初二上数学培优题(一)答案
初二上数学培优题(一)答案
初二数学培优题(一)1.如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.【分析】(1)由∠1=∠2=∠3,可得∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,已知AC=AE,即可证得:△ABC≌△ADE;(2)由题意可得,∠ADB=∠ABD=4x,在△ABD中,可得x+4x+4x=180°,解答处即可;【解答】解:(1)∵∠1=∠2=∠3,∴∠1+∠DAC=∠DAC+∠2,(三角形的一个外角等于与它不相邻的两个内角的和)即∠BAC=∠DAE,又∵∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵AE∥BC,∴∠E=∠3,∠DAE=∠ADB,∠2=∠C,又∵∠3=∠2=∠1,令∠E=x,则有:∠DAE=3x+x=4x=∠ADB,又∵由(1)得AD=AB,∠E=∠C,∴∠ABD=4x,∴在△ABD中有:x+4x+4x=180°,∴x=20°,∴∠E=∠C=20°.【点评】本题主要考查了全等三角形的判定与性质,判定三角形全等是证明线段或角相等的重要方式,在判定三角形全等时,关键是选择恰当的判定条件.2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,利用全等三角形的性质证明即可;(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;【解答】(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAC=∠EAD.在△ABC和△ADE中,∴△ABC ≌△ADE (SAS ).∴BC=DE(2)∵△ABC ≌△ADE ,∴S △ABC =S △ADE ,∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =×122=72.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD 的面积是解此题的关键,难度适中.3.如图,在△ABC 中,∠B=∠C ,AB=8,BC=6,点D 为AB 的中点,点P 在线段BC 上以每秒2个单位的速度由点B 向点C 运动,同时点Q 在线段CA 上以每秒a 个单位的速度由点C 向点A 运动,设运动时间为t (秒)(0≤t ≤3).(1)用含t 的代数式表示线段PC 的长;(2)若点P 、Q 的运动速度相等,t=1时,△BPD 与△CQP 是否全等,请说明理由.(3)若点P 、Q 的运动速度不相等,△BPD 与△CQP 全等时,求a 的值.【分析】(1)用BC 的长度减去BP 的长度即可;(2)求出PB ,CQ 的长即可判断;(3)根据全等三角形对应边相等,列方程即可得到结论.【解答】解:(1)PC=BC ﹣BP=6﹣2t ;(2)∵t=1时,PB=2,CQ=2,∴PC=BC﹣PB=6﹣2=4,∵BD=AD=4,∴PC=BD,∵∠C=∠B,CQ=BP,∴△QCP≌△PBD.(3)∵点P、Q的运动速度不相等,∴BP≠CQ,又∵△BPD与△CPQ全等,∠B=∠C,∴BP=PC,BD=CQ,∴2t=6﹣2t,at=4,解得:t=,a=.【点评】本题考查了全等三角形的性质,等腰三角形的性质等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.4.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.【解答】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.在△ABC与△ADE中,,∴△ABC≌△ADE.∴BC=DE.(2)AM=AN;理由如下:由(1)△ABC≌△ADE,∴∠B=∠D,∵BC=DE,M、N分别为BC、DE的中点,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴AM=AN.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.5.如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,①若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使△BPD≌△CPQ;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q 第一次在△ABC的哪条边上追上点P?【分析】(1)①根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD与△CQP全等;②设点Q的运动速度为xcm/s,则BP=3t,CQ=xt,CP=8﹣3t,当△BPD≌△CQP,则BP=CQ,CP=BD;然后分别建立关于t和v的方程,再解方程即可;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)①∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,,∴△BPD≌△CQP;②设点Q运动时间为t秒,运动速度为vcm/s,∵△BPD≌CPQ,∴BP=CP=4,CQ=5,∴t=,∴v===;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.6.如图,已知l1∥l2,射线MN分别和直线l1,l2交于A、B,射线ME分别和直线l1,l2交于C、D,点P在A、B间运动(P与A、B两点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)试探索α,β,γ之间有何数量关系?说明理由.(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么点P运动到什么位置时,△ACP≌△BPD说明理由.(3)在(2)的条件下,当△ACP≌△BPD时,PC与PD之间有何位置关系,说明理由.【分析】(1)过点P作PF∥l1,根据l1∥l2,可知PF∥l2,故可得出∠α=∠DPF,∠β=∠CPF,由此即可得出结论;(2)根据平行线的性质得到BD⊥MN,根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质得到∠ACP=∠DPB,根据垂直的定义即可得到结论.【解答】解:(1)∠γ=α+∠β,理由:过点P作PF∥l1(如图1),∵l1∥l2,∴PF∥l2,∴∠α=∠DPF,∠β=∠CPF,∴∠γ=∠DPF+∠CPF=α+∠β;(2)当AP=BD=3,△ACP≌△BPD,∵l1∥l2,AC垂直于MN,∴BD⊥MN,∴∠CAP=∠PBD=90°,∵AB=9,∴PB=6,∴AC=PB,在△CAP与△PBD中,,∴△ACP≌△BPD,∴当AP=3时,△ACP≌△BPD;(3)CP⊥PD,理由:∵△ACP≌△BPD,∴∠ACP=∠DPB,∵∠ACP+∠APC=90°,∴∠APC+∠DPB=90°,∴∠CPD=90°,∴CP⊥PD.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.。
人教版数学八年级上册第11章《三角形》培优测试题(含答案)
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册
人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。
数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)
数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC =α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45︒,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠, ∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB ,作B 关于y 轴的对称点D ,由已知可得,BD =4,AD =2.∴在Rt △ABD 中,AB =25(2)如图,①以A 为直角顶点,过A 作l 1⊥AB 交x 轴于C 1,交y 轴于C 2 .②以B 为直角顶点,过B 作l 2⊥AB 交x 轴于C 3,交y 轴于C 4.③以C 为直角顶点,以AB 为直径作圆交坐标轴于C 5、 C 6、 C 7.(用三角板画找出也可) 由图可知,C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0).(3)不存在这样的点P .作AB 的垂直平分线l 3,则l 3上的点满足PA =PB ,作B 关于x 轴的对称点B ′,连结AB ′,由图可以看出两线交于第一象限.∴不存在这样的点P .【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP,证得AOP∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC∆≅∆得到AOE DOC∠=∠,通过角的关系得到60AOP COE∠=∠=°,即可证得AOP∆是等边三角形.【详解】(1)∵ABC∆为等边三角形∴60BAC∠=︒∵O为BC中点∴1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒∵OA OD=∴AOD∆中,30D CAO∠=∠=︒∴180120AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O作//OE AB,OE交AD于E 由(2)得AOE DOC∆≅∆∴AOE DOC∠=∠又∵POC DOC∠=∠∴AOE POF∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形. 【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).①正数②非负数 ③ 0【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【解析】【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+=()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.14.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi (a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.【答案】(1)i;2(2)①5②3+4i(3)x=5,y=﹣3(4)m2+25=(m+5i)(m﹣5i)【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。
八年级(上)数学培优检测试卷
