初中数学竞赛专项训练(10)及答案

合集下载

全国初中数学竞赛试题及解答

全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。

请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。

4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。

初中数学竞赛试题及答案解析

初中数学竞赛试题及答案解析

初中数学竞赛试题 二、填空题 1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 . 3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为 . 9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 . 12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 . 15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 . 21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题 1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a =-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+. 5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--. 6、 137解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--. 8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x . 15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14. 16、 0 解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式=37772(1117)322113838111111-+=+=. 18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值. 20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=. 21、 999解:由b a x <≤,可得a b a x b x -=---, 则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

八年级数学竞赛试卷及解答

八年级数学竞赛试卷及解答

一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -3B. 0C. -1/2D. 2解答:D2. 若a < b,且a、b都是正数,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a < b²D. a² < b解答:B3. 已知方程3x - 2 = 5,则x的值为()A. 1B. 2C. 3D. 4解答:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)解答:A5. 若等腰三角形底边长为4,腰长为6,则该三角形的周长为()A. 14B. 16C. 18D. 20解答:B二、填空题(每题5分,共25分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a + b = __________。

解答:52. 在等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀ = __________。

解答:213. 若a² + b² = 25,且a - b = 3,则ab的值为 __________。

解答:164. 已知正方形的对角线长为10,则该正方形的面积是 __________。

解答:505. 若a、b、c是等比数列,且a + b + c = 6,ab = 12,则c²的值为__________。

解答:18三、解答题(共55分)1. 解方程:2(x - 3) + 3(x + 1) = 5。

解答:2x - 6 + 3x + 3 = 55x - 3 = 55x = 8x = 8/52. 已知数列{an}是等差数列,且a₁ = 3,公差d = 2,求第10项a₁₀。

解答:a₁₀ = a₁ + (10 - 1)da₁₀ = 3 + 9 2a₁₀ = 213. 已知三角形的三边长分别为3、4、5,求该三角形的面积。

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。

#初中数学竞赛分专题训练试题及解析(10套,76页)

#初中数学竞赛分专题训练试题及解析(10套,76页)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

江苏数学竞赛初中试题及答案

江苏数学竞赛初中试题及答案

江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。

答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。

已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。

考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。

试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。

答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。

根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。

解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。

因此,较小的锐角是30度,较大的锐角是60度,直角是90度。

试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。

求第10项的值。

答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。

试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。

现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。

每个人拿的球的总数都是6个。

问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。

根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。

我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。

初中数学竞赛试题(含答案)

初中数学竞赛试题(含答案)

DC B A初中数学竞赛试题(含答案)一、选择题(共8小题,每小题5分,满分40分。

以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1x-图象的大致形状是( )A B C D2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。

如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD,BC 相交于P,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12B.2 CD4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫- ⎪⎝⎭C .19,24⎛⎫- ⎪⎝⎭D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( )ABCD 6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有() yxOyxOyxOyxOA .6条B .7条C .8条D .无数条7.把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( )A .不存在B .有一组C .有两组D .多于两组 8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项的结果等于10?A. 3 + 7B. 4 × 2C. 5 - 3D. 6 ÷ 2答案:A3. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 20B. 30C. 50D. 60答案:C5. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A6. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:D7. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7B. 14C. 28D. 无法确定答案:A8. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角是多少度?A. 40B. 60C. 80D. 无法确定答案:C9. 一个数的立方等于8,那么这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

答案:1612. 如果一个数的一半是10,那么这个数是______。

答案:2013. 一个数的倒数是2,那么这个数是______。

答案:1/214. 一个数的立方等于27,那么这个数是______。

答案:315. 一个数的绝对值是3,那么这个数可能是______或______。

答案:3或-3三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3x - 2) + (4x + 5),其中x = 2。

