
浙教版八年级数学上册全册PPT课 件
浙教版八年级数学上册全册PPT课 件
2.3等腰三角形的判定定理
浙教版八年级数学上册全册PPT课 件
2.4逆命题和逆定理
浙教版八年级数学上册全册PPT课 件
2.5直角三角形
浙教版八年级数学上册全册PPT课 件
2.6直角三角形全等的判定
第PT课 件
1.1认识三角形
浙教版八年级数学上册全册PPT课 件
1.2定义与命题
浙教版八年级数学上册全册PPT课 件
1.3证明
浙教版八年级数学上册全册PPT 课件目录
0002页 0054页 0091页 0131页 0211页 0243页 0273页 0313页 0336页 0377页 0408页 0433页 0466页 0505页 0557页
第1章 三角形的初步认识 1.2定义与命题 1.4全等三角形 1.6尺规作图 2.1图形的轴对称 2.3等腰三角形的判定定理 2.5直角三角形 第3章 一元一次不等式 3.2不等式的基本性质 3.4一元一次不等式组 4.1平面直角坐标系 4.3探索确定位置的方法 5.1常量与变量 5.3一次函数 5.5一次函数的简单应用
第2章 特殊三角形
浙教版八年级数学上册全册PPT课 件
2.1图形的轴对称
浙教版八年级数学上册全册PPT课 件
2.2等腰三角形的性质定理
浙教版八年级数学上册全册PPT课 件
1.4全等三角形
浙教版八年级数学上册全册PPT课 件
1.5三角形全等的判定
浙教版八年级数学上册全册PPT课 件
1.6尺规作图
浙教版八年级数学上册全册PPT课 件
浙教版八年级数学上册第一章三角形的初步认识单元测试(解析版)
浙教版八年级数学上册单元通关训练卷【检测范围:第一章三角形的初步认识满分:100分】一、选择题(每小题3分,共30分)1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm【解析】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.2.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选:D.3.如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC【解析】解:A、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;B、添加条件BD=AC,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理SAS,能推出△ABD≌△BAC,故本选项错误;C、∵∠CAB=∠DBA,∠CAD=∠DBC,∴∠DAB=∠CBA,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理ASA,能推出△ABD≌△BAC,故本选项错误;D、添加条件AD=BC,还有已知条件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本选项正确;故选D.4.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2c C.4a D.2b﹣2c【解析】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.5.给出下列5个命题:①相等的角是对顶角;②无理数都是无限小数;③在同一平面内,若a⊥c,b⊥c,则a∥b;④同旁内角互补;⑤若一个数的立方根是这个数本身,则这个数是0或1,其中是真命题的有()A.1个B.2个C.3个D.4个【解析】解:①相等的角不一定是对顶角,是假命题;②无理数都是无限小数,是真命题;③在同一平面内,若a⊥c,b⊥c,则a∥b,是真命题;④两直线平行,同旁内角互补,是假命题;⑤若一个数的立方根是这个数本身,则这个数是0或1或﹣1,是假命题;故选:B.6.如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【解析】解:∵△ABC≌△A′B′C,∴∠CB′A′=∠B=50°,CB=CB′,∴∠BB′C=∠B=50°,∴∠BCB′=80°,∴∠ACB′=10°,∴∠COA′=∠CB′A′+∠ACB′=60°,故选:B.7.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【解析】解:(1)由AB=DE,AC=DF,BC=EF,依据“SSS”可判定△ABC≌△DEF;(2)由AB=DE,∠B=∠E,BC=EF,依据“SAS”可判定△ABC≌△DEF;(3)由∠B=∠E,BC=EF,∠C=∠F,依据“ASA”可判定△ABC≌△DEF;(4)由AB=DE,∠B=∠E,AC=DF不能判定△ABC≌△DEF;故选:C.8.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【解析】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6B.7C.8D.9【解析】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.10.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠BPD的度数为()A.45°B.55°C.60°D.75°【解析】解:∵△ABC是等边三角形,∴∠ABD=∠C=60°,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∴∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°.故选C.二、填空题(每小题3分,共24分)11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.【解析】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.对顶角相等的逆命题是命题(填写“真”或“假”).【解析】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是________________.(只填一个即可)【解析】在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF14.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴有∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180﹣40=140,∴∠OBC+∠OCB=70,∴∠BOC=180﹣70=110°,故答案为:110°.15.