八年级(上)数学培优检测试卷一、选择题(每题2分,共20分)1.下列计算正确的是【 】A .1055b b b =+B .2)32()23)(32(y x y x x y --=-+C .6234)2(a a =-D .428x x x =÷ 2.已知:a 、b 为实数,且ab =1,设11+++=b b a a M ,1111+++=b a N 则M 、N 的大小关系是【 】A .M >NB .M <NC .M =ND .不能确定3.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是【 】A .11a b + B .1ab C .1a b + D .ab a b+ 4.===-b a b a x x x 2353,则,已知【 】 A .2527 B .109 C .53D .525.正实数y x ,满足1=xy ,那么44911y x +的最小值为【 】 A,32 B. 45 C. 1 D. 26.下列说法正确的是【 】A .等腰三角形一边上的中线,高,以及这边所对角的角平分线重合B .三角形三个内角的角平分线的交点到三条边的距离相等C .两个全等的图形一定关于某条直线成轴对称D .有一个外角的平分线平行于一边的三角形不是等腰三角形7.如图,在△ABC 中,∠ACB=100°,AC=AE ,BC=BD ,则∠DCE 的度数为【 】A .20°B .25°C .30°D .40° 8. 已知△ABC 有一边上的中线将这个三角形分成两个等腰三角形,则△ABC 一定是【 】A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.已知△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线相交于点O ,则S △ABO ︰S △BCO ︰S △CAO 等于【 】 A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰510.如图,已知Rt △ABC ,∠C =90°,∠A =30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有【 】A.2 个B.4个C.6个D.8个 CB A A BC D E二、填空题(每题2分,共16分)11.计算:20082-2007×2009=_________.12.若a 2+(m -3)a +4是一个完全平方式,则m 的值应是_________.13.当x=_______时,分式22||2-+-x x x 的值为零. 14.当m _____________时,解方程115122-=-++x m x x 会产生增根? A .1或5 B .1 C .7或-1 D .-1 15.瑞士中学教师巴尔末成功地从光谱数据⋯32362125 121659,,,中得到巴尔末公式,从而打开了光谱奥秘的大门,按这种规律写出第七个数据是:_______________.16.等腰三角形底边长为5cm ,腰上的中线把周长分为两部分的差为3cm ,则腰长为_______.17.已知△ABC 中,∠C=90°,CD ⊥AB 于点D , AE 是∠BAC 平分线交CD 于F ,点E 到AB 的距离等于3cm ,则CF=__ ___cm .18.如图,D 为等边三角形ABC 内一点,AD=BD ,BP=AB ,∠DBP=∠DBC ,则∠BPD=___________.三.解答题(共64分)19.(本小题4分)计算:)3()]21(2)3([322b a b b a b ab -⋅---20.(本小题6分)因式分解:(1)22)(4)(9b a b a --+ (2)(1-a 2)(1-b 2)-4ab21.(本小题6分)先化简再求值:)212]()21()21[(2222b a b a b a --++. 其中a 、b 满足a 2+b 2-2a +6b +10=0.22.(本小题6分)解方程:32651222-=+----x x x x x x x23.(本小题6分)在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.24.(本小题6分)已知:如图,OA 平分BAC ∠,12=∠∠.求证:ABC △是等腰三角形.25.(本小题6分)如图,△ABC 中,D 为BC 上一点,连结AD ,过D 作直线交AB 于F ,交AC延长线于E ,若AD AC CE ==,BD CD =,证明:BF FD =.ABB26.(本小题8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?27.(本小题8分)阅读题:关于x 的方程:c c x x 11+=+的解是cx c x 1,21==; ⎪⎭⎫ ⎝⎛-+=-+=c c x x c c -x x 1111-即的解是cx c x 1,21-==; c c x x 22+=+的解是cx c x 2,21==; c c x x 33+=+的解是cx c x 3,21==. (1) 请观察上述方程与解的特征,比较关于x 的方程c m c x m x +=+(m ≠0)与它们的关系,猜想它的解是什么,并用“方程的解”的概念进行验证;(2) 由上述的观察、比较、验证可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边的完全相同,只是把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于x 的方程: 1212-+=-+a a x x .28.(本小题8分)如图,已知等腰直角△ABC中,∠BAC=90°,D,E分别为AB,AC上的点,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交AC于M,交BE延长线于G,求证:BG=AF +FG.。
初二数学培优专题 (1)——共点“手拉手”模型(又称旋转“一拖二”模型)(答案详解)
共点手拉手模型(又称旋转“一拖二”模型)——兼谈最值、轨迹问题特点——公共点是等腰三角形顶角的顶点如图,若连接BB’、CC’,易证明△ABB’≌△ACC’(SAS)。
这就是传说中的“旋转一拖二”,又称为“手拉手模型”。
典型问题:【例1】(成都高新区2017-2018八年级上期27题)【例2】(成都金牛区2017-2018八年上期27题)如图,在△ABC中,∠B=45°,AB=22,2=BC,等腰直角∆ADE中,∠DAE=90°,2+3且点D是边BC上一点。
(1)(3 分)求AC的长;(2)(4 分)如图1,当点E恰在AC上时,求点E到BC的距离;(3)(3 分)如图2, 当点D从点B向点C运动时,求点E到BC的距离的最大值。
图1【例3】(2017届初二上期七中联盟半期)已知:ABC △是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中90PCQ =∠,探究并解决下列问题:(1)如图①,若点P 在线段AB上,且AC =,12PA =,则: ①线段PB =________,PC =________;②猜想:222,,PQ PA PB 三者之间的数量关系为_______________________;(2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P 满足4PA PB =,求PQAC的值.(提示:请利用备用图进行探求)图① 图② 备用图QCBPAQCB ACBA【例4】如图,已知30MON ∠=︒ ,B 为OM 上一点,BA ON ⊥ 于A ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90︒ 得CE ,连结BE ,若 4AB = ,则BE 的最小值为【例5】(成都武侯区2016-2017八年上期27题)如图,已知直线x y =过点A ,y AB ⊥轴于点B ,x AC ⊥轴于点C ,点P 是y 轴上的一动点,连接AP 交直线BC 于点E .点N 在直线BC 上,连接AN 且︒=∠90PAN ,在射线AN 上截取AE AD =,连接DE .(1)求证:2222AE EC BE =+;(2)若点A 的坐标是(6,m ),点P 的坐标是(0,m 32),求线段AD 的长; (3)当31=EC BE 时,求BPDE的值.27题【例6】(成都青羊区2016-2017八上期27题)在Rt ACB ∆中,90ACB ∠=︒,AC=BC ,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90︒至CE ,连结DE ,过C 作CF ⊥DE 交AB 于F ,连结BE.(1)求证:AD=BE ;(2)求证:222AD BF DF +=; (3)若15ACD ∠=︒,1CD =+,求BF.【例7】(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE ,易证△BCE ≌△ACD .则 ①∠BEC =;②线段AD 、BE 之间的数量关系是 . (2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,若AE =15,DE =7,求AB 的长度.(3)探究发现:如图3,P 为等边△ABC 内一点,且∠APC =150°,且∠APD =30°,AP =5,CP =4,DP =8,求BD 的长.E答案典型问题:【例1】(2017-2018上期成都高新区27题)解:(1)∵∠BAC=∠DAE=︒90 ∴∠BAD=∠CAE∵AB=AC ,AD=AE ∴△ABD ≌△ACE (SAS )(2)取AB 的中点G ,连接DG(I )∵∠BAC=∠DAE=︒120且点D是边BC上一点。
八年级上数学培优试题及答案
第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△A BE≌△CDF.2.如图,在△AB C中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”). 【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E ,C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠AB E=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,7654321NME D B CA∵△AEB 由△ADC 旋转而得, ∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C .∵AB =AC ,AD ⊥BC ,∴∠2=∠1,∠7=∠C .∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB .∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°. ∴∠BCA -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC . 又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC .∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF ,AC=DF ,∴Rt △ABC ≌Rt △DEF .∴∠ABC=∠DEF ,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD ,EC=BC ,∴△ABC ≌△CED .∴AB=ED .即量出DE 的长,就是A 、B 两端的距离. 9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACBAC ACCAB CAB=⎧⎪=⎨⎪=⎩∠∠′,,∠∠′,∴△ABC≌△AB′C(ASA).∴AB′=AB.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B 点、C 点关于DE 对称,有∠DBE=∠BCD ,∠ABC=2∠BCD . 且已知∠A=90°,故∠ABC+∠BCD=90°. 故∠ABC=60°,∠C=30°.6.解:(1)对称点有A 和A',B 和B',C 和C'. (2)连接A 、A′,直线m 是线段AA′的垂直平分线.(3)延长线段AC 与A′C′,它们的交点在直线m 上,其他对应线段(或其延长线)的交点也在直线m 上,即若两线段关于直线m 对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt △FDB 中,∵∠F =30°,∴∠B =60°. 在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°, ∴∠A =30°.在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.连接EB. ∵DE 是AB 的垂直平分线,∴EB =AE =2. ∴∠EBD =∠A =30°.∵∠ABC =60°,∴∠EBC =30°.∵∠F =30°,∴EF =EB =2.故选B .ABFCED8.8 解析:∵DF 是AB 的垂直平分线,∴DB=DA .∵EG 是AC 的垂直平分线,∴EC=EA . ∵BC=8,∴△ADE 的周长=DA+EA+DE=DB+DE+EC=BC=8. 9.解:AB+BD=DE .证明:∵AD ⊥BC ,BD=DC ,∴AB=AC . ∵点C 在AE 的垂直平分线上, ∴AC=CE . ∴AB=CE .∴AB+BD=CE+DC=DE .10.C 解析:关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5. 解得1.5<a <2.5,又因为a 必须为整数,∴a=2.∴点P 2(-1,-1). ∴P 1点的坐标是(-1,1).第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x =C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:n m n m aa a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m n mn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m n a a a-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”. 3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b , ∵不含x 2项, ∴3b -2=0,得b=23. ∴(3x 2-2x+1)(x+23) =3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