答案:首先将x的值代入表达式,得到(3×2 - 2) + (4×2 + 5) = 6 + 8 + 5 = 19。

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列说法中,正确的是( ).A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.下列函数:①;②;③;④,其中的值随值的增大而增大的函数有( ) .A.4个B.3个C.2个D.1个3.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( ).A.(2, )B.(-2,-)C.(2, )或(-2,)D.(2, )或(-2,-)4.一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).A.一种B.两种C.三种D.四种5.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A 的坐标是().A.(3,5)B.(4,5)C.(5,3)D.(5,4)6.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A、πr2B、πr2C、πr2D、πr27.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是().A.B.C.D.8.直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是().A.B.C.D.9.若关于x 的一元二次方程有解,那么m的取值范围是().A.B.C.且D.且10.下列说法中,①方程x(x-2)=x-2的解是x=1;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了m;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有( ).A.0个B.1个C.2个D.3个11.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A.B.C.D.12.由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图所示的投影图,则构成该实物的小正方体个数为( ).A.6个B.7个C.8个D.9个13.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为().A.cm B.4cm C.cm D.cm14.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ). A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-315.已知反比例函数y = (a≠0)的图象,在每一象限内,y 的值随x 值的增大而减小,则一次函数y =-ax +a 的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限16.将一副三角板如图叠放,交点为O.则△AOB 与△COD 面积之比是( ).A .B .C .D .17.如图,直线l 和双曲线y =(k>0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( ).A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 318.△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ). A.=B.=C.=D.=19.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与渔船的距离是( ).A .B .C .D .20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,且关于x 的一元二次方程ax 2+bx+c ﹣m=0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的个数是( ).A .0B .1C .2D .3二、填空题1.y=自变量x 的取值范围是 .2.如图,直线AB 与半径为2的⊙O 相切于点C ,点D 、E 、F 是⊙O 上三个点,EF//AB ,若EF=2,则∠EDC的度数为__________.3.把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是正方形ABCD 的面积的一半,若AC=,则平移的距离是 .4.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)三、解答题1.(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?2.(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ; (2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.3.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.4.(10分)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.5.(12分)如图,△OAB是边长为2的等边三角形,过点A的直线与x轴交于点E .(1)求点E的坐标;(2)求过 A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.山东初三初中数学竞赛测试答案及解析一、选择题1.下列说法中,正确的是( ).A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B.【解析】A.一条弦可以对优弧,也可以对劣弧,故此项错误;B. 等弧所对的弦相等,这个命题是正确的;要强调在同圆或等园,相等的圆心角所对的弦才相等,相等的弦所对的圆心角也相等,故C、D错误.故选:B.【考点】圆心角、弧、弦的关系.2.下列函数:①;②;③;④,其中的值随值的增大而增大的函数有( ) .A.4个B.3个C.2个D.1个【答案】C.【解析】①,y随x的增大而减小;②,y随x的增大而增大;③,在第二象限内,y随x的增大而增大;④,抛物线开口向下,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小;所以满足条件的有两个.故选:C.【考点】1、一次函数的增减性;2、反比例函数的增减性;3、二次函数的增减性.3.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( ).A.(2, )B.(-2,-)C.(2, )或(-2,)D.(2, )或(-2,-)【答案】D.【解析】根据位似图形的性质可知,当矩形OA′B′C′在第一象限时,,,此时点B′的坐标为(2, );当矩形OA′B′C′在第四象限时,点B′的坐标为(-2,-).故选:D.【考点】位似图形的性质.4.一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).A.