如图,在△ABC中,AD与BE相交于点G,若点G是△ABC的重心,则S△AGE:S△GDE=.【解析】解:∵点G是△ABC的重心,=2S△GDE,∴S△AGE:S△GDE=2:1,故答案为:2:1.∴AG=2GD,∴S△AGE16.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B 出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE 与△CQP全等时,时间t为s.【解析】当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.三、解答题(共46分)17.如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.【解析】解:(1)如图所示,DE为所求作的垂直平分线;(2)∵DE是AB边上的垂直平分线,∴AD=BD,∴∠ABD=∠A,∵BD平分∠CBA,∴∠CBD=∠ABD=∠A,∵∠C=90°,∴∠CBD+∠ABD+∠A=90°,∴∠A=30°.18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.【解析】解:∵CD⊥AB,∴∠CDB=90°,∵∠B=60°,∴∠BCD=90°﹣∠B=90°﹣60°=30°;∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,∴∠ACB=100°,∵CE是∠ACB的平分线,∴∠ACE=∠ACB=50°,∴∠CEB=∠A+∠ACE=20°+50°=70°,∠ECD=90°﹣70°=20°19.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】解:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,,∴△ADB≌△BCA(ASA),∴BC=AD.20.小明同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【解析】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.21.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【解析】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.22.如图,在△ABC中,AD=AE,BE=CD,AB=AC.(1)求证:△ABD≌△ACE;(2)求证:∠BAE=∠CAD.【解析】证明:(1)∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)∵△ABD≌△ACE,∴∠BAE=∠CAE,∴∠BAE+∠DAE=∠CAE+∠DAE,∴∠BAE=∠CAD.23.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【解析】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为x,当△DEG与△BFG全等时,∵∠EDG=∠FBG,∴DE=BF、DG=BG或DE=BG、DG=BF,①∵BC=10,=2,∴当点F由点C到点B,即0<t≤2时,则:,解得:,或,解得:(不合题意舍去);②当点F由点B到点C,即2<t≤4时,则,解得:,或,解得:,∴综上所述:△DEG与△BFG全等的情况会出现3次,此时的移动时间分别是秒、秒、秒,G 点的移动距离分别是7、7、.。
2020浙教版八年级数学上册电子课本课件【全册】
1.3证明
2020浙教版八年级数学上册电子课 本课件【全册】
2020浙教版八年级数学上册电子 课本课件【全册】目录
0002页 0097页 0113页 0155页 0201页 0266页 0295页 0313页 0357页 0398页 0400页 0424页 0467页 0503页 0546页
第1章 三角形的初步认识 1.2定义与命题 1.4全等三角形 1.6尺规作图 2.1图形的轴对称 2.3等腰三角形的判定定理 2.5直角三角形 第3章 一元一次不等式 3.2不等式的基本性质 3.4一元一次不等式组 4.1平面直角坐标系 4.3探索确定位置的方法 5.1常量与变量 5.3一次函数 5.5一次函数的简单应用
第1章 三角形的初步认识
20认识三角形
2020浙教版八年级数学上册电子课 本课件【全册】
1.2定义与命题
浙教版 数学八年级上册第1章 三角形的初步认识《三角形及其三角、三边关系》
12.【2017·邢台月考】如图,在△BCD中,BC=4,BD =5. (1)求CD的取值范围;
解:∵在△BCD中,BC=4,BD=5,∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数. 解:∵AE∥BD,∠BDE=125°, ∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°, ∴∠C=180°-55°-55°=70°.
11.若 a,b,c 是△ABC 的三边长,请化简|a-b-c|+ (b-c-a)2+|c-a-b|.
【点拨】本题先由“形”可得“数”,a-b-c<0,b-c- a<0,c-a-b<0,然后根据绝对值的性质进行化简,体 现了数形结合思想.
解:∵a,b,c是△ABC的三边长, ∴a<b+c,b<c+a,c<a+b, 即a-b-c<0,b-c-a<0,c-a-b<0. ∴原式=|a-b-c|+|b-c-a|+|c-a-b| =-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.
由题意知,把15 cm长的木棒分成两根, 可把15 cm分成5 cm和10 cm,6 cm和9 cm,7 cm和8 cm, 共三种不同的截法.
18.如图,P是△ABC内部的一点. (1)度量AB,AC,PB,PC的长,根据度量结果比较 AB+AC与PB+PC的大小.
解:度量结果略.AB+AC>PB+PC.
②当x=2时,y=8,则三边长分别为4 cm,6 cm,8 cm, ∵4+6>8,∴能组成三角形.
③当x=3时,y=3,则三边长分别为6 cm,9 cm,3 cm, ∵3+6=9,∴不能组成三角形. 因此各边的长分别为4 cm,6 cm,8 cm.
15.已知△ABC的两边长分别为3和7,第三边的长是关 于x的方程 x+2 a=x+1的解,求a的取值范围.