北师大数学八年级上培优组卷-一次函数中档解答题
北师大数学八年级上培优组卷-一次函数-中档解答题一.解答题(共25小题)1.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?2.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.3.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?4.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.5.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.6.若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.7.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.8.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式;(2)直接写出直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.9.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.10.如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.11.为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.12.在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.13.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.14.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.15.直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.16.如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.17.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?18.已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.19.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.20.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C (0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.21.已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.22.某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.23.星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.24.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?25.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.一次函数-中档题型111参考答案与试题解析一.解答题(共25小题)13.(2016•怀化)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.14.(2016春•西华县期末)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.【解答】解:(1)令y=kx﹣1中x=0,则y=﹣1,∴C(0,﹣1),OC=1.∵OB=OC,∴OB=,∴点B的坐标为(,0),把B(,0)代入y=kx﹣1中,得0=k﹣1,解得:k=2.(2)∵点A(x,y)是第一象限内直线y=2x﹣1的一个动点,∴A(x,2x﹣1)(x>),∴S=•OB•y=×(2x﹣1)=x﹣(x>).(3)当S=时,有x﹣=,解得:x=1,∴y=2x﹣1=1,故当点A的坐标为(1,1)时,△AOB的面积为.15.(2016春•朝阳区期末)直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.【解答】解:(1)令y=2x﹣2中y=0,则2x﹣2=0,解得:x=1,∴A(1,0).令y=2x﹣2中x=0,则y=﹣2,∴B(0,﹣2).(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).16.(2016春•宜宾期末)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S△AOB=OA•OB=×2×3=3.(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.17.(2016春•海珠区期末)如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(5,0)、B(1,4)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+5.(2)联立两直线解析式得:,解得:,∴点C(3,2).∵y=﹣×3+4=2,∴直线y=﹣x+4也经过点C.18.(2016春•中山市期中)已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣x+4中,令y=0可求得x=3,令x=0可求得y=4,∴A(3,0),B(0,4);(2)由A(3,0),B(0,4)可得OA=3,OB=4,在Rt△AOB中,由勾股定理可得AB===5,即AB的长度为5;(3)假设存在满足条件的C点,其坐标为(x,0),则AC=|x﹣3|,BC==,若△ABC为等腰三角形时,则有AC=BC、AC=AB或BC=AB,①当AC=BC时,则有|x﹣3|=,解得x=﹣,此时C点坐标为(﹣,0),②当AC=AB时,则有|x﹣3|=5,解得x=8或x=﹣2,此时C点坐标为(8,0)或(﹣2,0),③当BC=AB时,则有=5,解得x=3或﹣3,当x=3时,A、C重合,不能构成三角形,舍去,故此时C 点坐标为(﹣3,0),综上可知存在满足条件的C点,其坐标为(﹣,0)或(8,0)或(﹣2,0)或(﹣3,0).19.(2016春•武汉校级月考)已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.【解答】解:(1)连接OC,作CM⊥OA于点M,如图1所示.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴OA=OB=12.∵点C为线段AB的中点,∴OC⊥AB,∴△OCA为等腰直角三角形,又∵CM⊥OA,∴CM=OM=MA=OA=6.故点C的坐标为(6,6).(2)证明:连接OC,在OB上截取OM=AF,连接CM、ME,如图2所示.∵△AOB、△OCA、△OCB均为等腰直角三角形,∴∠A=∠B=∠BOC=45°,OC=AC.在△ACF和△OCM中,,∴△ACF≌△OCM(SAS),∴CM=CF,∠OCM=∠ACF.∵∠ACO=∠ACF+∠ECF+∠OCE=90°,∠ECF=45°,∴∠ACF+∠OCE=45°=∠OCM+∠OCE=∠ECM=∠ECF.在△ECF和△ECM中,,∴△ECF≌△ECM(SAS),∴ME=EF.在Rt△MOE中,∠MOE=90°,∴EF2=ME2=OE2+OM2=OE2+AF2.(3)过点C作CN⊥OA于点N,如图3所示.设AF=x=OM,则EF=OA﹣OE﹣AF=12﹣3﹣x=9﹣x=EM,由(2)可得:(9﹣x)2=32+x2,解得:x=4,∴OF=OA﹣AF=12﹣4=8.∵△OCA为等腰直角三角形,∴CN=ON=OA=6,NF=OF﹣ON=8﹣6=2.在Rt△CNF中,∠CNF=90°,CN=6,NF=2,∴CF==2.20.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP=6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP=S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.21.(2014•黄浦区二模)已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.【解答】解:(1)把(4,8),(8,10)代入y=kx+b得:,解得,故弹簧A的弹力系数为.(2)设弹簧B弹力系数为k b,弹簧A的直径为d A,则弹簧B的直径为.由题意得.∴.又∵弹簧B与弹簧A不挂重物时的长度相同,∴弹簧B长度与所挂重物质量的关系可表示为.把y=9代入得:9=x+6解得:x=4.故此时所挂重物质量为4千克.22.(2014•姜堰市校级模拟)某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.【解答】解:(1)设0≤x≤200时,y=kx﹣1000,把(100,0)代入可得:0=100k﹣1000,解得,k=10,那么可得函数式为:y=10x﹣1000.设第二段范围的函数式为:y=kx+b,把(200,500)和(300,2000)代入可得:,解得:.即y=15x﹣2500;(2)∵y>1000,那么根据图象,则15x﹣2500>1000,解得,x>,x取整则x=234(张);(3)图象与y轴交点(0,﹣1000)的实际意义为:当每天不卖门票时,每天亏损1000元;(4)由函数图象可以得出:当销售100张门票时,赢利为0元;当销售200张门票时,单价为10元一张的利润大于15元一张的利润.答案不唯一,合理即可.23.(2016•柘城县一模)星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.【解答】解:(1)小华返回的速度为3000÷(50﹣30)=150(米/分).答:小华返回时的速度为150米/分.