一种B.两种C.三种D.四种【答案】B.【解析】取30cm为一边,另两边设为xcm、ycm;(1)30cm与20cm对应,即,解得x=75,y=90;75+90>50,不可以.(2)30cm与50cm对应,即,解得x=12,y=36;12+36=48<50,可以.(3)30cm与60cm对应,即,解得x=10,y=25;10+25<50,可以.所以有两种不同的截法.故选:B.【考点】相似三角形的性质.5.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A 的坐标是().A.(3,5)B.(4,5)C.(5,3)D.(5,4)【答案】D.【解析】连接AD,AB,AC,再过点A作AE⊥OC于E,则ODAE是矩形,∵点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,∴OB=2,OC=8,BC=6,∵⊙A与y轴相切于点D,∴AD⊥OD,∵由垂径定理可知:BE=EC=3,∴OE=AD=5,∴AB=AD=5,利用勾股定理知AE=4,∴A(5,4).故选:D.【考点】1、垂径定理;2、勾股定理.6.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A 、πr 2 B 、πr 2 C 、πr 2 D 、πr 2【答案】B.【解析】连接OC 、OD .∵△COD 和△CDA 等底等高, ∴S △COD =S △ACD .∵点C ,D 为半圆的三等分点,AB=2r , ∴∠COD=180°÷3=60°,OA=r , ∴阴影部分的面积=S 扇形COD =.故选:B .【考点】扇形面积的求法.7.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( ).A .B .C .D .【答案】B.【解析】设这两年平均每年绿地面积的增长率是x ,根据题意列方程得: ,解得x=0.2=20%,x=-2.2舍去.故选:B.【考点】一元二次方程的应用—增长率问题.8.直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是( ).A .B .C .D .【答案】C.【解析】根据题意,BE=AE .设BE=x ,则CE=8-x . 在Rt △BCE 中,x 2=(8-x )2+62, 解得x=,故CE=8-=,∴tan ∠CBE=.故选:C.【考点】锐角三角函数.9.若关于x 的一元二次方程有解,那么m 的取值范围是( ). A .B .C .且D .且【答案】D.【解析】∵关于x 的一元二次方程有解,∴判别式,m-20,解得:且.故选:D.【考点】一元二次方程的判别式的应用.10.下列说法中,①方程x(x-2)=x-2的解是x=1;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了m;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有( ).A.0个B.1个C.2个D.3个【答案】B.【解析】①方程x(x-2)=x-2的解是x=1或x=2,故错误;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了200 m,故正确;③若直角三角形的两边长为3和4,则第三边的长为5或,故错误;④将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是y=-(x+2)2,故错误;其中正确的命题有一个.故选:B.【考点】命题与定理.11.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A.B.C.D.【答案】A.【解析】设分成的四张纸片中,1和2为一张;3和4为一张;如图:那么共有12种情况,正好能拼成的占4种,概率是 .故选:A.【考点】概率的求法.12.由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图所示的投影图,则构成该实物的小正方体个数为( ).A.6个B.7个C.8个D.9个【答案】B.【解析】综合主视图,俯视图,左视图底面有4个正方体,第二层有2个正方体,第三层有个1正方体,所以搭成这个几何体所用的小立方块的个数是7.故选:B.【考点】三视图.13.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为().A.cm B.4cm C.cm D.cm【答案】C.【解析】∵半径为1cm的圆形,∴底面圆的半径为:1,周长为2π,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故选:C.【考点】圆锥的计算.14.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ). A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-3【答案】B.【解析】抛物线y=x2-6x+5=,向上平移2个单位长度,即纵坐标加2,再向右平移1个单位长度,即横坐标减1,得到的抛物线解析式是,即y=(x-4)2-2.故选:B.【考点】求抛物线的解析式.15.已知反比例函数y=(a≠0)的图象,在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过( ).A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】根据反比例函数的性质可知,a>0,再根据一次函数的性质,y=-ax+a与y轴交于正半轴,-a<0,则直线y=-ax+a随x的增大而减小,所以图象经过第一、二、四象限,不经过第三象限.故选:C.【考点】1、反比例函数的性质;2、一次函数的图象和性质.16.将一副三角板如图叠放,交点为O.则△AOB与△COD面积之比是().A.B.C.D.【答案】B.【解析】∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,∴∠D=30°,∠A=45°,AB∥CD,∴∠A=∠OCD,∠D=∠OBA,∴△AOB∽△COD,设BC=a,∴CD= ,∴S △AOB :S △COD =1:3.故选:B.【考点】1、解直角三角形;2、相似三角形的性质.17.如图,直线l 和双曲线y = (k>0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( ).A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3【答案】D.【解析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S= .结合题意可得:A 、B 都在双曲线y=上,则有S 1=S 2;而线段AB 之间,直线在双曲线上方;故S 1=S 2<S 3.故选:D.【考点】反比例函数综合题.18.△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ).A.=B.=C.=D.=【答案】C.【解析】根据题意画出图形,如图:∵DE ∥BC ,∴,故A 、D 错误;∵EF ∥AB ,∴△ABC ≌△EFC ,∴,故B 错误;∵DE ∥BC ,EF ∥AB ,∴, ∴ ,故C 正确; 故选:C.