浙教版八年级数学上《第1章三角形的初步认识》单元测试(2)含答案解析
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC 和△DEF 中,已知:AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件可以是 .(只填写一个条件)13.若△ABC ≌△DEF ,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC 中,∠A :∠B :∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC 中,∠B=60°,∠C=40°,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE= .16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 .17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 度.18.如图,△ABC 中,∠BAC=100°,EF ,MN 分别为AB ,AC 的垂直平分线,如果BC=12cm ,那么△FAN 的周长为 cm ,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 1 .【考点】三角形的面积.【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD 的面积,然后根据S 1﹣S 2=S △ACD ﹣S △ACE 计算即可得解.【解答】解:∵BE=CE ,∴S △ACE =S △ABC =×6=3,∵AD=2BD ,∴S △ACD =S △ABC =×6=4,∴S 1﹣S 2=S △ACD ﹣S △ACE =4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 50 度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC 是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?【考点】一元一次方程的应用;三角形的面积.【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE =S四边形AECB﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣(180°﹣∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=(∠DBC+∠ECB)=(180°+∠A),在△PBC中,∠P=180°﹣(180°+∠A)=90°﹣∠A;即∠P=90°﹣∠A;故答案为:50°,∠P=90°﹣∠A;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
浙教版数学八年级上册1.1《认识三角形》教案1
浙教版数学八年级上册1.1《认识三角形》教案1一. 教材分析《认识三角形》是浙教版数学八年级上册第一章的第一节内容。
本节内容主要让学生了解三角形的定义、性质和分类,掌握三角形的基本概念,为后续学习三角形的相关知识打下基础。
教材通过生动的实例和丰富的图示,引导学生探索三角形的性质,培养学生的观察能力、思考能力和动手能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认知有一定的基础。
但是,对于三角形的定义和性质,学生可能还存在模糊的认识,需要通过实例和操作来进一步巩固。
此外,学生对于图形的分类和判定可能还不够熟练,需要在教学中加强练习和引导。
三. 教学目标1.了解三角形的定义、性质和分类,掌握三角形的基本概念。
2.培养学生的观察能力、思考能力和动手能力。
3.提高学生对于图形的认知水平,培养学生解决问题的能力。
四. 教学重难点1.重点:三角形的定义、性质和分类。
2.难点:三角形性质的证明和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索三角形的性质。
2.运用实例和图示,直观地展示三角形的特征,帮助学生理解和记忆。
3.通过小组讨论和动手操作,培养学生的合作意识和实践能力。
4.运用归纳总结的方法,引导学生形成系统的知识体系。
六. 教学准备1.准备相关的实例和图示,以便在教学中进行展示和解释。
2.准备一些三角形实体模型,供学生观察和操作。
3.准备一些练习题,以便在教学中进行巩固和拓展。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾平面几何的基本概念和性质,为新课的学习做好铺垫。
例如:“你们已经学习了哪些平面图形的性质?它们之间有什么联系?”呈现(10分钟)教师通过展示三角形实例和图示,让学生观察和思考三角形的特征。
例如,展示一些生活中的三角形实例,如自行车三角架、三角尺等,引导学生关注三角形的形状和作用。
操练(10分钟)教师提出一些关于三角形的问题,让学生进行思考和讨论。
浙教版八年级数学上册《第1章三角形的初步认识》单元测试含答案解析
《第1章三角形的初步认识》一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.56.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.12.把命题“对顶角相等”改写成“如果…那么…”的形式:______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).15.命题“若x(1﹣x)=0,则x=0”是______命题(填“真”、假),证明时可举出的反例是______.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB=______.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.23.证明命题“全等三角形对应边上的高相等”.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.《第1章三角形的初步认识》参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【考点】三角形三边关系.【分析】三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.【点评】本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B﹣∠C 变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°,直角三角形的判定,熟记掌握三角形的内角和是解题的关键.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AB⊥BC,根据三角形的高的定义,可确定以AB为一条高线的三角形的个数.【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【考点】全等三角形的判定.【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CDB.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.6.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值【考点】命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B、“∠α和∠β相等吗?”为疑问句,它不是命题,所以A选项错误;C、全等三角形对应边相等,它是命题,所以C选项正确;D、“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【考点】命题与定理.【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解垂线的性质、全等三角形的判定、锐角的性质,难度不大.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB即可得解.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接BC.