(2)点B的纵坐标为:150×(50﹣45)=750.小强步行的速度为:(3000﹣750)÷45=50(米/分),小强比步行提前到图书馆的时间为:3000÷50﹣50=10(分钟).答:小强比步行提前10分钟到图书馆.(3)设直线OA的解析式为y=kx+b,将点O(0,0),A(30,3000)代入y=kx+b中得:,解得:.∴线段OA的解析式为y=100x(0≤x≤30);同理可得:线段AB的解析式为y=﹣150x+7500(30<x≤45);线段BD的解析式为y=﹣50x+3000.当0≤x≤30时,令|﹣50x+3000﹣100x|=1000,解得:x1=,x2=;当30<x≤45时,令﹣150x+7500﹣(﹣50x+3000)=1000,解得:x3=35.∴小强与小华相距1000米的时间为、或35分钟.24.(2016•莲湖区二模)在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60÷2=30(千米/时),∴货车行驶360千米所需时间为360÷30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.25.(2016春•单县期末)如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.【解答】解:(1)作PE⊥y轴于E,∵P的横坐标是2,则PE=2.∴S△COP=OC•PE=×2×2=2;(2)∴S△AOC=S△AOP﹣S△COP=6﹣2=4,∴S△AOC=OA•OC=4,即×OA×2=4,∴OA=4,∴A的坐标是(﹣4,0).设直线AP的解析式是y=kx+b,则,解得:.则直线的解析式是y=x+2.当x=2时,y=3,即p=3;(3)∵S△AOP=S△BOP,∴OB=OA=4,则B的坐标是(4,0),设直线BD的解析式是y=mx+n,则,解得.则BD的解析式是:y=﹣x+6.1.(2016•南京)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.2.(2016•牡丹江)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.3.(2016•新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.4.(2016•衡阳)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.5.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.6.(2016•黄冈一模)若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.【解答】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为;(3)设直线直线y=x+2与y轴的交点为C,与x轴的交点为D,则C(0,2),D(﹣2,0),∵A(﹣1,1),∴S△AOC=S△AOD=×2×1=1,①当B点在第一象限时,则S△BOC=1,设B的横坐标为m,∴S△BOC=×2×m=1,解得m=1,∴B(1,3);②当B点在第三象限时,则S△BOD=1,设B的纵坐标为n,∴S△BOD=×2×(﹣n)=1,解得n=﹣1,∴B(﹣3,﹣1).综上,B的坐标为(1,3)或(﹣3,﹣1).7.(2016•微山县校级一模)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.【解答】解:(1)∵直线y=kx+3与y轴交于B点,∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.8.(2016•张家港市校级模拟)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式y=﹣x﹣2;(2)直接写出直线AB与坐标轴围成的三角形的面积2;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3),∴,解得,∴一次函数为y=﹣x﹣2;(2)在y=﹣x﹣2中,分别令x=0、y=0,可求得一次函数与两坐标轴的交点坐标分别为(0,﹣2)、(﹣2,0),∴直线与两坐标轴围成的三角形的面积为:S=×2×2=2;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点P.设直线BA′的解析式为y=mx+n,将点A′(﹣1,1)和点B(1,﹣3)代入可得:,解得:.故直线BA′的解析式为y=﹣2x﹣1,令y=0,可得﹣2x﹣1=0,解得:x=﹣,故点P的坐标为(﹣,0).故答案为y=﹣x﹣2;2.9.(2016•南京校级一模)如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80m/min,乙的速度为200m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960m.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.(4)∵乙的速度>甲的速度,∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,3×(80+200)=840(m);当x=18时,甲乙两人间距为:2400﹣80×18=960(m).∵960>840,∴甲乙两人相距的最远距离为960m.故答案为:960.10.(2016•丹阳市模拟)如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.【解答】解:(1)设y=kx+b,∵函数图象经过点(0,90),(50,0),∴,解得,∴y=﹣x+90;(2)5×40+90﹣(﹣×40+90),=200+90﹣(﹣72+90),=272m;(3)甲的速度为:272÷40=6.8m/s,所以,甲的速度增加后为:6.8+1.2=8m/s,x=10时,y=﹣×10+90=72m,由题意得,相遇时,5(x﹣10)+72=8(x﹣10),解得x=34,①10<x≤34时,y=5(x﹣10)+72﹣8(x﹣10)=﹣3x+102,②x>34时,y=8(x﹣34)﹣5(x﹣34)=3x﹣102,函数图象如图所示.11.(2016•驻马店模拟)为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.【解答】解:(1)普通卡:y1=20x;贵宾卡:y2=10x+200;(2)令y1=500得:20x=500,解得:x=25,∴点B坐标为(25,500);令y2=500得:10x+200=500,解得:x=30,∴点C的坐标为(30,500);联立y1、y2得:,解得:,∴点A的坐标为(20,400);∴A(20,400),B(25,500),C(30,500).(3)①当0<x<20时,选择普通卡更合算;②当x=20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算;③当20<x<30时,选择贵宾卡更合算;④当x=30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算;⑤当x>30时,选择至尊卡更合算.12.(2016•泰州三模)在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.【解答】解:(1)依照题意画出图形,如图1所示.令y=﹣x+3中y=0,则x=3,∴A(3,0);令y=3x﹣5中y=0,则x=,∴B(,0);联立两直线解析式成方程组,得:,解得:,∴C(2,1).S△ABC=AB•y C=(3﹣)×1=.(2)∵点P在直线y=﹣x+3上,∴设P(m,﹣m+3),∵P、Q关于原点成中心对称,∴Q(﹣m,m﹣3).∵点Q在直线y=3x﹣5上,∴m﹣3=﹣3m﹣5,解得:m=﹣,∴点P的坐标为(﹣,).(3)依照题意画出图形,如图2所示.若要△QPC≌△ABC,只需PQ∥AB,且PQ=AB即可.设P(3﹣n,n),则Q(,n),∵PQ=AB,∴﹣(3﹣n)=3﹣,解得:n=2,∴点Q(,2).。
北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)
期末备考压轴题培优:一次函数1.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)2.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为:(2,1)或(2,4)或(﹣2,8).3.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).4.如图,直线y=2x+4分别与x轴,y轴交于B,A两点(1)求△ABO 的面积;(2)如果在第三象限内有一点P (﹣1,m ),请用含m 的式子表示四边形AOPB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOPB 的面积是△ABO 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)当x =0时,y =4,∴OA =4,当y =0时,2x +4=0,x =﹣2,∴OB =2,∴△ABO 的面积===4;(2)四边形AOPB 的面积=S △AOB +S △BOP =4+=4﹣m ;(3)存在满足条件的点P .∵S 四边形AOPB =2S △ABO ,∴4﹣m =8,∴m =﹣4,∴存在点P (﹣1,﹣4),使得S 四边形ABOP =2S △ABO .5.如图,直线y =kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D 点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).7.如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动点P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)填空:当t=2时,点B的坐标为(6,2).(2)在P点的运动过程中,当AB∥x轴时,求t的值;(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.解:(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),故答案为:(6,2);(2)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠P AB=∠PBA=45°,∴∠OAP=90°﹣∠P AB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4,t=4÷1=4(秒);(3)∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠P AO+∠APO=90°,∴∠P AO=∠BPC.∠P AO=∠BPC,在△P AO和△BPC中,∠AOP=∠PCB=90°,∴△P AO≌△BPC(AAS).AP=BP,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0),点B(x,y),∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,∴y=x﹣4.8.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(4+K,﹣3+K),又∵点D在直线y=﹣2x+1上,∴﹣2(4+K)+1=﹣3+K,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).9.