【考点】1、相似三角形的判定和性质;2、平行线分线段成比例定理.19.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与渔船的距离是( ).A .B .C .D .【答案】A.【解析】由已知得,AB=×28=14海里,∠A=30°,∠ABM=105°.过点B作BN⊥AM于点N.∵在直角△ABN中,∠BAN=30°,∴BN= AB=7海里.在直角△BNM中,∠MBN=45°,则直角△BNM是等腰直角三角形.即BN=MN=7海里,∴BM= (海里).故选:A.【考点】方位角.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是().A.0B.1C.2D.3【答案】D.【解析】①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=->0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.【考点】图象与二次函数的系数的关系.二、填空题1.y=自变量x的取值范围是 .【答案】.【解析】要使函数有意义,则x-3≥0,x-4≠0,解得:x≥3且x≠4.故答案为:x≥3且x≠4.【考点】函数自变量的取值范围.2.如图,直线AB 与半径为2的⊙O 相切于点C ,点D 、E 、F 是⊙O 上三个点,EF//AB ,若EF=2,则∠EDC 的度数为__________.【答案】30°.【解析】连接OE 、OC ,设OC 与EF 的交点为M ;∵AB 切⊙O 于C , ∴OC ⊥AB ; ∵EF ∥AB ,∴OC ⊥EF ,则EM=MF=;Rt △OEM 中,EM=,OE=2; 则sin ∠EOM=,∴∠EOM=60°;∴∠EDC=∠EOM=30°. 故答案为:30°.【考点】1、切线的性质;2、解直角三角形.3.把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是正方形ABCD 的面积的一半,若AC=,则平移的距离是 . 【答案】. 【解析】∵重叠部分的面积是正方形ABCD 面积的一半,即重叠部分与正方形的面积的比是1:2.则相似比是1:. ∴C :AC=1:, ∵AC=, ∴A =AC-C=-1. 故答案为:-1.【考点】1、正方形的性质;2、相似三角形的性质.4.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)【答案】17.【解析】如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04米,EF=2.2÷sin45°=2.2÷≈3.1米,(56-5.04)÷3.1+1=50.96÷3.1+1≈16.4+1=17.4(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.【考点】特殊角的三角函数值.三、解答题1.(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)800元;(2)当售价定为每件33元时,一个月的利润最大,最大利润是845元.【解析】(1)首先表示每件的利润,再计算售价定为30元时一个月卖出的件数,每件的利润与一个月卖出的件数的积即为一个月的利润;(2)设售价为每件元时,一个月的获利为元,则每件的利润为(x-20)元,一个月卖出的件数为[105-5(x-25)]件,则y=(x-20)[105-5(x-25)],再求x为多少时,y有最大值,此时y的最大值是多少即可.试题解析:解:(1)获利:(30-20)[105-5(30-25)]="800" ,(2)设售价为每件元时,一个月的获利为元,由题意,得,当时,的最大值为845,故当售价定为每件33元时,一个月的利润最大,最大利润是845元.【考点】二次函数的应用—利润问题.2.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)由相似三角形的判定证得△ADC∽△ACB,根据相似三角形的性质得AD:AC=AC:AB;(2)证得∠DAC=∠ECA,根据平行线的判定得CE∥AD;(3)由CE∥AD得到△AFD∽△CFE,应用相似三角形的性质得AD:CE=AF:CF,代入数值进行计算即可. 试题解析:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【考点】相似三角形的判定和性质.3.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.【答案】(1)y=﹣x﹣1;y=﹣;(2)x<﹣4.【解析】(1)根据△ABC的面积求出点A的坐标,把点A、B的坐标代入一次函数解析式求出k和b的值,即可得到一次函数的解析式;根据一次函数解析式求出点C的坐标,利用点C的坐标求出反比例函数解析式;(2)一次函数与反比例函数在第二象限的交点为C,根据点C的坐标得到kx+b﹣>0的解集.试题解析:解:(1)∵OB=2,△AOB的面积为1,∴B(﹣2,0),OA=1,∴A(0,﹣1),∴,解得:,∴y=﹣x﹣1,又∵OD=4,OD⊥x轴,∴C(﹣4,y),将x=﹣4代入y=﹣x﹣1得y=1,∴C(﹣4,1),∴1=,∴m=﹣4,∴y=﹣,答:一次函数解析式为y=﹣x﹣1,反比例函数解析式为y=﹣;(2)当x<0时,kx+b﹣>0的解集是x<﹣4.【考点】1、待定系数法求解析式;2、一次函数与反比例函数的交点.4.(10分)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.【答案】(1)详见解析;(2) .【解析】(1)证得OD⊥DE,根据切线的判定定理得到DE是⊙O的切线;(2)由OD//AE,得到,通过转换得到,解得FC的长,进而求得AF的长,应用锐角三角函数求出cosA的值.试题解析:解:(1)证明:连结AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点∴OD//AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线;(2)由(1)知OD//AE,∴,∴,∴,解得FC=2,∴AF=6,∴cosA=.【考点】1、切线的判定;2、平行线分线段成比例定理;3、锐角三角函数.5.(12分)如图,△OAB是边长为2的等边三角形,过点A的直线与x轴交于点E .(1)求点E的坐标;(2)求过 A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.【答案】(1)(4,0);(2);(3)当时, .【解析】(1)应用锐角三角函数求出点A的坐标,而后求出一次函数解析式,求出直线与x轴的交点E的坐标;(2)应用待定系数法列出方程组,求出a、b、c的值,得到二次函数解析式;(3)设点,根据用点P的坐标表示面积,整理得到S=,即当时, .试题解析:解:(1)作AF⊥x轴与F,∴OF=OAcos60°=1,AF=OFtan60°=,∴点A(1,),代入直线解析式,得,∴m=,∴,当y=0时,,得x=4,∴点E(4,0);(2)设过A、O、E三点抛物线的解析式为,∵抛物线过原点,∴c=0,∴,∴,∴抛物线的解析式为;(3)作PG⊥x轴于G,设,,,,,当时, .【考点】1、一次函数的应用;2、二次函数综合题.。