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= 65 °.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.【点评】本题主要考查三角形内角和定理,垂直的性质,角平分线的性质,关键在于熟练运用个性质定理推出相关角之间的关系.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.命题“若x(1﹣x)=0,则x=0”是假命题(填“真”、假),证明时可举出的反例是x=1 .【考点】命题与定理.【分析】要证明一个命题是假命题只要举一个反例即可.【解答】解:当x=1时,x(1﹣x)=0也成立,所以证明命题“若x(1﹣x)=0,则x=0”是假命题的反例是:x=1,故答案为:假,x=1.【点评】考查了命题与定理的知识,解题的关键是了解学生对反例证法的掌握情况,属于基础题,比较简单.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值范围,从而确定绝对值内的代数式的符号,难度不大.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB= 12 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【考点】垂线.【专题】分类讨论.【分析】根据题意画出图形,然后分情况进行讨论分析即可.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.【点评】本题主要考查角的计算,垂线的性质,关键在于根据题意画出图形,分情况进行讨论分析.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有 4 种.【考点】三角形三边关系.【分析】三角形的三边中,等边三角形三边相等;除此外,必有一边是最长边;然后首先确定第三边的取值范围,从而确定答案.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.【点评】本题考查了三角形的三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.【考点】作图—复杂作图.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;(2)过点A作AH⊥BC于H,则AH为BC边上的高;(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF与△ABC全等.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC ,判定依据是SAS ,由此得到∠OED=∠OFC ;再证明△PEC≌△PFD ,判定依据是AAS ,由此又得到PE= PF ;最后证明△EOP≌△FOP ,判定依据是SSS ,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.【考点】作图—基本作图;全等三角形的判定与性质.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AOB.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及全等三角形的判定定理是解答此题的关键.23.证明命题“全等三角形对应边上的高相等”.【考点】全等三角形的性质.【专题】证明题.【分析】根据图形写出已知,求证,根据全等三角形的性质求出AB=EF,∠B=∠F,根据全等三角形的判定求出△ABD≌△EFH即可.【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.【点评】此题主要考查学生对全等三角形的性质及判定的理解及运用能力.注意命题的证明的格式、步骤.24.(12分)已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE ⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE;②根据全等三角形的判定方法(AAS)得出△ABD≌△CAE,从而得出BD=AE;(2)根据△ABD≌△CAE,得出BD=AE,AD=CE,再根据AE=AD+DE,即可得出BD,DE,CE三者间的数量关系.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是AAS、直角三角形的性质,关键是通过证明两个三角形全等得出相等的线段.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信达
第一章 三角形的初步认识
1、 如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ) A.BD=DC ,AB=AC B.∠ADB=∠ADC ,BD=DC
C.∠B=∠C ,∠BAD=∠CAD
D.∠B=∠C ,BD=DC 2如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的 两侧,AB ∥DE ,
BF =CE ,请添加一个适当的条件: , 使得AC =DF .
3、下列各图中,正确画出AC 边上的高的是( )
A 、
B 、
C 、
D 、
4、如图1,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )
A 、两点之间的线段最短;
B 、三角形具有稳定性;
C 、长方形是轴对称图形;
D 、长方形的四个角都是直角;
5、图2中的三角形被木板遮住了一部分,被遮住的两个角不可能是( ) A 、一个锐角,一个钝角; B 、两个锐角;
C 、一个锐角,一个直角;
D 、一个直角,一个钝角; 6、以下不能构成三角形三边长的数组是( )
A 、(1,3,2)
B 、(3,4,5)
C 、(2
3,24,2
5) D 、(3,4,5)
7、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B 、120° C 、125° D 、130°
8、小明不慎将一块三角形的玻璃碎成如图3所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去 A 、第1块; B 、第2块;
C 、第3块;
D 、第4块;
B
A C
D E
F 图1
图2
1
2 3
4
图3
信达
10、在△ABC 中,若∠A -∠B=90°,则此三角形是________三角形;若C B A ∠=∠=∠3
1
21,由此三角形是_______三角形;
11、如图6,已知AC=BD ,要使△ABC ≌△DCB , 只需增加的一个条件是________________;
12、已知三角形的两边长分别是3cm 和7cm ,第三边长是偶数,则这个三角形的周长为___________cm ;
13、如图7,在△ABC 中,已知AD=DE ,AB=BE ,∠A=80°,则∠CED=________
14、如图8,把矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=35cm ,DM=5cm ,∠DAM=30°,则AN=_____cm ,NM=______cm ,
∠BNA=_________度;
15、如图9,△ABC 中,AB=AC ,BD 、CE 分别是AC 、AB 边上的高,BD 、CE 交于点O ,且AD=AE ,连结AO ,则图中共有_________对全等三角形;
16、如图10,已知∠B=∠C ,AD=AE ,则AB=AC ,请说明理由(填空) 解:在△ABC 和△ACD 中, ∠B=∠______ (__________) ∠A=∠______ (________________) AE=________ (__________) ∴△ABE ≌△ACD (______________)
∴AB=AC (______________________________)
17、(10分)小明做了一个如图14所示的风筝,他想去验证∠BAC 与∠DAC 是否相等,手头
A
B
C
D O
图6
A B C D N M
图8 A B C D E O
图9 A
B
C D
E
图10
A
A
B
只有一把(足够长)尺子,你能帮助他想个方法吗?说明你这样做的理由。
图14
初中数学试卷
信达。