如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠P AE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF =S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB 的面积,∴S =S △ABC ﹣S △P AE =×8×8﹣×(2m ﹣8)×(2m ﹣8)=16m ﹣2m 2; (3)如图2,连接AM ,CM ,过点P 作PE ⊥AC ,∵AB =BC ,BO ⊥AC ,∴BO 是AC 的垂直平分线,∴AM =CM ,且AP =CQ ,PM =MQ ,∴△APM ≌△CQM (SSS )∴∠P AM =∠MCQ ,∠BQM =∠APM =45°,∵AM =CM ,AB =BC ,BM =BM ,∴△ABM ≌△CBM (SSS )∴∠BAM =∠BCM ,∴∠BCM =∠MCQ ,且∠BCM +∠MCQ =180°,∴∠BCM =∠MCQ =∠P AM =90°,且∠APM =45°, ∴∠APM =∠AMP =45°,∴AP =AM ,∵∠P AO +∠MAO =90°,∠MAO +∠AMO =90°,∴∠P AO =∠AMO ,且∠PEA =∠AOM =90°,AM =AP , ∴△APE ≌△MAO (AAS )∴AE =OM ,PE =AO =4,∴2m ﹣8=4,∴m =6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10.如图,一次函数y=﹣x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(8,0),点B的坐标为(0,4);(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)求OC的长度.解:(1)令x=0,则y=4,∴B(0,4),令y=0,则0=﹣x+4,∴x=8,∴A(8,0),故答案为:(8,0),(0,4);(2)设点P(x,﹣x+4)∵△APO的面积为12,∴12=×8×|﹣x+4|∴x=2或14,∴点P(2,3)或(14,3)(3)设点C(a,0),则OC=a,∴AC=8﹣a,由折叠知,BC=AC=8﹣a,在Rt△BOC中,OB=4,根据勾股定理得,BC2﹣OC2=OB2,∴(8﹣a)2﹣a2=16,∴a=3,即:OC=3,11.如图,已知直线y=﹣x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的关系;(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.解:(1)令y=0,则﹣x+3=0,解得x=2,∴A(2,0),令x=0,则y=3,∴C(0,3);由折叠可知:CD=AD,设AD=x,则CD=x,BD=3﹣x,由题意得,(3﹣x)2+22=x2,解得x=,此时AD=,∴D(2,),设直线CD为y=kx+3,把D(2,)代入得=2k+3,解得k=﹣,∴直线CD的解析式为y=﹣x+3;(2)∵A(2,0),D(2,),∴AD=.∵∠DAP=90°,∴△ADP是等腰直角三角形,∴当AD=AP=时,P点的坐标是(﹣,0)或(,0).12.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y =﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.=22;(1)直接写出直线BD的解析式为y=﹣2x﹣3,S△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,=×11×4=22.∴S△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).13.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP =S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP =S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=yN=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).14.在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.解:(1)把P(2,2)和点Q(0,﹣2)分别代入y1=kx+b,得.解得.则直线y1=kx+b的解析式为:y1=2x﹣2;(2)如图所示,P(2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=,AM=1当m>0时,点B有3种位置使得△P AB为等腰三角形①当AP=AB时,AB=,∴B(+1,0)②当P A=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=解得x=2.5,∴B(3.5,0)当m<0时,点B有1种位置使得△P AB为等腰三角形.当AB=AP时,OB=﹣1,∴B(1﹣,0).综上所述,点B有4种位置使得△P AB为等腰三角形,坐标分别为(+1,0)、(3,0)、(3.5,0)、(1﹣,0).15.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y =4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=4;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.解:(1)d(S,T)=|﹣1+2|+|6﹣3|=4,故答案为4;(2)直线y=﹣2x+3上的“互助直线”为:y=3x﹣2,设点H(a,﹣2a+3),将点H坐标代入y=3x﹣2得:﹣2a+3=3a﹣2,解得:a=1,故点H(1,1);(3)M(m,n)在y=ax+b上,则n=am+b…①,点N在“互助直线”y=bx+a上,则2m﹣3n=3bm+a…②,联立①②并整理得:m(2﹣3a﹣3b)=a+3b,对于任意一点M(m,n)都等式均成立,故:a+3b=0,2﹣3a﹣3b=0,解得:a=1,b=﹣,故函数的表达式为:y=x﹣,设点P(x,x﹣)是函数上的点d(L,P)=|5﹣x|+|x﹣+1|=|x﹣5|+|x+|,则d(L,P)的最小值为5.。
人教版八年级数学培优题精选18例(含答案)
A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。
例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。
例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。
根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。
八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)
八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.3.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.4.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.5.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.8.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
八年级上数学培优及答案
八年级上数学培优及答案2345() 2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 8 3≤y ≤D .8≤y ≤16八年级数学---培优精品教案◆◆◆ 认真解答,一定要细心哟!3、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开6两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )A.5种B. 6种C. 7种D.8种5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定76、直线l 1:y =k 1x +b 与直线l 2:yx 的不等式k 1x +b <k 2x +c .A .x >1B .x <1C .xD .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )八年级数学---培优精品教案◆◆◆ 认真解答,一定要细心哟!A.32B.23C.32-D.23- 9、如图,平面直角坐标系中,在边长=x2y =-8为1的正方形ABCD的边上有一动点P沿A B C D A→→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( ) A.甲的效率高 B.乙的效率高 C.两人的效率相等 D.两人的效率不能确定A B C D 时间11、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有()A.5个B.6个C.7个D.8个12、已知一次函数()1-ky,若y随x的增大而减小,=x则该函数的图像经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限八年级数学---培优精品教案(5)◆◆◆认真解答,一定要细心哟!9例题讲解1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距蚌埠的路程......为s1千米.⑴请用含t的代数式表示s1;⑵设另有王红同时从A地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s2(千米)与行驶时间t(时)之间的函数关系式为s2=kt +b(k、t为常数,k≠0),若李红从A地回到蚌埠用了9小时,且当t=2时,s2=560.①求k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?10例题讲解2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为 km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.八年级数学---培优精品教案(5)◆◆◆认真解答,一定要细心哟!例题讲解3、、某洗衣机在洗涤衣服时,经历了进水、清排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的如折线图所示:根据图象解答下列问题:Array(1)的水量是多少升?(2)①求排水时y与x之间的关系式。
北师大版八年级上数学培优及答案
)
A. y 2 x 3
B. y 2x 6
C. y 2x 3
y
A
y 2x
B
x
O
D. y 2x 6
8、已知一次函数 y kx b ,当 x 增加 3 时, y 减少 2,则 k 的值是(
)
A. 2
B.
3
3
2
C. 2
D.
3
3
2
八年级上试题
一、填空题
1、设 ABC的三边长分别为 a, b, c,其中 a, b 满足 a b 4 (a b 2) 2 0 ,
则第三边的长 c 的取值范围是
.
2、函数 y 4 x 3 的图象上存在点 P,点 P 到 x 轴的距离等于 4,则点 P 的坐标是 ________。
3、在△ ABC中,∠ B和∠ C 的平分线相交于 O,若∠ BOC= ,则∠ A=_________。
0 点到 1
点,打开两个进水口,关闭出水口;② 1 点到 3 点,同时关闭两个进水口和—个出水口;③ 3 点
到 4 点,关闭两个进水口,打开出水口;④ 5 点到 6 点.同时打开两个进水口和一个出水口.其
中,可能正确的论断是 ( )
A.①③
B.
①④
C.
②③ D. ②④
4、将长为 15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同
x 的不等式 k1x+b< k2x+ c 的解集为( ).