初中数学竞赛专项训练(10)及答案

初中数学竞赛专项训练(10)及答案

初中数学竞赛专项训练(10)(三角形的四心及性质、平移、旋转、覆盖)一、填空题:1、G 是△ABC 的重心,连结AG 并延长交边BC 于D ,若△ABC 的面积为6cm 2, 则△BGD 的面积为( )A. 2cm 2B. 3 cm 2C. 1 cm 2D. 23 cm 22、如图10-1,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角的平分线交于E 点,则∠AEB 是( ) A. 50° B. 45° C. 40° D. 35°3、在△ABC 中,∠ACB =90°,∠A =20°,如图10-2,将△ABC 绕点C 按逆时针方向旋转角α到∠A ’C ’B ’的位置,其中A ’、B ’分别是A 、B 的对应点,B 在A ’B ’上,CA ’交AB 于D ,则∠BDC 的度数为( ) A. 40° B. 45° C. 50° D. 60°4、设G 是△ABC 的垂心,且AG =6,BG =8,CG =10,则三角形的面积为( ) A. 58 B. 66 C. 72 D. 845、如图10-3,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,△CEF 的面积为( ) A. 2 B. 4 C. 6 D. 86、在△ABC 中,∠A =45°,BC =a ,高BE 、CF 交于点H ,则AH =( )A.a 21 B. a 22C. aD. a 2 7、已知点I 是锐角三角形ABC 的内心,A 1、B 1、C 1分别是点I 关于BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ) A. 30° B. 45° C. 60° D. 90°8、已知AD 、BE 、CF 是锐角△ABC 三条高线,垂心为H ,则其图中直角三角形的个数是( ) A. 6 B. 8 C. 10 D. 12二、填空题1、如图10-4,I 是△ABC 的内心,∠A =40°,则∠CIB =__2、在凸四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠ABC =90°,则∠DAB 的度数是_____图10-1B ’图10-2 D A EB CA D EBC F图10-3 图10-4A BCD E D ’图10-53、如图10-5,在矩形ABCD 中,AB =5,BC =12,将矩形ABCD 沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是_______4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过____秒钟后,△OAB 的面积第一次达到最大。

初三数学竞赛试题(含答案)

初三数学竞赛试题(含答案)

初三数学竞赛试题(含答案)8个时,即第4个数)称为()。

A)中位数(B)平均数(C)众数(D)极差11.如图,在正方形ABCD中,E、F分别是AB、CD的中点,连接AE、BF,交于点G,则△ABG的面积是()。

A)1/4(ABCD)(B)1/6(ABCD)(C)1/8(ABCD)(D)1/12(ABCD)12.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=1/2在区间(0,1)内至少有()个实根。

A)0(B)1(C)2(D)313.如图,在三角形ABC中,D、E分别是AB、AC的中点,F是BC上一点,且AF平分△ABC的周长,则△ABC的面积是()。

A)4S△ADE(B)2S△ADE(C)S△ADE(D)S△ABC14.如图,正方形ABCD中,点E、F分别在AB、BC上,且AE=CF,则△DEF的面积是()。

A)1/4AB2(B)1/6AB2(C)1/8AB2(D)1/12AB2三、解答题:(共有3个小题,每小题20分,满分60分)15.已知函数f(x)=x3-3x2+2x+1,g(x)=f(x)-2x+3,h(x)=g(x)-2x+3,求h(x)的最高项系数。

16.如图,ABCD是一个正方形,O是BD上一点,且OD=2BD,连接AC、CO,交于点E,求△ABE的面积。

17.如图,在长方形ABCD中,点E、F分别在AB、BC 上,且AE=CF,连接EF,交AC于点G,求证:△ADG与△CDF的面积相等。

解:根据题意,可以得到以下方程组:begin{cases}frac{6-2a}{5}=y \\3a-4<x<6-2aend{cases}$要使方程组的解是一对异号的数,只需 $y3$ 或 $a3$ 时,$x$ 的取值范围为 $3a-40$,即 $0<x<6-2a$。

因此,答案为$\boxed{\frac{3}{2}<a<3}$。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333D. π答案:B2. 一个数的立方等于该数本身,这个数是?A. 1B. -1C. 0D. 1或-1或0答案:D3. 如果一个三角形的两边长分别为3和4,那么第三边的长可能是?A. 1B. 7C. 5D. 以上都有可能答案:C4. 一个数列的前三项是2,4,8,那么第四项是?A. 16B. 32C. 64D. 128答案:A5. 一个圆的直径是10,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C6. 一个等腰三角形的底边长为6,腰长为5,那么它的高是?A. 4B. 3C. 2D. 1答案:B二、填空题(每题5分,共30分)1. 一个数的平方等于9,这个数是______。

答案:±32. 一个矩形的长是宽的两倍,如果宽是4,那么面积是______。

答案:323. 一个等差数列的前三项是2,5,8,那么第10项是______。

答案:274. 一个二次函数的顶点是(0, -1),且通过点(1, 2),那么它的解析式是______。

答案:y = x^2 - x - 15. 一个圆的半径是5,那么它的周长是______。

答案:10π6. 一个直角三角形的两条直角边长分别为3和4,那么斜边长是______。

答案:5三、解答题(每题10分,共40分)1. 已知一个等比数列的前三项分别是1,2,4,求该数列的第10项。

答案:第10项是1024。

2. 一个矩形的长是宽的三倍,如果宽是5,求矩形的面积。

答案:矩形的面积是75。

3. 一个二次函数的图像通过点(-2, 10)和(1, 5),且顶点在y轴上,求该二次函数的解析式。

答案:二次函数的解析式为y = -x^2 + 4x + 6。

4. 一个直角三角形的两条直角边长分别为6和8,求该三角形的斜边长和面积。

初中数学竞赛专题训练答案(10套)

初中数学竞赛专题训练答案(10套)

数学竞赛专项训练(1)实数参考答案 一、选择题1、解:设与a 之差最小且比a 大的一个完全平方数是x ,则1+=a x ,所以12)1(2++=+=a a a x应选D613813)13)(13(133*312*2)]2*2(*3[12*2)]2(*3[22*=+-=+--+=+-=+-=+-= 、解:原式 应选D 3、2004=n -0y ,n 是奇数,0y 必是奇数,又110x =m -280y ,m 和280y 均为偶数,所以110x 是偶数,0x 应为偶数。

故选C4、解:-ab ·ac ·bd ·cd =-a 2b 2c 2d 2<0,所以这四个数中应一正三负或一负三正。

应选D 5、解:由02003200320032003=-+--+xy y x x y y x 可得 020030)2003)(2003(>++=++-y x y x xy 而所以是质数,因此必有 又因为 故2003200302003==-xy xy⎩⎨⎧== 20031y x ⎩⎨⎧==12003y x 应选B6、解:因q p 352+为奇数,故p 、q 必一奇一偶,而p 、q 均为质数,故p 、q 中有一个为2,若55322==p q 不合题意舍去。

若p =2,则q =3,此时p +3=5,1-p+q=12,2p+q-4=13,因为52+122=132,所以5、12、13为边长的三角形为直角三角形。

故选B7、解:依题意设六位数为abcabc ,则ab c a b c =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题2分,共10分)1. 已知一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是()。

A. 11cmB. 13cmC. 16cmD. 无法确定2. 下列哪个数是无理数()。

A. 0.5B. √2C. 22/7D. 03. 一个数的相反数是-3,那么这个数是()。

A. 3B. -3C. 0D. 64. 若a、b、c是等差数列,且a+c=10,b=5,则a、b、c的值分别是()。

A. 2, 5, 8B. 3, 5, 7C. 4, 5, 6D. 5, 5, 55. 一个圆的半径为2cm,那么这个圆的面积是()。

A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²二、填空题(每题2分,共10分)6. 一个数的平方是25,那么这个数是______或______。