A. x> 1
B. x< 1y O1
y= k1x+b
x
-2 y= k2 x+c
7、如图,把直线 y 2x 向上平移后得到直线 AB,直线 AB经过点 (a, b) ,且 2a b 6 ,则
北师大版八年级上数学培优和答案
)八年级上试题一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。
4、直角三角形两锐角的平分线交角的度数是 。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m °B.2m °C.(90-m)°D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种 5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )c k 1x +bx2y =-A.32B.23C.32-D.23- 9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( ) A.5个 B.6个 C.7个 D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组A .B .C .D .由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
八年级上册数学 全册全套试卷培优测试卷
八年级上册数学 全册全套试卷培优测试卷一、八年级数学三角形填空题(难)1.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.2.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A1B1B2=∠C,∠AA1B1=∠B,由三角形外角性质可得∠AA1B1=2∠C,根据等量代换可得∠B=2∠C;(2)先求出经过三次折叠,∠BAC是△ABC 的好角时,∠B与∠C的等量关系为∠B=3∠C,进而可得经过n次折叠,∠BAC是△ABC的好角时∠B与∠C的等量关系为∠B=n∠C,因为最小角是20º,是△ABC的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m、n都是正整数可得m与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA1B1,∠A1B1B2=∠C,∵∠AA1B1=∠A1B1B2+∠C,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1B1C=∠BAC+2∠B-2∠C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m、n为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.3.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A =∠1+∠2【解析】【分析】根据∠1与∠AED 的2倍和∠2与∠ADE 的2倍都组成平角,结合△AED 的内角和为180°可求出答案.【详解】∵△ABC 纸片沿DE 折叠,∴∠1+2∠AED =180°,∠2+2∠ADE =180°,∴∠AED =12(180°−∠1),∠ADE =12(180°−∠2), ∴∠AED +∠ADE =12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2) ∴△ADE 中,∠A =180°−(∠AED +∠ADE )=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.5.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.6.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.【答案】45【解析】【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,CAD FBDBDF ADCBF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为45.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.二、八年级数学三角形选择题(难)7.把一副直角三角板按如图所示的方式摆放在一起,其中C90∠=,F90∠=,D30∠=,A45∠=,则12∠∠+等于()A.270B.210C.180D.150【答案】B【解析】【分析】利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB与DE交于点G,AB与EF交于点H,∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.8.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【答案】B【解析】【分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.9.一个多边形的每个内角都等于120°, 则此多边形是( )A.五边形B.七边形C.六边形D.八边形【答案】C【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选C.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.10.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确.故选D .11.如下图,线段BE 是ABC ∆的高的是( )A .B .C .D .【答案】D【解析】【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高.【详解】解:由图可得,线段BE 是△ABC 的高的图是D 选项;故选:D .【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.12.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题14.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).【答案】60【解析】【分析】根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,∴AB=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,AB BCABD BCEBD CE=⎧⎪∠∠⎨⎪=⎩=,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.15.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为____________.【答案】6【解析】【分析】由角平分线和三角形的内角和定理可得∠AFC=135°,由△AFC≌△DFC可得∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,过点F作FP⊥AB于点P,FQ⊥BC于点Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.【详解】解:过点F作FP⊥AB于点P,FQ⊥BC于点Q,过点F作FG⊥FM,交BC于点G.∵点F 是∠BAC 和∠BCA 的角平分线交点,∴FP =FQ =3,∵∠ABC =90°,∴四边形BPFQ 是正方形,∴BP =BQ =3.在Rt △ABC 中,∠BAC +∠BCA =90°,∵AF 、CF 是角平分线,∴∠FAC +∠FCA =45°,∴∠AFC =180°-45°=135°.易证△AFC ≌△DFC (SAS ),∴∠AFC =∠DFC =135°,∴∠ADF =90°,同理可得∠EFC =90°,∴∠MFN =360°-90°-90°-135°=45°.∵∠PFM +∠MFN =90°,∠MFN +∠QFG =90°,∴∠PMF =∠QFG ,∵∠FPM =∠FQG =90°,FP =FQ ,∴△FPM ≌△FQG (ASA ),∴PM =QG ,FM =FG .在△FMN 和△FGN 中45FM FG MFN GFN FN FN =⎧⎪∠=∠=⎨⎪=⎩∴△FMN ≌△FGN (SAS ),∴MN =NG ,∴MN =NG =NQ +QG =PM +QN ,∴△BMN 的周长为:BM +BN +MN= BM +BN + PM +QN=BP +BQ=3+3=6.故答案为:6.【点睛】本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.16.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.【答案】(103,113).【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=11 3,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)故答案为P(103,113).17.如图,在四边形ABCD中,∠DAB=∠DCB=90°,CB=CD,AC=6,则四边形ABCD的面积是_________.【答案】18.【解析】【分析】根据已知线段关系,将△ACD绕点C逆时针旋转90°,CD与CB重合,得到△CBE,证明A、B、E三点共线,则△ACE是等腰直角三角形,四边形面积转化为△ACE面积.【详解】∵CD=CB,且∠DCB=90°,∴将△ACD绕点C逆时针旋转90°,CD与CB重合,得到△CBE,∴∠CBE=∠D,AC=EC,∠DCA=∠BCE.根据四边形内角和360°,可得∠D+∠ABC=180°,∴∠CBE+∠ABC=180°,∴A、B、E三点共线,∴△ACE是等腰直角三角形,∴四边形ABCD面积=△ACE面积= 12AC2=18.故答案为:18.【点睛】本题考查了旋转的性质以及转化思想,解决这类问题要结合已知线段间的数量关系和位置关系进行旋转,使不规则图形转化为规则图形.18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.【答案】10【解析】试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°,∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,∴CO=12AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.四、八年级数学全等三角形选择题(难)19.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q 在轨道槽AM 上运动,点P 既能在以A 为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN 上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.20.如图,在△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 相交于点O ,给出四个条件:①OB=OC ;②∠EBO=∠DCO ;③∠BEO=∠CDO ;④BE=CD .上述四个条件中,选择两个可以判定△ABC 是等腰三角形的方法有( )A.2种B.3种C.4种D.6种【答案】C【解析】【分析】①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.【详解】解:有①②,①③,②④,③④,共4种,①②,理由是:∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形;①③,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,∵∠OBC=∠OCB(已证),∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;②④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC BE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;③④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOCBE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;故选C.21.如图,AD是ABC的角平分线,DE AC⊥;垂足为,//E BF AC交ED的延长线于点F,若BC恰好平分ABF∠.给出下列三个结论:①DE DF=;②DB DC=;③AD BC⊥.其中正确的结论共有()个A.0B.1C.2D.3【答案】D【解析】【分析】由BF∥AC,AD是ABC的角平分线,BC平分ABF∠得∠ADB=90︒;利用AD平分∠CAB证得△ADC≌△ADB即可证得DB=DC;根据DE AC⊥证明△CDE≌△BDF得到DE DF=.【详解】∵DE AC⊥,BF∥AC,∴EF⊥BF,∠CAB+∠ABF=180︒,∴∠CED=∠F=90︒,∵AD是ABC的角平分线,BC平分ABF∠,∴∠DAB+∠DBA=12(∠CAB+∠ABF)=90︒,∴∠ADB=90︒,即AD BC⊥,③正确;∴∠ADC=∠ADB=90︒,∵AD平分∠CAB,∴∠CAD=∠BAD,∵AD=AD,∴△ADC≌△ADB,∴DB=DC,②正确;又∵∠CDE=∠BDF,∠CED=∠F,∴△CDE≌△BDF,∴DE=DF,①正确;故选:D.【点睛】此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.22.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C 作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.23.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()A.3 B.5 C.4 D.不确定【答案】C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.24.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.五、八年级数学轴对称三角形填空题(难)25.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD 在△ABC 外部时,顶角∠ACB =180°﹣30°=150°,②BC 为底,如图3,∵AD ⊥BC 于点D ,AD =12BC , ∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD , ∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.26.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC为腰或BP为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.【详解】解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G∵点B(-8,8),点C(-2,0),∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,6秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.27.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.28.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。
数学八年级上册 全册全套试卷培优测试卷