7. 一个数增加20%后是120,那么这个数原来是______。

8. 已知一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边长是______cm。

9. 一个数的绝对值是5,那么这个数是______或______。

10. 一个数除以-2的商是-3,那么这个数是______。

三、解答题(每题5分,共20分)11. 已知一个二次函数y=ax²+bx+c,其中a=1,b=-3,c=2,求当x=1时,y的值。

12. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,面积不变,求原长方形的长和宽。

13. 一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,求数列的第8项。

14. 一个圆的直径是10cm,求这个圆的周长和面积。

答案:一、选择题1. B2. B3. A4. A5. B二、填空题6. ±57. 1008. 59. ±510. 6三、解答题11. 当x=1时,y=1-3+2=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专项训练(10)(三角形的四心及性质、平移、旋转、覆盖)一、填空题:1、G 是△ABC 的重心,连结AG 并延长交边BC 于D ,若△ABC 的面积为6cm 2, 则△BGD 的面积为( )A. 2cm 2B. 3 cm 2C. 1 cm 2D. 23 cm 22、如图10-1,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角的平分线交于E 点,则∠AEB 是( ) A. 50° B. 45° C. 40° D. 35°3、在△ABC 中,∠ACB =90°,∠A =20°,如图10-2,将△ABC 绕点C 按逆时针方向旋转角α到∠A ’C ’B ’的位置,其中A ’、B ’分别是A 、B 的对应点,B 在A ’B ’上,CA ’交AB 于D ,则∠BDC 的度数为( ) A. 40° B. 45° C. 50° D. 60°4、设G 是△ABC 的垂心,且AG =6,BG =8,CG =10,则三角形的面积为( ) A. 58 B. 66 C. 72 D. 845、如图10-3,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,△CEF 的面积为( ) A. 2 B. 4 C. 6 D. 86、在△ABC 中,∠A =45°,BC =a ,高BE 、CF 交于点H ,则AH =( )A.a 21 B. a 22C. aD. a 2 7、已知点I 是锐角三角形ABC 的内心,A 1、B 1、C 1分别是点I 关于BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ) A. 30° B. 45° C. 60° D. 90°8、已知AD 、BE 、CF 是锐角△ABC 三条高线,垂心为H ,则其图中直角三角形的个数是( ) A. 6 B. 8 C. 10 D. 12二、填空题1、如图10-4,I 是△ABC 的内心,∠A =40°,则∠CIB =__2、在凸四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠ABC =90°,则∠DAB 的度数是_____图10-1B ’图10-2 D A EB CA D EBC F图10-3 图10-4A BCD E D ’图10-53、如图10-5,在矩形ABCD 中,AB =5,BC =12,将矩形ABCD 沿对角线对折,然后放在桌面上,折叠后所成的图形覆盖桌面的面积是_______4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过____秒钟后,△OAB 的面积第一次达到最大。

5、已知等腰三角形顶角为36°,则底与腰的比值等于______6、已知AM 是△ABC 中BC 边上的中线,P 是△ABC 的重心,过P 作EF (EF ∥BC ),分别交AB 、AC 于E 、F ,则AFCFAE BE=________ 三、解答题1、如图10-6,在正方形ABCD 的对角线OB 上任取一点E ,过D 作AE 的垂线与OA 交于F 。

求证:OE =OF2、在△ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE =DF ,过E 、F 分别作CA 、CB 的垂线相交于P ,设线段PA 、PB 的中点分别为M 、N 。

求证:①△DEM ≌△DFN ②∠PAE =∠PBF3、如图10-8,在△ABC 中,AB =AC ,底角B 的三等分线交高线AD 于M 、N ,边CN 并延长交AB 于E 。

求证:EM ∥BNF图10-7 图10-84、如图10-9,半径不等的两圆相交于A 、B 两点,线段CD 经过点A ,且分别交两于C 、D 两点,连结BC 、CD ,设P 、Q 、K 分别是BC 、BD 、CD 中点M 、N 分别是弧BC 和弧BD 的中点。

求证:①QBNQPM BP ②△KPM ∽△NQK图10-9参考答案一、选择题 1、解:)(12131312cm S S S ABC ABD BGD =⋅==∆∆∆。

选C 。

2、解:在Rt △ABC 中,∠C =90°,∠A =30°,则∠ABC =60°,因为EB 是∠B 的外角的平分线,所以∠ABE =60°,因为E 是∠C 的平分线与∠B 的平分线的交点,所以E 点到CB 的距离等于E 到AB 的距离,也等于E 点到CA 的距离,从而AE 是∠A 的外角的平分线。

所以︒=︒=∠752150BAE ,∠AEB =180°-60°-75°=45°。

应选B 。

3、解:依题意在等腰三角形B ′CB 中,有∠B ′CB =α,∠B ′=90°-20°=70°。

所以α=180°-2×70°=40°,即∠DCA =α=40°, 从而∠BDC =∠DCA +∠A =40°+20°=60°。

应选D 。

4、解:设AD 为中线,则DG =21AG =3,延长GD 到G ′,DG =DG ′=3, 723246821===⨯⨯==∆∆'∆∆GBC ABC CGG GBC S S S S 。