数学八年级上册全册全套试卷培优测试卷一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.3.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.【答案】92°.【解析】【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】由折叠的性质得:∠C'=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点睛】考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.4.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180° ∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.5.如图,△ABC 中,∠BAC =70°,∠ABC 的平分线与∠ACB 的外角平分线交于点O ,则∠BOC =_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC =∠ACE ,∠BOC+∠OBC =∠OCE ,再根据角平分线的定义可得∠OBC =12∠ABC ,∠OCE =12∠ACE ,然后整理可得∠BOC =12∠BAC . 【详解】解:由三角形的外角性质,∠BAC+∠ABC =∠ACE ,∠BOC+∠OBC =∠OCE ,∵∠ABC 的平分线与∠ACB 的外角平分线交于点O ,∴∠OBC =12∠ABC ,∠OCE =12∠ACE , ∴12(∠BAC+∠ABC )=∠BOC+12∠ABC , ∴∠BOC =12∠BAC , ∵∠BAC =70°,∴∠BOC =35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.【详解】解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,∴∠ABP=∠PBC,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)∠P=180°-(∠PBC+∠PCB)∴∠P=90°+12∠A;故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB)=180°-12(∠FBC+∠ECB)=180°-12(∠A+∠ACB+∠A+∠ABC)=180°-12(∠A+180°)=90°-12∠A.故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.8.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.10.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.12.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.三、八年级数学全等三角形填空题(难)13.在Rt△ABC中,∠BAC=90°AB=AC,分别过点B、C做经过点A的直线的垂线BD、CE,若BD=14cm,CE=3cm,则DE=_____【答案】11cm或17cm【解析】【分析】分两种情形画出图形,利用全等三角形的性质分别求解即可.【详解】解:如图,当D,E在BC的同侧时,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥DE,∴∠BDA=90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE,∵CE⊥DE,∴∠E=90°,在△BDA和△AEC中,ABD CAED EAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDA≌△AEC(AAS),∴DA=CE=3,AE=DB=14,∴ED=DA+AE=17cm.如图,当D,E在BC的两侧时,同法可证:BD=CE+DE,可得DE=11cm,故答案为:11cm或17cm.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.14.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.15.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,BF=2,则EF=__.【答案】6【解析】【分析】由于AB//CD、AE/CF,根据平行线的性质可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知条件就可以证明△AEF≌△CFD,最后利用全等三角形的性质和已知条件即可求解.【详解】解:∵AB//CD、AE/CF,∴∠B=∠D,∠AEF=∠CFD,而AE=CF,∴△AEF≌△CFD,∴DF=EB,∴DE=BF,∴EF=BD-2BF=6.故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,解题时首先利用平行线的性质构造全等条件证明三角形全等,然后利用全等三角形的性质即可解决问题.16.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.17.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是__________.(填写序号)【答案】①③④【解析】【分析】根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC=60°﹣25°=35°,③正确;∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分线,∴∠DAC=55°,④正确.故答案为①③④.【点睛】本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,已知BD,CD分别是∠ABC和∠ACE的平分线,连接AD,∠DAC=46°, ∠BDC _________【答案】44°【解析】如图,过点D作DF⊥BA,交BA的延长线于点F,过点D作DH⊥AC于点H,过点D作DG⊥BA,交BC的延长线于点G,∵BD,CD分别是∠ABC和∠ACE的平分线,∴DF=DG=DH,∵DH⊥AC,DF⊥BA,∴AD平分∠CAF,∴∠DAC=∠FAD=46°,∴∠BAC=180°-46°-46°=88°;∵BD,CD分别是∠ABC和∠ACE的平分线,∴∠DCE=12ACE∠,∠DBC=12ABC∠,∵∠DCE=∠BDC+∠DBC,∠ACE=∴∠BDC+∠DBC=12(∠BAC+∠ABC),∴∠BDC=12∠BAC=00188442⨯= .四、八年级数学全等三角形选择题(难)19.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CD B.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CD D.AB﹣AD与CB﹣CD的大小关系不确定【答案】A【解析】如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB-AD=AB-AE=BE,BC-CD=BC-CE,∵在△BCE中,BE>BC-CE,∴AB-AD>CB-CD.故选A.20.下列两个三角形中,一定全等的是( )A.两个等边三角形B.有一个角是40︒,腰相等的两个等腰三角形C.有一条边相等,有一个内角相等的两个等腰三角形D.有一个角是100︒,底相等的两个等腰三角形【答案】D【解析】【分析】根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】解:A、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;B、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;C、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;D、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA或AAS证得它们全等,故本选项正确;故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()A.6 B.5C.4.5 D.与AP的长度有关【答案】A【解析】【分析】作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而可得出EF=12AB,由等边△ABC的边长为12可得出DE=6.【详解】解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,又∵PE ⊥AB 于E ,∴∠BQD=∠AEP=90°,∵△ABC 是等边三角形,∴∠A=∠ABC=∠DBQ=60°,在△APE 和△BDQ 中,A DBQ AEP BQD AP BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△APE ≌△BDQ (AAS ),∴AE=BQ ,PE=QD 且PE ∥QD ,∴四边形PEDQ 是平行四边形, ∴EF=12EQ , ∵EB+AE=BE+BQ=AB , ∴EF=12AB , 又∵等边△ABC 的边长为12,∴EF=6.故选:A.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE ⊥AB 作辅助线构成全等的三角形.22.如图,已知,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA .下面结论:①△ABD ≌△EBC ;②AC=2CD ;③AD=AE=EC ;④∠BCE+∠BCD=180°.其中正确的是( )A .①②③B .①②④C .①③④D .②③④【答案】C【解析】 已知BD 为△ABC 的角平分线,根据角平分线的定义可得∠ABD =∠CBD ,在△AB D 和△EB C 中,BD =BC ,∠ABD =∠CBD ,BE =BA ,由SAS 可判定△ABD ≌△EBC ,即可得①正确;根据已知条件,无法证明AC =2CD ,②错误; 已知BD 为△ABC 的角平分线,BD=BC ,BE=BA ,可得∠BCD =∠BDC =∠BAE =∠BEA , 再由∠BCE =∠BDA ,∠BCE =∠BCD +∠DCE ,∠BDA =∠DAE +∠BEA ,∠BCD =∠BEA ,可得∠DCE =∠DAE ,所以AE =EC ;再由△ABD ≌△EBC ,可得AD=EC ,所以AD=AE=EC ,即③正确;由△ABD ≌△EBC ,可得∠BCE =∠BDA ,所以∠BCE +∠BCD =∠BDA +∠BDC =180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.23.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=12×32×3:12×32×5=3:5.故选:B .点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.24.已知111122,A B C A B C △△的周长相等,现有两个判断:①若21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )A .①,②都正确B .①,②都错误C .①错误,②正确D .①正确,②错误 【答案】A【解析】【分析】根据SSS 即可推出△111A B C ≅△222A B C ,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.【详解】解:①△111A B C ,△222A B C 的周长相等,1122A B A B =,1122AC A C =,1122B C B C ∴=,∴△111A B C ≅△222()A B C SSS ,∴①正确;②如图,延长11A B 到1D ,使1111B D B C =,,延长22A B 到2D ,使2222B D B C =,∴111111A D A B B C =+,222222A D A B B C =+,∵111122,A B C A B C △△的周长相等,1122=A C A C∴1122A D A D =,在△111A B D 和△222A B D 中1122121122==A D A D A A A C A C =⎧⎪∠∠⎨⎪⎩,∴ △111A B D ≅△222A B D (SAS )∴12=D D ∠∠,∵1111B D B C =,2222B D B C =∴1111=D D C B ∠∠,2222=D D C B ∠∠,又∵1111111=A B C D D C B ∠∠+∠,2222222=A B C D D C B ∠∠+∠,∴1112221==2A B C A B C D ∠∠∠,在△111A B C 和△222A B C 中111222121122===A B C A B C A A A C A C ∠∠⎧⎪∠∠⎨⎪⎩, ∴△111A B C ≅△222A B C (AAS ),∴②正确;综上所述:①,②都正确.故选:A .【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.五、八年级数学轴对称三角形填空题(难)25.△ABC 与△DEF 是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF 与△ABC 按如图所示的方式叠放在一起,使△ABC 保持不动,△DEF 运动,且满足点E 在边BC 上运动(不与B ,C 重合),边DE 始终经过点A ,EF 与AC 交于点M .在△DEF 运动过程中,若△AEM 能构成等腰三角形,则BE 的长为______.【答案】363【解析】 【分析】 分若AE =AM则∠AME =∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;【详解】解:①若AE =AM 则∠AME =∠AEM =45°∵∠C =45°∴∠AME =∠C又∵∠AME >∠C∴这种情况不成立;②若AE =EM∵∠B =∠AEM =45°∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°∴∠BAE =∠MEC在△ABE 和△ECM 中,B BAE CENAE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ECM (AAS ),∴CE =AB =6,∵AC =BC =2AB =23,∴BE =23﹣6;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3. 故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.26.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.27.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.28.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.29.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF ,在△APE 与△CPF 中,{?PAE PCFAP CPEPA FPC ∠=∠=∠=∠,∴△APE ≌△CPF (ASA ),同理可证△APF ≌△BPE ,∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②④正确; 而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.30.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.六、八年级数学轴对称三角形选择题(难)31.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A 36B33C.6 D.3【答案】D 【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=12OC=3, CH=3OH=32, ∴CD=2CH=3.故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.32.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.则其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.【详解】∵,DE AB DF AC ⊥⊥,∴∠DEA=∠DFA=90︒,∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;∵120BAC ︒∠=,∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,∴BH=AH ,AG=CG ,∴∠BAH=∠B ,∠GAC=∠C ,∴∠BAH+∠GAC=60︒,∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误;∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误;∵90B BHE ∠+∠=,30B ∠≠ ,∴ 60BHE ∠≠,∴60DHG ∠≠,∴DHG HDG ∠≠∠,∴GD GH ≠,故④错误,故选:A.【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.33.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.34.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE ⊥BC ,∴PE+PC 的最小值是22AC E C -=224223-=.故选C .【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.35.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学培优题(一)
1.如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;
(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.
【分析】(1)由∠1=∠2=∠3,可得∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,已知AC=AE,即可证得:△ABC≌△ADE;
(2)由题意可得,∠ADB=∠ABD=4x,在△ABD中,可得x+4x+4x=180°,解答处即可;
【解答】解:(1)∵∠1=∠2=∠3,
∴∠1+∠DAC=∠DAC+∠2,(三角形的一个外角等于与它不相邻的两个内角的和)即∠BAC=∠DAE,
又∵∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,
在△ABC和△ADE中,
∴△ABC≌△ADE(AAS);
(2)∵AE∥BC,
∴∠E=∠3,∠DAE=∠ADB,∠2=∠C,
又∵∠3=∠2=∠1,令∠E=x,
则有:∠DAE=3x+x=4x=∠ADB,
又∵由(1)得AD=AB,∠E=∠C,
∴∠ABD=4x,
∴在△ABD中有:x+4x+4x=180°,
∴x=20°,
∴∠E=∠C=20°.
【点评】本题主要考查了全等三角形的判定与性质,判定三角形全等是证明线段或角相等的重要方式,在判定三角形全等时,关键是选择恰当的判定条件.
2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.
(1)证明:BC=DE;
(2)若AC=12,CE经过点D,求四边形ABCD的面积.
【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,利用全等三角形的性质证明即可;
(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;
【解答】(1)解:∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAC=∠EAD.
在△ABC和△ADE中,
∴△ABC ≌△ADE (SAS ).
∴BC=DE
(2)∵△ABC ≌△ADE ,
∴S △ABC =S △ADE ,
∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =×122=72.
【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD 的面积是解此题的关键,难度适中.
3.如图,在△ABC 中,∠B=∠C ,AB=8,BC=6,点D 为AB 的中点,点P 在线段BC 上以每秒2个单位的速度由点B 向点C 运动,同时点Q 在线段CA 上以每秒a 个单位的速度由点C 向点A 运动,设运动时间为t (秒)(0≤t ≤3).
(1)用含t 的代数式表示线段PC 的长;
(2)若点P 、Q 的运动速度相等,t=1时,△BPD 与△CQP 是否全等,请说明理由.
(3)若点P 、Q 的运动速度不相等,△BPD 与△CQP 全等时,求a 的值.
【分析】(1)用BC 的长度减去BP 的长度即可;
(2)求出PB ,CQ 的长即可判断;
(3)根据全等三角形对应边相等,列方程即可得到结论.
【解答】解:(1)PC=BC ﹣BP=6﹣2t ;
(2)∵t=1时,PB=2,CQ=2,
∴PC=BC﹣PB=6﹣2=4,
∵BD=AD=4,
∴PC=BD,
∵∠C=∠B,CQ=BP,
∴△QCP≌△PBD.
(3)∵点P、Q的运动速度不相等,
∴BP≠CQ,
又∵△BPD与△CPQ全等,∠B=∠C,
∴BP=PC,BD=CQ,
∴2t=6﹣2t,at=4,
解得:t=,a=.
【点评】本题考查了全等三角形的性质,等腰三角形的性质等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.
4.如图1所示,AB=AD,AC=AE,
∠1=∠2.
(1)求证:BC=DE.
(2)如图2,若M、N分别为BC、
DE的中点,试确定AM与AN的关
系,并说明理由.
【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;
(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.
【解答】(1)证明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.
在△ABC与△ADE中,
,
∴△ABC≌△ADE.
∴BC=DE.
(2)AM=AN;理由如下:
由(1)△ABC≌△ADE,
∴∠B=∠D,
∵BC=DE,M、N分别为BC、DE的中点,
∴BM=DN,
在△ABM和△ADN中,
,
∴△ABM≌△ADN,
∴AM=AN.
【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
5.如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.
(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,
①若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;
②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使△BPD≌△CPQ;
(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q 第一次在△ABC的哪条边上追上点P?
【分析】(1)①根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD与△CQP全等;
②设点Q的运动速度为xcm/s,则BP=3t,CQ=xt,CP=8﹣3t,当△BPD≌△CQP,则BP=CQ,CP=BD;然后分别建立关于t和v的方程,再解方程即可;
(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.
【解答】解:(1)①∵BP=3×1=3,CQ=3×1=3,
∴BP=CQ,
∵D为AB的中点,
∴BD=AD=5,
∵CP=BC﹣BP=5,
∴BD=CP,
在△BPD与△CQP中,
,
∴△BPD≌△CQP;
②设点Q运动时间为t秒,运动速度为vcm/s,
∵△BPD≌CPQ,
∴BP=CP=4,CQ=5,
∴t=,
∴v===;
(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,
解得:x=10,
∴点P运动的路程为3×10=30,
∵30=28+2,
∴此时点P在BC边上,
∴经过10秒,点Q第一次在BC边上追上点P.
【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.
6.如图,已知l1∥l2,射线MN分别和直线l1,l2交于A、B,射线ME分别和直线l1,l2交于C、D,点P在A、B间运动(P与A、B两点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.
(1)试探索α,β,γ之间有何数量关系?说明理由.
(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么点P运动到什么位置时,△ACP≌△BPD说明理由.
(3)在(2)的条件下,当△ACP≌△BPD时,PC与PD之间有何位置关系,说明理由.
【分析】(1)过点P作PF∥l1,根据l1∥l2,可知PF∥l2,故可得出∠α=∠DPF,∠β=∠CPF,由此即可得出结论;
(2)根据平行线的性质得到BD⊥MN,根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质得到∠ACP=∠DPB,根据垂直的定义即可得到结论.【解答】解:(1)∠γ=α+∠β,
理由:过点P作PF∥l1(如图1),
∵l1∥l2,
∴PF∥l2,
∴∠α=∠DPF,∠β=∠CPF,
∴∠γ=∠DPF+∠CPF=α+∠β;
(2)当AP=BD=3,△ACP≌△BPD,
∵l1∥l2,AC垂直于MN,
∴BD⊥MN,
∴∠CAP=∠PBD=90°,
∵AB=9,
∴PB=6,
∴AC=PB,
在△CAP与△PBD中,,
∴△ACP≌△BPD,
∴当AP=3时,△ACP≌△BPD;
(3)CP⊥PD,
理由:∵△ACP≌△BPD,
∴∠ACP=∠DPB,
∵∠ACP+∠APC=90°,
∴∠APC+∠DPB=90°,
∴∠CPD=90°,
∴CP⊥PD.
【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.。