应选C 。

5、解:由折叠过程知,DE =AD =6,∠DAE =∠CEF =45°,所以△CEF 是等腰直角三角形,且EC =8-6=2,所以S △CEF =2。

故选A 。

6、解:取△ABC 的外心及BC 中点M ,连OB 、OC 、OM ,由于∠A =45°,故∠BOC =90°,OM =21a ,由于AH =2OM ,AH =a 。

应选C 。

7、解:因为IA 1=IB 1=IC 1=2r (r 为△ABC 的内切圆半径),所以I 点同时是△A 1B 1C 1的外接圆的圆心,设IA 1与BC 的交点为D ,则IB =IA 1=2ID ,所以∠IBD =30°。

同理,∠IBA =30°,于是∠ABC =60°。

故选C 。

8、图中有6个直角,每一个直角对应两个直角三角形,共有12个直角三角形:△ADB 、△ADC 、△BEA 、△CFA 、△CFB 、△HDB 、△HDC 、△HEC 、△HEA 、△HFA 、 △BEC 、△HFB 。

故选D 。

二、填空题1、解:︒=︒+︒=+︒=+++=∠+∠=∠11024090290)22()22(A C AB A DIC BID BIC2、解:连AC ,即AD =a ,则在等腰Rt △ABC 中 22222222)3(8AD CD a a a BC AB AC -=-==+=有∠CAD =90° ∠DAB =∠DAC +∠CAB =90°+45°=135°。

3、解:设折叠后所成圆形覆盖桌面的面积为S ,则:EC EC AB S S S S S S S AECAECABCD AEC C AD ABC 25211=⋅=-=-+=∆∆∆∆∆矩形由Rt △ABE ≌Rt △CD 1E 知EC =AE设EC =x ,则222x BE AB =+,即222)12(5x x =-+解得:4820354884512548845241692524169=-⨯==⨯==∆S S x AEC 4、解:答:591515。

设OA 边上的高为h ,则h ≤OB ,所以OB OA h OA S OAB ⨯≤⨯=∆2121当OA ⊥OB 时,等号成立,此时△OAB 的面积最大。

设经过t 秒时,OA 与OB 第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6-0.1)t =90,解得t=591515。

5、解:设等腰三角形底边为a ,腰为b ,作底角∠B 的平分线交AC 于D ,则 ︒=︒-︒=∠70)36180(21B ∴△BCD 、△DAB 均为等腰三角形。

BD =AD =BC =a ,而CD =b -a 由△BCD ∽△ABC ∴aab b a BC CD AB BC -== 即 则有21501)()(2-==-+baba ba 解得(取正) 6、解:如图分别过B 、C 两点作BG 、CK 平行于AM 交直线EF 于G 、K ,则有APCKAF CE AP BG AE BE == 两式相加AP CK BG AF CF AE BE +=+ 又梯形BCKG 中,PM =21(BG+CK ),而由P 为重心得AP =2PM 故122==+PMPM AF CF AE BE三、解答题1、证明:∵正方形ABCD ∴OA ⊥DE∵DF ⊥AE ∴F 是△DAE 的垂心 ∴EF ⊥AD ∴EF ∥AB ∵OA =OB ∴OE =OF2、证明:①如图,据题设可知DM 平行且等于BN ,DN 平行且等于AM , ∴∠AMD =∠BND∵M 、N 分别是Rt △AEP 和Rt △BFP 斜边的中点∴EM =AM =DN FN =BN =DM又已知DE =DF ∴△DEM ≌△DFN②由上述全等三角形可知∠EMD =∠FND ∴∠AME =∠BNF 而△AME 、△BNF 均为等腰三角形 ∴∠PAE =∠PBF 。

3、证明:连结MC ∵AB =BC ,AD ⊥BC ∴∠1=∠2=∠3 ∵∠4=∠5=∠6 又∵∠7=∠8 ∴M 是△AEC 的内心∴EM 是∠AEN 的平分线 ∴MNAMEN AE =MB又∵∠EBN =2∠NBD =2∠1 ∠ENB =∠NBD +∠4=2∠1 ∴EB =EN ∴MNAMEB AE =∴EN ∥BN4、证明:①如图: 因为M 是⌒BC 的中点,P 是BC 的中点,所以MP ⊥BC ,∠BPM =90°,连结AB ,则有∠PBM =21∠CAB =21(180°-∠DAB )=90°-21∠DAB =90°-∠NBD =∠QNB 。

所以Rt △BPM ∽Rt △NQB 。

于是有BQNQMP BP = ②因为KP ∥BD ,且KP =21BD =BQ ,所以,四边形PBQK 是平行四边形。

于是,有BP =KQ BQ =KP 由式①得KPNQMP KQ =。

相关文档
最新文档